
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing, pages 5109–5122
November 4-9, 2025 ©2025 Association for Computational Linguistics

LeTS: Learning to Think-and-Search via Process-and-Outcome Reward
Hybridization

Qi Zhang1∗, Shouqing Yang1, Lirong Gao1, Hao Chen1,
Xiaomeng Hu1, Jinglei Chen2, Jiexiang Wang2, Sheng Guo2,

Bo Zheng2, Haobo Wang1†, Junbo Zhao1†

1Zhejiang University, 2MYbank, Ant Group,
{cheung_se,wanghaobo,j.zhao}@zju.edu.cn,

Abstract

Large language models (LLMs) have demon-
strated impressive capabilities in reasoning
with the emergence of reasoning models like
OpenAI-o1 and DeepSeek-R1. Recent re-
search focuses on integrating reasoning capa-
bilities into the realm of retrieval-augmented
generation (RAG) via outcome-supervised rein-
forcement learning (RL) approaches, while the
correctness of intermediate think-and-search
steps is usually neglected. To address this is-
sue, we design a process-level reward mod-
ule to mitigate the unawareness of intermedi-
ate reasoning steps in outcome-level supervi-
sion without additional annotation. Grounded
on this, we propose Learning to Think-and-
Search (LeTS), a novel framework that hy-
bridizes stepwise process reward and outcome-
based reward to current RL methods for RAG.
Extensive experiments demonstrate the gen-
eralization and inference efficiency of LeTS
across various RAG benchmarks. In addition,
these results reveal the potential of process-
and outcome-level reward hybridization in
boosting LLMs’ reasoning ability via RL un-
der other scenarios. The code is released at
https://github.com/Cheungki/LeTS.

1 Introduction

Large language models (LLMs) (Yang et al., 2024;
Grattafiori et al., 2024; Zhao et al., 2023) have
exhibited remarkable performance across a wide
range of downstream tasks, such as code gener-
ation (Jiang et al., 2024), mathematical reason-
ing (Luo et al., 2023), and question answering (Yue,
2025). However, relying solely on parametric
knowledge stored within LLMs presents inherent
limitations, such as generating hallucinated or out-
dated information (Huang et al., 2025; Du et al.,
2024). To mitigate these issues, integrating external
knowledge sources through retrieval-augmented

*Work done during internship at MYbank, Ant Group
†Corresponding Author

How many medals does the country Raphael Tuju is a citizen of have in gold coast?

Redundant Searching

Irrelevant Searching

In which country does the child of Silverado's director hold citizenship?

Step 1:

Step 2:

Step 3:

Step 4:

Step 5:

Think… Search: who is Raphael Tuju and what is his nationality?

Think… Search: how many gold medals did kenya win in 2018…

Think… Search: Kenya's gold medal count at the 2018…

Think… Search: Kenya's total gold medal count in the 2018…

Think… Answer: 3

Step 1:

Step 2:

Step 3:

Step 4:

Think… Search: director of Silverado movie

Think… Search: Lawrence Kasdan children citizenship

Think… Search: Naomi Amir citizenship

Think… Answer: Israel

Docs…

Docs…

Docs…

Docs…

I got too much redundant information…

I was misled by irrelevant information…

Docs…

Docs…

Docs…

Figure 1: Illustrations of redundant searching issue and
irrelevant searching issue in the current learning to think-
and-search methods.

generation (RAG) has become a widely adopted
and effective paradigm (Shuster et al., 2021; Gao
et al., 2023). In particular, RAG empowers LLMs
to dynamically access relevant information, thereby
enhancing factual accuracy and adaptability in
open-domain applications.

Despite its success, vanilla RAG methods strug-
gle when faced with complicated or ambiguous
queries (Lewis et al., 2020; Guu et al., 2020),
where a single-shot retrieval is often insufficient
for multi-hop reasoning. To address this challenge,
prompting-based methods have been proposed to
equip LLMs with query decomposition capabili-
ties by manually designing prompts (Chan et al.,
2024; Liu et al., 2024; Ma et al., 2023). However,
such approaches heavily depend on the inherent
capacity of the language model and often fail to
generalize across diverse scenarios. Alternatively,
training-based approaches have attempted to distill
this ability from larger models into smaller ones
via supervised fine-tuning (Asai et al., 2023; Yao

5109

https://github.com/Cheungki/LeTS

et al., 2023), yet they still suffer from limited gen-
eralization and lack robust reasoning supervision.

Building upon the success of large reasoning
models such as OpenAI-o1 (Jaech et al., 2024) and
DeepSeek-R1 (Guo et al., 2025), reinforcement
learning (RL) techniques—particularly PPO and
GRPO (Shao et al., 2024)—have shown strong po-
tential in enhancing the reasoning capabilities of
LLMs. Motivated by this, recent studies have ap-
plied RL to develop the retrieving-when-needed be-
havior in LLMs, often framed as a think-and-search
process (Song et al., 2025; Jin et al., 2025; Chen
et al., 2025). While these outcome-based methods
have achieved promising results, they still strug-
gle with two common issues that lead to subopti-
mal performance: i) Redundant Searching, where
the model repeatedly retrieves similar or unneces-
sary information across steps; and ii) Irrelevant
Searching, where irrelevant content is introduced
during intermediate steps, ultimately misleading
the model. These issues are empirically illustrated
in Figure 1, and highlight the limitations of using
coarse-grained, outcome-level rewards alone to su-
pervise multi-step reasoning processes.

To better supervise the intermediate think-and-
search steps, we introduce two complementary
rule-based process-level reward modules to reform
outcome-supervised GRPO approaches. First, a
knowledge redundancy reward penalizes steps that
retrieve information already covered by superior
rollouts. Second, a knowledge match reward identi-
fies and rewards correct actions in weaker rollouts
by comparing them against high-performing roll-
outs. Grounded on this, we further propose LeTS,
a novel RL framework that hybridizes process- and
outcome-level reward via an advantage rescaling
approach. Notably, as illustrated in Figure 2, LeTS
resolves the dilemma of knowledge redundancy
and demonstrates strong performance on both base
and instruct models. In general, through extensive
experiments on numerous RAG benchmarks, LeTS
shows its effectiveness, strong generalization, as
well as inference efficiency under various scenar-
ios.

To sum up, our contributions can be concluded
in threefold:

• We propose a novel RL framework LeTS for
RAG, which first integrates rule-based process
reward with outcome-level reward under the
scenarios of RAG with reasoning.

• LeTS effectively elicits the think-and-search

ReSearch ReSearch-Instruct LeTS LeTS-Instruct
40

42

44

46

48

50

52

54

Pe
rfo

rm
an

ce
 (%

)

Bamboogle (Performance)
2Wiki (Performance)
Bamboogle (Redundancy)
2Wiki (Redundancy)

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

Kn
ow

le
dg

e
Re

du
nd

an
cy

 R
at

io
 (%

)

Performance vs. Knowledge Redundancy Ratio

Figure 2: Collaborative comparison of performance and
knowledge redundant frequency on two representative
datasets with Qwen-7B-Base and Qwen-7B-Instruct as
the backbone model.

ability of LLMs and achieves 2.61% perfor-
mance gain across various RAG benchmarks.
Moreover, the average number of generated to-
kens and search times is reduced by 11.15%
and 30.85%, respectively.

