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Abstract

End-to-end Large Speech Language Models
(LSLMs) have demonstrated impressive con-
versational generation abilities, yet consistently
fall short of traditional pipeline systems on
semantic understanding benchmarks. In this
work, we reveal through systematic experimen-
tation that although LSLMs lose some text in-
put performance after speech-text alignment
training, the performance gap between speech
and text inputs is more pronounced, which
we refer to as the modality gap. To under-
stand this gap, we analyze both coarse- and
fine-grained text and speech representations.
At the coarse-grained level, representations of
speech and text in deeper layers are found to be
increasingly aligned in direction (cosine sim-
ilarity), while concurrently diverging in mag-
nitude (Euclidean distance). We further find
that representation similarity is strongly corre-
lated with the modality gap. At the fine-grained
level, a spontaneous token-level alignment pat-
tern between text and speech representations
is observed. Based on this, we introduce the
Alignment Path Score to quantify token-level
alignment quality, which exhibits stronger cor-
relation with the modality gap. Building on
these insights, we design targeted interventions
on critical tokens through angle projection and
length normalization. These strategies demon-
strate the potential to improve correctness for
speech inputs. Our study provides the first sys-
tematic empirical analysis of the modality gap
and alignment mechanisms in LSLMs, offering
both theoretical and methodological guidance
for future optimization.

1 Introduction

The emergence of Large Speech Language Models
(LSLMs) has revolutionized human-computer inter-
action by enabling direct processing of both speech

*Now at Bairong Inc., Beijing, China. Email:
wei.zou@brgroup.com.

representations and text inputs, subsequently gen-
erating textual or spoken outputs (Bu et al., 2024).
Compared to traditional pipeline architectures that
sequentially chain Automatic Speech Recognition
(ASR), Large Language Models (LLMs), and Text-
To-Speech (TTS) components, end-to-end LSLMs
offer significant advantages, including reduced la-
tency, inherent error resilience, and more expres-
sive speech synthesis capabilities (Ji et al., 2024).

Recent studies in LSLMs have focused on align-
ing speech modalities with text space through
speech tokenizers (Zhang et al., 2023) or encoder-
based approaches (Fang et al., 2024; Zhao et al.,
2024; Chu et al., 2023). These cross-modal align-
ment strategies aim to harness the linguistic capabil-
ities of pretrained LLMs while integrating speech
processing functionalities (Cui et al., 2025).

However, significant performance disparities per-
sist between LSLMs and conventional pipeline
models in semantic understanding tasks. Bench-
mark results from VoiceBench (Chen et al., 2024)
reveal a striking contrast: the Whisper-large-v3
+ LLaMA-3.1-8B pipeline achieves 79.06 overall
score, while its LSLM counterpart LLaMA-Omni
(Fang et al., 2024) scores merely 37.51. This pat-
tern continues in Uro-bench (Yan et al., 2025) eval-
uations, where the Whisper-large-v3 + Qwen2-7B-
Instruct pipeline attains 78.13 overall score com-
pared to Freeze-Omni’s (Wang et al., 2024b) 48.28,
despite both systems employing the same underly-
ing LLM. Notably, while Uro-bench’s dependence
on transcribed speech outputs might inherently fa-
vor pipeline architectures, the magnitude of these
performance drops remains substantial and war-
rants investigation.

Nevertheless, contemporary investigations into
LSLMs remain largely confined to engineering
practices, adopting unverified integrated solutions
spanning training stages, dataset scales, parameter-
efficient strategies, and multimodal objectives with-
out systematic analysis of their individual contribu-
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tions or synergistic effects (Chu et al., 2024; Zhong
et al., 2024; Liu et al., 2025b). This practice of
design-by-intuition raises critical concerns, as in-
validated architectural choices may inadvertently
exacerbate the modality alignment discrepancy.

In this work, we take the persistent performance
gap between end-to-end LSLMs and traditional
ASR+LLM pipeline systems as our starting point.
We systematically reproduce and quantify this dis-
crepancy across various LLM backbones and train-
ing strategies, and, for the first time, empirically
reveal the underlying mechanisms behind the per-
formance difference. Specifically, after speech-text
alignment training, a clear and consistent perfor-
mance gap exists between text and speech inputs
within the same model.

To gain insight into the modality gap, we system-
atically analyze the similarity between speech and
text representations at both sequence and token lev-
els, aiming to reveal the mechanisms of speech-text
alignment within LSLMs. At the sequence (coarse-
grained) level, we observe that as representations
propagate through deeper layers of the model, their
cosine similarity increases steadily, reflecting pro-
gressive directional alignment. In parallel, the Eu-
clidean distance between modalities also increases,
indicating a divergence in magnitude that likely
reflects modality-specific characteristics learned by
the model. At the token (fine-grained) level, we
find that the model develops a spontaneous mono-
tonic alignment pattern between speech and text
tokens, indicating consistent local correspondence
across modalities.

In addition, our study systematically examines
the relationship between internal representation
similarity and the modality gap exhibited on eval-
uation benchmarks. A clear linear correlation is
observed at both the sequence and token levels,
suggesting that the nature of internal cross-modal
alignment is closely related to the performance dis-
parity between speech and text inputs.

These observations are further examined through
targeted intervention experiments, where speech
token embeddings along the alignment path are
modified using either angle projection or length
normalization. We find that such interventions can
improve performance on challenging cases from
the sd-qa subset of VoiceBench.

Our contributions are threefold: (1) We systemat-
ically identify that the primary source of the perfor-
mance gap between LSLMs and pipeline systems
lies in the modality difference between speech and

text inputs. (2) We analyze internal representations
and find that the modality gap is closely linked to
the similarity between speech and text representa-
tions at both sequence and token levels. (3) We
provide the first empirical evidence that targeted in-
terventions on speech representations can improve
speech input performance on challenging cases.

By focusing on understanding and revealing the
mechanisms behind modality alignment, our work
offers a deeper exploration of the factors influenc-
ing LSLM performance. This approach not only
addresses the current performance discrepancy but
also paves the way for future advancements in inte-
grating speech modalities into LLMs.

