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Abstract

Large Language Models (LLMs) based agent
systems have made great strides in real-
world applications beyond traditional NLP
tasks. This paper proposes a new LLM-
based Multi-Agent System (LLM-MAS) bench-
mark, Collab-Overcooked, built on the popu-
lar Overcooked-AI game with more applica-
ble and challenging tasks in interactive envi-
ronments. Collab-Overcooked extends exist-
ing benchmarks in two novel ways. First, it
provides a multi-agent framework supporting
diverse tasks and objectives and encourages
collaboration through natural language com-
munication. Second, it introduces a spectrum
of process-oriented evaluation metrics to as-
sess the fine-grained collaboration capabilities
of different LLM agents, a dimension often
overlooked in prior work. We conduct exten-
sive experiments with 13 popular LLMs and
show that, while the LLMs exhibit a strong
ability in goal interpretation, there are signifi-
cant shortcomings in active collaboration and
continuous adaptation, which are critical for
efficiently fulfilling complex tasks. Notably,
we highlight the strengths and weaknesses of
LLM-MAS and provide insights for improv-
ing and evaluating LLM-MAS on a unified and
open-source benchmark. The environments,
30 open-ended tasks, and the evaluation pack-
age are publicly available at https://github.
com/YusaeMeow/Collab-Overcooked.

1 Introduction

Leveraging the remarkable zero-shot and few-
shot learning abilities of Large Language Mod-
els (LLMs), LLM-based agents are demonstrating
their potential in complex task decomposition and
planning (Wang et al., 2023a,c; Li et al., 2024b).
Inspired by human collaborative behaviors in so-
cial activities, recent research demonstrates that

*These authors contributed equally to this work.
†Corresponding author.

multi-agent systems can significantly enhance task
efficiency and tackle challenges surpassing single-
agent capabilities (Li et al., 2023a; Hong et al.,
2023; Zhang et al., 2023). To effectively address
complex real-world tasks, LLM-based Multi-Agent
Systems (LLM-MAS) require three essential col-
laboration capabilities beyond goal interpretation,
which include: (a) Competence boundary aware-
ness: the ability to analyze task flows and environ-
mental states to determine feasible actions, recog-
nize limitations, and identify when external assis-
tance is needed; (b) Communication: proficiency
in utilizing standardized protocols for transmitting
task-critical information and resource requests; and
(c) Dynamic adaptation: responsiveness to collab-
oration requests and dynamically adjusting their
action sequences accordingly and efficiently.

Given these fundamental requirements, establish-
ing evaluation frameworks becomes crucial for as-
sessing LLM-MAS collaboration effectiveness. Re-
searchers have developed specialized benchmarks
to quantify collaborative agents in specific envi-
ronments. Representative platforms like Agashe
et al. (2023), RocoBench (Mandi et al., 2024), and
LLMARENA (Chen et al., 2024) create virtual
scenarios requiring collaborative problem-solving
through intricate workflows. These frameworks
are complemented by novel metrics, such as Col-
laboration Score (CoS) (Gong et al., 2023), which
evaluates end-to-end collaboration capability.

Despite recent progress in evaluating LLM-MAS
collaboration capability, existing approaches ex-
hibit three critical limitations. First, they priori-
tize task completion efficiency without imposing
strict collaboration requirements, allowing individ-
ual agents to accomplish tasks that are nominally
“collaborative” independently. This design flaw in-
troduces assessment biases by obscuring the role
of collaboration in performance gains, which con-
trasts with real-world applications where collab-
oration is often essential for task success. Sec-
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Virtual Environment Various Task
Complexities Scalability Collaboration

Definition
Forced

Collaboration
Collaboration

Evaluation
RocoBench (Mandi et al., 2024) NA/6 ✗ NA Partial E2E
VillagerBench (Dong et al., 2024) 3/9 ✗ E2E ✗ E2E
LLMARENA (Chen et al., 2024) NA/7 ✗ PO ✗ E2E
CivRealm (Qi et al., 2024) NA/100k ✓ NA ✗ E2E
BattleAgentBench (Wang et al., 2024) 3/3 ✗ E2E ✗ E2E
TDW-MAT (Zhang et al., 2023) NA/2 ✗ E2E ✗ E2E
CuisineWorld (Gong et al., 2023) 13/39 ✓ E2E ✗ E2E
Collab-Overcooked (Ours) 6/30 ✓ PO ✓ E2E&PO

Table 1: Statistics of existing benchmarks for evaluating LLM-MAS collaboration. If no data is available, it is
marked as “NA”. Statistics in “Various Task Complexities” are presented in the format “Number of Levels / Total
Number of Tasks”. “E2E” refers to end-to-end, while “PO” refers to process-oriented.

ond, existing benchmarks conflate collaboration
capability with end-to-end metrics, such as task
completion rates, which are frequently used as
proxies for collaboration effectiveness in platforms
like CuisineWorld (Gong et al., 2023) and Vil-
lagerBench (Dong et al., 2024). However, this
approach overlooks two critical issues: divergent
definitions of “success” across environments un-
dermine comparability, and the absence of process-
oriented metrics obscures actionable insights for
optimizing collaborative strategies. Third, the lack
of a fine-grained evaluation prevents a comprehen-
sive, multi-perspective analysis of LLM agents’
capabilities, making it difficult to interpret their
strengths and limitations effectively, thus falling
short of insightful research suggestions.

To address the limitations of existing LLM-MAS
benchmarks, we propose the Collab-Overcooked
Benchmark, designed to provide a fine-grained
analysis of collaborative interactions. Unlike prior
benchmarks that focus primarily on task comple-
tion, our benchmark evaluates the capability of
initiating and responding to collaboration during
the collaboration process. Specifically, the Collab-
Overcooked extends Overcooked-AI (Carroll et al.,
2019) to a chef-and-assistant collaborating environ-
ment and introduces 30 sequential process-specific
tasks across 6 complexity levels. Each agent op-
erates in an isolated environment with distinct ac-
tion spaces, so task completion depends on effec-
tive communication and resource exchange, there-
fore collaboration is strictly required. Furthermore,
we propose the Trajectory Efficiency Score (TES)
and Incremental Trajectory Efficiency Score (ITES)
to assess the collaboration capabilities from both
coarse and fine perspectives. Through comprehen-
sive experiments on 13 LLMs of varying sizes, in-
cluding both open-source and closed-source LLMs,

we reveal significant performance gaps in collabo-
ration capabilities across different LLMs. We iden-
tify attention misalignment as a key factor affecting
collaboration performance. Our results show that,
in collaborative tasks, correcting attention alone
can improve outcomes, revealing core limitations
of current LLM-MAS and pointing to future direc-
tions such as collaborative memory and attention-
guided fine-tuning.

To summarize, our contributions are as follows:

• We develop and open-source a lightweight and
extensible LLM-MAS benchmark, Collab-
Overcooked, which features 30 tasks across
6 complexity levels that encourage collabora-
tion, thus facilitating the evaluation of MAS
collaboration in a unified environment with
diverse, complex tasks.

• We define collaboration capability in LLM-
MAS as comprising both initiating collabo-
ration and responding to collaboration. We
introduce 3 trajectory efficiency-related met-
rics to evaluate collaboration capabilities from
both coarse and fine-grained perspectives.

• We conduct a comprehensive evaluation of a
wide range of popular LLM agents, reveal-
ing collaboration and adaptation bottlenecks
under varying task complexities, and identi-
fying key limitations of LLM-MAS through
analysis of attention distribution.

2 Related Work

LLM-Based Multi-Agent System LLM-MAS
enables agents to collaboratively engage in plan-
ning, discussing, and decision-making. Collabora-
tion is a pivotal capability in task-oriented LLM-
MAS, as it not only enhances task completion ef-
ficiency (Zhang et al., 2024b; Tao et al., 2024)
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but also enables the pursuit of complex goals be-
yond the reach of a single agent (Park et al., 2023;
Hong et al., 2023). Recent methods for improving
collaboration can be broadly categorized into (a)
Structural optimization (e.g., DyLAN’s (Liu et al.,
2023) dynamic framework), (b) Role specialization
(e.g., AutoGen’s (Wu et al., 2023) personas and
AgentVerse’s (Chen et al., 2023) role assignments),
and (c) Communication paradigm (e.g., MetaGPT’s
(Hong et al., 2023) message pool). Despite these
advancements, the inherent complexity and diver-
sity of multi-agent tasks make it difficult to com-
pare methods directly, driving the emergence of
standardized benchmarks that enable quantitative
evaluations under unified conditions.

LLM-MAS Benchmark and Evaluation
Benchmark testing in virtual environments is
the primary method for evaluating multi-agent
collaboration capability. As shown in Table
1, existing studies establish diverse tasks and
commonly use End-to-End (E2E) metrics to assess
LLM-MAS collaboration capability, with some
benchmarks offering environmental scalability.
However, several limitations persist. A key issue is
the lack of a formal collaboration definition in most
benchmarks, leading to ambiguous assessments
and inconsistent comparisons across different
benchmarks. Furthermore, the absence of enforced
collaboration mechanisms allows agents to achieve
objectives independently (e.g., in CuisineWorld,
where many tasks can be completed by a single
agent), undermining the true assessment of
collaboration. Finally, the predominant focus on
outcome-based metrics such as E2E performance
overlooks the critical role of process-driven
dynamics. Approaches like (Song et al., 2024),
LTC (Wang et al., 2023b), and EvoMAC (Hu et al.,
2024) suggest refining LLMs through process
behaviors to enhance adaptation and collaboration,
indicating that incorporating process-oriented
metrics could offer more comprehensive insights.

3 Task-Oriented Collaboration

3.1 Collaboration Capability
A task in LLM-MAS can be formulated as a 4-tuple:
T = (G,E,P,R), where G is a natural language
description of the task goal, such as “make a dish
of tomato soup”; E is a description of the environ-
ment, which can be either the layout of a simulated
scenario or the visual input of real-world surround-
ings; P is optional natural language guidance, pro-

viding recipes, helpful hints, or task constraints;
and R is a Referential Action Trajectory (RAT)
that leads to the successful completion of the task
and is used to assess the agents’ performance. It is
worth noting that there are often multiple RATs for
a task, especially in dynamic environments.

Collaboration often involves agents relying on
each other to solve tasks. As shown in Figure 1
Part I, we define collaboration capability as com-
prising two essential components: the capability to
initiate collaboration, where agents, upon realizing
that their boundary prevents them from completing
the task according to G and P at environmental
state st ∈ E at time t, generate a request for col-
laborative actions areq to solicit assistance from
other agents; and the capability to respond to col-
laboration, where agents, upon receiving areq from
another agent, adjust their action sequence based
on st and generate collaborative actions aresp.

3.2 TES and ITES

3.2.1 TES
Trajectory Efficiency Score (TES) is designed to
compare the difference between two trajectories
and is defined as:

TES(hk) = max
j

{
(1 + β2)Dj

max(hk, g
j
k)

mk + β2nk

}
(1)

where hk = {a1k, a2k, . . . , aTk } is the historical ac-
tion sequence up to timestep T of agent k, gjk =
{gi}mk

i=1 ∈ R is j-th RAT of agent k, β is the hy-
perparameter balancing the weight of task progress
and redundancy, and Dj

max(hk, g
j
k) computes the

length of the longest order-preserving subsequence
in hk that matches gjk:

Dj
max = max

d
{d | ∀ 1 ≤ i1 < · · · < id ≤ nk,

s.t. ai1 = g1, ai2 = g2, . . . , aid = gd} (2)

Unlike other sequence alignment scores (such
as ROUGE-L (Lin, 2004)), TES takes into account
sequence order and a redundancy penalty simulta-
neously, therefore suitable for assessing a planned
action sequence (detailed in Appendix B.1).