• The strong performance and inference effi-
ciency of LeTS highlight the potential of
process- and outcome-level reward hybridiza-
tion in boosting LLMs’ reasoning ability via
RL under other scenarios.

2 Related Work

2.1 Retrieval-Augmented Generation

Retrieval-Augmented Generation (RAG) improves
the factual accuracy of language models by incorpo-
rating external knowledge into the generation pro-
cess. Early methods such as REALM (Guu et al.,
2020) and RAG (Lewis et al., 2020) adopt a fixed
retrieve-then-generate framework, which struggles
with multi-hop reasoning due to static retrieval. To
address this limitation, iterative approaches like IR-
CoT (Trivedi et al., 2022a) and Iter-RetGen (Shao
et al., 2023) retrieve evidence step-by-step using
chain-of-thought prompting. While effective, these
methods often depend on prompt engineering and
large black-box LLMs. Recent work introduces
learning-based retrieval policies to improve flexi-
bility. ReSearch (Chen et al., 2025), for instance,
uses RL to determine when to retrieve. However,
it relies solely on outcome-level rewards, ignoring
the quality of intermediate reasoning steps.

5110

Policy Model

Search Engine

question

rollouts outcome-level
reward

Reference Model

Outcome-level
Reward Module

KL Divergence

outcome-level
advantage

group-level
normalization

Outperforming
Rollouts

Underperforming
Rollouts

. . .

y1

y2

yG

x

. . .

r(o)
1

r(o)
2

r(o)
G

. . .

{r(p)
1,i }

n1

i=1

{r(p)
2,i }

n2

i=1

{r(p)
G,i}

nG

i=1

. . .

A(o)
1

A (o)
2

A(o)
G

. . .

{A1,i}n1
i=1

{A2,i}n2
i=1

{AG,i}nG

i=1

rescaled
advantage

advantage
rescaling

. . .

{ ̂r(p)
1,i }

n1

i=1

{ ̂r(p)
2,i }

n2

i=1

{ ̂r(p)
G,i}

nG

i=1

process-level
reward

process-level
factor

rollout-level
normalization

Knowledge
Redundancy

Knowledge
Match

Process-Level
Reward Module

{yt}no
t=1

{yt}nu
t=1

Rollouts Categorization

Figure 3: The core framework of LeTS extends conventional outcome-supervised GRPO by introducing a fine-
grained categorization of rollouts within each group. Specifically, generated rollouts are classified as either
outperforming or underperforming, based on their relative returns. Separate reward functions are then applied to
each category to compute process-level rewards. Finally, the rollout-level advantages are rescaled at the step level
using an advantage normalization procedure, enabling more precise credit assignment during policy updates.

2.2 Large Language Models and
Reinforcement Learning

Reinforcement learning (RL) has been widely ap-
plied to teach LLMs retrieval-augmented reason-
ing. Prior methods such as ReSearch (Chen et al.,
2025), R1-Searcher (Song et al., 2025), and Search-
R1 (Jin et al., 2025) rely on outcome-level rewards
to guide retrieval behavior. However, they apply
coarse-grained signals uniformly across reasoning
steps, making it hard to distinguish informative
from redundant actions. To address this, S2R (Ma
et al., 2025) introduces process-level supervision
by training models to self-verify and self-correct
using both process- and outcome-level rewards.
While effective for structured reasoning tasks like
math, its rewards are limited to verification quality
and do not explicitly supervise retrieval behavior.

In contrast, our method designs rule-based,
retrieval-specific process-level rewards, evaluating
each think-and-search step for relevance, redun-
dancy, and coherence. Combined with outcome-
level feedback, this enables fine-grained control
and more robust learning.

3 Methodology

In this section, we formalize the think-and-search
task setting and introduce our proposed method,
LeTS, in detail. Specifically, LeTS is primarily
grounded in Group Relative Policy Optimization
(GRPO), which estimates value baselines using a
group of rollouts, in contrast to Proximal Policy Op-
timization (PPO) that relies on a separately trained
critic model. The overall framework is illustrated
in Figure 3, and a detailed pseudocode implemen-
tation is provided in Appendix D.

3.1 Think-and-Search Formulation
Under our think-and-search scenarios, the language
modelM invokes the retrieverR selectively, only
when additional external information is deemed
necessary. At each step, the retrieved documents
are concatenated with the original context and used
as input for the subsequent reasoning stage. For
a given question q, the generation process with n
think-and-search steps is defined as:

(ti, si) =M
(
q, {(tj , sj , dj)}i−1

j=1

)

di = R (si)
(1)

5111

, where ti, si, and di denote the thinking process,
searching query, and retrieved documents of the i-
th step, respectively. After completing n such steps,
the model produces the final reasoning trace tn+1

and then generate the final answer a as follow:

(tn+1, a) =M
(
q, {(tj , sj , dj)}nj=1

)
(2)

A detailed instantiation of the think-and-search pro-
cess is provided in Appendix C.1.

3.2 Outcome-Level Reward Modeling
Building on prior work in outcome-supervised
RL (Chen et al., 2025; Jin et al., 2025; Song et al.,
2025), we define an outcome-level reward based
on both the structural correctness of the reasoning
format and the accuracy of the final answer. For for-
mat correctness, we verify whether the generated
rollout adheres to the think-and-search reasoning
chain described in Section 3.1, as well as whether
the final answer is properly structured. For an-
swer correctness, we use the F1 score between the
predicted answer and the gold reference, as exact
match metrics are known to induce reward hacking
behaviors (Song et al., 2025). The outcome-level
reward ro is then formulated as follow:

ro =

{
0.9 · F1(apred, agt) + 0.1, correct format
0, wrong format

(3)
, where F1(apred, agt) denotes the F1 score between
the predicted answer apred and the golden answer
agt.

3.3 Process-Level Reward Modeling
Notably, relying solely on outcome-level rewards
can lead to overlooking the correctness of interme-
diate reasoning steps (e.g., redundant operations in
an otherwise successful rollout, or correct substeps
within a failed one). To address this limitation, we
introduce a process-level reward modeling frame-
work tailored to our think-and-search RAG setting.

Based on the outcome-level reward defined in
Equation 3, we categorize rollouts generated by the
policy model during online RL into three types: (i)
invalid rollouts that fail to conform to the required
reasoning or answer format, (ii) outperforming roll-
outs that produce exact-match answers with correct
format, and (iii) underperforming rollouts, which
include all remaining cases that do not meet the
above criteria.

Owing to the difficulty of reliably segmenting
reasoning steps in malformed outputs, we omit the

process-level reward for rollouts with the wrong
format. For the latter two kinds of rollouts, we de-
sign two types of rule-based process-level reward:
rollout-level knowledge redundancy reward and
group-level knowledge match reward to address
the two phenomena mentioned in Figure 1.