2 Related Work

2.1 Speech-Text Alignment in LSLMs

The alignment between speech and textual modali-
ties is crucial for the performance of LSLMs. Re-
cent studies have explored five distinct method-
ologies for this task (Ji et al., 2024). The la-
tent space mapping approach, exemplified by
Qwen2-Audio (Chu et al., 2024), SALMONN (Tang
et al., 2023), and VITA (Fu et al., 2024), uses a
joint audio encoder-adapter architecture to directly
project speech inputs into the LLM’s latent textual
space. This paradigm effectively reduces computa-
tional overhead by compressing the audio sequence
length via the audio adapter module. Meanwhile,
it also preserves the LLM’s inherent reasoning ca-
pabilities and has demonstrated competitive perfor-
mance across multiple benchmarks.

Additionally, SpeechGPT (Zhang et al., 2023)
adopts modality chaining by discretizing speech
into symbolic units and expanding the LLM’s vo-
cabulary, while GLM-4-Voice (Zeng et al., 2024)
and Moshi (Défossez et al., 2024) utilize inter-
leaved text-speech tokens and parallel generation
architectures, respectively. SyncLLM (Veluri et al.,
2024), IntrinsicVoice (Zhang et al., 2024b), Align-
SLM (Lin et al., 2024), and OmniFlatten (Zhang
et al., 2024a) pioneers direct speech-to-speech inter-
action without textual intermediates. Although sig-
nificant progress has been made with these method-
ologies in existing research, their performance on
audio processing tasks remains suboptimal.

2.2 Modality Gap Phenomenon

Previous work has systematically analyzed the
modality gap phenomenon and shown that it per-
sists across a wide range of multimodal models
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(Liang et al., 2022). This gap largely arises from
the cone effect, where embeddings from different
modalities are restricted to distinct subspaces, lead-
ing to misalignment and degraded cross-modal per-
formance.

In the field of speech translation, the modality
gap has also been a subject of investigation. Ev-
idence suggests that this gap can emerge during
the early phases of fine-tuning (Han et al., 2023).
Furthermore, it has been shown that the resulting
misalignment between modalities leads to diver-
gent predictions and degrades performance relative
to text-only machine translation systems. This rep-
resentational divergence was empirically quantified
using the cosine similarity between speech and text
embeddings, confirming a substantial gap (Fang
and Feng, 2023).

2.3 Analysis of Multimodal Representations

Previous works have explored a variety of meth-
ods to accurately quantify the similarity between
multimodal representations. Canonical Correla-
tion Analysis (CCA) and its deep learning variants,
such as SVCCA and PWCCA (Raghu et al., 2017;
Morcos et al., 2018), are widely used to capture
linear and non-linear relationships in cross-modal
representations.

To address the challenges of comparing high-
dimensional representations, Centered Kernel
Alignment (CKA) was introduced as a robust simi-
larity measure (Kornblith et al., 2019). Subsequent
work has shown that a simple, sample-wise cosine
similarity can also effectively capture layer-wise
similarity in transformer models, yielding results
comparable to CKA with greater computational
efficiency (Jiang et al., 2024).

Additionally, the Wasserstein distance between
paired speech and text embeddings has been used
to measure cross-modal consistency (Liu et al.,
2025a). The Gramian Representation Alignment
Measure (GRAM) is also designed to evaluate the
alignment of multiple modalities simultaneously
(Cicchetti et al., 2024). Both methods have been in-
tegrated into training and effectively improve cross-
modal alignment.

3 Preliminary

This section investigates the performance degrada-
tion of LSLMs in processing speech inputs com-
pared to their base models’ performance on text
inputs. Through comprehensive experiments con-

    Speech Encoder️

    Speech Projector

LLM

Speech InputText Input

“Answer the queston”

    Text Tokenizer

    Embedding Layer

(“Who are you”)

“I'm an AI assistant...”

Figure 1: The LSLM architecture used in this study to
analyze the speech–text modality gap.

ducted on multiple LLM backbones using both
full-parameter and LoRA fine-tuning methods (Hu
et al., 2021), we find that the primary contributor
to this modality gap is the suboptimal alignment
between textual and auditory modalities in LSLMs.

3.1 Model Architecture

As illustrated in Figure 1, the architecture of the
LSLM setup used in this study comprises three core
components: a speech encoder, a speech adapter,
and an LLM backbone. The speech signal is first
encoded by the speech encoder into a latent rep-
resentation and then compressed by the speech
adapter by a factor of 5 to reduce computational
overhead. Meanwhile, text inputs are processed
through a standard tokenization pipeline and em-
bedded via the LLM’s embedding layer. These
speech and text embeddings are then concatenated
to form a unified multimodal sequence that serves
as input to the LLM backbone, enabling autoregres-
sive generation of textual responses.

In our experiments, Whisper-large-v3, a widely
used ASR model, serves as the speech encoder.
The speech adapter is implemented as a lightweight
module with two fully connected layers. We con-
ducted experiments with various LLM backbones,
including LLaMA3.2-3B-Instruct, LLaMA3.1-8B-
Instruct, Qwen2.5-1.5B-Instruct, and Qwen2.5-7B-
Instruct. For brevity, henceforth we omit the suffix
"Instruct" when referring to these model variants.

3.2 Experiment Setups

Our training dataset is constructed following the
framework of Ke-Speech-Chat (Zhao et al., 2024),
exclusively comprising single-turn dialogue sam-
ples. Each sample includes both speech and text
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Figure 2: Overall Score (%, ↑) on the test set of 8 LSLMs at epoch 2 under different training methods and modality
inputs. The red numbers on each bar show the score difference relative to the bar immediately to its left.

instructions, as well as a text response. We refined
the raw text using Qwen2.5-72B-Instruct (Yang
et al., 2024; Team, 2024), aligning it with natural
conversational patterns observed in real-world sce-
narios. Subsequently, a three-stage filtering mecha-
nism was applied to purify the data, targeting safety,
semantic clarity, and linguistic naturalness. The
speech instruction-response pairs were synthesized
using CosyVoice (Du et al., 2024). Based on auto-
mated transcription via Whisper-large-v3 (Radford
et al., 2022), speech samples exceeding a Word
Error Rate (WER) threshold of 0.1 are discarded.
Finally, Our training dataset contains 637,283 sam-
ples, with speech instructions totaling 1,604 hours.

