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Abstract

Text-based person search (TBPS) enables the
retrieval of person images from large-scale
databases using natural language descriptions,
offering critical value in surveillance appli-
cations. However, a major challenge lies in
the labor-intensive process of obtaining high-
quality textual annotations, which limits scal-
ability and practical deployment. To address
this, we introduce two complementary modules:
Multi-Turn Text Generation (MTG) and
Multi-Turn Text Interaction (MTI). MTG
generates rich pseudo-labels through simu-
lated dialogues with MLLMs, producing fine-
grained and diverse visual descriptions with-
out manual supervision. MTI refines user
queries at inference time through dynamic,
dialogue-based reasoning, enabling the sys-
tem to interpret and resolve vague, incomplete,
or ambiguous descriptions—characteristics of-
ten seen in real-world search scenarios. To-
gether, MTG and MTI form a unified and
annotation-free framework that significantly
improves retrieval accuracy, robustness, and
usability. Extensive evaluations demonstrate
that our method achieves competitive or su-
perior results while eliminating the need for
manual captions, paving the way for scalable
and practical deployment of TBPS systems.

1 Introduction

Text-based person search (TBPS) aims to retrieve
images of a target individual from large-scale
galleries using natural language descriptions (Li
et al., 2017a). It lies at the intersection of image-
text retrieval (Lei et al., 2022; Sun et al., 2021;
Miech et al., 2021) and image-based person re-
identification (Re-ID) (He et al., 2021; Luo et al.,
2019; Wang et al., 2022a), offering a flexible al-
ternative to visual queries. Text queries are more
accessible and often provide richer semantic cues
about identity, enabling applications ranging from
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personal photo organization to public security and
surveillance.

Since the seminal introduction of CUHK-
PEDES (Li et al., 2017a), TBPS has made sub-
stantial progress, largely driven by advances in
cross-modal representation learning that align vi-
sual and textual modalities in a shared embedding
space (Radford et al., 2021). However, despite
these technical developments, one fundamental bot-
tleneck remains: the reliance on high-quality tex-
tual annotations. While visual data can be easily
acquired from surveillance footage, generating ac-
curate and semantically rich descriptions is labor-
intensive, expensive, and inherently unscalable.

Automated captioning methods provide a partial
solution, but often suffer from semantic drift, repet-
itive phrasing, and hallucinated content (Kolouju
et al., 2025), leading to vague or misleading la-
bels (see Figure 1). This limitation motivates a
central research question: Can TBPS be achieved
effectively without depending on manually crafted
descriptions?

To address this challenge, we propose Chat-
Driven Text Generation and Interaction (CTGI),
a unified and annotation-free framework that
bridges the supervision gap via multimodal dia-
logue. CTGI consists of two synergistic modules:
Multi-Turn Text Generation (MTG), which pro-
vides training supervision, and Multi-Turn Text
Interaction (MTI), which refines queries at infer-
ence time (see Figure 2).

The MTG module simulates multi-turn conver-
sations with an MLLM to generate rich pseudo-
labels. Starting from a baseline caption, it iter-
atively refines the description using a series of
attribute-targeted prompts that mimic human di-
alogue. This process leads to semantically dense,
diverse, and fine-grained annotations that far ex-
ceed the quality of single-turn captioning. To ac-
commodate these longer descriptions, we extend
CLIP’s default 77-token input limit by applying po-
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The individual  exudes confidence and elegance with their choice of attire. They are 
wearing a long white coat with purple stripes, which is both practical and stylish. The 
coat's casual style is balanced by the addition of a white hat. The person's upright 
posture and confident demeanor are further enhanced by their pair of black boots. A 
simple and neat hairstyle complements their overall appearance, and they are carrying 
a black bag. 

The woman was wearing a white down jacket, a white hat, black trousers and grey boots. 
She is wearing glasses. She's looking at the camera.

(a) Human-Written Captions

(b) Direct Captioning via Large Language Models

The woman is wearing a long - sleeved, light purple 
hooded down jacket. The jacket features a diamond - 
patterned stitching design on the surface, with white 
lines adorning the edges, giving it a simple and 
stylish look. She has on a white knitted hat, and 
pairs the jacket with black pants and grey short boots. 

(c) Our Multi-Turn Captioning (MTG)

MLLM

human

D0:She is wearing a long - sleeved, light purple 
hooded down jacket. The jacket has a diamond - 
patterned stitching design on the surface and 
white lines on the edges,.

Q1: What kind of hat is the woman wearing?
A1:She has on a white knitted hat.

Q0:What is the woman in the picture wearing on 
her upper body?

Q2: What does she pair with the jacket?

A2:She pairs the jacket with black pants and grey 
short boots.

Keep asking until Round N

Q2: What does she pair with the jacket?
A2:She pairs the jacket with black pants and grey 
short boots.