Rollout-Level Knowledge Redundancy Reward
It’s well-established that redundant knowledge in
the RAG system can increase inference latency and
even ruin the generation quality (Bian et al., 2024;
Chen et al., 2023; Tan et al., 2024). To mitigate
this issue, we introduce a rollout-level knowledge
redundancy reward that penalizes reasoning steps
that retrieve documents redundant with respect to
earlier steps within the same rollout. To isolate
the effect of the policy model from potential re-
triever bias, we compute pairwise redundancy only
between the current and preceding steps. Specifi-
cally, we use the Jaccard score to quantify redun-
dancy between two sets of retrieved documents.
The process-level reward for the j-th step of the
i-th rollout is thus defined as:

r
p
i,j = 1−max

{ |di,j ∩ di,t|
|di,j ∪ di,t|

}j−1

t=1

(4)

where di,j represents the documents retrieved in the
j-th step of the i-the rollouts. In this way, steps that
introduce new external knowledge will be rewarded
while the redundant ones will be punished.

Group-Level Knowledge Match Reward In
contrast to outperforming rollouts, underperform-
ing rollouts often suffer from irrelevant or incon-
sistent document retrieval (Yoran et al., 2024). In-
spired by self-consistency approaches used during
inference (Wang et al., 2023), we propose a group-
level knowledge match (KM) reward that lever-
ages outperforming rollouts to supervise underper-
forming ones through a self-contrastive mechanism
within RL. Given an outperforming rollout yo and
an underperforming rollout yu, we compute the
document-level Jaccard similarity between each
pair of steps (su,j , so,k) from yu and yo, respec-
tively:

Match (su,j , so,k) =
|du,j ∩ do,k|
|du,j ∪ do,k|

(5)

This yields a match matrix mu,o ∈ Rnu×no , where
nu and no denote the number of think-and-search
steps in yu and yo, respectively. To derive the opti-
mal alignment between steps, we adopt the Kuhn-
Munkres algorithm (also known as the Hungarian

5112

algorithm), which computes the maximum-weight
bipartite matching between the two sets of steps.
This naturally aligns with the framework of optimal
transport (Cuturi, 2013), where steps in yu are opti-
mally mapped to those in yo under a transport cost
defined by their pairwise similarity. The resulting
process-level reward vector for the underperform-
ing rollout is given by:

{
r

p
u,j

}nu

j=1
= Kuhn-Munkres (mu,o) (6)

, where each entry mu,o
j,k is defined as

Match (su,j , so,k). If multiple outperforming
rollouts exist within the group, we select the one
yielding the highest total process-level reward for
alignment. If no valid outperforming rollout is
available (i.e., no exact-match answer), the KM
reward is omitted for that group.

3.4 Process-and-Outcome Reward
Hybridization

While outcome-supervised RL offers strong perfor-
mance with low annotation cost, it suffers from
a coarse reward assignment: the outcome-level
reward is uniformly applied across all tokens or
steps within a rollout, thereby overlooking the rela-
tive importance of individual reasoning steps. To
mitigate this limitation, we propose a fine-grained
integration of process-level signals into the RL ob-
jective.

Specifically, we extend the GRPO framework
by hybridizing outcome- and process-level rewards
through a mechanism we call stepwise outcome-
level advantage rescaling. This approach adjusts
the outcome-level advantage at each reasoning step
according to the corresponding process-level re-
ward, enabling more precise advantage assignment
and better alignment between learning signals and
reasoning quality.

Following the conventional outcome-supervised
GRPO framework, we first compute the outcome-
level advantage for each rollout by normalizing
its outcome reward within the group. Specifi-
cally, for the i-th rollout in a group of size G,
the outcome-level advantage is given by: Ao

i =
ro
i−mean

(
{ro

j}Gj=1

)

std
(
{ro

j}Gj=1

) . The outcome-level advantage

Ao
i is then uniformly applied to all think-and-search

steps within the rollout. In contrast, for the process-
level reward, we adopt a local normalization strat-
egy. Unlike process-supervised GRPO (Shao et al.,
2024), which may rely on global reward signals,

our process-level supervision is designed to cap-
ture the relative importance of each step within a
single reasoning chain. Thus, for the j-th step in
the i-th rollout, the normalized process-level re-

ward is computed as: r̂
p
i,j =

r
p
i,j−mean

(
{rp

i,j}ni
j=1

)

std
(
{rp

i,j}ni
j=1

) ,

where ni denotes the number of think-and-search
steps in rollout i. This formulation allows for fine-
grained reward shaping within each rollout, facili-
tating more targeted advantage assignment across
the reasoning trajectory.

Since the normalized process-level reward r̂p

captures only the relative importance of steps
within a single rollout, we use it to modulate the
global outcome-level advantage. Specifically, we
apply a stepwise rescaling mechanism that adjusts
the original advantage at each step based on its
process-level signal. The rescaled advantage Ai,j

for the j-th step in the i-th rollout is defined as:

Ai,j =
(
1 + sgn (Ao

i) · λr̂p
i,j

)
Ao

i (7)

, where function sgn(Ao
i) denotes the sign of the

outcome-level advantage and λ is a scaling factor
controlling the magnitude of rescaling. This formu-
lation amplifies or attenuates the original advantage
based on stepwise quality, while preserving the sign
of the overall trajectory’s reward signal.

For robustness, we do not apply rescaling to
the final reasoning step and to rollouts excluded
from process-level reward computation (e.g., those
with invalid formats), ensuring consistent gradient
propagation in these cases.

3.5 Reinforcement Learning Formulation
We now formalize the overall training objective
of LeTS. Given a policy model πθold and a refer-
ence model πθref , based on G rollouts {yi}Gi=1 ∼
πθold(·|x) for input x ∼ D, the objective of LeTS
is to optimize the policy πθ by maximizing the
following objective:

J (θ) = Ex∼D,{yi}Gi=1∼πθold (·|x)
1

G

G∑

i=1

1

|yi|

|yi|∑

t=1[
min

(πθ(yi,t|x, yi,<t)

πold(yi,t|x, yi,<t)
Âi,t,

clip
(πθ(yi,t|x, yi,<t)

πold(yi,t|x, yi,<t)
, 1− ϵ, 1 + ϵ

)
Âi,t

)

− βDKL(πθ|πref)

]

(8)

5113

Model
HotpotQA 2Wiki MusiQue Bamboogle Average

EM LJ EM LJ EM LJ EM LJ EM LJ

Qwen2.5-7B-Base/Instruct

Direct 19.18 30.64 25.76 27.87 3.76 10.38 10.40 22.40 14.78 22.82
Naïve RAG 31.90 49.59 25.78 29.52 6.21 12.78 20.80 32.00 21.17 30.97
Iter-RetGen 34.36 52.22 27.92 31.86 8.69 16.14 21.60 35.20 23.14 33.86
IR-CoT 30.33 52.06 21.57 30.65 6.99 14.19 24.80 36.80 20.92 33.43
ReSearch-Qwen-7B 40.57 60.26 44.67 50.06 21.68 32.19 43.20 54.40 37.53 49.23
ReSearch-Qwen-7B-Instruct 43.52 63.62 47.59 54.22 22.30 33.43 42.40 54.40 38.95 51.42

LeTS-Qwen-7B 40.62 61.00 46.79 52.21 22.18 34.09 47.20 57.60 39.20 51.22
LeTS-Qwen-7B-Instruct 43.16 63.69 48.66 55.26 23.21 33.64 51.20 62.40 41.56 53.75

