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Abstract

Large Audio-Language Models (LALMs) are
enhanced with audio perception capabilities,
enabling them to effectively process and un-
derstand multimodal inputs that combine au-
dio and text. However, their performance in
handling conflicting information between au-
dio and text modalities remains largely unex-
amined. This paper introduces MCR-BENCH,
the first comprehensive benchmark specifically
designed to evaluate how LALMs prioritize
information when presented with inconsistent
audio-text pairs. Through extensive evaluation
across diverse audio understanding tasks, we re-
veal a concerning phenomenon: when inconsis-
tencies exist between modalities, LALMs dis-
play a significant bias toward textual input, fre-
quently disregarding audio evidence. This ten-
dency leads to substantial performance degra-
dation in audio-centric tasks and raises impor-
tant reliability concerns for real-world appli-
cations. We further investigate the influenc-
ing factors of text bias, and explore mitigation
strategies through supervised finetuning, and
analyze model confidence patterns that reveal
persistent overconfidence even with contradic-
tory inputs. These findings underscore the need
for improved modality balance during training
and more sophisticated fusion mechanisms to
enhance the robustness when handling conflict-
ing multi-modal inputs1.

1 Introduction

With the rise of Large Audio-Language Models
(LALMs) (Chu et al., 2024; Tang et al., 2023; Gong
et al., 2023), there has been significant progress in
developing applications and systems capable of
processing both auditory and textual information
for complex tasks. These models, often built upon
Large Language Models (LLMs) with specialized

∗* Corresponding Author
1The project is available at https://github.com/

WangCheng0116/MCR-BENCH

Q: Is there a bird chirping?

YesThere is a 
bird chirping

There is a 
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No

There is no 
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Adversarial
No

Figure 1: Illustration of LALMs handling users’ input
with conflicts across the text and audio modalities.

audio encoders, have demonstrated impressive ca-
pabilities in various audio-centric tasks including
Audio Question Answering (Lipping et al., 2022),
Sound Event Detection (Mesaros et al., 2021), and
Speech Recognition (Radford et al., 2022). The
wide deployment of LALMs across various do-
mains reflects their growing importance in bridging
human auditory experience with machine intelli-
gence.

To facilitate the development of LALMs, numer-
ous benchmarks and datasets have been established
for performance evaluations (Wang et al., 2025;
Yang et al., 2024). However, they typically as-
sume harmonious or complementary relationships
between audio and text inputs. In particular, stan-
dard datasets often pair audio samples with accu-
rate textual descriptions or questions that precisely
align with the audio content. This idealized eval-
uation approach, while useful for basic capability
assessment, fails to capture the robustness of these
models in handling real-world scenarios where the
input of different modalities contains conflicting
information. Researchers have demonstrated that
the inconsistent inputs could significantly degrade
the performance of LLMs (Shi et al., 2023; Liu
et al., 2024) or Large Vision-Language Models
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(LVLMs) (Liu et al., 2025b; Deng et al., 2025).
However, there is still a lack of systematic investi-
gation into how LALMs behave when faced with
contradictory inputs, representing a significant gap
in our understanding of these models’ reliability.

The above research gap drives the motivation of
our study, where we aim to systematically evalu-
ate and mitigate the limitations of contemporary
LALMs under conflicting modal information. We
believe this is crucial for ensuring their safe and
dependable use in real-world applications. We hy-
pothesize that when faced with inconsistent au-
dio and text inputs, LALMs may exhibit a bias
toward one modality—either audio or text—over
the other, potentially leading to suboptimal per-
formance in audio-centric tasks. This preferential
behavior could undermine the models’ ability to ef-
fectively integrate and reconcile multi-modal data,
which is essential for their robustness in complex,
dynamic environments.

To validate our hypothesis, we introduce
MCR-BENCH, a comprehensive Modal Conflict
Resolution Benchmark for LALMs. Departing
from traditional clean audio-text pairs, MCR-
BENCH comprises 3,000 specially constructed sam-
ples across three audio-centric tasks, where each
audio input is systematically paired with adver-
sarial, faithful, and irrelevant textual descriptions.
Through extensive experiments evaluating six state-
of-the-art LALMs on MCR-BENCH, we reveal a
consistent and substantial preference for textual
input over audio, leading to severe performance
degradation in the presence of misleading text. This
modality bias is evident across diverse tasks and
model architectures, indicating a widespread issue
in current LALM designs.