3.2.2 ITES
Incremental Trajectory Efficiency Score (ITES) in-
troduces an incremental assessment to quantify the
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Task 
Description

1. Slice a potato

2. Bake the potato

3. Deliver the potato

Dispenser
Pot
Agent Bob

Oven

Delivery location

Chopping Board

Dish

Agent Alice
Blender

Counter

Environment

Analysis & Collaboration Executing Action

🥔

🥔

Instructions

Hello! Could you first slice a 
potato?

Since I can’t get potato, I should 
ask Alice to slice the potato.

Hello Alice! Could you first 
pickup and slice a potato?

Certainly! I will take a potato 
first and then slice it.

Bob request I slice the potato, it 
can be done in my environment.

Part I. Collaboration Example Part II. Overcooked-Collaboration Benchmark

Initiating Collaboration  
⟨G, P, st⟩ → areq

Agent Bob : 


1. request(pickup 🥔  from        )

2. request(place 🥔  on         )

3. request(cut 🥔  on          )


areq

I am Alice,  I received your [ ]. In my [ ]  
I have [resource]. I will help you by [ ]

areq st
aresp

I am Bob, based on [ , ].  
I need [resource]. Could you help me [ ]

st G, P
areq

, st G, P

Responding to Collaboration 
⟨st, areq⟩ → aresp

Collaboration  
Capability 

in LLM-MAS

Initiating 
Collaboration 

Responding to 
Collaboration 

Task: Baked Potato Slices

Agent Alice : 


1. pickup 🥔  from  

2. place 🥔  on 

3. cut 🥔  on 


aresp

Next 

Loop

Environment State st Task & Description G, P

Agent Bob have: 
[resource], …

Agent Alice have: 
[resource], …

Step 1: Get [resource]

Step 2:  Boil 
[resource] with [resource]

…

Task: 
Make a 

[goal dish]

Figure 1: Part I presents the collaboration process, which is divided into initiating collaboration and responding to
collaboration. Part II outlines the design of the Collab-Overcooked Benchmark, emphasizing its characteristics of
resource isolation and asymmetric task knowledge, and provides an example of agents’ collaboration.

task-progress contribution of an individual collabo-
rative action. The ITES is computed as:

ITES(a, hk) = TES(hk ∪ a)− TES(hk) (3)

where hk denotes the historical action sequence
of agent k, and a represents the newly executed
actions, either a collaboration request (areq) or re-
sponse (aresp).

This differential formulation measures the
marginal utility of action a by evaluating its im-
pact on trajectory alignment with the RATs. It can
be established that: ITES(a, hk) > 0 indicates a
advances task progress, ITES(a, hk) ≤ 0 suggests
a fails to advance task progress (i.e., a is redundant
/ premature action or incorrect response).

3.3 Evaluation Metrics

Progress Completeness (PC) Built on the TES,
which quantifies a piece of trajectory, PC measures
the task progress of all involved agents while pe-
nalizing redundancy as a whole, and is defined as:

PC =
1

K

K∑

k=1

TES(hk) (4)

where K is the number of agents, hk =
⋃Tmax

t=0 atk
denotes the historical action sequence of agent k at
time Tmax, which occurs upon task completion or
when the maximum time limit is reached. The PC
offers a finer-grained assessment of task comple-
tion efficiency compared to boolean success rate.

Initiating Capability (IC) IC evaluates the cor-
rectness of the LLM agent’s collaboration initiation.
IC is defined as:

IC =
1

N

N∑

i=1

I
(

ITES(a(i)req, hj) > 0
)

(5)

where N is the number of required col-
laborations, I() is the indicator function.
I
(

ITES(a(i)req, hj) > 0
)

determines whether the

i-th initiating collaboration request a(i)req advances
the task progress, thereby indicating whether the
initiation is correct.

Responding Capability (RC) Similarly, RC as-
sesses the correctness of the LLM agent’s response
to a collaboration request:

RC =
1

N

N∑

i=1

I
(

ITES(a(i)resp, hj) > 0
)
. (6)

4 Benchmark

4.1 Collab-Overcooked Benchmark
The proposed Collab-Overcooked benchmark
builds upon the open-source Overcooked-AI (Car-
roll et al., 2019) and ProAgent (Zhang et al.,
2024a), introducing two key upgrades: (1) The
environment is divided into two parts, featuring
resource isolation and asymmetric task knowl-
edge for Agent Bob and Agent Alice, respectively.
This contrasts with Overcooked-AI, where agents
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mostly operate in a shared environment with iden-
tical items; (2) The benchmark encourages col-
laboration through natural language interactions,
with some cases enforcing collaboration as a re-
quirement for task success. Additionally, Collab-
Overcooked provides APIs to configure new tasks
and environmental settings, enabling the enhance-
ment of LLM-MAS through scenario adaptation.

4.1.1 Environment
Our simulation environment is a grid-based kitchen
simulation designed as a comprehensive testbed for
analyzing collaboration behaviors in LLM-MAS.
The environment comprises agents and config-
urable interactive elements. The interactive ele-
ments are dispensers, utensils, counters, and deliv-
ery location. Agents can freely retrieve raw ma-
terials from dispensers, place them into utensils
for processing, and finally transfer the processed
materials to other agents via counters or submit the
required order through the delivery location. No-
tably, utensils process materials according to cus-
tomizable synthesis tables, with each utensil having
its own distinct synthesis table. Agents can inter-
act with these elements through predefined action
primitives formatted as “func(args)”. For example,
“pickup(apple, ingredient_dispenser)” clarifies ac-
tion type, target material, and interactive element.
Details are provided in Appendix A.1.

The environment executes agents’ actions se-
quentially and broadcasts the global state at each
timestep, encompassing agents’ positions and the
status of interactive elements. We developed a com-
prehensive rule-based action validator that identi-
fies invalid actions, including environment-action
mismatches and incorrect parameters. Upon rule
violations, the validator issues error messages,
prompting the agent to identify the error and re-
generate the action accordingly.

4.1.2 Tasks Construction
Sequential process-specific tasks are common in
real-world scenarios (Wang et al., 2023c; Zhang
et al., 2023; Song et al., 2024), where interdepen-
dent actions must be completed in a specific order
to achieve a goal. We curate 30 such tasks strati-
fied into 6 complexity levels, requiring two agents
to complete collaboratively. The task complex-
ity level is determined by the minimum number
of collaborative actions, increasing linearly with
difficulty. To reduce LLM bias toward specific in-
gredients, tasks at the same level share workflows

but differ in ingredients. Each task has a time con-
straint, set as the optimal completion time scaled
by a time limit factor γ.

Each task is accompanied by a natural language
structured process description and RATs for evalu-
ation. As the tasks are process-specific with clear
success criteria, their RATs are fully definable and
easily traversable, making them suitable for eval-
uation. We manually annotated RATs for all 30
tasks. Detailed task list, task descriptions, and RAT
examples are provided in the Appendix A.2.

4.1.3 Collaboration Designs
Collab-Overcooked benchmark imposes strict col-
laboration among agents. For this, we have two spe-
cial designs: (a) Resource Isolation: agents operate
in resource-isolated sub-environments, necessitat-
ing resource exchange via a shared “counter”. This
enforces collaborative dependency. (b) Asymmet-
ric Task Knowledge: Only one agent knows how
to complete the task. Agents must communicate
to synchronize task information. This setup makes
collaboration indispensable, offering a stronger test
of collaborative capabilities and better exposing
potential deficiencies in collaboration.

While our current setup uses two agents to
clearly expose and evaluate collaboration initiation
and response, scaling to multiple agents primarily
introduces complexity in collaboration rather than
fundamentally altering these core collaborative ca-
pabilities. Thus, the two-agent design is optimal for
isolating and analyzing LLM-specific collaborative
behaviors in depth.

4.2 Baseline

To evaluate LLM-MAS performance across dif-
ferent LLMs on our benchmark, we introduce an
in-context learning baseline. The baseline incor-
porates both memory and reflection mechanisms,
allowing agents to communicate and collaborate
freely in natural language while handling errors.
Notably, our baseline architecture is aligned with
common agent architectures (Dong et al., 2024;
Zhao et al., 2024; Zhu et al., 2025). Figure 1 Part II
illustrates an example of how agents advance task
progress through collaborative communication in
our benchmark. Additionally, we provide prompts
in detail, which include the game rules, commu-
nication formats, and action space definitions, as
well as error correction and reflection procedures.
Detailed information can be found in Appendix
A.3 and Figure 7.
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Level 1 Level 2 Level 3 Level 4 Level 5 Level 6
SR PC SR PC SR PC SR PC SR PC SR PC

Closed
Source

GPT-4o 94.00 85.92 86.00 84.96 68.00 76.61 34.00 44.42 2.00 29.13 4.00 22.45
Claude Sonnet 4 100.00 96.00 100.00 98.67 96.00 95.82 92.00 94.48 74.00 78.15 58.00 60.69
o4-mini 92.00 90.93 100.00 89.60 96.00 86.15 86.00 88.39 62.00 68.59 54.00 60.79
o1-mini 70.00 74.18 2.00 36.36 0.00 33.60 0.00 24.80 0.00 20.28 0.00 13.07
GPT-3.5-turbo 42.00 68.20 8.00 43.42 0.00 36.44 0.00 24.74 0.00 15.21 0.00 12.03

Open
Source

DeepSeek-R1 100.00 96.53 100.00 94.40 98.00 91.10 82.00 82.75 44.00 49.79 30.00 48.33
DeepSeek-V3 88.00 77.74 76.00 71.90 56.00 66.61 22.00 50.01 4.00 30.41 6.00 33.44
Qwen2.5-72B-Instruct 78.00 76.84 64.00 68.00 14.00 46.88 8.00 30.80 0.00 22.67 0.00 18.45
Qwen2.5-32B-Instruct 64.00 73.36 44.00 62.02 14.00 40.08 4.00 33.78 2.00 22.16 0.00 18.93
Qwen2.5-14B-Instruct 32.00 50.36 4.00 26.66 0.00 24.41 0.00 19.00 0.00 14.14 0.00 14.27
Qwen2.5-7B-Instruct 8.00 44.79 0.00 13.00 0.00 9.29 0.00 8.35 0.00 5.57 0.00 4.51
Llama-3.1-70B-Instruct 70.00 75.42 42.00 63.15 22.00 54.58 6.00 45.04 0.00 29.77 0.00 17.69
Llama-3.1-8B-Instruct 4.00 33.03 0.00 15.49 0.00 12.33 0.00 11.24 0.00 9.05 0.00 7.45

Table 2: Performance of 13 representative LLMs with parameter sizes ranging from 7B to 671B+ across 6 task
complexity levels, evaluated using Success Rate (SR) and Progress Completeness (PC) as metrics.

Level 1 Level 2 Level 3 Level 4 Level 5 Level 6
0

4

8

12

16

20

Co
un

t

Min Collaboration Action Num

0

15

30

45

60

75
M

in
 C

ol
la

bo
ra

tio
n 

Ti
m

es
te

p

Min Time

Figure 2: The statistics for tasks of varying complexity
levels. “Min Collaborative Action Num” denotes the
minimum number of collaborative actions performed
by the responding agent. “Min Time” represents the
shortest timesteps to complete a task at a given level.