Qwen2.5-3B-Instruct

Direct 16.00 24.56 24.81 26.47 2.28 6.04 2.40 7.20 11.37 16.07
Naïve RAG 27.97 42.61 24.38 27.46 5.75 10.05 9.60 17.60 16.93 24.43
Iter-RetGen 30.05 45.17 26.10 29.35 7.12 12.04 12.00 17.60 18.82 26.04
IR-CoT 27.48 50.67 21.66 34.14 6.74 14.78 22.40 33.60 19.57 33.30
ReSearch-Qwen-3B 30.60 - 33.79 - 14.56 - 33.60 - 28.14 -
ReSearch-Qwen-3B-Instruct 35.62 54.40 39.26 46.10 17.34 27.10 37.60 48.80 32.45 44.10

LeTS-Qwen-3B 31.02 - 36.04 - 15.76 34.40 - 29.31 -
LeTS-Qwen-3B-Instruct 37.06 55.21 41.04 47.48 17.50 26.93 38.40 51.20 33.50 45.21

Table 1: Performance of our method compared to other methods with Qwen2.5-7B-Base/Instruct and Qwen2.5-
3B-Base/Instruct as the backbone model on four multi-hop benchmarks. The best results are highlighted in bold.
Specifically, EM and LJ refer to Exact Match and LLM-as-a-Judge, respectively.

, where Âi,t = Ai,j(t) is the rescaled advantage
for the step that token yi,t belongs to, and ϵ is the
clipping threshold. The mapping j(t) associates
each token position t with its corresponding think-
and-search step index within the rollout. The KL
divergence term regularizes the policy to remain
close to the reference model, weighted by the co-
efficient β. Following common practice (Jin et al.,
2025; Chen et al., 2025; Song et al., 2025), we
mask out retrieved tokens during training to pre-
vent noise in the retrieval content from skewing the
learning signal.

4 Experiments

4.1 Experimental Settings

Datasets For training LeTS, we largely adopt
the experimental setup of ReSearch (Chen et al.,
2025) for consistency and reproducibility. Specifi-
cally, we use the training split of MusiQue (Trivedi
et al., 2022b), as it contains diverse types of multi-
hop questions and has been constructed through
rigorous quality control procedures. As for the
evaluation benchmarks and metrics, please refer
to A.

Baselines We compare LeTS against several
representative baselines: (1) Direct uses the
instruction-tuned model to generate answers with-
out any retrieval. (2) Naïve RAG appends re-
trieved documents to the input query and gener-
ates answers in a single forward pass. (3) Iter-
RetGen (Shao et al., 2023) alternates between re-
trieval and generation in a step-by-step manner. (4)
IR-CoT (Trivedi et al., 2022a) interleaves retrieval
with chain-of-thought prompting to support multi-
hop reasoning. (5) ReSearch (Chen et al., 2025) ap-
plies outcome-level RL to optimize retrieval strate-
gies. We adopt ReSearch as our primary strong
baseline due to its strong empirical performance
and publicly available implementation. Other com-
parable methods, such as Search-R1 (Jin et al.,
2025) and R1-Searcher (Song et al., 2025) fol-
low similar paradigms and are therefore subsumed
under ReSearch in our evaluation.

Implementation Details We conduct our experi-
ments and evaluations on Qwen2.5-7B, Qwen2.5-
7B-Instruct, and Qwen2.5-3B-Instruct. For the
codebase, we utilize two widely adopted frame-

5114

works: VeRL* for RL training, and FlashRAG† for
evaluation. All models are trained on the MusiQue
training set for 2 epochs.

For the rescaling factor λ, we perform hy-
perparameter tuning over {0.05, 0.1, 0.2} using
Qwen2.5-7B-Instruct, and set λ = 0.1 for all ex-
periments in this paper. Additional implementation
details of LeTS and the hyperparameter configura-
tions for GRPO can be found in Appendix B.

4.2 Main Results

The main results of our method, compared against
other baselines on Qwen2.5-7B-Base/Instruct and
Qwen2.5-3B-Instruct, are presented in Table 1.
Overall, our proposed LeTS consistently outper-
forms all baselines, demonstrating its effectiveness
in equipping LLMs with think-and-search capabili-
ties. Specifically, LeTS-Qwen-7B achieves average
improvements of 1.67% and 1.99%, while LeTS-
Qwen-7B-Instruct achieves 2.61% and 2.33% over
previous RL-based methods using the same back-
bone, measured by EM and LJ, respectively.

Notably, LeTS trained on Qwen2.5-7B-Base
achieves performance comparable to methods
trained on Qwen2.5-7B-Instruct. In addition,
our method performs well on smaller models
(i.e., Qwen2.5-3B-Instruct), indicating that instruct-
tuned models of a smaller scale can also bene-
fit from our proposed hybrid reward framework.
Specifically, for Qwen2.5-3B-Base, we conduct
30 additional training steps with a retrieval reward
only to enable its retrieval ability.

4.3 Generalization on Single-Hop
Benchmarks

To further evaluate the generalization ability of
LeTS in single-hop scenarios, we conduct exper-
iments on three widely used single-hop bench-
marks: NQ, PopQA, and TriviaQA. As shown
in Table 2, LeTS continues to outperform other
baselines, demonstrating its effectiveness beyond
multi-hop settings.

5 Ablation Study and Analysis

In this section, we present ablation studies and de-
tailed analytical experiments to further investigate
the performance of LeTS. Unless otherwise stated,
all experiments are conducted using Qwen2.5-7B-
Instruct.

*https://github.com/volcengine/verl
†https://github.com/RUC-NLPIR/FlashRAG

Method NQ PopQA TriviaQA Average

Direct 14.24 15.11 43.60 24.32
Naïve RAG 36.26 39.93 61.24 45.81
Iter-RetGen 38.59 42.78 62.90 48.09
IR-CoT 23.24 34.44 53.97 37.22
ReSearch 40.86 44.58 63.71 49.72

LeTS 42.58 43.91 64.63 50.37

Table 2: Performance comparison between LeTS with
other baselines on single-hop benchmarks with Qwen-
7B-Instruct as the backbone model.

5.1 Impact of Process-Level Reward

We conduct ablation experiments to examine the
effectiveness of the two types of process-level re-
wards. As shown in Table 3, both the rollout-level
knowledge redundancy reward and the group-level
knowledge match reward significantly reduce the
model’s average search time while maintaining
strong overall performance.

Method
Settings

AST↓ EM↑
w/. CR w/. CM

vanilla GRPO % % 3.21 22.18
w/. KR ! % 2.71 22.22
w/. KM % ! 2.59 22.67
LeTS ! ! 2.21 23.21

Table 3: The ablation on two types of process-level
reward on the MusiQue dataset. AST stands for the
average search time for each method across all data
points. To be specific, vanilla GRPO here refers to the
GRPO algorithm that solely relies on outcome-level
supervision.

Moreover, Figure 4 illustrates the training dy-
namics of both the reward signals and knowledge
redundancy. The training reward improves with the
inclusion of either process-level component, and
their combined usage leads to a more stable and
consistent reward trajectory during RL training.