Beyond characterizing textual bias, we further
explore mitigation strategies and analyze inter-
nal LLM state differences when processing clean
versus contradictory samples. We find that sim-
ple prompting techniques—such as bias-aware
or audio-prioritized instructions—yield only lim-
ited improvements, while supervised finetuning on
conflict-rich data offers more promising, though
still incomplete, mitigation. Further analysis of
model behavior reveals that LALMs remain highly
confident even when relying on contradictory tex-
tual information, and internal representation studies
suggest they internally detect cross-modal incon-
sistencies without appropriately modulating their
outputs. These findings underscore a disconnect be-

tween latent awareness and output reasoning, high-
lighting the need for architectural and training-level
innovations to achieve truly robust multi-modal
reasoning in audio-language models. Importantly,
these insights illuminate a promising path forward:
leveraging mechanism interpretation to develop
new solutions for robust audio-language models.

2 Related Work

LALMs Performance Benchmarking. Large
Audio-Language Models (LALMs) have recently
gained significant attention for their ability to pro-
cess audio inputs and generate textual responses.
Researchers have established task-specific bench-
marks for audio understanding capabilities, such as
AudioBench (Wang et al., 2025) and AIR-Bench
(Yang et al., 2024). These benchmarks predom-
inantly assume aligned or complementary audio-
text relationships, leaving the models’ behavior
under conditions of modal conflict largely unex-
plored. While recent work has begun addressing
evaluation comprehensiveness, the assumption of
modal harmony persists, creating a critical gap in
our understanding of LALMs’ reliability in real-
world scenarios where inputs across modalities may
contain inconsistencies.
Robustness of LALMs. Prior research has fo-
cused on two primary dimensions of audio mod-
els’ robustness: vulnerability to adversarial at-
tacks and resilience against natural perturbations.
While Carlini and Wagner (2018) and Qin et al.
(2019) demonstrated concerning susceptibilities to
targeted and imperceptible adversarial examples,
defensive strategies such as data augmentation tech-
niques proposed by Park et al. (2019) and self-
supervised learning frameworks from Baevski et al.
(2020) have shown promise in improving model re-
silience. Despite these advances, the field requires
more systematic evaluations and comprehensive
frameworks to address the multifaceted challenges
of real-world audio processing.
Distraction in Inputs. Recent studies highlight the
challenge of distraction in input processing across
both language and multimodal models. For LLMs,
Huang et al. (2025) introduced Contextual Distrac-
tion Vulnerability, demonstrating how irrelevant
but semantically coherent context significantly de-
grades model performance. To address this chal-
lenge, retrieval-augmented contrastive learning ap-
proaches have been explored to enhance focus on
relevant information in long-context tasks (Wu
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et al., 2024). The distraction problem extends
to multimodal systems as well, with Deng et al.
(2025) and Liu et al. (2025b) systematically ana-
lyzing how Vision-Language Models exhibit sub-
stantial performance degradation when confronted
with conflicting visual and textual inputs. These
studies establish that inconsistent or distracting in-
formation across modalities presents a fundamental
challenge for robust AI systems. Our work extends
this line of inquiry to the audio domain, investigat-
ing how LALMs prioritize information when faced
with similar cross-modal inconsistencies.

3 MCR-BENCH

We introduce MCR-BENCH, a benchmark specifi-
cally designed to evaluate how LALMs process and
reconcile conflicting audio-text inputs. For each
audio sample in our benchmark, we systematically
construct three types of textual contexts:

• Faithful: Accurate descriptions that correctly
represent the audio content.

• Adversarial: Deliberately misleading descrip-
tions that contradict the audio content.

• Irrelevant: Semantically unrelated descriptions
that have minimal topical overlap with the audio
content.

These variations allow us to systematically eval-
uate LALMs’ ability to prioritize relevant audio
information, resist misleading textual cues, and
maintain robust performance when faced with con-
flicting or irrelevant cross-modal inputs. Below we
elaborate how these three types of text variations
are constructed.