All LSLMs are trained for 2 epochs on our train-
ing dataset using the AdamW optimizer with a peak
learning rate of 2e-5. For LoRA, we set r = 8,
α = 4.0, and the dropout rate to 0.1. All experi-
ments were conducted on a distributed setup with 2
nodes, each equipped with 8 NVIDIA A100 GPUs.
Training a single model requires approximately 384
GPU hours on this setup.

For evaluation, we adopt five subsets of the
VoiceBench dataset (Chen et al., 2024)—AdvBench,
IFEval, OBQA, MMSU, and sd-qa—yielding a total
of 4,947 test samples after filtering. These sub-
sets collectively cover 93% of the full VoiceBench
and are particularly suitable for robust evaluation
as their metrics do not require additional LLMs,
thereby minimizing variability. All evaluations
strictly adhere to the official VoiceBench evaluation
protocol to ensure consistency and reproducibility.

3.3 Results and Analysis

We evaluate the performance of LSLMs after full-
parameter and LoRA fine-tuning on the 4 models
introduced in Section 3.1, each tested under both
speech and text modalities. Detailed results are pro-
vided in Appendix A.1 and A.2. Figure 2 presents
the performance of each model at epoch 2 on both

text and speech inputs, alongside the corresponding
base model’s text-only performance.

For the data shown in Figure 2, on average,
LSLMs exhibit a 25% performance decline on
speech inputs relative to their base models on text.
This decline can be attributed to two factors: (1)
fine-tuning–induced erosion of reasoning and gen-
eration capabilities, with an average drop of 8.79%;
and (2) suboptimal speech–text alignment, with
an average drop of 16.46%. Given the variety of
model sizes and tuning methods evaluated, this
trend appears general. This phenomenon indicates
that the observed performance degradation stems
primarily from the speech–text modality gap, and
that bridging this gap is crucial to enhance LSLM
speech processing. Indeed, this modality gap is not
unique to our setup, as we observe a similar trend
across diverse public LSLMs in Appendix B.1.

4 Empirical Analysis of Coarse-grained
Speech-Text Representations

In this section, we examine the dynamic relation-
ship between text and speech modality represen-
tations at a coarse-grained sequence level using
similarity measurement techniques. Our analysis
uncovers consistent patterns across various LLM
architectures and training paradigms. Through ex-
tensive experimentation, we observe a strong linear
correlation between representation alignment and
performance disparities across modalities, partic-
ularly under LoRA fine-tuning, highlighting the
predictive value of embedding similarity for modal-
ity gap estimation.

4.1 Methodology
Given a set of N speech-text query pairs
{(xsi , xti)}Ni=1, where xsi denotes the speech input
and xti its corresponding text transcription, we pro-
cess each sample through the model as illustrated
in Figure 3.
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Figure 3: Overview of coarse-grained speech-text repre-
sentations computation.

For the speech modality, the input xs is encoded
by the speech encoder and linear projector, result-
ing in an initial embedding sequence hs0 ∈ RTs×d,
where Ts is the number of speech frames and d is
the hidden dimension. This sequence, along with a
system prompt, is fed into an L-layer model, yield-
ing layer-wise representations hsl ∈ RTs×d, where
l ∈ {1, . . . , L} indexes the model layer. Similarly,
for the text modality, the input xt is tokenized and
embedded, producing ht0 ∈ RTt×d, where Tt is the
length of the token sequence. The corresponding
layer-wise representations are htl ∈ RTt×d.

To quantify the relationship between speech and
text representations, we employ two similarity met-
rics, denoted in a unified manner as f (·)(x, y),
where (·) indicates the choice of metric (cos: co-
sine similarity, d: Euclidean distance):

f (cos)(x, y) =
x⊤y

∥x∥∥y∥ , f (d)(x, y) = ∥x−y∥2.

For each layer l, we first compute the mean rep-
resentation over the sequence dimension for both
modalities:

h̄sl =
1

Ts

Ts∑

i=1

hsl,i, h̄tl =
1

Tt

Tt∑

j=1

htl,j ,

where hsl,i and htl,j denote the i-th and j-th frame or
token embedding at layer l for the speech and text
modalities, respectively. The global relationship
between modalities at each layer is then assessed
by computing f

(cos)
l

(
h̄sl , h̄

t
l

)
and f

(d)
l

(
h̄sl , h̄

t
l

)
.

4.2 Sequence-level Speech-Text
Representation Dynamics

We evaluate the sequence-level similarity at each
layer for all test samples using the methodology

outlined in Section 4.1. Figure 4 summarizes these
results for various LSLMs under different training
regimes, with cosine similarity shown in blue and
Euclidean distance in orange. Each subplot corre-
sponds to a specific model configuration, and each
curve within a subplot represents a distinct train-
ing checkpoint, depicting the layer-wise similarity
metrics.

Several notable patterns are observed in the sim-
ilarity dynamics. For cosine similarity, all models
demonstrate a consistent increase as the network
depth grows, indicating progressively stronger
alignment between speech and text representations
in deeper layers. Moreover, later training check-
points consistently yield higher similarity scores
across all layers, reflecting improved cross-modal
alignment as training advances.

In contrast, Euclidean distance gradually in-
creases in the shallow layers and accelerates in the
deeper layers. While models with more extensive
training tend to exhibit slightly lower Euclidean
distances overall, the upward trend with increas-
ing depth remains consistent, suggesting growing
representational magnitude divergence despite di-
rectional convergence.

These trends suggest that deeper layers and ex-
tended training foster improved alignment in rep-
resentational direction (cosine similarity), while
preserving modality-specific distinctions in magni-
tude (Euclidean distance). This alignment pattern
could facilitate effective multimodal integration
while preserving essential characteristics of each
modality.

4.3 Correlation Between Representation
Similarity and Modality Gap

To analyze the relationship between representation
similarity and downstream performance, we com-
pute a scalar similarity score for each model by
averaging similarity across layers:

f̄ (·) =
1

L

L∑

l=1

f
(·)
l

(
h̄sl , h̄

t
l

)
,

where (·) denotes either cosine similarity or Eu-
clidean distance.

We quantify the modality gap as the drop in
benchmark scores between text and speech inputs,
as:

GAP = M t −M s,

where M t and M s are overall benchmark scores
obtained from text and speech inputs, respectively.
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Figure 4: Layer-wise cosine similarity (blue) and Euclidean distance (orange) between speech and text representa-
tions. Each curve corresponds to a training checkpoint, with the horizontal axis indicating the model layers.
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Figure 5: Linear relationship between cross-modal similarity and modality performance gap (GAP ).