5 Experiment and Analysis

5.1 Benchmark Overview

Figure 2 presents key statistics of our benchmark,
summarizing the minimum completion timesteps
and collaborative actions across 6 complexity lev-
els, which show monotonically increasing trends
with task complexity. Two agents perform 8 and
6 actions, respectively. The environment layout
indicates asymmetric interactivity, with two agents
accessing 4 and 5 interactive elements, respectively,
while sharing observation. Additional statistics are
provided in Appendix A.1.

5.2 Experiment Setting

We leverage 13 representative LLMs with parame-
ter sizes ranging from 7B to over 671B+ as the foun-
dation models for LLM-MAS. The open-source
models include DeepSeek-R1 (Guo et al., 2025),
DeepSeek-V3 (Liu et al., 2024), different parame-
ter versions of Qwen2.5 (7B, 14B, 32B, 72B) (Yang
et al., 2024) and Llama-3.1 (8B, 70B) (Dubey et al.,
2024), all with instruction-tuned configurations.
The closed-source models include: GPT-4o-1120

(Hurst et al., 2024), Claude Sonnet 4 (Anthropic,
2025), o4-mini (OpenAI, 2025), o1-mini (Jaech
et al., 2024), and GPT-3.5-turbo-0125 (Ouyang
et al., 2022). For the open-source models except
for DeepSeek-R1 and V3, inference is performed
using vLLM (Kwon et al., 2023) with temperature
of 0.7 and top-p of 1. For each task, the task time
limit factor is set to γ = 1.51, and each task is eval-
uated through 10 repetitions. The hyperparameter
β in TES is 0.95. To ensure a consistent and fair
evaluation, we employ the identical agent architec-
ture for all models, presented in Section 4.2.

5.3 Results and Analysis

5.3.1 Task Completion Efficiency
Table 2 presents the Success Rate (SR) and PC
scores of 13 LLMs across six levels. Claude Sonnet
4 demonstrates the strongest overall performance,
consistently outperforming other models on higher-
complexity tasks. Among the open-source mod-
els, DeepSeek-R1 excels, especially on tasks of
low to medium complexity. However, its token
usage is 18.6 times that of GPT-4o, indicating a
significant computational trade-off. From these
results, we derive three key insights: (1) Smaller
LLMs (8B parameters or fewer) struggle with sim-
ple tasks, whereas increasing model size signifi-
cantly enhances performance. This suggests the
existence of a clear emergent scaling threshold for
low-level tasks. (2) Scaling up LLMs effectively
improves task completion efficiency for lower-level
tasks but fails to enhance performance on high-
complexity tasks. This suggests that current perfor-
mance gains primarily stem from pattern memoriza-
tion rather than cognitive reasoning. (3) Beyond

1Experiments for different γ are in Appendix C.1.
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Figure 3: The performance of 13 representative LLMs, with parameter sizes ranging from 7B to 671B+, was
evaluated across 6 task levels using the IC, and RC.
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Figure 4: Comparison of human performance (shown
as lighter, semi-transparent bars, under a 10-second per-
timestep thinking and communication constraint) and
DeepSeek-R1 performance (shown as darker, solid bars)
across six task complexity levels in our benchmark.

Level 4, model performance diverges sharply. Most
models collapse, while top-tier agents like Claude
Sonnet 4 and o4-mini only postpone this failure
to higher complexity levels. This trend indicates
that even the most capable models eventually falter
under increasing collaborative demands, highlight-
ing our benchmark’s challenging nature and the
persistent difficulty of long-horizon reasoning.

5.3.2 Process-Oriented Evaluation
Figure 3 presents the process-oriented evaluation
of LLM-MAS, from which we derive three key in-
sights. First, most models (14B+) exhibit higher
RC than IC, indicating that LLMs are better at
responding to collaboration than initiating collab-
oration. This is a result of their strong instruction-
following capabilities, which make initiating col-
laboration the primary bottleneck for most LLMs.
Second, the collaboration capability of all LLMs
declines with increasing task complexity. More-
over, the decline rate is similar across all models,
indicating that their ability to maintain collabora-
tion performance is similar. Despite the scale-up of
the models, there is no corresponding improvement
in their ability to sustain collaboration capability.

Third, the reasoning model outperforms others on
simpler tasks. While its performance drops with
complexity and it consumes more tokens, its con-
sistent gains show the potential of the CoT-training
paradigm for improving collaboration capabilities.

5.3.3 Human Performance Evaluation

To establish a robust performance ceiling, we con-
ducted experiments with 10 human participants
performing tasks spanning all six levels. As shown
in Figure 16, 17, we designed a human-computer
interaction interface to enable participants to simu-
late agent behaviors within the environment. To en-
sure a fair comparison with LLMs in time-sensitive
scenarios, we imposed time constraints on both
communication and decision-making during each
timestep for participants. We further evaluated hu-
man performance under various time limits, and
detailed descriptions of the experimental design
and rules are provided in Appendix C.2.

As illustrated in Figure 4, human participants
consistently achieved high and stable performance
across all levels of task complexity, even under
time constraints. In contrast, DeepSeek-R1, the
strongest open-source model evaluated, exhibited a
marked decline in performance as task complexity
increased. These results highlight two key limita-
tions of current LLM-MAS: a lack of performance
consistency under increasing complexity, and the
insufficiency of model parameter scaling alone to
overcome this gap. This advantage in human per-
formance stems from the participants’ ability to
form high-level task abstractions and procedural
understanding during interaction, allowing them to
flexibly adapt to novel situations and maintain sta-
ble outcomes. In comparison, current LLM-MAS
rely on shallow memory mechanisms that log past
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Figure 5: Results for Qwen-2.5 7B and 72B on Level 1 and Level 5 tasks. The left panel shows initiating
collaboration, and the right shows responding. “Correct” and “Wrong” indicate the model’s original output before
intervention. Results show that manually guiding the model’s attention to align with successful patterns can
significantly improve performance on previously incorrect cases while maintaining stability on correct ones.

trajectories without abstracting them into reusable
strategies. Consequently, they fail to generalize
from simpler tasks to more complex ones, leading
to cumulative errors and performance degradation
as complexity rises.

5.3.4 Analysis of Collaboration Failures
Collaboration challenges are likely to arise across
diverse multi-agent contexts. Recent work has be-
gun to systematically categorize the failure modes
of LLM-MAS. For example, Cemri et al. (2025)
proposed MAST, a comprehensive taxonomy of
MAS failures. While such taxonomies provide a
valuable framework for understanding what fail-
ures occur, our benchmark’s design, with its strict
resource isolation and asymmetric task knowledge,
allows a deeper, quantitative analysis into why and
how these failures manifest dynamically.

Collaboration Capabilities Degradation To bet-
ter understand collaboration capability degradation,
we conducted a series of controlled experiments
detailed in Appendix C.4. We first identify a con-
sistent performance decay across sequential col-
laborative steps. As tasks progress, agents become
increasingly prone to specific failure modes such as
premature or repetitive initiation, establishing the
capability of initiating collaboration as the primary
bottleneck. This trend of performance degradation
in long-horizon tasks is consistent with findings
from Li et al. (2024a) and Li et al. (2024c). Cru-
cially, our analysis reveals this degradation per-
sists even when we mitigate planning ambiguity
by providing recipes with explicit step-to-action
mappings. This experimental control allowed us to
isolate the root cause to a strong positional depen-
dence: identical collaborative actions that fail in
later stages are executed with significantly higher

success rates when their position is simply moved
to the beginning of the workflow. This finding
strongly suggests that the issue is not a failure in
high-level reasoning, but stems from more funda-
mental limitations: inherent pretraining biases that
favor sequence initiation over continuation, and an
architectural inability to maintain coherent context
over extended interactions, which are critical for
sustained collaboration.

Attention Bias By segmenting input prompts
into 5 or 6 distinct parts and analyzing attention
weight distributions (see Figure 10), we identi-
fied distinct attention patterns differentiating suc-
cessful and failed collaborations, highlighting crit-
ical biases. During initiation, increased atten-
tion to collaboration rules correlates with success,
whereas excessive focus on recipe information pre-
dicts failure. This suggests a fundamental atten-
tion bias where LLM-MAS agents overemphasize
task execution details while undervaluing essential
collaboration-specific information, causing errors
in determining the appropriate collaboration ap-
proach at a given state (see Appendix C.3). In
the responding phase, successful outcomes feature
heightened attention to environmental observations
and collaboration rules. In contrast, excessive def-
erence to partner instructions without integrating
environmental observation and collaboration rules
causes failed responding. These attention biases di-
rectly contribute to redundant actions and degraded
performance metrics (PC, IC, and RC), with their
effects becoming more pronounced under increased
task complexity due to error propagation.

Attention Intervention To establish the causal
relationship between attention distribution and col-
laboration outcomes, we conducted attention in-
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tervention experiments by manually adjusting the
attention allocation to align with patterns observed
in successful cases. Using the same random seeds
and model parameters, we then regenerated the
outputs. As shown in Figure 5, we observed perfor-
mance improvements of 35% to 64% in previously
failed instances, while originally successful out-
puts remained largely unaffected. These results
confirm that attention bias is a key causal factor in
collaboration failure, likely rooted in pretraining on
single-agent execution tasks rather than on collabo-
rative scenarios requiring joint decision-making.

To the best of our knowledge, we are the first to
reveal and analyze attention-driven failure modes
in information and resource isolation environments,
highlighting persistent biases toward task execution
that are less evident in existing LLM-MAS collab-
oration benchmarks.

5.4 Future Challenges

Collaborative Memory and Experience Abstrac-
tion Future work should develop specialized
memory mechanisms for multi-agent collaboration
that go beyond single-agent approaches. LLM-
MAS requires systems that can retain and general-
ize collaborative patterns across diverse contexts
and complexity levels, enabling agents to progres-
sively develop more sophisticated collaboration ca-
pabilities through accumulated experience.

Attention-Guided Fine-tuning Our attention in-
tervention experiments demonstrate that targeted
attention modification alone can dramatically im-
prove collaborative outcomes. Future approaches
should incorporate mechanisms that guide models
to attend to critical collaboration-relevant informa-
tion through fine-tuning regimens or soft attention
constraints. These techniques could help overcome
the inherent single-agent execution biases currently
limiting LLM collaborative performance.

6 Conclusion

We introduce the Collab-Overcooked Benchmark,
a framework evaluating LLM-MAS collaboration
from end-to-end and process-oriented perspectives.
Experiments across 13 LLMs reveal significant
performance gaps, with attention misalignment to
collaboration-relevant instructions emerging as a
key bottleneck. These findings underscore the dif-
ficulty of achieving high performance in collabo-
rative tasks under training-free, zero-shot settings,

highlighting the need to improve attention mecha-
nisms for better adaptability and collaboration.

Limitations

The Collab-Overcooked Benchmark is introduced
in our paper and we explore methods for evaluating
the collaboration capabilities of LLM-MAS using
both end-to-end and process-oriented approaches.
However, there are three limitations to our work.
First, all of our tasks are sequential and process-
specific. While we assume that RATs can be ex-
haustively enumerated, making it possible to use
exhaustive RATs as labeled data for evaluating the
collaboration capabilities of LLM-MAS. However,
in environments with highly complex state and ac-
tion spaces, RATs are difficult to exhaustively enu-
merate. In such cases, only representative RATs
can be listed as evaluation data, which introduces
potential bias into our evaluation methodology.
Second, due to the complex mechanisms of LLM-
MAS, such as communication, memory, and reflec-
tion, the prompts are relatively long (approximately
2,000 tokens, with variation depending on the to-
kenizer used by the LLM). Additionally, process-
oriented evaluation requires substantial interaction
data, which leads to both low evaluation efficiency
and significant token consumption, which is the
common challenge across current methods for eval-
uating LLM-MAS capabilities. Third, the baseline
used to evaluate LLM-MAS is composed of rel-
atively simple structures, with the agent possess-
ing only basic memory and reflection mechanisms,
leaving substantial room for optimization.
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A Benchmark Detail

A.1 Environment
In this section, we provide a detailed overview of
the Collab-Overcooked Benchmark environment
design. We first introduce the interactive elements
within the environment along with their layout.
Next, we describe the action space available to
agents. Finally, we present the methodology for
defining layouts, enabling flexible modifications to
the environment.