3.1 Data Sources

MCR-BENCH covers three different types of au-
dio understanding tasks (sound question answering,
speech emotion recognition, and vocal sound clas-
sification) to ensure a comprehensive evaluation
across diverse audio domains. It is extensible for
supporting other audio-text tasks as well.

• Audio Question Answering (AQA): We uti-
lize ClothoAQA (Lipping et al., 2022), a
dataset comprising 1,991 audio samples from
the Clotho (Drossos et al., 2019) dataset, each
paired with six crowdsourced questions and cor-
responding answers, totaling 35,838 question-
answer pairs. This component evaluates natural
language understanding of general audio con-
tent.

• Speech Emotion Recognition (SER): We incor-
porate MELD (Poria et al., 2019), a multimodal
multi-party dataset containing over 1,400 dia-
logues and 13,000 utterances from the TV series
Friends, annotated with seven emotion labels
and sentiment. This tests the model performance
on human speech with emotional content.

• Vocal Sound Classification (VSCn): We in-
clude VocalSound (Gong et al., 2022), which
features non-verbal human vocalizations across
different acoustic conditions, challenging mod-
els to recognize human vocal sounds beyond
speech.

3.2 Text Variation Construction

To generate systematic variations in textual con-
texts, we create three distinct textual conditions for
each audio sample:

• Faithful Text Generation: We employ GPT-
4o (OpenAI, 2024) with one-shot learning to cre-
ate factual statements that accurately represent
the audio content based on original question-
answer pairs.

• Adversarial Text Generation: Using the same
GPT-4o framework, we generate non-factual
statements that directly contradict the audio con-
tent. Appendix A shows the prompt template
used for this adversarial generation process.

• Irrelevant Text Selection: We select irrelevant
textual descriptions based on sentence similar-
ity calculations between the true caption and all
captions from AudioCaps (Kim et al., 2019). We
choose descriptions with minimal semantic over-
lap while maintaining plausible text structure.

3.3 Evaluation Metrics

To quantify modal conflict resolution capabilities of
different LALMs, we define N as the total number
of samples, Cneutral as the number of correct predic-
tions under neutral conditions (where only audio
input is provided without any textual description),
and Ct as the number of correct predictions with
text condition t ∈ {neu, fth, adv, irr} for faithful,
adversarial, and irrelevant conditions respectively.
For evaluation, we use a prompt template shown in
Figure 2 that instructs models to answer questions
while being aware that the provided textual descrip-
tions may contain inaccuracies. Specifically, we
use the following metrics.
Accuracy. For each textual description type, we
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calculate the accuracy as:

Acct =
Ct

N
.

Normalized Accuracy. This metric measures how
the model is affected by different types of textual
input. It can be expressed as:

Normt =
Ct

Cneu
.

Macro Accuracy. This metric is defined as the
average accuracy of three different types:

Macro =
Accfth + Accadv + Accirr

3
.

Text Influence Rate (TIR). TIR quantifies how
much the textual input influences the model’s pre-
dictions across different text conditions. We de-
fine ∆t

ic as the number of samples with prediction
changes from incorrect to correct and ∆t

ci as those
changing from correct to incorrect under text con-
dition t. TIR for each text condition is:

TIRt =





∆fth
ic
N if t = fth
∆adv

ci
N if t = adv

∆irr
ic +∆irr

ci
N if t = irr

It evaluates how the model utilizes faithful informa-
tion, opposing misleading information and ignoring
irrelevant information.
Modal Robustness Score (MRS). This metric
quantifies the resistance to potentially misleading
textual information, indicating how well a model
maintains audio-based performance despite contra-
dictory or irrelevant textual inputs:

MRS = α · Accadv

Accneu
+ (1− α) · Accirr

Accneu

where α = 0.8 emphasizes adversarial robustness,
as most models exhibit near-zero Accadv values.

Prompts for Evaluation

The following text provides descriptions de-
rived from audio content. This information
may be accurate, inaccurate, or irrelevant.
Answer the question with discretion regard-
ing how you use these details.
Description: <DESCRIPTION>
Question: <QUESTION>

Figure 2: The prompt used for evaluating LALMs’ re-
sponse to potentially inconsistent audio-text pairs.