We further analyze the evolution of knowledge
redundancy frequency across the four methods.
Here, knowledge redundancy frequency refers to
the rate at which identical documents are retrieved
multiple times within a single rollout. As shown in
Figure 5, models trained with the in-rollout knowl-
edge redundancy reward (i.e., w/. KR and LeTS)
consistently exhibit lower redundancy frequencies.

5115

https://github.com/volcengine/verl
https://github.com/RUC-NLPIR/FlashRAG

Datasets HotpotQA 2WikiMultiHopQA MusiQue Bamboogle Average

Num. of Tokens
ReSearch 278.25 328.53 328.14 232.87 291.95

LeTS 244.29 275.82 335.87 189.30 261.32
∆(%) ↓12.20 ↓16.04 ↑2.36 ↓18.71 ↓11.15

Num. of Search Times
ReSearch 2.78 3.48 3.21 2.58 3.01

LeTS 1.84 2.31 2.21 1.94 2.08
∆(%) ↓33.81 ↓33.62 ↓31.15 ↓24.81 ↓30.85

Table 4: Average number of tokens and search times of LeTS comparing to ReSearch. Notably, tokens from the
retrieved documents are not counted here, since they are not generated by the language models.

0 20 40 60 80 100 120 140 160
Training Steps

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

Tr
ai

ni
ng

 R
ew

ar
ds

vanilla GRPO
w/. KR
w/. KM
LeTS

Figure 4: Training reward during training for the four
methods.

0 20 40 60 80 100 120 140 160
Training Steps

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

Kn
ow

le
dg

e
Re

du
nd

an
cy

 Fr
eq

ue
nc

y

vanilla GRPO
w/. KR
w/. KM
LeTS

Figure 5: Knowledge redundancy frequency of the four
methods during training.

5.2 Alleviation of the Redundant Searching
Phenomenon

To assess the impact of redundant searching on the
performance of retrieval-augmented language mod-
els, we analyze the average frequency of redundant
document retrieval. As shown in Table 5, both
baseline models tend to retrieve more redundant in-
formation when they ultimately fail to answer ques-
tions correctly. In contrast, our proposed LeTS
significantly reduces in-rollout knowledge redun-
dancy across four multi-hop benchmarks. These
findings are consistent with the intended effect of
the in-rollout knowledge redundancy reward.

Dataset HotpotQA 2Wiki MusiQue Bamboogle

Correct
ReSearch 2.39 3.52 1.58 2.40

LeTS 0.23 0.37 0.21 0.47

Incorrect
ReSearch 3.53 4.49 2.94 3.21

LeTS 0.50 0.61 0.32 0.62

Table 5: Average in-rollout knowledge redundancy fre-
quency of the two methods. We separately list the knowl-
edge redundancy frequency of both correct and incorrect
generations.

5.3 Alleviation of the Irrelevant Searching
Phenomenon

To further validate the effectiveness of our ap-
proach in mitigating irrelevant searching, we eval-
uate the relevance of intermediate search queries
generated by LeTS compared to other methods.
Appendix E presents two case studies that qualita-
tively compare our method with prior approaches.
As shown in Table 10, LeTS consistently produces
more concise and relevant search queries.

5.4 Efficiency Analysis

We further evaluate the inference efficiency of our
method on four multi-hop datasets. As shown in
Table 4, LeTS substantially reduces both the num-
ber of generated tokens and the number of search
steps during inference. In particular, LeTS demon-
strates higher efficiency compared to prior meth-
ods by generating fewer tokens throughout the rea-
soning process. In terms of average search times,
LeTS achieves a reduction of approximately 30%,
without compromising performance across all four
benchmarks. These results suggest that our rein-
forcement learning framework—built on process-
and outcome-level reward hybridization—more ef-
fectively guides language models to learn efficient
think-and-search behavior.

5116

6 Conclusion

In this paper, we first reveal two types of drawbacks
in the current outcome-supervision RL for RAG.
To address these points, we design two kinds of
process-level rewards. Subsequently, we propose
LeTS, a novel RL framework that hybridizes the
process- and outcome-based reward via an advan-
tage rescaling approach. We further present the
generalization and inference efficiency of our meth-
ods under different language models and numerous
single-hop and multi-hop RAG benchmarks.

Limitations

Despite LeTS achieving significant results on the
Qwen-7B and Qwen-3B series, due to cost con-
straints, we have not been able to validate our ap-
proach on larger language models. Overall, our re-
search empirically showcases the superiority of in-
troducing the process-level supervision to outcome-
based GRPO.

Acknowledgement

This work is mainly supported by the Pioneer
R&D Program of Zhejiang (No. 2024C01035).
This work was supported by MYbank, Ant Group.
Junbo Zhao is also supported by the NSFC un-
der Grants (No. 62402424) and the Fundamental
Research Funds for the Zhejiang Provincial Uni-
versities (226-2024-00049).

References
Akari Asai, Zeqiu Wu, Yizhong Wang, Avirup Sil, and

Hannaneh Hajishirzi. 2023. Self-rag: Learning to
retrieve, generate, and critique through self-reflection.
In The Twelfth International Conference on Learning
Representations.

Ning Bian, Hongyu Lin, Peilin Liu, Yaojie Lu,
Chunkang Zhang, Ben He, Xianpei Han, and Le Sun.
2024. Influence of external information on large
language models mirrors social cognitive patterns.
IEEE Transactions on Computational Social Systems,
pages 1–17.

Chi-Min Chan, Chunpu Xu, Ruibin Yuan, Hongyin Luo,
Wei Xue, Yike Guo, and Jie Fu. 2024. Rq-rag: Learn-
ing to refine queries for retrieval augmented genera-
tion. arXiv preprint arXiv:2404.00610.

Hung-Ting Chen, Fangyuan Xu, Shane A Arora, and
Eunsol Choi. 2023. Understanding retrieval aug-
mentation for long-form question answering. arXiv
preprint arXiv:2310.12150.

Mingyang Chen, Tianpeng Li, Haoze Sun, Yijie Zhou,
Chenzheng Zhu, Haofen Wang, Jeff Z. Pan, Wen
Zhang, Huajun Chen, Fan Yang, Zenan Zhou, and
Weipeng Chen. 2025. Research: Learning to rea-
son with search for llms via reinforcement learning.
Preprint, arXiv:2503.19470.

Marco Cuturi. 2013. Sinkhorn distances: Lightspeed
computation of optimal transport. In Advances in
Neural Information Processing Systems, volume 26.
Curran Associates, Inc.

Xuefeng Du, Chaowei Xiao, and Sharon Li. 2024. Halo-
scope: Harnessing unlabeled llm generations for hal-
lucination detection. Advances in Neural Information
Processing Systems, 37:102948–102972.

Yunfan Gao, Yun Xiong, Xinyu Gao, Kangxiang Jia,
Jinliu Pan, Yuxi Bi, Yixin Dai, Jiawei Sun, Haofen
Wang, and Haofen Wang. 2023. Retrieval-augmented
generation for large language models: A survey.
arXiv preprint arXiv:2312.10997, 2:1.

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri,
Abhinav Pandey, Abhishek Kadian, Ahmad Al-
Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten,
Alex Vaughan, and 1 others. 2024. The llama 3 herd
of models. arXiv preprint arXiv:2407.21783.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao
Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu, Shi-
rong Ma, Peiyi Wang, Xiao Bi, and 1 others. 2025.
Deepseek-r1: Incentivizing reasoning capability in
llms via reinforcement learning. arXiv preprint
arXiv:2501.12948.

