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Abstract

Chain-of-Thought (CoT) reasoning has sig-
nificantly advanced Large Language Models
(LLMs) in solving complex tasks. How-
ever, its autoregressive paradigm leads to sig-
nificant computational overhead, hindering
its deployment in latency-sensitive applica-
tions. To address this, we propose DART
(Distilling Autoregressive Reasoning to Silent
Thought), a self-distillation framework that
enables LLMs to replace autoregressive CoT
with non-autoregressive Silent Thought (ST).
Specifically, DART introduces two training
pathways: the CoT pathway for traditional
reasoning and the ST pathway for generating
answers directly from a few ST tokens. The
ST pathway utilizes a lightweight Reasoning
Evolvement Module (REM) to align its hidden
states with the CoT pathway, enabling the ST
tokens to evolve into informative embeddings.
During inference, only the ST pathway is acti-
vated, leveraging evolving ST tokens to deliver
the answer directly. Extensive experimental
results demonstrate that DART offers signifi-
cant performance gains compared with existing
non-autoregressive baselines without extra in-
ference latency, serving as a feasible alternative
for efficient reasoning.

1 Introduction

Large Language Models (LLMs) have demon-
strated remarkable performance (DeepSeek-AI
et al., 2025; OpenAI, 2025) across various rea-
soning tasks by leveraging Chain-of-Thought
(CoT) (Wei et al., 2022), which decomposes com-
plex problems into intermediate reasoning steps.
Despite these successes, the autoregressive nature
of CoT introduces substantial computational cost,
resulting in increased latency and limiting its effec-
tiveness in real-time applications (Sui et al., 2025).

*These authors contributed equally to this work
†This work was done during the internship at Tencent Inc.
‡Corresponding author.

To alleviate this computational burden, implicit
CoT reasoning (Deng et al., 2023, 2024) performs
implicit reasoning in the hidden state rather than
the explicit CoT tokens to avoid extra computation.
Continuous thought methods (Hao et al., 2024;
Cheng and Durme, 2024) compress discrete textual
tokens into compact, continuous representations,
reducing the number of intermediate tokens with-
out obvious degradation in reasoning capability.
However, these existing approaches either suffer
from unsatisfactory performance or remain haunted
by the autoregressive generation paradigm, leading
to suboptimal efficiency.

To this end, we propose DART (Distilling Au-
toregressive Reasoning to Silent Thought), a novel
framework that enables the LLMs to internalize the
autoregressive CoT into non-autoregressive Silent
Thought (ST) with an excellent efficiency-efficacy
trade-off. To be specific, DART employs two path-
ways in the training procedure as shown in Fig-
ure 1, namely: the CoT pathway, which generates
both the answer tokens and the explicit CoT to-
kens; and the ST pathway, which focuses solely
on generating answers, conditioned on the ST to-
kens concatenated after the question. Additionally,
the ST pathway introduces a lightweight Reason-
ing Evolvement Module (REM) to align the hid-
den state of the last word preceding the answer
with that of the CoT pathway. During inference,
initial ST tokens are appended to user input and
processed through the REM-equipped ST pathway.
Analogous to human cognition that progresses from
vague conceptual abstraction to concrete resolution,
these ST tokens evolve into increasingly informa-
tive embeddings as they propagate through the net-
work, ultimately serving as a context-aware bridge
between the instruction and its logically grounded
response. Empirical results demonstrate that DART
achieves significant efficiency gains while main-
taining comparable performance. To summarize,
our contributions are as follows:
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Figure 1: Overall Framework of DART. During inference, we employ the ST pathway to respond directly without
step-by-step reasoning in prior work (Wei et al., 2022; Hao et al., 2024). The shared intermediate token represents
the separator token. Feed-forward layer in the decoder layer is omitted for simplicity.