4 Benchmarking Text Bias

Our evaluation encompasses a diverse range of
state-of-the-art LALMs: Qwen-Audio-Chat (Chu
et al., 2023), Qwen2-Audio-Instruct (Chu et al.,
2024), Gazelle (AI, 2024), SALMONNN-7B and
SALMONNN-13B (Tang et al., 2023), Audio-
Flamingo2 (Ghosh et al., 2025) and SeaLLMs-
Audio-7B (Liu et al., 2025a).

4.1 Main Results

Experimental results are summarized in Table 1.
We observe strong text bias across all models.
LALMs consistently prioritize textual information
over audio evidence when faced with contradic-
tions between modalities, regardless of their model
architecture or underlying training methodology.
When provided with adversarial textual descrip-
tions that contradict audio content, all models ex-
hibit dramatic performance drops. For instance,
on the Audio Question Answering task, accura-
cies drops from 87.8% to 1.7% for Qwen-Audio-
Chat and from 87.5% to 1.5% for Qwen2-Audio-
Instruct—representing over 98% performance de-
terioration. Even more strikingly, on the Speech
Emotion Recognition task, four of the seven tested
models show complete susceptibility to adversar-
ial text, with accuracy dropping to precisely 0.0%.
This pattern holds across all datasets, with TIR
consistently above 95% for most models, clearly
demonstrating that these systems overwhelmingly
favor textual inputs when resolving cross-modal
conflicts.

4.2 Comparisons Across Models

While text bias is universal across all tested mod-
els, some demonstrate notably higher resilience
to misleading textual inputs than others. Audio-
Flamingo2 stands out with substantially stronger
modal robustness compared to other models,
achieving significantly higher adversarial accuracy
on Audio Question Answering task (35.3% versus
below 3.5% for most competitors) and maintaining
an MRS of 58.4%. Similarly, on the Speech Emo-
tion Recognition task, Audio-Flamingo2 maintains
15.9% accuracy under adversarial conditions while
most other models drop to near zero. SALMONN
models also demonstrate relatively better resilience
on Vocal Sound Classification, with the 7B and 13B
versions maintaining 25.1% and 24.4% accuracy re-
spectively under adversarial conditions, compared
to 3.0% of Qwen-Audio-Chat. These quantitative
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Benchmark Task Model Neutral
Faithful Adversarial Irrelevant

Macro MRS
Accuracy ↑ Norm ↑ TIR ↑ Accuracy ↑ Norm ↑ TIR ↓ Accuracy ↑ Norm ↑ TIR ↓

AQA

Qwen-Audio-Chat 87.8 100.0 113.9 100.0 1.7 1.9 98.3 87.9 100.1 12.7 63.2 21.5

Qwen2-Audio-Instruct 87.5 100.0 114.3 100.0 1.5 1.7 98.3 75.5 86.3 27.0 59.0 18.6

SALMONN-7B 62.2 99.4 159.8 98.7 1.7 2.7 97.3 73.8 118.6 26.0 58.3 25.9

SALMONN-13B 70.0 99.4 142.0 98.3 2.7 3.9 96.6 55.3 79.0 62.1 52.5 18.9

Gazelle 60.5 87.2 144.1 86.1 3.5 5.8 96.4 43.6 72.1 53.7 44.8 19.1

Audio-Flamingo2 68.0 90.4 132.9 82.5 35.3 51.9 58.7 57.5 84.6 38.7 61.1 58.4

SeaLLMs-Audio-7B 72.8 99.9 137.2 99.6 1.3 1.8 98.4 81.8 112.4 15.6 61.0 23.9

VSC

Qwen-Audio-Chat 60.1 79.5 132.3 51.9 3.0 5.0 96.7 45.3 75.4 15.7 42.6 19.1

Qwen2-Audio-Instruct 85.4 99.8 116.9 98.6 11.8 13.8 86.2 85.7 100.4 9.9 65.8 31.1