Figure 5 shows the linear relationship between
similarity and GAP . Each point corresponds to a
model checkpoint, with the R2 value indicating the
strength of correlation.

Key Findings. Under LoRA fine-tuning, a strong
linear relationship is observed between cosine sim-
ilarity and GAP (R2 = 0.75), suggesting that bet-
ter cross-modal alignment leads to smaller perfor-
mance disparities. Although Euclidean distance
shows a weaker correlation overall, it becomes
more pronounced within specific model families
(R2 = 0.64 for Qwen and R2 = 0.88 for Llama).

For full-parameter fine-tuning, the same trend
persists but with reduced strength: R2 = 0.39 for
cosine similarity, and R2 = 0.53 and 0.27 for Eu-
clidean distance in Llama and Qwen, respectively.

Analysis. These findings empirically validate the
connection between internal cross-modal represen-
tations and performance-level modality gaps. The
stronger correlations observed in LoRA-tuned mod-
els may stem from the constrained low-rank adapta-
tion, which preserves the integrity of pretrained text
representations while facilitating targeted speech-
text alignment. In contrast, full fine-tuning grants
more representational flexibility, potentially intro-
ducing overfitting that weakens this correlation.
Consequently, representation similarity serves as
a more reliable predictor of modality performance
under LoRA than under full-parameter fine-tuning.

5 Empirical Analysis of Finer-grained
Speech-Text Representations

Building on the coarse-grained sequence-level anal-
ysis in the previous section, this section focuses
on token-level alignment patterns, examining the
role and contribution of each token in modality
alignment. We will begin with case studies, and
subsequently introduce more detailed quantitative
metrics to facilitate a finer-grained investigation.
Through correlation analysis and intervention ex-
periments, we explore the relationship between
token-level alignment and downstream task perfor-
mance, thereby further revealing the underlying
speech-text alignment mechanisms in LSLMs.

5.1 Monotonic Patterns in Token-wise
Similarity Matrices

Observations At each layer l, we construct a
token-wise similarity matrix A

(·)
l ∈ RTs×Tt , de-

fined as:

[A
(·)
l ]i,j = f (·)(hsl,i, h

t
l,j),

where f (·) denotes the selected similarity metric.
Across all models and training paradigms, we con-
sistently observed that the token-wise similarity
matrix typically exhibits extreme values along a
nearly monotonic path. As shown in Fig. 6, with
the increase in text token index, there is a mono-
tonic alignment path in the speech frame sequence
along which the similarity (or distance) values are
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Figure 6: Token-wise similarity and distance matrices
for a representative layer, with diamond markers indi-
cating the alignment path.

locally maximized (or minimized). This monotonic
path does not strictly align with the main diagonal,
but reflects the actual temporal alignment structure
between speech and text modalities.

Statistical Quantification To systematically
quantify this alignment pattern, for each text to-
ken j, we identify the index of the speech frame
with maximal similarity or minimal distance as:

i∗j =

{
argmaxi[A

(cos)
l ]i,j if f (·) = f (cos)

argmini[A
(d)
l ]i,j if f (·) = f (d)

This process produces an alignment path be-
tween the text and speech sequences. To verify
the presence of monotonicity in these alignments,
we use the Spearman rank correlation coefficient
between text token indices and their aligned speech
frame indices as the evaluation metric. Detailed
statistics are provided in Appendix A.3. At the
final training epoch across all models, the average
Spearman coefficient is 0.85 for cosine similarity
and 0.70 for Euclidean distance. The proportion
of tokens with perfectly identical alignment paths
under both similarity measures is 0.59, indicating
substantial consistency in the alignment results.

Mechanism Analysis The widespread emer-
gence of this monotonic pattern suggests that the
model not only aligns modalities globally, but also
spontaneously learns a soft, monotonic align-
ment between speech frames and text tokens at
the token level. Importantly, this alignment pattern
emerges automatically in end-to-end speech-text
alignment tasks, reflecting the model’s ability to
capture and map the temporal structure of speech
to the semantic structure of text in a robust manner.

5.2 Alignment Path Score

Based on the observed token-level alignment pat-
terns, we propose the Alignment Path Score (APS)
to quantify the strength of speech-text alignment at
the token level. Specifically, APS is defined as:

APS(·) =
1

L× Tt

L∑

l=1

Tt∑

j=1

[A
(·)
l ]i∗j ,j ,

where L denotes the number of layers, Tt is the
number of text tokens, and [A

(·)
l ]i∗j ,j represents the

maximal similarity (or minimal distance) along the
alignment path for each token.

We systematically evaluate the relationship be-
tween APS and GAP defined in Section 4.3 on
the LSLMs using a linear regression analysis. As
shown in Figure 7, LoRA-trained LSLMs yield
higher R2 values for both cosine (0.81 vs. 0.75)
and Euclidean APS (0.72 vs. 0.64 for Qwen; 0.95
vs. 0.88 for Llama) compared to previous base-
lines, indicating stronger linear correlations with
GAP . Under full-parameter finetuning, the corre-
lation between APS and GAP is similar to that of
sequence-level metrics, with both showing low R2

values. As previously suggested, the greater train-
ing noise and instability in this setting may limit
the explanatory power of both sequence-level and
token-level alignment metrics.

These results suggest that APS offers a more di-
rect and sensitive measurement of the relationship
between alignment quality and downstream per-
formance. The stronger correlation between APS
and GAP highlights that fine-grained, token-level
alignment is the key mechanism underlying LSLM
speech understanding.

5.3 Intervention Experiments: Probing the
Causal Role of Token-level Alignment

As demonstrated in the previous section, our analy-
ses revealed a strong correlation between the token-
level alignment score (APS) and the modality gap
in model performance (GAP ). However, correla-
tion does not necessarily imply causation. To fur-
ther investigate whether the token-level alignment
mechanism causally affects the speech understand-
ing ability of LSLMs, we conducted a series of
targeted intervention experiments.

Specifically, we focused on the sd-qa subset
of VoiceBench and selected both Qwen2.5-7B and
Llama3.1-8B models, each under LoRA and full-
parameter fine-tuning settings. For each sample,
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Figure 7: Relationship between the proposed Alignment Path Score and modality performance gap (GAP ).