Kelvin Guu, Kenton Lee, Zora Tung, Panupong Pasu-
pat, and Mingwei Chang. 2020. Retrieval augmented
language model pre-training. In International confer-
ence on machine learning, pages 3929–3938. PMLR.

Xanh Ho, Anh-Khoa Duong Nguyen, Saku Sugawara,
and Akiko Aizawa. 2020. Constructing a multi-
hop QA dataset for comprehensive evaluation of
reasoning steps. In Proceedings of the 28th Inter-
national Conference on Computational Linguistics,
pages 6609–6625, Barcelona, Spain (Online). Inter-
national Committee on Computational Linguistics.

Lei Huang, Weijiang Yu, Weitao Ma, Weihong Zhong,
Zhangyin Feng, Haotian Wang, Qianglong Chen,
Weihua Peng, Xiaocheng Feng, Bing Qin, and 1 oth-
ers. 2025. A survey on hallucination in large lan-
guage models: Principles, taxonomy, challenges, and
open questions. ACM Transactions on Information
Systems, 43(2):1–55.

Aaron Jaech, Adam Kalai, Adam Lerer, Adam Richard-
son, Ahmed El-Kishky, Aiden Low, Alec Helyar,
Aleksander Madry, Alex Beutel, Alex Carney, and 1
others. 2024. Openai o1 system card. arXiv preprint
arXiv:2412.16720.

Juyong Jiang, Fan Wang, Jiasi Shen, Sungju Kim,
and Sunghun Kim. 2024. A survey on large lan-
guage models for code generation. arXiv preprint
arXiv:2406.00515.

5117

https://doi.org/10.1109/TCSS.2024.3476030
https://doi.org/10.1109/TCSS.2024.3476030
https://arxiv.org/abs/2503.19470
https://arxiv.org/abs/2503.19470
https://proceedings.neurips.cc/paper_files/paper/2013/file/af21d0c97db2e27e13572cbf59eb343d-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2013/file/af21d0c97db2e27e13572cbf59eb343d-Paper.pdf
https://doi.org/10.18653/v1/2020.coling-main.580
https://doi.org/10.18653/v1/2020.coling-main.580
https://doi.org/10.18653/v1/2020.coling-main.580

Bowen Jin, Hansi Zeng, Zhenrui Yue, Jinsung Yoon,
Sercan Arik, Dong Wang, Hamed Zamani, and Jiawei
Han. 2025. Search-r1: Training llms to reason and
leverage search engines with reinforcement learning.
arXiv preprint arXiv:2503.09516.

Mandar Joshi, Eunsol Choi, Daniel Weld, and Luke
Zettlemoyer. 2017. TriviaQA: A large scale distantly
supervised challenge dataset for reading comprehen-
sion. In Proceedings of the 55th Annual Meeting of
the Association for Computational Linguistics (Vol-
ume 1: Long Papers), pages 1601–1611, Vancouver,
Canada. Association for Computational Linguistics.

Tom Kwiatkowski, Jennimaria Palomaki, Olivia Red-
field, Michael Collins, Ankur Parikh, Chris Alberti,
Danielle Epstein, Illia Polosukhin, Jacob Devlin, Ken-
ton Lee, Kristina Toutanova, Llion Jones, Matthew
Kelcey, Ming-Wei Chang, Andrew M. Dai, Jakob
Uszkoreit, Quoc Le, and Slav Petrov. 2019. Natu-
ral questions: A benchmark for question answering
research. Transactions of the Association for Compu-
tational Linguistics, 7:452–466.

Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio
Petroni, Vladimir Karpukhin, Naman Goyal, Hein-
rich Küttler, Mike Lewis, Wen-tau Yih, Tim Rock-
täschel, and 1 others. 2020. Retrieval-augmented gen-
eration for knowledge-intensive nlp tasks. Advances
in neural information processing systems, 33:9459–
9474.

Yanming Liu, Xinyue Peng, Xuhong Zhang, Weihao
Liu, Jianwei Yin, Jiannan Cao, and Tianyu Du. 2024.
Ra-isf: Learning to answer and understand from
retrieval augmentation via iterative self-feedback.
arXiv preprint arXiv:2403.06840.

Haipeng Luo, Qingfeng Sun, Can Xu, Pu Zhao, Jian-
guang Lou, Chongyang Tao, Xiubo Geng, Qingwei
Lin, Shifeng Chen, and Dongmei Zhang. 2023. Wiz-
ardmath: Empowering mathematical reasoning for
large language models via reinforced evol-instruct.
arXiv preprint arXiv:2308.09583.

Ruotian Ma, Peisong Wang, Cheng Liu, Xingyan Liu,
Jiaqi Chen, Bang Zhang, Xin Zhou, Nan Du, and Jia
Li. 2025. S2r: Teaching llms to self-verify and self-
correct via reinforcement learning. arXiv preprint
arXiv:2502.12853.

Xinbei Ma, Yeyun Gong, Pengcheng He, Hai Zhao,
and Nan Duan. 2023. Query rewriting in retrieval-
augmented large language models. In Proceedings
of the 2023 Conference on Empirical Methods in
Natural Language Processing, pages 5303–5315.

Alex Mallen, Akari Asai, Victor Zhong, Rajarshi Das,
Hannaneh Hajishirzi, and Daniel Khashabi. 2022.
When not to trust language models: Investigating
effectiveness and limitations of parametric and non-
parametric memories. arXiv preprint.

Ofir Press, Muru Zhang, Sewon Min, Ludwig Schmidt,
Noah Smith, and Mike Lewis. 2023. Measuring and

narrowing the compositionality gap in language mod-
els. In Findings of the Association for Computational
Linguistics: EMNLP 2023, pages 5687–5711, Singa-
pore. Association for Computational Linguistics.

Zhihong Shao, Yeyun Gong, Yelong Shen, Minlie
Huang, Nan Duan, and Weizhu Chen. 2023. Enhanc-
ing retrieval-augmented large language models with
iterative retrieval-generation synergy. arXiv preprint
arXiv:2305.15294.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu,
Junxiao Song, Mingchuan Zhang, Y.K. Li, and
Daya Guo Y. Wu. 2024. Deepseekmath: Pushing the
limits of mathematical reasoning in open language
models.

Kurt Shuster, Spencer Poff, Moya Chen, Douwe Kiela,
and Jason Weston. 2021. Retrieval augmentation
reduces hallucination in conversation. arXiv preprint
arXiv:2104.07567.

Huatong Song, Jinhao Jiang, Yingqian Min, Jie Chen,
Zhipeng Chen, Wayne Xin Zhao, Ji-Rong Wen, Yang
Lu, and Xu Miu. 2025. R1-searcher: Incentivizing
the search capability in llms via reinforcement learn-
ing.

Hexiang Tan, Fei Sun, Wanli Yang, Yuanzhuo Wang,
Qi Cao, and Xueqi Cheng. 2024. Blinded by gen-
erated contexts: How language models merge gen-
erated and retrieved contexts when knowledge con-
flicts? In Proceedings of the 62nd Annual Meeting of
the Association for Computational Linguistics (Vol-
ume 1: Long Papers), pages 6207–6227, Bangkok,
Thailand. Association for Computational Linguistics.