A.1.1 Interactive Elements
Due to our resource isolation design, the interactive
elements available to each agent differ. Figure 6
illustrates the interactive elements that both agents
can engage with. We adopt the “Forced Coordi-
nation” level design from Overcooked-AI (Carroll
et al., 2019), where the two agents share only a
single interactive element: the counter. This design
necessitates resource exchange between agents to
complete tasks.

We categorize interactive elements into three
types: utensils, dispensers, and others. The details
are as follows:

• Utensils: These interactive elements take one
or more ingredients as input and process
them according to a predefined synthesis table,
transforming them into new ingredients.

• Dispensers: Agents can retrieve ingredients or
dishes from these elements, with the available
items being predefined.

• Others: The counter serves as a critical inter-
active element for resource exchange between
agents, allowing them to freely place or re-
trieve ingredients. The delivery location is
where agents submit task outcomes. If the sub-
mitted ingredient meets the task requirements,
the task is considered successful. Otherwise,
incorrect submissions result in the removal
of the submitted ingredient from the environ-
ment, often leading to task failure.

A.1.2 Action Space
The action space of each agent consists of a se-
ries of functions in the format “func(args)”, which
facilitate interactions with the environment or col-
laboration with other agents. Agent actions are
categorized into shared actions and exclusive ac-
tions. Shared actions are common to both agents

Agent Alice Agent Bob

Interactive 
Elements

Utensil

Chopping board ●
Blender ●

Pot ●
Oven ●

Dispenser
Ingredient ●

Dish ●

Others
Counter ● ●

Delivery Location ●

Figure 6: Interactive elements

and include actions such as “pickup” (for picking
up ingredients), “place_obj_on_counter” (for in-
teracting with the counter), “put_obj_in_utensil”
(for placing ingredients into utensils), and “wait”.
Exclusive actions, on the other hand, arise from
the differing interactive elements in each agent’s
environment. For example, Agent Bob has access
to a pot, allowing it to perform the “cook” action,
whereas Agent Alice, lacking a pot, cannot perform
this action. Conversely, Agent Alice can interact
with the chopping board to perform the “cut” ac-
tion, which Agent Bob cannot. The specific actions
available to Agent Alice and Agent Bob are listed
as follows:

Listing 1: Action Space List
Action Space for Agent Alice:

1. pickup(obj,place)
2. cut(chopping_board_name)
3. stir(blender_name)
4. place_obj_on_counter()
5. put_obj_in_utensil(utensil)
6. wait(num)

Action Space for Agent Bob:
1. pickup(obj,place)
2. cook(pot_name)
3. place_obj_on_counter()
4. put_obj_in_utensil(utensil)
5. fill_dish_with_food(utensil)
6. bake(oven_name)
7. deliver()
8. wait(num)

To accurately assess collaboration capabilities,
we require that when an agent initiates collabo-
ration, the initiating agent must encapsulate the
desired action for the responding agent within a
“request”. This mechanism is utilized for calcu-
lating IC and RC. For example, if Agent Bob
wants Agent Alice to retrieve an apple for it,
Agent Bob will generate the following output:
“request(pickup(apple, ingredient_dispenser)); re-
quest(place_obj_on_counter())”. This request ex-
plicitly specifies the sequence of actions that Agent
Alice is expected to execute, ensuring that the col-
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Level 1 Level 2 Level 3 Level 4 Level 5 Level 6
Average Recipe Token Count 60.8 65.0 80.6 84.8 106.4 140.0
Minimum Actions 7 10 16 17 27 34
Minimum Collaborative Actions 2 5 7 9 14 19
Interactive Elements Used 4 5 7 6 8 8

Table 3: Statistics of recipe complexity across task levels, highlighting diversity in design, increasing difficulty, and
interaction complexity

laboration process is systematically coordinated.

A.1.3 Layout Definition Method
We follow the environment design principles of
Overcooked-AI (Carroll et al., 2019) and ProA-
gent (Zhang et al., 2024a), enabling customization
through external layout files. Compared to these
prior works, our framework offers a broader range
of configurable elements. For instance, the “or-
der_probability” parameter allows users to adjust
the probability of tasks appearing randomly in the
environment, while the “recipes” parameter enables
customization of the synthesis list for each uten-
sil. Further details can be found in the examples
provided in our GitHub repository’s layout files.
Through our enhancements, nearly all aspects of
the environment can be customized via a single
external file, significantly enhancing the flexibility
and scalability of our framework.

A.2 Tasks Construction

In this section, we provide detailed information
about tasks, including task complexity level, task
list, task recipe, and task RATs.

A.2.1 Task complexity level
Table 3 presents the statistics corresponding to dif-
ferent levels of task complexity. We have designed
a series of task difficulty levels, ranging from basic
ingredient transfer to complex recipe construction,
requiring collaboration and error correction. The
variation in external knowledge demands and en-
vironmental configurations substantially increases
the challenges faced by LLM agents in terms of
both comprehension and collaboration strategy for-
mulation. Furthermore, we have incorporated addi-
tional interactive elements to expand the structural
space of the tasks. The task levels demonstrate pro-
gressive increases in average recipe token count,
minimum action requirements, collaboration fre-
quency, and interaction complexity.

To characterize the complexity level of each task
from the perspective of agent actions, we define

four distinct types of collaborative behaviors. The
complexity of a task is determined by the minimum
number of such collaborative behaviors required
for successful completion. The four categories of
collaborative behaviors are defined as follows:

• Acquiring New Ingredients: This behavior
involves retrieving an ingredient from the In-
gredient Dispenser. For example, Agent Alice
might pick up an onion or an apple from the
dispenser.

• Processing the Ingredients: This behavior in-
volves placing ingredients into a cooking uten-
sil. For example, Agent Alice might place an
ingredient on a chopping board or in a blender.

• Acquiring a New Dish: This behavior involves
retrieving a new dish from the Dish Dispenser.
This action consists of a single step where
Agent Alice picks up a dish.

• Processing the Ingredients by Agent Bob:
Similar to the first behavior, but performed
by Agent Bob. This includes behaviors like
placing an ingredient into a pot or an oven.

Each collaborative behavior corresponds to sev-
eral collaborative actions. The complexity level of
a task is calculated by summing the total number of
collaborative actions required from each behavior.
Specifically, the number of actions in each of the
four categories is counted based on the task’s re-
quirements. This approach ensures that tasks with
more complex or numerous collaboration require-
ments are considered more difficult than those with
fewer actions. Table 4 provides statistical data on
collaborative behaviors and collaborative actions.

Each task’s RATs provide the exact number of
actions for each type of collaboration, which is
used to determine the total complexity level for
that task. The complexity calculation allows for a
comparison of tasks, ensuring that they are evalu-
ated based on their collaborative complexity.
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Complexity Level Acquiring
New Ingredients

Processing the Ingredients
by Agent Alice

Acquiring
a New Dish

Processing the Ingredients
by Agent Bob

Total Number of
Collaborative Actions

Level 1 1 0 0 1 2
Level 2 1 1 1 1 5
Level 3 1 1 1 2 7
Level 4 2 1 1 2 9
Level 5 2 2 1 3 12
Level 6 3 3 1 4 17

Table 4: The number of collaborative behaviors under different complexity levels is given, as well as the total
number of corresponding collaborative actions.

A.2.2 Task List
Table 5 presents a list of task names across 6 com-
plexity levels, comprising a total of 30 tasks. As
indicated by the task names, tasks within the same
complexity level share identical workflows, with
the only variation being the selection of ingredi-
ents. This design aims to mitigate potential biases
in LLMs towards specific ingredients, thereby re-
ducing evaluation discrepancies caused by such
biases.

A.2.3 Recipes
Each task corresponds to a recipe that outlines the
workflow required to complete the task, includ-
ing the necessary ingredients and cooking steps.
There are two important aspects to note regard-
ing the recipe: First, one cooking step typically
involves multiple actions by the agents. This ne-
cessitates that the agents carefully decompose the
cooking step into specific actions after thoroughly
understanding both the recipe and the environment.
Second, some cooking steps can be executed in
a different order. For instance, when multiple in-
gredients require pre-processing, followed by com-
bining the processed ingredients into a utensil for
further preparation, the order in which the ingre-
dients are preprocessed can be interchanged. This
decision is typically made by the agents, leading to
the possibility of multiple valid RATs for the same
task. Allowing such flexibility is both reasonable
and aligned with real-world practices. Listing 2
is an example of the recipe for “Baked Pumpkin
Soup”, which includes the recipe name, required
ingredients with quantities, and detailed cooking
instructions.

Listing 2: Recipe example
NAME:
Baked Pumpkin Soup

INGREDIENTS:
pumpkin(1)

COOKING STEPs:
1. Cut a pumpkin into slices.
2. Place the pumpkin slices in the oven and bake

for 3 timesteps.
3. Transfer the baked pumpkin slices to a pot

and cook for 3 timesteps.
4. Fill a dish with the soup from the pot and

deliver.

Listing 3: RAT of "Baked Pumpkin Soup" task
"RAT_1":
{

"agent_0": [
"pickup(pumpkin_slices, counter)",
"put_obj_in_utensil(oven0)",
"bake(oven0)",
"pickup(baked_pumpkin_slices, oven0)",
"put_obj_in_utensil(pot0)",
"cook(pot0)",
"pickup(dish,counter)",
"fill_dish_with_food(pot0)",
"deliver()"

],
"agent_1": [

"pickup(pumpkin, ingredient_dispenser)",
"put_obj_in_utensil(chopping_board0)",
"cut(chopping_board0)",
"pickup(pumpkin_slices,chopping_board0)",

"place_obj_on_counter()",
"pickup(dish,dish_dispenser)",
"place_obj_on_counter()"

]
}

A.2.4 Referential Action Trajectory
To evaluate the agents’ collaboration capabilities
both in terms of end-to-end and process-oriented
metrics, we provide the RATs for each task. Given
that our tasks are sequential process-specific, we
assume that the RATs can be exhaustively enumer-
ated or largely known. We have annotated the RATs
for each task, which include the optimal referen-
tial action sequences for both agents to complete
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the task. Each RAT ensures that the agents can
accomplish the task with a minimal number of ac-
tions, while also employing the optimal strategy
to parallelize certain actions for efficiency. A task
may have multiple valid RATs, for example, the
order in which two ingredients are retrieved may
not affect the overall task completion time. Dur-
ing evaluation, the TES and ITES functions select
the RAT with the highest matching score as the
reference for assessment. Listing 3 provides an ex-
ample of the RATs for the “Baked Pumpkin Soup”
task, with separate RATs for each of the two agents.
Because the “Baked Pumpkin Soup” task has only
one completed route, there is only one RAT.

A.3 Baseline

In this section, we introduce the baseline structure
and prompt design we use to test different LLMs.

A.3.1 Baseline Construction
Figure 7 illustrates the structure of the baseline and
provides an example of agents interacting and col-
laborating to complete a task within our benchmark.
The baseline architecture consists of an Instruction-
Builder, Planner, Communication, Error-Handling,
Memory, and Reflection modules. The structure
remains identical across different agents, with vari-
ations arising only in the environment descriptions,
action spaces, and task-specific knowledge pro-
vided within the prompts.