Table 1: Performance (%, ↑) on the sd-qa subset under different token-level intervention strategies. “Bottom3”:
Only the three least-aligned tokens are modified; “All”: The entire alignment path is modified. For each row, results
that outperform the corresponding Speech Input are typeset in bold.

Model Strategy Text Input Speech Input Angle Projection Length Normalization

Bottom3 All Bottom3 All

Qwen2.5-7B
Full 43.58 33.45 38.52 38.70 37.25 32.73

LoRA 47.92 38.88 40.51 38.88 38.16 31.10

Llama3.1-8B
Full 41.05 36.53 32.91 34.00 31.65 30.74

LoRA 53.16 45.75 49.19 47.74 42.86 39.96

we first used the APS path to identify the three
speech tokens with the lowest alignment scores
(bottom3) as well as all tokens along the alignment
path (All). We then applied two types of interven-
tions: (1) Angle projection, where the selected
speech token embeddings were projected to have
the same direction as their corresponding text to-
ken embeddings; and (2) Length normalization,
where the norm of the speech token embeddings
was scaled to match that of the corresponding text
tokens. We evaluated the downstream QA accuracy
before and after intervention.

As shown in Table 1, Angle Projection yields im-
provements or maintains performance in 6 out of 8
intervention settings, demonstrating that increasing
the angular similarity of token-level text and speech
representations can enhance downstream outcomes.
For LoRA fine-tuned models, applying angle pro-
jection to either the Bottom3 or All alignment-path
tokens consistently improves results. Notably, inter-
vening on only the Bottom3 tokens leads to more ro-
bust gains, with Llama3.1-8B improving by 7.52%
and Qwen2.5-7B by 4.19%. In contrast, length
normalization provides improvement in only one
case, with performance declining in the remaining
settings, indicating an overall detrimental effect on
LSLM’s speech sequence modeling.

Further case analysis shows that angular or
length-based interventions on speech tokens can

correct cases where the model fails on speech in-
put but succeeds on the corresponding text. These
corrections fall into two categories: (1) resolving
semantic misunderstandings from misinterpreting
spoken content, and (2) rectifying factual errors
despite correct semantic parsing. Representative
examples for both are provided in Appendix A.4,
highlighting the potential of token-level interven-
tions to improve linguistic comprehension and fac-
tual consistency for spoken queries.

6 Conclusion

This work systematically investigates the modality
gap in LSLMs, defined as the performance dis-
parity between speech and text inputs within the
same trained model. To uncover the mechanisms
behind this gap, we analyze speech-text alignment
at both sequence and token levels. Sequence-level
analysis tracks representation similarity across lay-
ers and training, establishing its linear relationship
with the modality gap. At the token level, we re-
veal word-frame alignment structures and propose
the Alignment Path Score, which shows a stronger
correlation with the proposed modality gap. Tar-
geted intervention experiments further demonstrate
that improving token-level alignment can enhance
speech inference accuracy. This study deepens un-
derstanding of how large language models process
and comprehend spoken language.
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Limitations

Generalizability of Findings. Our main ex-
periments focus on a specific set of architec-
tures and alignment frameworks. Although Ap-
pendix B reports consistent phenomena across ex-
ternal LSLMs, broader validation on larger models
and fundamentally novel alignment strategies re-
mains necessary.
Scope of Data and Tasks. Our evaluation cen-
ters on English, single-turn dialogue with synthetic
speech, which may limit the applicability of the
findings to other languages, multi-turn conversa-
tions, and noisy real-world inputs.
Post-hoc Nature of Interventions. Our interven-
tion strategies are applied post hoc at inference
time and serve primarily as analytical probes of
token-level alignment. An important direction is
to integrate these insights into training to explic-
itly optimize cross-modal consistency and improve
speech-input performance.
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A Primary Experimental Details

A.1 Speech vs. Text Performance Across
Training Strategies

Table 2 presents the evaluation results of our mod-
els under different training paradigms and check-
points. For each model and training strategy, we re-
port the performance on both speech input and text
input across multiple benchmark subsets, as well
as their respective overall scores. Additionally, we
provide the GAP metric, defined as the difference
between the overall text input and speech input per-
formance. This comprehensive comparison allows
us to assess the alignment and robustness of vari-
ous models and training approaches with respect to
both input modalities.

A.2 Performance of Pipeline System Baselines

For a comprehensive comparison with the end-to-
end LSLMs analyzed in this work, we report the
performance of traditional ASR+LLM pipeline sys-
tems. These systems utilize Whisper-large-v3 as
the ASR module, paired with the corresponding
LLM backbones from our main experiments. All
pipeline evaluations were conducted on the identi-
cal 4,947-sample VoiceBench test set and adhere
strictly to the official protocol to ensure a fair com-
parison. The results are presented in Table 3.

A.3 Analysis of Alignment Path Monotonicity
and Consistency

This section details the measurement of alignment
path statistics, as introduced in Section 5.1. We re-
port these statistics across different training stages,
model scales, and training strategies. As shown in
Figure 8, we consider three metrics: (1) alignment
path monotonicity based on the cosine similarity
matrix, which reflects the degree of order in the
alignment between text tokens and speech frames;
(2) alignment path monotonicity based on the Eu-
clidean distance matrix, defined in a similar man-
ner but using Euclidean distances for alignment
construction; and (3) token-level alignment path
consistency, defined as the proportion of tokens
whose aligned speech frame indices are identical
under both similarity measures.

Empirical results reveal the following trends:
(1) Both alignment path monotonicity metrics ex-
hibit an overall increasing tendency as training pro-
gresses, suggesting that the model incrementally ac-
quires more structured and monotonic alignments.
(2) The monotonicity measured via cosine similar-

ity remains consistently higher than that based on
Euclidean distance, indicating that cosine similarity
may be more effective in capturing ordered rela-
tionships in high-dimensional spaces. (3) Token-
level alignment path consistency also demonstrates
a general upward trend during training, implying
that the alignment paths derived from the two simi-
larity measures become increasingly similar. These
observations are consistent across different model
scales and training strategies, underscoring the ro-
bustness and effectiveness of the learned alignment
mechanism.