SALMONN-7B 60.5 89.6 148.1 73.7 25.1 41.5 59.0 61.4 101.5 4.5 58.7 53.5

SALMONN-13B 48.8 65.3 133.8 38.7 24.4 50.0 52.5 42.4 86.9 12.6 44.0 57.4

Gazelle 18.2 100.0 549.5 100.0 0.0 0.0 100.0 16.9 92.9 15.3 39.0 18.6

Audio-Flamingo2 30.0 98.8 329.3 98.7 1.3 4.3 97.3 25.3 84.3 26.7 41.8 20.3

SeaLLMs-Audio-7B 65.2 98.4 150.9 95.4 7.1 10.9 88.3 49.7 76.2 18.7 51.7 24.0

SER

Qwen-Audio-Chat 24.5 99.9 407.8 99.9 0.1 0.4 99.6 14.8 60.4 25.9 38.3 12.4

Qwen2-Audio-Instruct 41.8 100.0 239.2 100.0 0.0 0.0 100.0 27.8 66.5 39.4 42.6 13.3

SALMONN-7B 25.1 98.7 393.2 98.3 0.1 0.4 99.6 36.4 145.0 36.1 45.1 29.3

SALMONN-13B 46.9 100.0 213.2 100.0 0.0 0.0 100.0 45.3 96.6 5.0 48.4 19.3

Gazelle 44.9 97.4 216.9 95.6 0.0 0.0 100.0 43.8 97.6 7.3 47.1 19.5

Audio-Flamingo2 30.8 80.2 260.4 76.0 15.9 51.6 72.7 32.9 106.8 31.1 43.0 62.6

SeaLLMs-Audio-7B 49.9 99.9 200.2 99.8 0.1 0.2 99.8 47.2 94.6 18.3 49.1 19.1

Table 1: Performance comparison (%) of various LALMs on MCR-BENCH. Results show accuracy and Text
Influence Rate (TIR) across neutral, faithful, adversarial, and irrelevant text inputs. Darker background color
indicate higher value.

differences suggest meaningful variations in how
different architectures integrate and prioritize cross-
modal information, though even the most robust
models still show considerable vulnerability to text
bias.

To investigate the relationship between parame-
ter count and cross-modal robustness, we evaluated
Audio-Flamingo2 (Ghosh et al., 2025) at three dif-
ferent scales (0.5B, 1.5B, and 3B) as detailed in
Table 2. Our analysis reveals a consistent perfor-
mance improvement as model size increases, with
the largest 3B variant showing enhanced capabili-
ties in both leveraging helpful textual information
and resisting misleading inputs. However, the rela-
tively modest gains in adversarial resistance com-
pared to the significant parameter increase suggest
that architectural innovations, rather than simple
scaling, may be necessary to effectively address
cross-modal conflicts.

4.3 Impact of Tasks and Text Relevance

The severity of text bias varies significantly across
different audio understanding tasks, revealing a
relationship between task complexity and suscepti-
bility to misleading text. LALMs show particularly
high vulnerability on emotion recognition tasks,
where average adversarial accuracy across all mod-
els is just 2.3%, compared to 6.7% on Audio Ques-

tion Answering task and 10.4% on Vocal Sound
Classification task. Similarly striking is how irrel-
evant text affects performance differently across
tasks—on Audio Question Answering, SeaLLMs-
Audio-7B achieves 112.4% normalized accuracy
with irrelevant text (improved performance), while
on Speech Emotion Recognition task, SALMONN-
7B reaches 145.0% of its neutral performance with
irrelevant text. This variability in responses to dif-
ferent types of textual interference suggests that
the interplay between audio and text processing is
highly task-dependent, with semantically complex
tasks showing different vulnerability patterns than
more straightforward classification tasks.

To investigate how textual relevance affects
model behavior, we quantify the semantic distance
between textual descriptions and audio content, di-
viding samples into five bins from lowest to highest
relevance. Using sentence embeddings to compute
cosine similarity between text and audio captions,
we evaluate performance across these relevance
levels. As shown in Figure 3, surprisingly, there
is no clear correlation between text relevance and
the model’s susceptibility to textual bias. The Text
Influence Rate remains consistently high across all
relevance bins for adversarial text, suggesting that
LALMs’ text bias persists regardless of semantic
distance between modalities.
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Figure 3: Analysis of Text Relevance Impact. Per-
formance across five text relevance bins from lowest
to highest. Blue bars (left axis) show accuracy under
adversarial text conditions, while the orange line (right
axis) represents the Text Influence Rate.