Instruction-builder The Instruction-builder is a
rule-based module responsible for managing and
integrating the prompts for each agent. It reads the
state dictionary from the environment and fills in
a prompt template. The prompt template includes
both fixed prompts and slot-based prompts. Fixed
prompts contain: (1) game rules, such as objectives,
scoring workflows, functions of each kitchen uten-
sils, and methods for preparing dishes; (2) commu-
nication rules and output format specifications; and
(3) a definition of the agent’s action space, along
with a brief description of actions available to team-
mates. Slot-based prompts include: (1) the current
recipe for the task (if the agent has access to the
recipe); (2) the current environment observations,
such as kitchen layout and teammate status; (3)
communication records with other agents up to the
current time step; and (4) memory and reflection
from previous time steps.

Planner The planner is the core decision-making
component for the agent. It generates three fields:

Complexity
Level

Task Name

Level 1

Baked Bell Pepper
Baked Sweet Potato

Boiled Egg
Boiled Mushroom

Boiled Sweet Potato

Level 2

Baked Potato Slices
Baked Pumpkin Slices

Boiled Corn Slices
Boiled Green Bean Slices

Boiled Potato Slices

Level 3

Baked Bell Pepper Soup
Baked Carrot Soup

Baked Mushroom Soup
Baked Potato Soup

Baked Pumpkin Soup
Sliced Bell Pepper

and Corn Stew
Sliced Bell Pepper

and Lentil Stew

Level 4
Sliced Eggplant

and Chickpea Stew
Sliced Pumpkin

and Chickpea Stew
Sliced Zucchini

and Chickpea Stew
Mashed Broccoli
and Bean Patty
Mashed Carrot

and Chickpea Patty

Level 5
Mashed Cauliflower

and Lentil Patty
Mashed Potato
and Pea Patty

Mashed Sweet Potato
and Bean Patty
Potato Carrot

and Onion Patty
Romaine Lettuce Pea

and Tomato Patty

Level 6
Sweet Potato Spinach
and Mushroom Patty

Taro Bean
and Bell Pepper Patty
Zucchini Green Pea

and Onion Patty

Table 5: The names of 30 tasks in total are divided into
6 complexity levels.
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Figure 7: The left side of the figure presents the baseline architecture used for evaluating different LLMs, where
Agent Alice and Agent Bob share the same structural design, differing only in their prompt. The right side of the
figure illustrates the interaction process between the two agents as they collaborate to complete the “Baked Potato
Slices” task within our benchmark. This includes the agents’ analytical processes as well as a record of their natural
language communication.

“Analysis”, “Say”, and “Plan”. The “Analysis” field
represents the agent’s assessment of the current en-
vironment state, task, and memories, assisting the
planner in making informed decisions. The “Say”
field determines whether collaboration is required;
if the planner identifies a need for collaboration, it
generates communication content directly in this
field. The “Plan” field contains the action sequence
that the planner has devised for the agent.

Communication Communication between
agents enables the transmission of collaborative
intentions or requests for assistance. When
communication content is detected in the “Say”
field, all agents enter the communication channel.
Within this channel, each agent speaks in sequence
until a special token “[END]” is generated or
the maximum number of interaction rounds is
reached. Once communication is complete, agents
formulate their plans based on the information
exchanged.

Error-handling The error-handling process man-
ages situations in which the generated actions are
deemed invalid by the environment. When an
agent receives an error message from the environ-

ment, the error information is incorporated into the
prompt and re-entered into the planner. This cycle
continues until the generated actions are considered
valid by the environment or the maximum number
of attempts is reached.

Memory and Reflection Memory and reflection
represent the accumulation of an agent’s past ex-
periences, enabling it to engage in long-term plan-
ning. We implement memory and reflection using
a straightforward approach. The memory logs the
action sequences that the agent has completed in
the past, while the reflection records the previous
agent’s reflections on invalid actions.

A.3.2 Prompt
In this section, we provide a detailed description
of the prompts used to drive LLM-based agents.
Since LLM-MAS involves multiple agents inter-
acting within an environment, the prompt design
is inherently more complex than that of a single-
agent system. Each request to the LLM typically
consumes approximately 2,000 tokens, with slight
variations depending on the specific tokenizer used
by the LLM. To structure this complexity, we cat-
egorize the prompts into three key components:
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game rules, action space definitions, and input-
output format specifications. We will elaborate on
each component and provide illustrative examples
to demonstrate their implementation.

Game Rules The game rules part of the prompt
defines the task objective, agent roles, and interac-
tion constraints. It outlines the step-by-step work-
flow for completing an order, emphasizing task di-
vision, coordination, and strict adherence to recipe
instructions. Figure 13 shows all the content of the
game rule prompt.

Action Space Definitions This part of the prompt
defines the action space for Agent Bob, following
the action specification method used in ProAgent
(Zhang et al., 2024a). It categorizes actions into
operation actions (directly executable by the agent)
and collaborative actions (requests for the team-
mate to perform an action). Figure 14 shows the
prompt of Agent Bob’s action space.

Input-Output Format The input-output format
part defines the structured information provided to
the agent at each step and the required response for-
mat. The input includes past action history, lessons
from failures, available utensils, the current order,
the planned sequence of actions, and past conver-
sations. The output consists of three fields: anal-
ysis (environment assessment and reasoning for
actions), plan (the agent’s planned actions for the
next step), and say (communication with the team-
mate, if necessary). This structured format ensures
that the agent can make informed decisions, coor-
dinate effectively, and execute tasks systematically.
15 shows all the content of the input-output format
prompt.

The above section outlines the key prompts used
to drive the LLM agents. For further details re-
garding prompts related to memory, reflection, and
other components, please refer to the comprehen-
sive prompts provided in our GitHub repository.

B Evaluation

B.1 Details in TES
The TES is formally expressed as:

TES(hk) = max
j

{
(1 + β2)Dj

max(hk, g
j
k)

mk + β2nk

}
(7)

where hk = {a1k, a2k, . . . , aTk } is the historical ac-
tion sequence up to timestep T of agent k, gjk =

{gi}mk
i=1 ∈ R is j-th RAT of agent k, β is the hy-

perparameter balancing the weight of task progress
and redundancy, and Dj

max(hk, g
j
k) computes the

length of the longest order-preserving subsequence
in hk that matches gjk:

Dj
max = max

d
{d | ∀ 1 ≤ i1 < · · · < id ≤ nk,

s.t. ai1 = g1, ai2 = g2, . . . , aid = gd} (8)

It is important to note that the TES function in-
troduces modifications to the Longest Common
Subsequence (LCS) calculation in ROUGE-L (Lin,
2004). These modifications are driven by one main
reason: Improved identification of redundant ac-
tions. Listing 4 illustrates a very common scenario
where, due to the agent’s incorrect choice in step
four, the fifth step fails to advance the task. Specif-
ically, the agent places an irrelevant item, “egg”,
onto the counter, which does not contribute to the
task’s progress. In this case, the standard ROUGE-
L, based on LCS, would mistakenly consider the
agent’s fifth action as matching the RAT, leading
to an inflated evaluation score.

TES overcomes this limitation by combin-
ing maximal order-preserving alignment with
efficiency-aware normalization, making it well-
suited for collaborative tasks requiring synchro-
nized, sequence-specific interactions.

Listing 4: Comparison of TES with other functions
Example:
RAT:

1. pickup(tofu, ingredient_dispenser)
2. put_obj_in_utensil(chopping_board_0)
3. cut(chopping_board_0)
4. pickup(chopped_tofu, chopping_board_0)
5. place_obj_on_counter()

Agent Action Trajectory:
1. pickup(tofu, ingredient_dispenser)
2. put_obj_in_utensil(chopping_board_0)
3. cut(chopping_board_0)
4. pickup(egg, ingredient_dispenser)
5. place_obj_on_counter()

Result:
ROUGE-L: 0.8
TES: 0.6

B.2 Details in IC and RC
Initiating Capability (IC) and Responding Capabil-
ity (RC) are proposed to evaluate the LLM agent’s
capabilities to initiate and respond to collaboration,
respectively. Physically, these metrics represent
the success rate of an LLM agent in initiating or re-
sponding to collaborative behaviors within a given
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task. The determination of success is based on the
change in ITES induced by the newly proposed ac-
tion compared to historical actions. Taking collab-
oration initiation as an example, a newly initiated
collaborative action a is considered successful if
it results in an increase in ITES, i.e., ITES > 0.
This reflects whether the proposed action a con-
tributes to the advancement of the task; if so, it is
deemed a successful collaboration attempt. This
evaluation paradigm has been widely adopted in
prior research (Gong et al., 2023; Hong et al., 2023;
Mandi et al., 2024), and thus, both IC and RC are
not only grounded in meaningful physical inter-
pretations but also serve as effective indicators of
real-world collaborative performance.

C Supplementary Experiment

In this section, we present supplementary exper-
iments that support the conclusions of the main
body. First, we investigate the impact of different
hyperparameter values for γ on the task comple-
tion success rate of the LLM-MAS and provide the
rationale for selecting γ = 1.5. Next, we describe
the details of the human performance evaluation,
including the experimental design and the human-
computer interaction interface. Additionally, we
introduce new recipes and additional results pre-
sented in the failure analysis section. Finally, we
provide case studies illustrating both successful and
unsuccessful task completions by the LLM-MAS.

C.1 Impact of Varying γ on Task Success Rate

The hyperparameter γ controls the task failure
threshold. Specifically, it determines a time con-
straint on the task, which is calculated by multiply-
ing the optimal completion time by the value of γ.
As γ increases, the task success rate (SR) of the
LLM-MAS will improve, as the system is allowed
more time to complete the task. However, γ cannot
be increased indefinitely, as doing so would lead
to inefficiencies in the evaluation process. An ex-
cessively high value of γ might artificially inflate
the success rate, as the extended time window may
not reflect the true capabilities of the model in real-
world scenarios, and it wastes computing resources.
On the other hand, setting γ too low could result
in an overly strict evaluation, where the system is
unable to complete tasks even when it could have
more time. Therefore, it is essential to select an
optimal value for γ that balances both task success
and evaluation efficiency.

Figure 8 illustrates the task success rates of GPT-
4o and Llama-70B at 6 complexity levels under
varying values of the hyperparameter γ. We ob-
served that when γ = 1, which requires completing
tasks along the optimal path, even a highly capable
model like GPT-4o failed to complete the majority
of tasks. However, when γ was increased to 1.5
or 2, GPT-4o was able to complete most tasks at
complexity levels 4 and below. We chose γ = 1.5
rather than γ = 2 because, for models with fewer
parameters than GPT-4o, such as Llama-3.1-70B,
increasing γ does not significantly improve suc-
cess rates on higher complexity tasks. In fact, most
models we tested struggled to complete tasks above
level 4, often requiring the maximum time limit dur-
ing evaluations. By selecting γ = 1.5, we were
able to save approximately 33% of computational
resources compared to using γ = 2, thereby en-
abling a more efficient evaluation of the LLM’s
capabilities.

C.2 Human Performance Evaluation

C.2.1 Experiment Setup

To evaluate human performance on our benchmark,
we invited ten volunteers to participate in our ex-
periments. The participants were organized into
five pairs, with each pair assigned two randomly
selected tasks from each complexity level. Conse-
quently, each complexity level was tested ten times.
To ensure participants fully understood the game
rules, the available action space, the input-output
format, and the current state of the environment,
we designed a dedicated human-computer interac-
tion interface. This interface presented the prompts
originally inputted to the agent in a human-friendly
format, without revealing any additional informa-
tion beyond what was accessible to the agent. Fig-
ures 16 and 17 illustrate the layout of this interface.