A.4 Case Analysis of Intervention
Experiments

This section presents representative cases from the
intervention experiments detailed in Section 5.3,
with results compiled in Tables 4 through 7. The
interventions involved two primary strategies: an-
gle projection, which aligns the direction of the
speech representation with its corresponding text
representation, and length normalization, which
matches their vector norms. These strategies were
applied either to the three tokens with the lowest
alignment confidence (bot3) or to all tokens along
the alignment path (all).

Our analysis of these cases reveals two primary
categories of error correction. The first category
involves the resolution of semantic misunderstand-
ings arising from the spoken input. For example, in
Case 1 (Table 4), the model initially misinterprets
the spoken entity "Brittany" as "Britain," leading
to an irrelevant answer. Similarly, Case 2 (Table 5)
shows an erroneous entity recognition from the
speech input. After applying interventions to key
tokens along the alignment path, the model success-
fully realigns its semantic representation with the
ground-truth text, thereby recovering the correct
understanding and generating an accurate response.

The second category addresses factual errors that
occur even when the initial semantic parsing of the
spoken query is correct. In Case 3 (Table 6) and
Case 4 (Table 7), the model demonstrates a correct
understanding of the question’s topic but fails to
produce factually accurate or complete answers.
Our interventions, by modifying the representa-
tion direction or norm along the alignment path,
also prove effective in these scenarios, guiding the
model to generate factually correct responses con-
sistent with the reference answers.

Collectively, these case studies demonstrate that
fine-grained interventions on the token alignment
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Model Strategy Param Steps Speech Input (%, ↑) Text Input (%, ↑)
GAP (↓)

AdvBench IfEval OBQA MMSU sd-qa Overall AdvBench IfEval OBQA MMSU sd-qa Overall

Qwen2.5-1.5B

Full 1.5B

2,000 77.50 15.55 25.27 26.25 31.83 35.28 96.73 20.16 61.10 42.06 44.44 52.90 17.62
4,000 95.77 14.01 44.40 29.99 31.10 43.06 98.85 20.64 69.01 44.99 38.89 54.48 11.42
6,000 94.04 12.39 45.93 32.60 29.84 42.96 97.69 18.97 69.45 45.02 39.47 54.12 11.16
8,000 95.77 13.67 43.52 31.36 30.02 42.87 98.65 18.44 68.13 45.25 34.45 52.99 10.12

10,000 98.46 13.36 49.45 33.12 33.45 45.57 99.04 18.64 69.89 46.39 40.60 54.91 9.34

LoRA 9M

2,000 32.17 11.40 25.71 26.61 23.33 23.84 88.08 32.16 73.85 52.60 39.96 57.33 33.48
4,000 59.35 13.67 30.99 26.28 27.85 31.63 84.42 24.27 74.51 74.51 39.42 54.93 23.30
6,000 80.00 14.22 36.04 27.00 29.48 37.35 88.08 21.90 74.07 51.89 37.97 54.78 17.43
8,000 83.08 13.81 36.48 27.94 30.20 38.30 88.46 21.82 74.95 51.76 38.70 55.14 16.83

10,000 84.42 13.46 40.00 30.32 30.38 39.72 88.08 21.56 75.38 51.43 40.14 55.32 15.60

Qwen2.5-7B

Full 7B

2,000 92.31 14.85 43.30 31.10 36.17 43.54 98.27 23.17 80.00 60.44 44.12 61.20 17.66
4,000 96.54 16.14 54.29 33.96 33.82 46.95 99.62 23.29 78.68 58.36 41.23 60.23 13.29
6,000 94.23 18.60 57.80 36.92 36.35 48.78 99.23 26.55 79.56 59.17 45.03 61.91 13.13
8,000 97.31 16.58 58.68 35.88 32.19 48.13 99.04 23.80 75.16 58.65 41.77 59.69 11.56

10,000 98.85 15.84 58.02 35.56 33.45 48.34 100.0 24.39 71.87 56.25 43.58 59.22 10.87

LoRA 20M

2,000 67.12 14.16 27.91 26.28 35.44 34.18 99.04 62.30 87.47 69.06 57.50 75.08 40.89
4,000 92.12 16.92 42.64 30.03 35.62 43.47 99.23 55.38 88.13 68.41 47.56 71.74 28.28
6,000 94.81 22.10 48.13 34.16 37.07 47.25 99.04 50.79 87.25 67.86 48.10 70.61 23.35
8,000 95.19 22.63 49.45 35.56 38.52 48.27 99.04 49.71 88.13 67.79 48.28 70.59 22.32

10,000 96.92 25.42 56.26 37.67 38.88 51.03 99.04 48.19 87.69 67.24 47.92 70.02 18.99

Llama3.2-3B

Full 3B

2,000 75.38 12.14 23.30 25.08 27.12 32.61 98.27 26.13 63.52 45.22 42.68 55.16 22.56
4,000 95.96 12.06 23.52 25.02 31.46 37.60 98.46 21.90 63.96 43.82 40.69 53.76 16.16
6,000 99.04 12.97 27.47 25.47 34.90 39.97 99.23 22.43 61.32 42.55 42.68 53.64 13.67
8,000 93.85 13.72 24.84 24.98 29.84 37.44 98.65 24.17 62.20 42.88 42.86 54.15 16.71

10,000 98.65 11.60 22.64 24.98 32.73 38.12 99.23 23.88 59.12 40.53 42.13 52.98 14.86

LoRA 12M

2,000 11.15 14.66 21.32 25.54 19.89 18.51 97.50 63.37 75.60 56.64 65.46 71.71 53.20
4,000 58.08 12.18 22.42 23.19 35.62 30.30 98.46 62.64 76.92 55.50 59.13 70.53 40.23
6,000 74.42 12.97 20.88 24.79 38.70 34.35 98.08 59.32 75.60 54.52 52.98 68.10 33.75
8,000 84.42 13.52 19.12 25.37 38.52 36.19 98.08 55.39 77.14 54.39 50.27 67.05 30.86

10,000 79.66 13.28 22.64 24.53 40.33 36.09 97.69 53.25 76.92 54.26 51.54 66.73 30.64