Size
Text Influence Rate

Macro ↑ MRS ↑
Faith. ↑ Adv. ↓ Irr. ↓

0.5B 75.36 66.38 44.20 54.60 58.10
1.5B 72.67 59.30 43.80 55.17 59.44
3B 82.50 58.68 38.70 61.07 60.68

Table 2: The Effect of Model Sizes. We experi-
ment with Audio-Flamingo2 at three different parameter
scales on ClothoAQA.

5 Understanding Text Bias

We perform in-depth analysis to disclose the causes
of text bias in LALMs.

5.1 Confidence Analysis

To investigate whether LALMs exhibit appropriate
uncertainty when faced with inconsistent inputs,
we analyze confidence patterns in Qwen2-Audio-
Instruct and SeaLLMs-Audio-7B across different
textual conditions. For each prediction, we extract
the maximum token probability as a confidence
score, allowing us to quantify model certainty un-
der modal conflict.

As shown in Figure 4, LALMs maintain remark-
ably high confidence scores even when process-
ing adversarial textual inputs that contradict audio

evidence. Surprisingly, confidence under adver-
sarial conditions is comparable to or even higher
than under faithful conditions, despite the dramatic
performance degradation observed in our earlier
experiments. Only with irrelevant text do we ob-
serve a slight reduction in confidence, though this
decrease remains disproportionately small relative
to performance impact. This overconfidence when
making incorrect predictions indicates that LALMs
not only prioritize text over audio but also do so
with high certainty, suggesting these models lack
effective calibration mechanisms to detect and ap-
propriately respond to cross-modal inconsistencies.
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Figure 4: Confidence Analysis Under Different Tex-
tual Conditions. LALMs maintain high confidence
scores across text conditions despite performance degra-
dation with adversarial inputs.

5.2 Spectral Analysis
We analyze the intrinsic dimensionality of hidden
representations when processing consistent versus
inconsistent audio-text pairs. For N samples, we
extract the last layer hidden states of the final to-
ken, resulting in two matrices: A ∈ RN×d from
adversarial inputs and F ∈ RN×d from faithful
inputs, where d represents the hidden state dimen-
sion. After centralizing these matrices, we perform
Singular Value Decomposition (SVD):

A = UAΣAV
T
A , F = UFΣFV

T
F

where UA, UF ∈ RN×N and VA, VF ∈ Rd×d are
orthogonal matrices.
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Figure 5: Spectral analysis of hidden representations.
Normalized singular values for adversarial and faithful
inputs from Qwen2-Audio-Instruct on subset of MCR-
BENCH.

Using Qwen2-Audio-Instruct with the Vocal
Sound Classification subset of MCR-BENCH, we
plot the normalized singular values in Figure 5.
The results reveal a rapid decay in singular val-
ues for both conditions, indicating that the model’s
representations lie in remarkably low-dimensional
subspaces. Specifically, only 6 dimensions are
needed to explain 95% of the variance in adversar-
ial representations, while faithful representations
require just 5 dimensions. This suggests that de-
spite the high-dimensional embedding space, the
model encodes audio-text information in compact,
low-dimensional manifolds.

5.3 Separability Analysis

Building on our spectral analysis findings, we
further investigate the separability between these
low-dimensional subspaces. If the model inter-
nally distinguishes between faithful and adversar-
ial inputs—despite producing confident yet incor-
rect outputs for adversarial cases—these subspaces
should be linearly separable. We implement a 3:1
train-test split on the hidden representations from
different model layers and train SVM and Random
Forest classifiers to quantify this separability.

Table 3 presents the classification performance
across different layers. The high accuracy (up to
98.0% with Random Forest at layer 32) confirms
that these representation subspaces are highly sep-
arable, with the separation becoming more pro-
nounced in deeper layers. This indicates that
LALMs internally recognize inconsistencies be-
tween audio and text modalities, yet this aware-
ness fails to translate into appropriate output behav-
ior—revealing a disconnect between representation
and decision-making in these models.