• We explore non-autoregressive ST as a promis-
ing alternative to the CoT paradigm, providing
valuable insights for future work;

• We introduce DART, a simple but effective
framework that employs REM to align autore-
gressive CoT with non-autoregressive ST in a
dual-pathway architecture;

• We conduct extensive experiments to validate
DART on multiple reasoning benchmarks,
demonstrating its remarkable efficiency along-
side satisfactory accuracy and interpretability.

2 Related Work

Empirical results and theoretical analysis (Feng
et al., 2023; Liu et al., 2024) have demonstrated the
effectiveness of CoT developed from supervised
fine-tuning (Yue et al., 2024; Yu et al., 2024) and
reinforcement learning (Wang et al., 2024; Shao
et al., 2024; DeepSeek-AI et al., 2025). However,
intermediate steps in the CoT reasoning will cause
extra computational cost, resulting in low through-
put. To reduce this computation overhead, Co-
conut (Hao et al., 2024) employs curriculum learn-
ing to fine-tune an LLM capable of autoregressively
generating final-layer hidden states to serve as the
replacement of CoT tokens. These final-layer hid-
den states, dubbed continuous thought, are more
information-dense, thus reducing the intermediate
steps. One contemporaneous work, CODI (Shen
et al., 2025) also exploits the continuous thought
but employs an end-to-end distillation framework
rather than the curriculum learning. Despite the
impressive performance of these methods, their ef-
ficiency is still limited by the autoregressive pattern.

On the other hand, iCoT (Deng et al., 2023, 2024)
manages to embed the CoT reasoning within the
model’s hidden space. However, it lacks scalability
for the larger models (Shen et al., 2025).

3 Method

3.1 Dual-Pathway Architecture

Given a question Q, our goal is to fine-tune a causal
decoder-only LLM parameterized by θ to provide
the proper answer Y = {yi}Mi=1. In DART, we
introduce a dual-pathway architecture to allows
two distinct answering ways during training.

Chain-of-Thought Pathway. This pathway ad-
heres to the conventional CoT approach, where the
model first produces a sequence of intermediate
reasoning steps Z = {zi}Ni=1 before producing the
final answer. During training, the cross-entropy
loss for next token prediction is adopted for opti-
mizing this pathway:

LCoT =− 1

N

N∑

i=1

log (zi | Q, z1:i−1; θ)

− 1

M

M∑

i=1

log (yi | Q,Z, y1:i−1; θ) .

Notably, the first t− 1 tokens of Z are indeed CoT
tokens, while the remaining are separator tokens
shared with the ST pathway. In this paper, we fix
zt:N as the answer prompt "Answer:".

Silent Thought Pathway. In contrast, the ST
pathway directly generates the answer conditioned
on the preceding ST sequence S = {si}Ci=1 and
separators zt:N . Here, each si is a special token
<st> and C is set as 20 in this paper. The objective
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function of this pathway can be formulated as

LST = − 1

M

M∑

i=1

log (yi | Q,X, y1:i−1; θ, ϕ) ,

where X = [S; zt:N ] and ϕ is the parameters asso-
ciated with REM to be detailed in Section 3.2.

3.2 REM-based Self-Distillation
Our preliminary experiments show that enabling
the evolution of the ST token requires more fine-
grained supervision from CoT data to capture
deeper intrinsic reasoning patterns. As revealed
by the prior work (Dai et al., 2023), the intermedi-
ate words essentially impose a shift to the hidden
state of the last word before the answer. We can
approximate this effect at the l-th decoder layer as

ãl ≈ al +W l
V H

l−1
Z (W l

KH l−1
Z )Tql,

h̃l ≈ hl + f
(
W l

V H
l−1
Z (W l

KH l−1
Z )Tql

)
,

where f(·) denotes the feed-forward layer; ql is the
attention query vector of zN in l-th decoder layer;
al and hl indicate the output of the attention head
and the output hidden state, given the question-only
input; H l−1

Z represents the input hidden state of
intermediate token sequence Z; and W l

K , W l
V are

the key and value projection matrices. A detailed
derivation is provided in the Appendix A.