Harsh Trivedi, Niranjan Balasubramanian, Tushar
Khot, and Ashish Sabharwal. 2022a. Interleav-
ing retrieval with chain-of-thought reasoning for
knowledge-intensive multi-step questions. arXiv
preprint arXiv:2212.10509.

Harsh Trivedi, Niranjan Balasubramanian, Tushar Khot,
and Ashish Sabharwal. 2022b. MuSiQue: Multi-
hop questions via single-hop question composition.
Transactions of the Association for Computational
Linguistics, 10:539–554.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc V Le,
Ed H. Chi, Sharan Narang, Aakanksha Chowdhery,
and Denny Zhou. 2023. Self-consistency improves
chain of thought reasoning in language models. In
The Eleventh International Conference on Learning
Representations.

An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui,
Bo Zheng, Bowen Yu, Chengyuan Li, Dayiheng Liu,
Fei Huang, Haoran Wei, and 1 others. 2024. Qwen2.
5 technical report. arXiv preprint arXiv:2412.15115.

Zhilin Yang, Peng Qi, Saizheng Zhang, Yoshua Bengio,
William Cohen, Ruslan Salakhutdinov, and Christo-
pher D. Manning. 2018. HotpotQA: A dataset for
diverse, explainable multi-hop question answering.

5118

https://doi.org/10.18653/v1/P17-1147
https://doi.org/10.18653/v1/P17-1147
https://doi.org/10.18653/v1/P17-1147
https://doi.org/10.1162/tacl_a_00276
https://doi.org/10.1162/tacl_a_00276
https://doi.org/10.1162/tacl_a_00276
https://doi.org/10.18653/v1/2023.findings-emnlp.378
https://doi.org/10.18653/v1/2023.findings-emnlp.378
https://doi.org/10.18653/v1/2023.findings-emnlp.378
https://arxiv.org/abs/2402.03300
https://arxiv.org/abs/2402.03300
https://arxiv.org/abs/2402.03300
https://github.com/RUCAIBox/R1-searcher
https://github.com/RUCAIBox/R1-searcher
https://github.com/RUCAIBox/R1-searcher
https://doi.org/10.18653/v1/2024.acl-long.337
https://doi.org/10.18653/v1/2024.acl-long.337
https://doi.org/10.18653/v1/2024.acl-long.337
https://doi.org/10.18653/v1/2024.acl-long.337
https://doi.org/10.1162/tacl_a_00475
https://doi.org/10.1162/tacl_a_00475
https://openreview.net/forum?id=1PL1NIMMrw
https://openreview.net/forum?id=1PL1NIMMrw
https://doi.org/10.18653/v1/D18-1259
https://doi.org/10.18653/v1/D18-1259

In Proceedings of the 2018 Conference on Empiri-
cal Methods in Natural Language Processing, pages
2369–2380, Brussels, Belgium. Association for Com-
putational Linguistics.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak
Shafran, Karthik Narasimhan, and Yuan Cao.
2023. React: Synergizing reasoning and act-
ing in language models, 2023. URL https://arxiv.
org/abs/2210.03629.

Ori Yoran, Tomer Wolfson, Ori Ram, and Jonathan Be-
rant. 2024. Making retrieval-augmented language
models robust to irrelevant context. In The Twelfth
International Conference on Learning Representa-
tions.

Murong Yue. 2025. A survey of large language
model agents for question answering. arXiv preprint
arXiv:2503.19213.

Wayne Xin Zhao, Kun Zhou, Junyi Li, Tianyi Tang,
Xiaolei Wang, Yupeng Hou, Yingqian Min, Beichen
Zhang, Junjie Zhang, Zican Dong, and 1 others. 2023.
A survey of large language models. arXiv preprint
arXiv:2303.18223, 1(2).

A Experimental Settings

Evaluation Benchmarks For evaluation on
multi-hop scenarios, we consider four benchmark
datasets: HotpotQA (Yang et al., 2018), 2Wiki-
MultiHopQA (Ho et al., 2020), MusiQue (Trivedi
et al., 2022b), and Bamboogle (Press et al., 2023).
Evaluation is conducted on the development sets
of HotpotQA, 2WikiMultiHopQA, and MusiQue,
and on the test set of Bamboogle, which contain
7405, 12576, 2417, and 125 samples, respectively.
We also evaluate our method on three single-hop
question answering datasets: NQ (Kwiatkowski
et al., 2019), PopQA (Mallen et al., 2022), and
TriviaQA (Joshi et al., 2017).

Evaluation Metrics We evaluate our method us-
ing the commonly adopted Exact Match (EM) met-
ric, which considers a prediction correct only if it
exactly matches the ground truth answer. To ac-
count for the overly strict nature of exact match
in real-world scenarios, we additionally employ
LLM-as-a-Judge (LJ) for automatic evaluation. In
this setting, gpt-4o-mini is used to assess the se-
mantic correctness of the final answer. The prompt
used for LJ is provided in Appendix C.2.

B Implementation Details

Our training is conducted on 8 Nvidia A100
GPUs, with full parameter optimization and gra-
dient checkpointing. The detailed hyperparameter
settings are listed in Table 6.

Parameter Value

Learning Rate 1e-6
Train Batch Size 256
Number of Training Epochs 2
Number of Rollouts 5
Rollout Temperature 1.0
KL Loss Coefficient 0.001
Clip Ratio 0.2
Num. Document Retrieval 5
Rescale Factor λ 0.1

Table 6: Implementation details of LeTS.

C Prompt Templates

In this appendix, we provide detailed prompt tem-
plates used in various stages of our experiments.
These templates ensure the consistency and repro-
ducibility of our experimental setup.

C.1 Prompt Templates for Training
The training prompt templates are designed to
clearly guide the language models in performing
structured reasoning and retrieval tasks under both
base and instruction-tuned settings. Specifically,
Table 7 illustrates the prompt used for base models,
which frames the interaction as a conversation and
explicitly defines the tags for reasoning, searching,
and answering. Table 8 shows the system prompt
for instruction-tuned models, where the model is
guided to follow a similar reasoning-and-search
pattern with clear structural conventions. These
prompts are essential to elicit the think-and-search
behavior in a controlled and consistent manner
across training scenarios.

C.2 Prompt Templates for LLM-as-a-Judge
Evaluation

The evaluation prompt in Table 9 defines the judg-
ment criteria and expected output format for LLM-
as-a-Judge, ensuring consistent and interpretable
assessment of generated answers with respect to
semantic correctness.

5119

https://openreview.net/forum?id=ZS4m74kZpH
https://openreview.net/forum?id=ZS4m74kZpH

Prompt Template For Base Model

A conversation between User and Assistant. The user
asks a question, and the assistant solves it. The assis-
tant first thinks about the reasoning process in the mind
and then provides the user with the answer. During
thinking, the assistant can invoke the wikipedia search
tool to search for fact information about specific top-
ics if needed. The reasoning process and answer
are enclosed within <think> </think> and <answer>
</answer> tags respectively, and the search query and
result are enclosed within <search> </search> and
<result> </result> tags respectively. For exam-
ple, <think> This is the reasoning process. </think>
<search> search query here </search> <result> search
result here </result> <think> This is the reason-
ing process. </think> <answer> The final answer is
\boxed{answer here} </answer>. In the last part of the
answer, the final exact answer is enclosed within \boxed{}
with latex format. User: prompt. Assistant:

Table 7: Prompt Template For Base Model.