Method Layer Acc F1 AUC

SVM
1 48.2 51.0 53.8
16 93.4 93.6 97.9
32 95.8 95.9 98.8

Random Forest
1 56.4 58.6 60.4
16 97.4 97.4 99.5
32 98.0 98.0 99.8

Table 3: Subspace Classification Performance. We
train SVM and Random Forest Classifier on the adver-
sarial and faithful input.
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Figure 6: Analysis on Different Prompting Tech-
niques. We perform our experiments on Qwen2-Audio-
Instruct and MCR-BENCH subset.

6 Mitigating Text Bias

We discuss two potential solutions to mitigate the
text bias in LALMs.

6.1 Prompting Techniques
Inspired by previous studies (Shi et al., 2023; Deng
et al., 2025), we first investigate whether different
prompting techniques will help models reduce the
text bias. We consider the following techniques:
Zero-Shot Chain-of-Thought prompting (Kojima
et al., 2023), Audio Priority prompting which ex-
plicitly instructs the model to prioritize audio in-
formation, and Bias Awareness prompting which
reminds the model about potential modality con-
flicts (prompts are shown in Appendix B).

In our experiments with Qwen2-Audio-Instruct
on the Audio Question Answering subset of MCR-
BENCH (result in Figure 6), we find that prompting
techniques alleviate the text bias to some extent,
but the improvement is very limited. Specifically,
the Bias Awareness prompt shows the most signifi-
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Method ClothoAQA MELD VocalSound (Out-of-Distribution)

Accfth Accadv Accirr TIRadv Accfth Accadv Accirr TIRadv Accfth Accadv Accirr TIRadv

Base 100.0 1.5 75.5 98.3 100.0 0.0 27.8 100.0 99.8 11.8 85.7 86.2

Prompt-based Methods

w/ CoT 100.0 2.2 72.8 97.5 100.0 0.0 28.5 100.0 99.8 11.9 84.9 86.1
w/ Bias Awareness 99.9 6.9 66.0 92.2 100.0 0.0 28.0 100.0 100.0 11.8 85.1 86.3
w/ Audio Priority 100.0 1.8 81.7 97.8 100.0 0.0 26.2 100.0 99.9 12.1 85.2 86.0
Best Prompt 100.0 6.9 81.7 92.2 100.0 0.0 28.5 100.0 10.0 12.1 85.7 86.3

Finetuning-based Methods

w/ SFT 90.9 42.1 89.2 18.7 60.6 43.8 47.2 14.6 96.2 17.7 92.1 76.9

Table 4: Comparison of techniques for mitigating text bias in Qwen2-Audio-Instruct. We compare the base
model, bias awareness prompting, and SFT across training datasets and evaluate generalization on the out-of-
distribution subset.

cant effect, increasing the accuracy from 1.5% to
17.4% under adversarial conditions. It also de-
creases the Text Influence Rate from 98.3% to
79.7%, indicating reduced susceptibility to mislead-
ing text. However, even with these improvements,
the model’s performance remains compromised
when faced with contradictory textual information,
suggesting that more fundamental architectural or
training modifications may be necessary to effec-
tively address the text bias problem in LALMs.

6.2 Supervised Finetuning (SFT)
We investigate whether supervised finetuning (SFT)
on datasets containing conflicting audio-text pairs
can mitigate text bias in LALMs. This strategy
explicitly trains the model to recognize and resolve
cross-modal inconsistencies by providing the cor-
rect answers despite misleading textual information.
This targeted intervention aims to recalibrate the
model’s attention between modalities when faced
with conflicting inputs.

We use Qwen2-Audio-Instruct as our base
model, and fine-tune it on 1,000 samples from
Audio Question Answering and Speech Emotion
Recognition subsets that contain deliberately mis-
matched audio-text pairs. To ensure efficient adap-
tation while preserving general capabilities, we
employ Low-Rank Adaptation (LoRA) (Hu et al.,
2022) with a rank of 8 and train for 2 epochs. Fine-
tuning details are given in Appendix C. We evalu-
ate the model’s generalization on the Vocal Sound
Classification task, which represents an unseen do-
main.