Since the intermediate tokens are autoregres-
sively generated conditioned on the question Q and
the model parameters θ, the induced shift can be
viewed as gθ1:l (hθ (Q)) where Z = hθ(Q) and θ1:l

denotes the parameter of the first l layers. Given
that flattening the function hθ(·) is non-trivial, we
propose to approximate the process by introducing
a lightweight REM module at each decoder layer,
which also leverages both the parameters θ and
the in-context information from Q. Specifically,
to induce such a shift, REM adapts the standard
attention mechanism as:

â ≈ WV W̄
V
R [HQ;HX ]

(
WKW̄K

R [HQ;HX ]
)T

q,

ĥ ≈ h+ gθ1:l,ϕ1:l([Q;X]).

where W̄ J
R = α

dW
J
R2

W J
R1

T
+ I for J ∈ {K,V }.

Here, W J
R1

,W J
R2

∈ Rn×d are learnable matrices in-
jected before the key and value projection matrices;
n, d are the hidden state dimension and the REM
projection space dimension; and α is a scaling hy-
perparameter. The superscript for the layer index

is omitted for simplicity. REM offers two key ad-
vantages: (1) It introduces a few additional param-
eters while enabling rich interactions between Q
and θ, effectively capturing contextual and domain-
specific knowledge; (2) It is a simple plug-in mod-
ule compatible with any decoder-only LLM, which
can be seamlessly merged into the original architec-
ture without increasing inference-time parameters.

Based on the analysis, we adopt the following
distillation loss to guide the learning process:

Ldistill =
1

L

L∑

l=1

1

σ(h̃l)

∥∥∥h̃l − ĥl
∥∥∥
1
,

where σ (·) denotes the standard deviation within
a batch. By aligning these hidden states, the func-
tion gθ1:l,ϕ1:l([Q;X]) is encouraged to approximate
gθ1:l (hθ (Q)), thereby distilling the reasoning ca-
pability from the CoT pathway into the ST pathway.
Furthermore, we empirically show in Section 4.3
that the initial meaningless token <st> will evolve
into an informative latent representation as it goes
through the REM-equipped ST pathway, simulat-
ing a blur-to-concrete thinking process. To summa-
rize, the overall objective function of DART is

LDART = LCoT + LST + λLdistll,

where λ = 20 is a trade-off hyperparameter.

4 Experiments

To validate the design of DART, we conduct ex-
tensive experiments and present the key results.
Additional implementation details are provided in
Appendices B-C.

4.1 Experimental Settings
Datasets. Following previous work (Deng et al.,
2024; Hao et al., 2024), we mainly fine-tune mod-
els on the complicated mathematical reasoning
benchmark GSM8K-Aug (Deng et al., 2023), an
augmented version of GSM8K (Cobbe et al., 2021),
which includes diverse math reasoning traces. To
mitigate the risk of models memorizing the fi-
nal answer from CoT sequences, the last step
is omitted during training (Shen et al., 2025).
For out-of-distribution evaluation, we adopt GSM-
HARD (Gao et al., 2023), SVAMP (Patel et al.,
2021), and MultiArith (Roy and Roth, 2015) as
robustness benchmarks.

Baselines. We compare DART against three au-
toregressive methods and three non-autoregressive
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In-Distribution Out-of-Distribution

Methods Is NAR? GSM8K GSM-HARD SVAMP MultiArith

CoT 58.8 425 13.4 477 59.9 227 97.2 218
Coconut (Hao et al., 2024) 50.6 390 11.2 483 53.1 181 96.5 217
CODI (Shen et al., 2025) 55.6† 143 12.8† 153 61.1† 141 96.1† 132

No-CoT 32.5 36 7.1 57 40.6 34 61.3 33
iCoT (Deng et al., 2024) 19.0† 36 4.4 † 57 40.9† 34 39.0† 33
PauseFT (Goyal et al., 2024) 32.1 37 7.3 60 40.4 35 59.2 33
DART (Ours) 42.6 37 10.9 60 50.5 35 84.8 33

Table 1: Results on GSM8K, GSM-HARD, SVAMP, and MultiArith. Accuracy (%) is on the left and inference time
(ms) on the right for each benchmark. NAR stands for non-autoregressive. †The result is from (Shen et al., 2025).