To further regulate the decision-making pro-
cess and assess human performance under time-
constrained conditions, we imposed temporal lim-
its on each decision step. Specifically, participants
were instructed to complete their communication,
reasoning, and action selection within a total dura-
tion of 10, 15, or 20 seconds per time step. Each
of these time limits was evaluated across trials to
investigate their effects. The action was considered
successfully generated if the participant verbally
expressed their intended move before the time ex-
pired. The subsequent process of inputting the
action into the environment was excluded from the
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Figure 8: The task success rates of the GPT-4o and Llama-3.1-70B at 6 complexity levels under different γ values.

Level 1 Level 2 Level 3
SR PC IC RC SR PC IC RC SR PC IC RC

10s 100.0 96.8 87.1 90.0 100.0 94.2 85.3 90.3 90.0 91.6 85.8 89.1
15s 100.0 96.3 90.9 91.4 100.0 96.0 89.2 90.1 100.0 94.7 86.4 87.2
20s 100.0 97.9 98.0 98.0 100.0 98.9 96.1 97.0 100.0 99.4 93.0 94.0

Level 4 Level 5 Level 6
SR PC IC RC SR PC IC RC SR PC IC RC

10s 100.0 93.2 86.4 86.2 90.0 88.5 80.3 82.5 90.0 85.6 78.3 82.1
15s 90.0 94.1 87.0 87.6 100.0 90.7 84.8 86.4 90.0 91.5 80.9 83.6
20s 100.0 95.8 93.5 94.5 90.0 96.6 91.5 93.0 100.0 95.1 87.5 90.5

Table 6: Human performance across 6 complexity levels under different time constraints (10s, 15s, and 20s per
step), where participants were required to complete communication, reasoning, and action selection within the
allotted duration at each time step.

timing. Moreover, unlike previous implementa-
tions that required typed communication, partici-
pants in this experiment were permitted to commu-
nicate verbally, thereby enhancing the naturalness
and efficiency of interaction.

C.2.2 Discussion

Table 6 presents the performance of human partic-
ipants under varying time constraints imposed on
communication, reasoning, and action selection.
Although these constraints led to a measurable
decline in performance, human participants con-
sistently achieved comparable performance across
tasks of different complexity levels. In terms of
end-to-end metrics, including SR and PC, the per-
formance degradation was primarily reflected in
an increased number of redundant actions, which
resulted in a lower PC. However, SR remained rel-
atively stable, as participants were generally able
to recover quickly from suboptimal decisions. Re-
garding process-oriented metrics, such as IC and
RC, human performance showed minimal discrep-

ancy between IC and RC, suggesting a balanced
ability to both initiate and respond in collaborative
contexts. In contrast, LLM-based agents exhibited
a more pronounced gap between IC and RC, consis-
tent with prior findings that highlight their difficulty
in initiating collaboration (Li et al., 2023b). These
results indicate that in the Collab-Overcooked en-
vironment, humans are able to decompose and al-
locate tasks with relative ease, whereas LLMs face
substantial challenges in doing so.

C.3 Supplement to Correlation Analysis

Section 5.3.4 presented our analysis of attention
distribution differences under successful and failed
collaboration scenarios, from the perspective of
model behavior. In this section, we provide addi-
tional experimental details and present more com-
prehensive results.

As shown in Figure 10, the prompt provided
to LLM-MAS is segmented into five or six parts,
depending on whether the agent is initiating or re-
sponding to collaboration. To compute the atten-

4940



tion distribution, we measure the cumulative atten-
tion assigned by the model’s first generated token
to each prompt part. We then compare these distri-
butions between successful and failed collaboration
cases.

Further experimental results are illustrated in
Figure 12, where we report the attention distri-
bution differences across different collaboration
scenarios for Qwen-2.5 7B and 72B models at
both Level 1 and Level 5. Notably, both Qwen-
2.5 7B and 72B exhibit consistent patterns across
levels. When initiating collaboration, the attention
values on the Collaboration Rule and Recipe parts
are significantly correlated with collaboration suc-
cess or failure. When responding to collaboration,
the attention assigned to Collaboration Rule, Envi-
ronment Observation, and Collaboration Context
shows a similar significant correlation.

These findings highlight the critical role of at-
tention mechanisms in LLM-driven collaboration.
In particular, the extent to which models attend to
collaboration-relevant information is significantly
associated with the effectiveness of their collab-
orative behavior. This relationship holds across
different model sizes and task difficulty levels, sug-
gesting a generalizable pattern.

C.4 Failure Analysis

C.4.1 Failure Modes in Collaboration
Capabilities Degradation

To investigate the temporal dynamics and degra-
dation patterns in collaboration capabilities, we
designed an experiment focusing on both the ini-
tiation and response phases of collaborative ac-
tions. Tasks were selected from Level 3, each
involving five sequential collaborative actions:
“pickup,” “put_obj_in_utensil,” “cut/stir,” “pickup,”
and “place_obj_on_counter.” These actions require
implicit collaboration and are not parameterized
in advance, as their specifics vary across task in-
stances.

We selected 4 representative LLMs and evalu-
ated them on these five collaborative actions by
constructing prompts from environmental states
and memory fragments sampled from the agents’
interaction trajectories. For each collaborative ac-
tion, five representative scenarios were extracted,
and each model was tested 20 times per scenario
using prompts identical to those in Section 5.3.

Collaborative success was measured using the
ITES function, where an ITES score greater than 0

was considered a successful action. Failures were
manually categorized for initiating agents into three
distinct error types, and their distribution is shown
in Figure 11.

• Premature initiation, where the model at-
tempts a collaborative action before the ap-
propriate task stage;

• Repetitive initiation, where the model redun-
dantly issues a collaborative action that should
have already occurred;

• Irrelevant collaboration, where the action does
not align with any expected collaboration be-
havior for the task.

As illustrated in Figure 9(a), all models per-
formed reliably on the first collaborative action.
However, performance declined in subsequent
steps. Notably, GPT-4o and Llama-3.1-70B ex-
hibited increasing frequencies of premature and
repetitive initiation errors, particularly in later ac-
tions. This degradation is more prominent in the
smaller Llama-3.1-70B model. This trend is con-
sistent with findings from (Li et al., 2024a).

Additionally, a confusion matrix analysis re-
vealed a strong dependency between initiation
and response behaviors: inaccurate initiation often
leads to failed responses. This supports the con-
clusion that initiation capability is the primary bot-
tleneck in sustaining effective collaboration across
temporally extended tasks. The underlying issue
appears to be a misalignment between the envi-
ronmental state and the task’s process-specific pro-
gression, which LLM agents may struggle to track
consistently without explicit temporal grounding.

C.4.2 Impact of Task Decomposition Ability
To further investigate the phenomenon of collabora-
tion capabilities degradation observed in sequential,
process-specific tasks, we designed an experiment
corresponding to Figure 9(b). This experiment
aims to isolate the influence of planning and test
whether the decline in collaboration effectiveness is
purely due to poor step tracking or is also affected
by insufficiently grounded task representations dur-
ing long-horizon planning.

Building upon the same task setting as Sec-
tion C.4.1, which involved five collaborative ac-
tions within Step 1 of a Level 3 task, we redesigned
the task recipes to incorporate explicit step-to-
action mappings. This allows each step in the
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Figure 9: Figure (a) illustrates the dynamic changes in the capabilities of four LLMs in initiating collaboration
and responding to collaboration under the original task flow, with the confusion matrix depicting the relationship
between the two capabilities. Figure (b) shows the dynamic changes in collaboration capabilities after excluding
the impact of task decomposition ability on the task flow. Figure (c) highlights the sensitivity of collaboration
capabilities to position, comparing GPT-4o and Llama-3.1-70B after adjusting the position of the task workflow.
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Figure 10: Segmentation of prompt components pro-
vided to agents at different stages. Notably, recipe in-
formation is omitted during response to collaboration,
establishing an asymmetry in task-relevant input. The
“Collaboration Context” encodes both prior interactions
and the current collaboration instruction

recipe to correspond directly to a single collabora-
tive action, thus removing ambiguity in planning.
An example of such a reformulated recipe for the
"Baked Bell Pepper" task is shown in Listing 5.

Compared to the original recipe structure used
in Section C.4.1, this revised version decomposes
Step 1 into five clear sub-steps, each requiring a
distinct and ordered collaborative action. This ex-
plicit alignment between steps and actions was de-
signed to eliminate ambiguity in high-level plan

formulation, allowing the model to focus on action
execution rather than inferring latent step bound-
aries.

Listing 5: Step-to-action mapping recipe of "Baked Bell
Pepper"
NAME:
Baked Bell Pepper

INGREDIENTS:
bell pepper(1)

COOKING STEPs:
1. Pick up a bell pepper.
2. Place bell pepper on chopping board.
3. Cut a bell pepper into slices.
4. Pick up bell pepper slices.
5. Place the bell pepper slices on counter.
6. Place the bell pepper slices in the oven and

bake for 3 timesteps.
7. Transfer the baked bell pepper slices to a

pot and cook for 3 timesteps.
8. Fill a dish with the soup from the pot and

serve.

However, as shown in Figure 9(b), despite this
controlled setup, our results show that collabora-
tion capability still declines as the task progresses
through the action sequence. This suggests that
planning ambiguity is not the sole cause of degra-
dation. Rather, the observed performance drop,
particularly in later steps, is likely due to pretrain-
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表格 1

Level 4 GPT-4o o1-mini Llama3.1-70B Qwen2.5-32B Successful Collaboration Premature Initiation Repetitive Initiation

Action 1 100 94 96 95 100 0 0

Action 2 85 76 62 56 85 11 0

Action 3 79 41 52 35 79 10 7

Action 4 72 24 47 23 72 7 13

Action 5 65 15 35 22 70 0 18

GPT-4o o1-mini Llama3.1-70B Qwen2.5-32B

Action 1 99 95 93 92

Action 2 88 80 75 63

Action 3 84 66 69 47

Action 4 80 48 54 33

Action 5 75 37 49 34

Level 4

In
iti

at
in

g 
C

ol
la

bo
ra

tio
n 

Ac
cu

ra
cy

 (%
)

0

25

50

75

100

GPT-4o o1-mini Llama3.1-70B Qwen2.5-32B

GPT-4o
Pe

rc
en

ta
ge

0

25

50

75

100

Action 1 Action 2 Action 3 Action 4 Action 5

Llama3.1-70B

Pe
rc

en
ta

ge

0

25

50

75

100

Action 1 Action 2 Action 3 Action 4 Action 5

Successful Collaboration Premature Initiation Repetitive Initiation Irrelevant Collaboration

Re
sp

on
di

ng
 

C
ol

la
bo

ra
tio

n 
Ac

cu
ra

cy
 (%

)

0

25

50

75

100

GPT-4o o1-mini Llama3.1-70B Qwen2.5-32B
Action 1 Action 2 Action 3 Action 4 Action 5

1

Figure 11: The error condition of GPT-4o and Llama-3.1-70B initiating collaboration.

ing biases that favor early-stage completions and
the model’s limited ability to maintain coherent
context representations across longer action chains.

Together with the findings of Section C.4.1, this
experiment reinforces our hypothesis that sequen-
tial dependencies and temporal tracking remain
key challenges for LLM agents in multi-step col-
laborative settings, even under explicit instruction-
following scenarios.