Llama3.1-8B

Full 8B

2,000 93.27 13.67 30.77 25.80 34.90 39.68 99.62 19.55 68.13 44.37 43.94 55.12 15.44
4,000 99.23 14.23 31.43 27.03 36.89 41.76 99.62 18.11 67.91 41.09 43.04 53.95 12.19
6,000 97.50 13.42 38.68 28.43 37.61 43.13 99.04 18.71 64.62 43.33 42.13 53.57 10.44
8,000 98.85 12.70 33.63 27.26 37.97 42.08 99.81 17.03 58.90 39.66 43.58 51.79 9.71

10,000 99.23 13.94 44.18 28.59 36.53 44.49 99.42 17.91 67.03 42.39 41.05 53.56 9.07

LoRA 20M

2,000 85.96 16.60 27.69 27.62 43.76 40.33 90.38 67.68 81.10 64.09 54.61 71.57 31.25
4,000 94.23 17.43 36.04 30.68 43.94 44.47 99.42 63.58 81.54 64.57 54.61 72.75 28.28
6,000 93.46 19.16 41.10 31.10 45.57 46.08 99.42 61.10 81.10 64.18 54.79 72.12 26.04
8,000 97.12 19.36 43.74 32.37 43.58 47.23 99.42 62.75 81.10 64.02 54.61 72.38 25.15

10,000 96.92 21.12 49.01 32.69 45.75 49.10 99.42 59.16 81.10 64.31 53.16 71.43 22.33

Table 2: Comparison of Alignment Experiment Results: Speech and Text Input Performance Across Steps

Model AdvBench IfEval OBQA MMSU sd-qa Overall

Qwen2.5-1.5B 97.31 41.82 69.67 50.78 49.01 61.72
Llama3.2-3B 98.08 69.71 60.66 51.37 49.28 65.82
Qwen2.5-7B 98.27 70.58 84.84 69.03 63.83 77.31
Llama3.1-8B 98.46 71.12 72.09 62.04 58.23 72.39

Table 3: Performance of pipeline baselines on the VoiceBench test set. Each system consists of a Whisper-large-v3
ASR frontend followed by the specified LLM backend.

path, through either embedding direction or norm
modification, consistently improve the model’s an-
swer accuracy and robustness for spoken inputs.
This effect is observed in correcting both semantic
misinterpretations and factual knowledge errors,
indicating that such interventions can enhance mul-
timodal alignment and enable more reliable knowl-
edge retrieval from speech input.

B Validation on External LSLM

B.1 Modality Gap Across Diverse Paradigms

To substantiate the generality of the modality
gap, we extended our analysis to several publicly
available LSLMs that represent diverse alignment
paradigms. These models include SpeechGPT
(Zhang et al., 2023), which relies on speech dis-

cretization; BLSP (Wang et al., 2024a), which
aligns the speech and text modalities via boot-
strapped behavior alignment; GLM-4-Voice (Zeng
et al., 2024), which utilizes interleaved text-speech
tokens; and Qwen2-Audio (Chu et al., 2024),
which employs a three-stage training pipeline (pre-
training, SFT, and DPO) and uses natural language
prompts to unify large-scale audio tasks during
pre-training. Each model was evaluated on our
standardized VoiceBench test set, comparing per-
formance on speech inputs against their correspond-
ing text transcriptions.

The results, presented in Table 8, consistently
reveal a significant performance drop for speech
inputs across all models. This corroborates our
central thesis that the modality gap is a prevalent
challenge, independent of the specific LSLM archi-
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Figure 8: Evolution of Alignment Path Monotonicity and Consistency. For each model (columns) and training
strategy (rows), we report the trajectory of three metrics: Cosine Path Monotonicity (blue), Euclidean Path
Monotonicity (yellow), and Alignment Path Consistency (orange) across checkpoints during training. Higher
monotonicity values indicate a stronger tendency toward monotonic alignments between text tokens and speech
frames. Higher consistency values reflect greater agreement between alignment paths derived from the two similarity
measures, suggesting stable and modality-agnostic alignment patterns.

Case 1

Question: What do they speak in Brittany?

Reference Answer: Breton.
Text Input: In Brittany, the local language is Breton. It’s a Celtic language that’s still spoken by
some people in the region. (✓)
Speech Input: In Britain, the primary language spoken is English. However, there are also other
languages spoken, especially in areas with diverse populations, such as Welsh in Wales, Scottish
Gaelic in Scotland, and Irish in Northern Ireland. (✗)
Speech Input (Angle Bot3): Breton is a Celtic language that’s still spoken in parts of France,
particularly in the region of Brittany. It has a unique sound and rhythm that’s quite distinct from
other languages. (✓)
Speech Input (Length Bot3): in Scotland, they speak Scottish Gaelic. In Northern Ireland, they
speak Northern Irish, which is a dialect of Irish. In Wales, they speak Welsh. And in Cornwall,
they speak Cornish. Each place has its own unique language and cultural heritage. (✗)
Speech Input (Angle All): In Brittany, they primarily speak French. However, there are some
areas where you might also hear Breton, which is a Celtic language. But don’t worry, most people
there will be speaking French. (✓)
Speech Input (Length All): Cockney, which is a type of East London accent. It’s known for its
unique way of pronouncing certain letters and sounds, often making it quite distinct from other
accents in the United Kingdom. (✗)

Table 4: Case 1 from intervention experiments on the sd-qa dataset.

5199



Case 2

Question: Who is Sean Hannity?

Reference Answer: An American talk show host and conservative political commentator.

Text Input: Sean Hannity is an American conservative political commentator and radio host. He’s
best known for hosting his own show on Fox News, where he discusses politics, current events,
and social issues. He’s also a popular author and has written several books. (✓)
Speech Input: Shawn Hanity is an American actor and comedian. He’s best known for his roles in
television shows like Saturday Night Live and Brooklyn Nine-Nine. He’s also appeared in several
films and has been involved in various other projects. (✗)
Speech Input (Angle Bot3): Sean Hannity is a well-known American conservative political
commentator and television personality. He hosts a popular radio show and has his own talk
show on Fox News, where he often discusses current political issues and provides commentary on
various topics. (✓)
Speech Input (Length Bot3): Shan? He’s a British comedian and actor known for his work in
both stand-up and on television shows like The League of Gentlemen. (✗)
Speech Input (Angle All): Sean Hannity is a well-known American conservative political com-
mentator and television personality. He hosts a popular radio show and has his own talk show on
Fox News, where he often discusses current political issues and supports Republican candidates.
(✓)
Speech Input (Length All): Sean Hannity is a well-known American conservative political
commentator and television personality. He hosts a popular radio show and has his own talk
show on Fox News, where he often discusses current political issues and provides commentary on
various topics. Sean Hannity is also a best-selling author and has written several books. (✓)

Table 5: Case 2 from intervention experiments on the sd-qa dataset.