Methods FLOPs peak GPU memory

CoT 1874774802 12.28
No-CoT 1398731734 11.70
DART 1881308345 18.07

Table 2: Total FLOPs (GF) and peak GPU memory (GB)
for CoT, No-CoT, and DART. The reported peak GPU
memory is the average across 8 Nvidia A10 GPUs.

Methods Accuracy (%)

No-CoT 32.5
DART 42.6

w/o ST 36.8
w/o REM 36.2
w/ LoRA-REM 40.8
w/o Ldistill 33.7
w/ Ldistill on y1 31.5
w/ Ldistill on [zN ;Y ] 33.7

Table 3: Ablation studies. LoRA-REM indicates that we
apply LoRA (Hu et al., 2022) as REM.

methods, namely: (1) CoT, which fine-tunes the
model on CoT data to perform the traditional CoT
reasoning; (2) Coconut (Hao et al., 2024), which
trains the model with CoT data in a mutil-stage
manner and leverages autoregressively generated
continuous thought; (3) CODI, similar to Coconut
but employing a one-stage distillation framework
using both CoT and no-CoT data; (4) No-CoT,
which trains the model on no-CoT data to answer
directly; (5)iCoT (Deng et al., 2024), which trains
the model to reason in the hidden space by apply-
ing stepwise internaliztion; (6) and PauseFT (Goyal
et al., 2024), which inserts C special filler tokens
<pause> between the question and answer to allow
extra computations. All methods are fine-tuned on
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Figure 2: Accuracy and inference time on GSM8K with
varying C, the number of ST tokens.

Llama-3.2-1B (Dubey et al., 2024) for consistency.

4.2 Main Results

Comparison between Baselines. Table 1 sum-
marizes the performance across GSM8K, GSM-
HARD, SVAMP, and MultiArith. To ensure a fair
comparison of efficiency, we measure the inference
time of all baselines on a Nvidia A10 GPU, even
for those whose accuracy is sourced from prior
reports. As shown, DART achieves the best per-
formance among all NAR baselines on GSM8K,
delivering a notable 10.1% accuracy gain with neg-
ligible latency overhead (only 1 ms). On all out-
of-distribution datasets, DART consistently outper-
forms other NAR methods, indicating robust gen-
eralization beyond the training distribution. While
AR methods obtain higher accuracy, they suffer
from significantly reduced inference efficiency due
to stepwise generation, despite efforts to compress
reasoning steps. These results demonstrate that
DART achieves a compelling trade-off between ac-
curacy and efficiency by fully leveraging distilled
CoT knowledge in a single-step latent space. For
training-compute transparency, we provide the total
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ProsQA CommonsenseQA

Methods Acc IT Acc IT

CoT 98.8 882 68.5 1471
No-CoT 94.0 129 65.4 34
DART 99.4 130 75.1 34

Table 4: Results on ProsQA and CommonsenseQA-CoT.
Acc and IT indicate the Accuracy (%) and inference
time (ms, on a Nvidia A10 GPU), respectively.

FLOPs and peak GPU memory for CoT, No-CoT,
and DART in Table 2. All experiments were con-
ducted on 8 Nvidia A10 GPUs. We can observe
that DART shares a comparable total FLOPs with
the CoT baseline. Moreover, it’s important to note
the efficiency of DART’s trainable parameters. For
Llama-3.2-1B, CODI uses 98,574,336 trainable pa-
rameters, and Coconut employs a more complex
multi-stage fully fine-tuning. In contrast, DART
only has 44,040,192 trainable parameters, demon-
strating an excellent efficiency trade-off consider-
ing both training and inference costs.