Table 4 presents the performance of the base and
fine-tuned models across different metrics. We ob-
serve that SFT substantially outperforms prompt-

based methods in mitigating text bias. Our fine-
tuned model shows dramatically improved adver-
sarial accuracy across all datasets, with particularly
notable gains on Audio Question Answering and
Speech Emotion Recognition tasks. This comes
with a significant reduction in Text Influence Rate,
indicating enhanced resistance to misleading tex-
tual cues. However, this improvement trades off
some performance on faithful text conditions, sug-
gesting a recalibration of modality attention rather
than an overall enhancement. Interestingly, the
model exhibits improved handling of irrelevant tex-
tual inputs as well, demonstrating more balanced
cross-modal processing. Despite these gains, text
bias remains present, highlighting the need for
more advanced architectural approaches to fully
resolve modality imbalance in LALMs.

7 Conclusion

In this work, we introduce MCR-BENCH, a bench-
mark that evaluates the performance of LALMs
when faced with cross-modal inconsistencies. Our
comprehensive evaluations across multiple models
and tasks demonstrate that state-of-the-art LALMs
exhibit a strong bias towards textual input over au-
dio, leading to consistent performance degradation
under adversarial conditions. We explore various
mitigation strategies, which can only partially ad-
dress the issue. These findings highlight the critical
reliability concerns for real-world applications and
underscore the need for novel training paradigms
to better balance modality contributions in multi-
modal processing. We believe MCR-BENCH will
serve as a valuable benchmark for developing more
robust large audio-language models.
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Limitations

Despite our comprehensive evaluation, this study
has several limitations. Our analysis is constrained
to specific audio understanding tasks and may not
generalize to all audio-language scenarios. The syn-
thetic nature of our adversarial and irrelevant tex-
tual descriptions might present different challenges
compared to naturally occurring conflicts. Our in-
vestigation of mitigation strategies was limited to
prompting techniques and model scaling, without
exploring architectural modifications or specialized
training objectives that could potentially yield more
substantial improvements. Additionally, our evalua-
tion focused on English-language models and West-
ern audio contexts, potentially missing cultural and
linguistic factors that may influence cross-modal
processing priorities.
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A Faithful and Adversarial Statement
Generation

The prompt used to generate faithful statements
that accurately reflect audio content and adversar-
ial statements that contradict the audio content is
presented in Figure 7.

Prompt for Text Variants Generation

Convert this question and answer into two
statements:
1. A factual statement that accurately repre-
sents the information from the question and
answer.
2. A non-factual statement that contradicts
the factual statement.

Example:
Question: "Are people speaking?"
Answer: "yes"
Factual statement: "There are people
speaking."
Non-factual statement: "There are no
people speaking."

Now convert this pair:
Question: "<QUESTION>"
Answer: "<ANSWER>"
Factual statement:
Non-factual statement:

Figure 7: Prompt used for generating text variants from
question-answer pairs.
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B Mitigation Strategy Prompts

This section details the prompt used for mitigat-
ing text bias of LALMs (shown in Figure 8 and
Figure 9).

Audio Priority Prompt

After thinking step by step, please answer
the question.

Figure 8: CoT prompt for mitigating text bias.

Audio Priority Prompt

Please prioritize information from the audio
over the text description.

Figure 9: Audio Priority prompt for mitigating text bias.

Bias Awareness Prompt

Be aware that you may have a tendency to
trust text descriptions more than audio evi-
dence. Try to avoid this text bias and then
answer the question.

Figure 10: Bias Awareness prompt for mitigating text
bias.

C SFT Details

We fine-tuned the Qwen2-Audio-7B-Instruct
model using LoRA with rank 8 and α = 32, tar-
geting all linear layers while freezing the ViT com-
ponents. Training ran for 2 epochs with a learning
rate of 1e-4 and warmup ratio of 0.05. We used a
per-device batch size of 1 with gradient accumula-
tion steps of 16, resulting in an effective batch size
of 128. All training was performed using bfloat16
precision with a maximum sequence length of 2048
tokens.
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