C.4.3 Sequence Dependence in Collaboration
Performance

To examine the extent to which collaboration per-
formance is influenced by step position rather than
content or complexity, we conducted an experiment
corresponding to Figure 9(c). This experiment
builds directly upon the structure of Section C.4.2,
which provided explicit step-to-action mappings,
and focuses on determining whether poor perfor-
mance in later steps is attributable to their position
in the sequence rather than inherent task complex-
ity.

We reordered the steps of the “Baked Bell Pep-
per” recipe such that each collaborative action pre-
viously occurring later in the sequence was moved
to Step 1. The goal was to evaluate whether this po-
sitional shift would lead to improved performance
for actions that previously suffered from degrada-
tion. Listing 6 presents an example where the ac-
tion originally in Step 2 (i.e., place bell pepper on
chopping board) is now assigned to Step 1. For clar-
ity, the square brackets annotate the original step
numbers and were not visible to models during the
experiment.

The results demonstrated a significant increase
in collaboration performance when previously un-
derperforming actions were moved to earlier steps.
Actions that had shown degradation in their origi-
nal later positions now performed comparably to
the original Step 1, and the overall pattern of per-

formance decline across the sequence largely dis-
appeared.

Listing 6: Rearranged recipe of "Baked Pumpkin Soup"
NAME:
Baked Pumpkin Soup

INGREDIENTS:
bell pepper(1)

COOKING STEPs:
[Previously for step 2]
1. Place bell pepper on chopping board.
[Previously for step 3]
2. Cut a bell pepper into slices.
[Previously for step 4]
3. Pick up bell pepper slices.
[Previously for step 5]
4. Place the bell pepper slices on counter.
[Previously for step 1]
5. Pick up a bell pepper.
[The following are not the steps corresponding

to collaborative action]
6. Place the bell pepper slices in the oven and

bake for 3 timesteps.
7. Transfer the baked bell pepper slices to a

pot and cook for 3 timesteps.
8. Fill a dish with the soup from the pot and

serve.

These findings suggest that the observed degra-
dation in collaborative capabilities is not solely due
to action difficulty or planning ambiguity but is
strongly influenced by positional effects. This posi-
tional dependence may stem from two key factors:
(1) Pretraining biases in LLMs that favor earlier
sequence completions (e.g., next-token prediction
dominance at sequence heads), and (2) Limited
ability to maintain coherent task context across ex-
tended action chains, especially when no explicit
memory or reasoning loop is enforced. By isolat-
ing position as a variable, it is demonstrated that
early-sequence placement alone can substantially
boost performance in collaborative tasks, highlight-
ing a structural limitation in current LLM planning
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and grounding mechanisms when applied to long-
horizon collaboration.

C.5 Case Study

We present case studies of agent collaboration pro-
cesses, using the DeepSeek-V3 model to illus-
trate four scenarios: successful initiating and re-
sponding, successful initiating but failed respond-
ing, failed initiating but successful responding, and
failed initiating and responding. For each case,
we provide the agent’s environmental state inputs,
along with the output of the agent, including the
agent’s analysis, dialogue, and collaborative ac-
tions.

Case 1: Successful Initiating and Responding
Listing 7, 8, and 9 present the input from Agent
Bob and the output from Agent Alice in Case 1. To
prepare the order, Bob requires Alice’s assistance
in obtaining ingredients for further processing. As
indicated by Bob’s analysis field, it correctly under-
stood the first step of the recipe, which is to retrieve
a bell pepper from the ingredient dispenser. Fur-
thermore, Bob recognized that it could not access
the dispenser and thus requested Alice to retrieve
the bell pepper on its behalf. Ultimately, Bob cor-
rectly initiated the collaborative action by request-
ing Alice to take the bell pepper from the ingredient
dispenser and place it on the counter. Therefore,
Bob’s initiation was accurate. Similarly, Alice’s
plan field correctly generated the two collaborative
actions initiated by Bob, which will be executed
subsequently. As a result, Alice appropriately re-
sponded to the collaboration.

Listing 7: Case 1 Agent Bob’s input
Successful Action History: []
Bob space:pot0 oven0 counter
Alice space:chopping_board0 blender0

dish_dispenser ingredient_dispenser
Order:baked_bell_pepper
Scene 0: <Bob> holds nothing. The planned

sequence of actions (yet to be performed)
for Bob is [] <Alice> holds nothing. The
planned sequence of actions (yet to be
performed) for Alice is [] Kitchen states: <
pot0> is empty; <chopping_board0> is empty;
<oven0> is empty; <blender0> is empty; 3
counters can be visited by <Bob>. Their
states are as follows: counters have nothing

Listing 8: Case 1 Agent Bob’s output
Bob analysis: The order is for a baked bell

pepper. According to the recipe, the first
step is to pick up a bell pepper. Since only
the Alice can pick up ingredients from the
ingredient dispenser, I need to request the
Alice to perform this action. Once the bell
pepper is on the counter, I can proceed to
place it in the oven and bake it.

Bob plan: request('pickup(bell_pepper,
ingredient_dispenser)'); request('
place_obj_on_counter()')

Bob say: Alice, please pick up a bell pepper
from the ingredient dispenser and place it
on the counter. [END]

Listing 9: Case 1 Agent Alice’s output
Alice analysis: The Bob has instructed me to

pick up a bell pepper from the ingredient
dispenser and place it on the counter. Since
I am the Alice and only I can pick up
ingredients from the ingredient dispenser, I
will follow the Bob's instructions. The
ingredient dispenser is in my space, so I
can perform this action directly. After
picking up the bell pepper, I will place it
on the counter so the Bob can access it.

Alice plan: pickup(bell_pepper,
ingredient_dispenser); place_obj_on_counter
()

Alice say: [NOTHING]

Case 2: Failed Initiating but Successful Re-
sponding Listing 10, 11, and 12 present the input
from Agent Bob and the output from Agent Alice
in Case 2. In this scenario, Bob was supposed to re-
quest Alice to retrieve the pumpkin from the ingre-
dient dispenser and place it on the chopping board
(chopping_board0) for cutting. However, before re-
questing Alice to “cut”, Bob neglected to generate
the action “put_obj_in_utensil(chopping_board0)”
to place the ingredient on the chopping board.
Since the ingredient must be placed on the chop-
ping board before it can be cut, Bob’s collaborative
request was incorrect. Although Alice recognized
Bob’s intention, it identified the missing action
“put_obj_in_utensil(chopping_board0)” during its
planning phase and included it. This correction
enabled the successful completion of the task of
cutting the pumpkin. Therefore, Alice’s response
was successful, as it corrected Bob’s mistake.
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Listing 10: Case 2 Agent Bob’s input
Successful Action History: []
Bob space:pot0 oven0 counter
Alice space:chopping_board0 blender0

dish_dispenser ingredient_dispenser
Order:sliced_pumpkin_and_chickpea_stew
Scene 11: <Bob> holds nothing. The planned

sequence of actions (yet to be performed)
for Bob is [] <Alice> holds nothing. The
planned sequence of actions (yet to be
performed) for Alice is [pickup(pumpkin,
ingredient_dispenser),place_on_counter(),
pickup(chickpea, ingredient_dispenser)]
Kitchen states: <pot0> is empty; <
chopping_board0> is empty; <oven0> is empty;
<blender0> is empty; 3 counters can be

visited by <Bob>. Their states are as
follows: counters have nothing.

Listing 11: Case 2 Agent Bob’s output
Bob analysis: The recipe for Sliced Pumpkin and

Chickpea Stew requires us to first cut the
pumpkin into slices, then place the pumpkin
slices and chickpea in a pot, cook them, and
finally fill a dish with the stew and serve

. The Alice is currently planning to pick up
the pumpkin and chickpea from the

ingredient dispenser. Once the Alice has the
ingredients, they will need to place them

on the counter for me to handle. I will need
to pick up the pumpkin from the counter and
cut it into slices using the chopping board

, but since the chopping board is in the
Alice's space, I will need to request them
to perform the cutting action.

Bob plan: request('cut(chopping_board0)'); wait
(1)

Bob say: Alice, please cut the pumpkin on the
chopping board after picking it up. [END]

Listing 12: Case 2 Agent Alice’s output
Alice analysis: Based on the Bob's instruction

in the conversation history, I need to pick
up the pumpkin from the ingredient dispenser
and then cut it on the chopping board. The

Alice space includes a chopping_board0,
which is available for use. Since the Bob
has not provided further instructions, I
will focus on these two tasks. The planned
sequence of actions for the Alice already
includes picking up the pumpkin and chickpea
, but the Bob specifically mentioned cutting
the pumpkin first. Therefore, I will

prioritize picking up the pumpkin and
cutting it.

Alice plan: pickup(pumpkin, ingredient_dispenser
), put_obj_in_utensil(chopping_board0),cut(
chopping_board0)

Alice say: [NOTHING]

Case 3: Successful Initiating but Failed Re-
sponding Listing 13, 14, and 15 present the input
from Agent Bob and the output from Agent Alice
in Case 3. In this scenario, Bob correctly requested
Alice to retrieve the cauliflower from the ingredi-
ent dispenser and place it on the chopping board
(chopping_board0) for cutting, and the collabora-
tive actions generated were also correct. There-
fore, the initiation of collaboration was accurate.
However, Alice’s first action, “pickup(cauliflower,
dispenser)”, contained an incorrect parameter, as
“dispenser” was not a valid option. This error in the
first action prevented the execution of subsequent
actions, resulting in an incorrect response to the
collaboration.

Listing 13: Case 3 Agent Bob’s input
Successful Action History: []
Bob space:pot0 oven0 counter
Alice space:chopping_board0 blender0

dish_dispenser ingredient_dispenser
Order:mashed_cauliflower_and_lentil_patty
Scene 0: <Bob> holds nothing. The planned

sequence of actions (yet to be performed)
for Bob is [] <Alice> holds nothing. The
planned sequence of actions (yet to be
performed) for Alice is [] Kitchen states: <
pot0> is empty; <chopping_board0> is empty;
<oven0> is empty; <blender0> is empty; 3
counters can be visited by <Bob>. Their
states are as follows: counters have nothing
.

Listing 14: Case 3 Agent Bob’s output
Bob analysis: According to the recipe, we need

to start by cutting the cauliflower into
slices. Since I don't have access to the
chopping board or the ingredient dispenser,
I need to ask the Alice to pick up the
cauliflower and cut it. The Alice can
perform these actions in their space. Once
the cauliflower is sliced, it needs to be
placed in a pot to cook, which is in my
space. I will request the Alice to pick up
the cauliflower and cut it, then place it on
the counter so I can transfer it to the pot
.

Bob plan: request('pickup(cauliflower,
ingredient_dispenser)'); request('
put_obj_in_utensil(chopping_board0)');
request('cut(chopping_board0)'); request('
place_obj_on_counter()')

Bob say: Please pick up the cauliflower from the
ingredient dispenser, cut it on the
chopping board, and place it on the counter
for me to handle next. [END]
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Listing 15: Case 3 Agent Alice’s output
Alice analysis: The Bob has instructed me to

pick up the cauliflower from the ingredient
dispenser, cut it on the chopping board, and
place it on the counter. I need to follow

this sequence since I do not have the recipe
and must rely on the Bob's guidance.

Currently, I am not holding anything, and
all utensils in my space are empty. I will
start by picking up the cauliflower from the
ingredient dispenser, then proceed to cut

it on the chopping board, and finally place
it on the counter for the Bob to handle next
.