Ablation Study. To validate the contributions of
key DART components, we evaluate the variants
with certain components omitted or replaced. Our
findings in Table 3 are as follows: (1) Omitting
Ldistill, which transfers reasoning patterns from
CoT trajectories, leads to a substantial performance
drop; (2) Excluding the ST tokens impairs accuracy,
likely due to the loss of CoT-derived positional pri-
ors; (3) Our proposed REM significantly enhances
reasoning capability compared to using either no
additional module or the vanilla LoRA; (4) Em-
ploying other tokens like the answer tokens as the
distilling token in Ldistill hinders the effectiveness
of alignment, empirically demonstrating the ratio-
nality of applying Ldistill on zN .

Sensitivity Analysis on ST Token Number. We
conduct the experiments on GSM8K with vari-
ous values of the ST token number C. As shown
in Figure 2, the accuracy rapidly increases dur-
ing the initial stage as C grows, then stabilizes
once the token number becomes sufficient, demon-
strating both the necessity and robustness of using
ST tokens. Furthermore, benefiting from the non-
autoregressive paradigm, DART introduces negli-
gible latency even as C increases.

4.3 Further Analysis
Task Generalizability. To evaluate generaliz-
ability in other reasoning tasks, we fine-tune

No-CoT DART

Models Acc IT Acc IT

GPT2 16.2 18 24.7 19
Qwen2.5-1.5B 33.3 95 42.2 95
Llama-3.2-3B 40.8 62 46.6 62

Table 5: Results on GPT2, Qwen2.5-1.5B and Llama-
3.2-3B. Acc and IT indicate the Accuracy (%) and in-
ference time (ms, on a Nvidia A10 GPU), respectively.

the models on the logic reasoning benchmark
ProsQA (Hao et al., 2024) and commonsense rea-
soning benchmark CommonsenseQA-CoT (Shen
et al., 2025). As summarized in Table 4, DART can
even outperform the CoT baseline in ProsQA and
CommonsenseQA-CoT while maintaining its low
inference latency, demonstrating excellent robust-
ness across diverse reasoning domains.

Robustness across Various Models. To further
demonstrate the robustness of DART across dif-
ferent LLMs, we conduct the experiments using
Llama-3.2-3B, Qwen2.5-1.5B (Team, 2024) and
GPT2 (Radford et al., 2019) as base models. Exper-
imental results in Table 5 show that DART can con-
sistently boost the reasoning capabilities without
notable latency across these models, demonstrating
its scalability to larger and smaller models.

Qualitative Analysis. We decode the final hid-
den states of ST tokens into natural language using
the model’s word embeddings, finding that 69.9%
of the translated tokens match the words in ground-
truth CoT. This ratio further rises to 80.1% for
cases that yield the correct answer. Additionally,
we observe that the ST tokens also reflect a progres-
sive reasoning process similar to CoT. For example,
the top-1 ST translation is "192 192 192 192 24
24 24 24 24 24 24 24 24 24 24 24 24 24
24 24", corresponding to the CoT "«3*64=192»
«192/8=24»".

5 Conclusion

We present DART, a fine-tuning framework that
empowers LLMs to perform implicit reasoning in
a non-autoregressive manner. By distilling knowl-
edge from CoT data, the models trained with DART
achieve a remarkable balance between accuracy
and latency using the evolving ST tokens. Fur-
thermore, extensive experiments confirm DART’s
robustness across various benchmarks and validate
the effectiveness of its design.
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Limitations

Additional Training Resources. Due to its dual-
pathway architecture, DART requires more compu-
tational resources. In our experiments, the propor-
tion of trainable parameters is 2.86%, compared to
1.79% for LoRA.

Supervision Signal. Currently, DART aligns
only the activation value of the last word before the
answer between the CoT and ST pathways. This
limited supervision may be suboptimal, as it can
overlook some information in intermediate tokens.
Incorporating more comprehensive supervision sig-
nals may help DART achieve better performance.