Case 3

Question: What’s the biggest wasp?

Reference Answer: Asian giant hornet.

Text Input: The largest wasp in the world is the Asian giant hornet. It can grow up to two and a
half inches long, which is quite big compared to other wasps. (✓)
Speech Input: The largest wasp is the tarantula hawk wasp, which can grow up to two and a
half inches long. These wasps are known for their impressive size and their ability to paralyze
tarantulas to use as food for their larvae. (✗)
Speech Input (Angle Bot3): The largest wasp species is the giant hornet, also known as the Asian
giant hornet. These impressive insects can have a wingspan of up to two inches and are found in
various parts of Asia. They are known for their aggressive behavior and can be quite dangerous.
(✓)
Speech Input (Length Bot3): It’s called the Great Barrier Reef, and it’s located off the coast of
Australia. It’s so big that it can even be seen from space! (✗)
Speech Input (Angle All): The largest wasp species is the golden paper wasp. They can build
some of the largest and most complex nests among all wasp species, often using chewed wood
fibers mixed with saliva to create a papery material. These nests can be quite impressive! (✗)
Speech Input (Length All): It’s called the Great Barrier Reef, and it’s located off the coast of
Australia. It’s so big that it can even be seen from space! (✗)

Table 6: Case 3 from intervention experiments on the sd-qa dataset.

5200



Case 4

Question: Where does the story of American Horror Story: Murder House take place?

Reference Answer: Los Angeles, California.

Text Input: The story of American Horror Story: Murder House takes place in Los Angeles,
California. (✓)
Speech Input: The story of American horror story murder house takes place in the fictional town
of Harmony, which is modeled after the real town of New Orleans. The house itself is located in
the French Quarter, known for its rich history and eerie atmosphere. (✗)
Speech Input (Angle Bot3): American Horror Story Murder House is set in a fictional address in
Los Angeles, California. The exact location isn’t specified, but it’s portrayed as being in the heart
of the city. (✓)
Speech Input (Length Bot3): American Horror Story Murder House is set in a fictional address
in Los Angeles, California. The exact location isn’t specified, but it’s portrayed as being in the
heart of the city. (✓)
Speech Input (Angle All): American Horror Story Murder House is set in New York City. (✗)
Speech Input (Length All): American Horror Story Murder House is set in New York City. The
story revolves around a haunted house in the heart of the city, where the main character, a young
woman named Wendy, moves in with her husband and their son. The house has a dark history, and
its past is gradually revealed throughout the series. (✗)

Table 7: Case 4 from intervention experiments on the sd-qa dataset.

tecture or alignment strategy.

B.2 In-depth Analysis of Modality Alignment
in Qwen2-Audio

To further validate the robustness of our analytical
framework and conclusions across different train-
ing paradigms, we conducted an in-depth analysis
of Qwen2-Audio (Chu et al., 2024). This model
is particularly representative as it utilizes a multi-
stage training pipeline involving pre-training, su-
pervised fine-tuning, and direct preference opti-
mization. As demonstrated below, despite its dis-
tinct training methodology, Qwen2-Audio exhibits
patterns in its modality alignment mechanism that
are highly consistent with our core findings.

Coarse-Grained Representation Dynamics.
Following the methodology outlined in Section 4,
we analyzed the sequence-level similarity dy-
namics between speech and text representations
in Qwen2-Audio. The results are visualized in
Figure 9. The observed layer-wise similarity
dynamics, characterized by an increase in cosine
similarity and a concurrent upward trend in
Euclidean distance with network depth, are highly
analogous to the phenomena identified in our
primary experiments.
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Figure 9: Layer-wise cosine similarity (blue) and Eu-
clidean distance (orange) between speech and text rep-
resentations for Qwen2-Audio. The horizontal axis indi-
cates the model layers.

Fine-Grained Monotonicity Analysis. We fur-
ther evaluated the token-level alignment path mono-
tonicity for Qwen2-Audio using the three metrics
defined in Appendix A.3. As presented in Table 9,
these results are highly consistent with the values
obtained from the models in the primary experi-
ments at their final training stages, detailed in Fig-
ure 8. Such consistency across disparate training
paradigms provides strong evidence for the spon-
taneous emergence of a monotonic alignment path
as a generalizable phenomenon.
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Table 8: Performance comparison of various LSLMs on speech and text inputs.

Model Input Type AdvBench IfEval OBQA MMSU sd-qa Overall GAP (↓)

SpeechGPT Speech 85.00 18.41 25.27 25.60 26.04 36.06 8.09Text 87.69 23.82 28.35 25.57 55.33 44.15

BLSP Speech 8.65 18.01 21.10 24.37 49.73 24.37 15.65Text 7.88 37.00 52.31 37.61 65.28 40.02

GLM-4-Voice Speech 79.81 24.93 51.43 38.58 53.89 49.73 6.51Text 85.38 31.18 60.00 42.62 62.03 56.24

Qwen2-Audio Speech 97.69 19.95 42.42 35.82 43.58 47.89 13.30Text 98.85 28.60 70.11 44.57 63.83 61.19

Table 9: Alignment path statistics for Qwen2-Audio.

Statistic Cosine Path Monotonicity Euclidean Path Monotonicity Alignment Path Consistency

Value 0.7891 0.7586 0.6875

Table 10: Performance (%, ↑) on the sd-qa subset for Qwen2-Audio under different token-level intervention
strategies. Results that outperform the corresponding Speech Input are typeset in bold.

Model Text Input Speech Input Angle Projection Length Normalization

Bottom3 All Bottom3 All

Qwen2-Audio 58.77 35.08 35.99 34.18 33.27 34.72

Token-Level Intervention Experiments. Fi-
nally, we replicated the token-level intervention
experiments from Section 5.3 on the sd-qa subset.
As shown in Table 10, applying angle projection to
the least-aligned tokens (Bottom3) successfully im-
proved performance on speech inputs. This result
demonstrates that our proposed intervention strat-
egy for mitigating the modality gap is also effective
for models trained with a multi-stage approach.
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