Alice plan: pickup(cauliflower, dispenser);
put_obj_in_utensil(chopping_board0); cut(
chopping_board0); place_obj_on_counter()

Alice say: [NOTHING]

Case 4: Failed Initiating and Responding List-
ing 16, 17, and 18 present the input from Agent
Bob and the output from Agent Alice in Case 4.
In this scenario, Bob requested Alice to cut the
eggplant on “chopping_board0” and place it on
the counter. However, the collaborative actions
generated were incomplete, as they omitted the ac-
tions “put_obj_in_utensil(chopping_board0)” and
“place_obj_on_counter()”. As a result, these ac-
tions could not be executed, making them incor-
rect. Although Alice understood Bob’s intention, it
failed to notice the missing actions in Bob’s request
and directly replicated his generated actions. Con-
sequently, the response to the collaboration was
also incorrect, leading to a failure in the collabora-
tion.

Listing 16: Case 4 Agent Bob’s input
Successful Action History: []
Bob space:pot0 oven0 counter
Alice space:chopping_board0 blender0

dish_dispenser ingredient_dispenser
Order:sliced_eggplant_and_chickpea_stew
Scene 4: <Bob> holds nothing. The planned

sequence of actions (yet to be performed)
for Bob is [] <Alice> holds one eggplant.
The planned sequence of actions (yet to be
performed) for Alice is [request('
place_obj_on_counter()')] Kitchen states: <
pot0> is empty; <chopping_board0> is empty;
<oven0> is empty; <blender0> is empty; 3
counters can be visited by <Bob>. Their
states are as follows: counters have nothing
.

Listing 17: Case 4 Agent Bob’s output
Bob analysis: The recipe requires preparing a

Sliced Eggplant and Chickpea Stew. The Alice
currently holds an eggplant and plans to
place it on the counter. I need to instruct
the Alice to cut the eggplant into slices
and then place them in the pot, along with
the chickpea. Since the Alice is in charge
of handling the ingredients, I will focus on
managing the cooking process in the pot and
ensuring the dish is served correctly.

Bob plan: request('cut(chopping_board0)');
request('place_obj_on_counter()')

Bob say: Please cut the eggplant into slices
using the chopping board and then place the
slices on the counter. [END]

Listing 18: Case 4 Agent Alice’s output
Alice analysis: I am currently holding an

eggplant, and the Bob has instructed me to
cut it into slices using the chopping board
and then place the slices on the counter.
The chopping board is in my space, so I can
perform the cutting action. After cutting, I
will place the slices on the counter for
the Bob to use in the next steps.

Alice plan: cut(chopping_board0);
place_obj_on_counter()

Alice say: [NOTHING]
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Figure 12: Attention distributions over different parts of the prompt during successful and failed attempts at
initiating and responding to collaboration, evaluated for Qwen-2.5 models (7B and 72B). “Corr” denotes the
Pearson correlation coefficient between attention patterns and ITES-based success labels, and “P” indicates the
corresponding p-value.
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You are an intelligent agent planner; you must generate output and create plans in the specified format, based on the game rules 
and the environmental status.

System

Suppose you are a Chef proficient in an adapted version of the Overcooked game. Your goal is to cooperate with your teammate, who is 
also a large language model agent, to complete a single order. 

You have recipe, so you need to direct yourself and your teammates to complete the order.

Due to the numerous settings that differ from the original Overcooked game, you must strictly adhere to the following game rules:


Game Rules:


- The Overcooked_AI game requires two players (the chef and assistant) in separate environments to work together with the goal of 
completing an order in the shortest time.

- To finish one order, your team needs to follow these steps:

  1. Pick raw ingredients from the ingredient dispenser.

  2. Place the ingredients in the correct utensil according to the chef's recipe and initiate cooking using the appropriate action.

  3. Your team may need to repeat Step 2 using several utensils according to the chef's recipe. After cooking, you need to pick up the 
cooked ingredients and decide whether to move somewhere else.

  4. Check if you need a dish to hold the cooked food. If so, the chef must pick up a dish first and then fill it with food from the utensil. 
Otherwise, the chef can directly pick up the cooked food from the utensil.

  5. Deliver the food to the serving location immediately.


*You cannot complete all of these steps alone. You need to think about what you can do in the situation and what you need your 
teammate to help you with.*

- - The usual workflow for the chef is:

  1. Read the cooking process from your recipe. All of your decisions must be strictly guided by the recipe and should not lead to 
unfounded behavior.

  2. Ask the assistant to pick up ingredients from the ingredient dispenser and use the correct utensil to handle them according to the 
recipe. Since you do not have access to all the objects, you need to assign 

some tasks to the assistant while you perform other tasks in parallel.

  3. Work in parallel with the assistant to finish the order in the shortest time possible, unless there is nothing you can do in the current 
situation. If you have nothing to do, you can wait.

  4. Serve the dish (optional). If the recipe specifies that the dish needs to be served on a plate, you must use 
`fill_dish_with_food(utensil_name)` to serve the dish from the utensil first; otherwise, just pick up the 

food from the utensil.

  5. Use deliver().


- The recipe contains all the steps necessary to complete the order. Every choice you make must be based on the recipe.

- You only need to complete one order, so focus solely on the progress of that dish.

- Only the assistant can pick up ingredients from the ingredient dispenser, which has an unlimited supply.

- The utensil is a stationary unit that cannot be moved.

- After placing an ingredient into a utensil, you need to use the correct action to start cooking.

- As long as there is something on the counter, both the chef and assistant can directly pick it up.

- If you wish to place something in another position, first check if you are holding it by verifying through "<Chef> holds XXX" or 
"<Assistant> holds XXX." Each player can only pick up one item at a time.

- Players can only pass items by placing them on the counter; there is no direct "pass" action. To pass an item to your teammate, you 

need to pick it up, then use `place_obj_on_counter()`, and instruct your teammate to pick it up.

User

Game Rule Prompt

Figure 13: Prompt for game rules.
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Skill: In this game, you can ONLY perform the following allowed 
actions. Do not attempt to use any other actions that are not listed 
here. If there are parameters (like steps, utensil), you need to fill them 
without using quotation marks, angle brackets, etc. There are 2 kinds 
of actions: 'operation actions' and 'requests'. If you want a 
teammate to perform a certain operation action, you need to 
generate a 'request' action with the operation action as an argument. 

'Operation actions': 

def pickup(obj, place):

    if object_in_hand() == "nothing": 

       if place in utensil_list or place == "counter" or place == 
"dish_dispenser" or place == “ingredient_dispenser":

            if object_in_place(obj, place):

                return


def cook(pot_name):

    """ To start cooking in the pot """

    if has_food(pot_name):

        return


def place_obj_on_counter():

    if object_in_hand() != "nothing":

        return


def put_obj_in_utensil(utensil):

    if object_in_hand() != "nothing":

        if utensil in utensil_list:

            return


def fill_dish_with_food(utensil):

    if object_in_hand() == "dish":

        if utensil_food_ready() or utensil_started_cooking():

     return

 

    """ To start oven example: bake(oven0) """

    def bake(oven_name):

        if has_food(oven_name):

            return


def deliver():

        return


def wait(num):

    # wait positive num timesteps

    if isinstance(num, int) and 0 < num <= 20:

        return

‘Collaborative action': 

""" 

Ask a teammate to do an operation action. Each request can only 
contain one action with quotation marks, so if you need a teammate 
to perform multiple actions, you need to generate multiple requests. 
The detailed conversation content you want to convey is contained 
in '{role} says'. 

Example: request('pickup(potato, ingredient_dispenser)'); 
request('place_obj_on_counter()');... 

"""

def request(operation_action):

    teammate.plan_list.append(operation_action)

    send_message(content=self.say, to=teammate)

    return

```

Assistant's Skill: Assistant can ONLY perform the following allowed 
actions. If you need the Assistant to perform actions, you can use 
the actions below.

def pickup(obj, place):


pass

def cut(chopping_board_name):

      pass

def stir(blender_name):


pass

def place_obj_on_counter():


pass

def put_obj_in_utensil(utensil):


pass

def wait(num):


pass

Action Space Prompt for Agent Bob
User

Figure 14: Prompt for the action space of Agent Bob.

4949



Input-output Format Prompt
User

Input:

- For each step, you will receive input like the following:

  - 1.Your successful action history in the past steps is: XXX  

    - A dictionary of all actions you've successfully performed in recent time steps. Use this information to infer your past plans and 
continue forward. 

  - 2.Here are lessons learned from past failures that can guide your decisions:  

    - Reflect on past mistakes to avoid repeating them when making new plans.

  - 3.Chef space: utensil1, utensil2, utensil3, XXX  

    - The chef can only use the utensils in the Chef space; you cannot use any utensils outside this area.

  - 4.Order: order  

    - You only need to complete the current order. 

  - 5.Scene: The planned sequence of actions (yet to be performed) for you and your teammate, status of each ingredient and utensil.  

    - "The planned sequence of actions" refers to what each role intends to do in the upcoming time step, and none of these actions are 
completed yet.  

    - Based on the "Scene", gather the existing plans for both roles, along with the status of utensils and ingredients, to plan the next 
steps efficiently.  

    - If a dish is already finished, the chef should consider serving it immediately. 

  - 6.Past conversation turns:  

    - Assistant says (turn 1):XXX  

    - Chef says (turn 1):XXX  

    - Assistant says (turn 2):XXX  

    - Chef says (turn 2):XXX  

    - Each line of conversation history follows this structure: sender of the message + "says" + "turn number". Messages with the same 
turn number are grouped together.  

    - Read the conversation history from top to bottom, with the most recent messages at the bottom.  

    - You need to respond to your teammate's most recent message.

Output:

You must provide output in three fields, formatted as follows:

1. Chef analysis:xxxxx  

   - This field should include your analysis of the environmental conditions and your reasoning for the actions you plan to take. There are 
two things to focus on:  

     1. Analyze the environment step by step, considering your conversation history with your teammate if "Past conversation turn" exists. 
Understand where you are in the order and plan based on the recipe.  

     2. Analyze which actions are available to you based on the 'Chef space' and 'Assistant space'. Actions that must be done by your 
teammate should be surrounded by 'request'. 

2. Chef plan:action1(params1, params2); action2(params1); ... ; actionN(params1)  

   - This field contains the actions you intend to perform in the next time step. Four things to note:  

     1. Only generate actions for yourself. If a teammate must perform an action, generate a 'request' with the action as an argument.  

     2. The arguments for your actions must all be in your interactive space, or the action is invalid.  

     3. Actions should be written in sequence, separated by semicolons, with no additional descriptions or serial numbers. You cannot add 
any comments or actions not listed in your skill set.

3. Chef say:xxxxx  

   - This field refers to the communication you need to convey to your teammate. If you do not plan to communicate, the field should 
always be [NOTHING].  

   - You can either:  

     1. [NOTHING] — Meaning there’s no need to communicate with your teammate.  

     2. The content to pass to your teammate — If you generated a 'request' action in your plan, include a message here to tell your 
teammate what to do.  

   - If you want to end the conversation, add [END] to the last line of your response.

<input>

Your successful action history in the past steps are: []

Here are some lessons you have learned from past failures that you can use to make the right decisions:[]

Chef space:pot0  oven0  counter 

Assistant space:chopping_board0  blender0  dish_dispenser  ingredient_dispenser

Order: zucchini_green_pea_and_onion_patty

Scene 0: <Chef> holds nothing. The planned sequence of actions (yet to be performed) for Chef is [] <Assistant> holds nothing. The 
planned sequence of actions (yet to be performed) for Assistant is [] Kitchen states: <pot0> is empty; <chopping_board0> is empty; 
<oven0> is empty; <blender0> is empty; 3 counters can be visited by <Chef>. Their states are as follows: counters have nothing.

Figure 15: Prompt for the input-output format.
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Figure 16: Human-computer interaction as Agent Alice.

Figure 17: Human-computer interaction as Agent Bob.
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