Demand for CoT data. DART relies on CoT
data for knowledge distillation, which may not al-
ways be available. One potential solution is to use
large LLMs capable of CoT reasoning to generate
synthetic CoT data, though this approach incurs
additional preprocessing costs.
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A Analysis of the Shift Value

For better readability, we first summarize the math-
ematical notations adopted for this paper in Table 6.

Similar to (Dai et al., 2023), we mainly focus on
the effect of the intermediate sequence X on the
hidden state of the last separator token zN . Firstly,
we can derive the simplified expression for the acti-
vation ãl of zN as follows:

ãl = W l
V [HQ;HZ ]softmax

(
W l

K [HQ;HZ ]√
n

)T

ql

≈ W l
V [HQ;HZ ]

(
W l

K [HQ;HZ ]
)T

ql

= W l
V HQ

(
W l

KHQ

)T
+W l

V HZ(W
l
KHZ)

Tql

≜ al +W l
V HZ(W

l
KHZ)

Tql,

where W l
K ,W l

V ∈ Rn×n are the key and value
projection matrices of the l-th decoder layer, HQ,
HZ are the input hidden state of question Q and
intermediate tokens Z, ql is the attention query
vector corresponding to zN , and al is the activation
when only Q is given. The superscript l−1 for HQ,
HZ is omitted for simplicity. The approximation in
the second step is obtained by omitting the softmax
operation and scaling factor

√
n. Then, by going

through the feed-forward layer f(·), we can get the
hidden state of zN in the l-th layer as follows:

h̃l ≈ hl + f
(
W l

V HZ(W
l
KHZ)

Tql
)

where hl = f(al). Since Z can be viewed as the
output of LLM given Q, we further define

gθ1:l (hθ (Q)) ≜ f
(
W l

V HZ(W
l
KHZ)

Tql
)
.

Hence, the CoT effectively injects a shift in the
hidden state of zN , which can be parameterized by
the model parameters θ and input Q. Based on this,
we employ REM to construct gθ1:l,ϕ1:l([Q;X]) and
apply an L1 distance loss to approximate this shift.

B Datasets

Statistics. The statistics of utilized datasets are
provided in Table 7

Examples We provide some examples of the
data used in our experiments.

GSM8K-Aug

Question = "Andy receives a monthly salary
of $800 but he has to pay a tax of 7%. How
much is his net salary?"
CoT = "«800*7/100=56» «800-56=744»"
Answer = "744"

GSM-HARD

Question = "A robe takes 2287720 bolts of
blue fiber and half that much white fiber.
How many bolts in total does it take?"
Answer = "3431580.0"
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Notation Mathematical Meaning

l The index of the current decoder layer, usually used as a superscript.
n, d The hidden state dimension and the REM projection dimension.
α The hyperparameter for scaling in REM.
Q The question sequence.
Y = {yi}Mi=1 The answer sequence of length M .
Z = {zi}Ni=1 The intermediate sequence of length N .
S = {si}Ci=1 The ST sequence of length C, with each si set as a special token <st>.
t The index separating the CoT sequence z1:t−1 and the separators zt:N in Z.
[·; ·] The concatenation operation for matrix pairs and sequence pairs.
X = [S; zt:N ] The concatenation of the ST sequence and separators.
W l

K ,W l
V The key and value projection matrices.

W J
R1,W

J
R2 The REM matrices for key projection matrices when J = K and for value

projection matrices when J = V .
H l

Q, H
l
Z , H

l
X The output hidden state matrices associated with Q, Z, and X .

ql The attention query vector of the last separator zN .
al, ãl, âl The output vectors of the attention head corresponding to the last separator

zN in the no-CoT, CoT, and ST cases.
hl, h̃l, ĥl The output hidden states of the last separator zN corresponding to the no-CoT,

CoT, and ST cases.
θ, ϕ The parameters of LLM and REM.
θ1:l, ϕ1:l The parameters of the first l layers of LLM and REM.
f(·) The feed-forward function in the decoder layer.
hθ(·) The generation function for the model to produce an answer sequence condi-

tioned on the input.
gθ1:l(·), gθ1:l,ϕ1:l(·) The function for the model to produce a shift value conditioned on the input

and the parameters in the subscript.