D Pseudo Code for LeTS

The pseudo code for LeTS is shown in Algo-
rithm D.

System Prompt Template For Instruction-Tuned
Model

You are a helpful assistant that can solve the given
question step by step with the help of the wikipedia
search tool. Given a question, you need to first think
about the reasoning process in the mind and then pro-
vide the answer. During thinking, you can invoke
the wikipedia search tool to search for fact information
about specific topics if needed. The reasoning process
and answer are enclosed within <think> </think> and
<answer> </answer> tags respectively, and the search
query and result are enclosed within <search> </search>
and <result> </result> tags respectively. For exam-
ple, <think> This is the reasoning process. </think>
<search> search query here </search> <result> search
result here </result> <think> This is the reason-
ing process. </think> <answer> The final answer is
\boxed{answer here} </answer>. In the last part of the
answer, the final exact answer is enclosed within \boxed{}
with latex format.

Table 8: System Prompt Template For Instruction-Tuned
Model.

Algorithm 1 Process-and-Outcome Reward Hy-
bridized GRPO in LeTS
Require: Policy model πθold , reference model πθref ,

dataset D, rescale factor λ, KL penalty β
1: for each input x ∼ D do
2: Sample G rollouts {yi}Gi=1 ∼ πθold(x)
3: for each rollout yi do
4: Compute outcome-level reward r

(o)
i

via Eq. 3
5: if rollout is well-formatted then
6: if yi is in outperforming group then
7: Compute stepwise process re-

wards r(p)i,j using Eq. 4
8: else
9: Compute r

(p)
i,j via group match

reward using Eq. 5
10: end if
11: end if
12: Normalize {r(o)i }Gi=1 to get A(o)

i

13: Normalize {r(p)i,j }ni
j=1 to get r̂(p)i,j

14: for each step j do
15: Ai,j ←

(
1 + sgn(A

(o)
i) · λr̂(p)i,j

)
·

A
(o)
i ▷ Eq. 7

16: Compute GRPO loss using Ai,j via
Eq. 8

17: end for
18: end for
19: end for

5120

Prompt for LLM-as-a-Judge

You will be given a question and its ground truth answer
list, where each item can be a ground truth answer. Pro-
vided a pred_answer, you need to judge if the pred_answer
correctly answers the question based on the ground truth
answer list. You should first give your rationale for the
judgment, and then give your judgment result (i.e., correct
or incorrect).
Here is the criteria for the judgment: 1. The pred_answer
doesn’t need to be exactly the same as any of the ground
truth answers, but should be semantically the same for the
question. 2. Each item in the ground truth answer list can
be viewed as a ground truth answer for the question, and
the pred_answer should be semantically the same as at
least one of them.
question: question
ground truth answers: gt_answer
pred_answer: pred_answer
The output should be in the following json format:
“‘json
{
"rationale": "your rationale for the judgement, as a text",
"judgement": "your judgement result, can only be ‘correct’
or ‘incorrect’"
}
”’
Your output:

Table 9: Prompt for LLM-as-a-Judge.

E Case Studies

In this section, we present comparative case stud-
ies derived from the interaction trajectories of Re-
Search and our proposed LeTS. Specifically, Ta-
ble 10 illustrates a scenario where ReSearch in-
correctly answered a multi-hop question due to
redundant and irrelevant search steps, whereas our
proposed LeTS successfully provided the correct
answer. This clearly demonstrates the effectiveness
of integrating process-level rewards with outcome-
level supervision.

5121

Question: When did the president who set the precedent of a two term limit enter office?
Golden Answer: April 30, 1789

ReSearch (Incorrect): Misled by irrelevant searching leading to incorrect answer.
<think> To determine when the president who set the precedent of a two-term limit entered office, I need to
first identify which president this is. I will use the Wikipedia search tool to find this information. </think>
<search> Who was the first president to set the two-term limit precedent? </search>

<result> "Term limits in the United States" Republican government as a periodic rotation"". The historian
Mercy Otis Warren, warned that ""there is no provision for a rotation, nor anything to prevent the perpetuity
of office in the same hands for life; which by a little well-timed bribery, will probably be done"". Michael
Korzi says ... </result>
<think> Now that I have the information, I can identify the president who set the precedent of a two-term
limit. It was Thomas Jefferson. Now I need to find out when he entered office. </think>
<search> When did Thomas Jefferson enter office? </search>
<result> "Presidency of Thomas Jefferson" Presidency of Thomas Jefferson The presidency of Thomas
Jefferson began on March 4, 1801, when he was inaugurated as the third President of the United States, and
ended on March 4, 1809. Jefferson assumed the office after defeating incumbent President John Adams in
the 1800 presidential election. The election was ... </result> (Irrelevant Document)
<think> Now I have the information I need. Thomas Jefferson entered office on March 4, 1801. </think>
<search> When did Thomas Jefferson become president? </search>

<result> "Presidency of Thomas Jefferson" Presidency of Thomas Jefferson The presidency of Thomas
Jefferson began on March 4, 1801, when he was inaugurated as the third President of the United States, and
ended on March 4, 1809. Jefferson assumed the office after defeating incumbent President John Adams in
the 1800 presidential election. The election was ... </result> (Irrelevant and Redundant Documents)
<think> After reviewing the information, I can now provide the answer to the question. Thomas Jefferson,
the president who set the precedent of a two-term limit, entered office on March 4, 1801. </think>
<answer> March 4, 1801 </answer>

LeTS (Correct): Effective, concise search leading to the correct answer.
<think> First, I need to identify which president set the precedent of a two-term limit. Then, I need to find
out when that president entered office. Let’s start by finding out which president established this precedent.
</think>
<search> which president established the two-term limit precedent </search>

<result> "Twenty-second Amendment to the United States Constitution" Twenty-second Amendment to
the United States Constitution The Twenty-second Amendment (Amendment XXII) to the United States
Constitution sets a limit on the number of times an individual is eligible for election to the office of President
of the United States, and also sets additional eligibility conditions for presidents who succeed to the unexpired
terms of their predecessors ... </result>
<think> From the information provided, it is clear that Franklin D. Roosevelt was the first president to
break the two-term tradition by winning a third and fourth term. The precedent of a two-term limit was
established by George Washington, who retired after two terms. The next step is to find out when George
Washington entered office. </think>

<search> when did george washington enter office </search>

<result> "Presidency of George Washington" Presidency of George Washington The presidency of George
Washington began on April 30, 1789, when Washington was inaugurated as the first President of the United
States, and ended on March 4, 1797. Washington took office after the 1788–89 presidential election, the
nation’s first quadrennial presidential election, in which he was ... </result>
<think> The information clearly states that George Washington was inaugurated as the first President of the
United States on April 30, 1789. This is the date when he entered office. </think>
<answer> April 30, 1789 </answer>

Table 10: Case study on the irrelevant searching phenomenon.

5122