Table 6: Frequently used notations along with their mathematical meaning.
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Dataset Training Evaluation

GSM8K-Aug 385620 1319
GSM-HARD - 1319
SVAMP - 1000
MultiArith - 600
ProsQA 17886 500
CommonsenseQA-CoT 8096 1221

Table 7: Dataset statistics. GSM-HARD, SVAMP and
MultiArith are only used for evaluation.

SVAMP

Question = "Each pack of dvds costs 76
dollars. If there is a discount of 25 dollars
on each pack. How much do you have to
pay to buy each pack?"
Answer = "51.0"

MultiArith

Question = "Faye had 34 coloring books. If
she gave away 3 of them, but then bought
48 more, how many would she have total?"
Answer = "79"

ProsQA

Question = "Every yimpus is a yumpus.
Jack is a yerpus. Max is a vumpus. Max
is a zhorpus. Every brimpus is a rorpus. Ev-
ery brimpus is a timpus. Every rorpus is a
hilpus. Every gwompus is a yumpus. Every
gorpus is a lempus. Every impus is a kerpus.
Every impus is a brimpus. Every impus is
a hilpus. Every kerpus is a boompus. Max
is a gorpus. Every gorpus is a rempus. Ev-
ery gorpus is a yimpus. Every gorpus is a
rompus. Every yerpus is a timpus. Every
kerpus is a rorpus. Every yerpus is a impus.
Every gwompus is a yimpus. Every gorpus
is a yumpus. Max is a gwompus. Every
brimpus is a kerpus. Every gwompus is a
vumpus. Every yumpus is a gerpus. Is Jack
a zhorpus or boompus?"
CoT = "Jack is a yerpus. Every yerpus is
a impus. Every impus is a kerpus. Every
kerpus is a boompus."
Answer = "Jack is a boompus."

CommonsenseQA-CoT

Question = "The fox walked from the city
into the forest, what was it looking for?
Choices:
A: pretty flowers.
B: hen house
C: natural habitat
D: storybook
E: dense forest"
CoT = "The fox, being a wild animal, would
typically seek its natural habitat when mov-
ing from the city into the forest. Options
like "pretty flowers," "hen house," and "sto-
rybook" do not align with a fox’s natural be-
havior, while "dense forest" describes the en-
vironment but not the fox’s purpose. There-
fore, "natural habitat" is the most logical
choice."
Answer = "C"

C Implementation Details

For all experiments, we set d = 128 and α = 32
for REM, consistent with the configuration used
for LoRA (Hu et al., 2022) to fine-tune the CoT
pathway. We find that the distillation loss is much
smaller than the other two losses. We set the trade-
off hyperparameter λ = 20 since we find that the
distillation loss is much smaller than the other two
losses. We employ the AdamW (Loshchilov and
Hutter, 2019) with a cosine annealing learning rate
schedule following a 3% warm-up period. Ad-
ditionally, we enable the bf16 in the trainer and
evaluate the models using bfloat16 precision.

We fine-tune the Llama-3.2-1B, the primary base
model in our experiments, for 10 epochs with the
learning rate initialized as 8e-4. For Llama-3.2-
3B and Qwen2.5-1.5B, we initialize the learning
rate at 5e-4 and keep all other configurations as
those used for Llama-3.2-1B. For GPT2, we set the
initial learning rate to 2e-3 and train the model for
40 epochs.

For Coconut, we adopt their official implemen-
tation and use the same number of training epochs
as in our experiments.
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