Reconstructor

Figure 1: Comparison of person description strategies. (a) Human-written captions are concise but often lack
compositional depth and attribute coverage. (b) Direct captioning with large language models (LLMs) generates
descriptions in a single forward pass, but often suffers from hallucinations or omissions—particularly in capturing
fine-grained visual details such as clothing, accessories, or scene context. (c) Our proposed multi-turn strategy
simulates an interactive dialogue with the MLLM, progressively enriching descriptions through targeted Q&A,
yielding more expressive, accurate, and human-aligned captions.

sitional embedding stretching—retaining the first
20 learned positions and interpolating the remain-
ing embeddings to support up to 248 tokens without
retraining the model.

The MTI module operates during inference to
refine under-specified user queries through MLLM-
driven dialogue. It begins by identifying a candi-
date anchor image and then generates targeted ques-
tions to extract missing or ambiguous attributes.
The responses are aggregated into a refined query
that is better aligned with the target image. MTI
also incorporates filtering mechanisms to avoid re-
dundancy and maintain efficiency. As a plug-and-
play module, MTI can be easily deployed with
various pretrained vision-language retrieval models
with minimal adaptation cost.

Our key contributions are as follows:

• We propose CTGI, a novel chat-driven frame-
work for TBPS that eliminates the need
for manual annotations by unifying pseudo-
caption generation and interactive query re-
finement.

• We develop MTG, a multi-turn captioning
module that generates rich, attribute-aware
pseudo-labels through iterative dialogue, and

supports long-text encoding via positional em-
bedding extension.

• We introduce MTI, a dynamic inference mod-
ule that refines natural language queries via
MLLM-guided interaction, enhancing align-
ment between user input and visual content
for more accurate retrieval.

2 Related Work

2.1 Text-Based Person Search (TBPS)
has progressed significantly since the release of
CUHK-PEDES (Li et al., 2017a). Early efforts
focused on embedding visual and textual data
into a shared space, evolving from global align-
ment (Zheng et al., 2020; Farooq et al., 2020) to
fine-grained matching (Chen et al., 2018, 2022; Suo
et al., 2022), often enhanced by pose cues (Jing
et al., 2020), part-level features (Wang et al.,
2020), or semantic knowledge (Loper and Bird,
2002). In parallel, representation learning ap-
proaches aimed to extract modality-invariant fea-
tures by addressing background clutter (Zhu et al.,
2021a), color sensitivity (Wu et al., 2021), and
multi-scale fusion (Shao et al., 2022; Wang et al.,
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Query0: The man with the dark hair is wearing a black 
top.He wears the dark green pants and the black sneakers.

D0:No

Q1:What kind of hairstyle does the man have?

A1:The man has short black hair.

Q0:Can this accurately describe <Query0> the 
image?

Q2:What is the man's posture ?

A2:The man is walking across the street.

Keep asking until Round K

Keep asking until D0:Yes D0:Yes

Q0:Can this accurately describe 
<Query0> the image?

Query 1 :  A  man 
with short black 
hair, dressed in a 
dark jacket and  
dark green pants, 
and wearing black 
sneakers.  He is 
w a l k i n g  o n  a 
street, possibly in 
an  urban  a rea . 
The presence of 
several bicycles in 
the background .

Reconstructor

Text-Image Retrieval Model

Out0

Out1

Test1

Retrieval

The male in the image is wearing a black hoodie, paired 
with black pants and brown shoes. He is carrying a black 
backpack over both shoulders. His black hair is neatly 
styled, and he is wearing glasses. He is riding a yellow 
bicycle , holding the handlebars with both hands ......

Reconstructor

Train

Generation

D0:The person  is wearing a black hoodie, They are 
also wearing a backpack. They are riding a bicycle 
with black tires. 

Q1: Is the person riding the bicycle a man 
or women?

A1:The person riding the bicycle is a man.

Q0:Write a coherent paragraph describing 
the person's appearance in the image.

Q2: What type of shoes is the person wearing 
while riding the bicycle?

A2:The person is wearing brown shoes while 
riding the bicycle.

Keep asking until Round K

Test0

Figure 2: Overview of the proposed CTGI framework for text-based person search. The framework consists
of two stages: (1) Training-time generation: MTG simulates multi-turn dialogue to iteratively enrich captions,
while a reconstructor synthesizes pseudo-labels using structured prompts; and (2) Inference-time retrieval: MTI
refines user queries through MLLM-driven Q&A, enhancing alignment between the query and candidate images for
improved re-ranking.

2024b). Recently, large-scale pretrained models
like CLIP (Radford et al., 2021) have enabled
strong generalization for cross-modal retrieval with
minimal tuning (Jiang and Ye, 2023b; Han et al.,
2021; Wei et al., 2023), with IRRA (Jiang and
Ye, 2023b) and DURA (Xie et al., 2025) improv-
ing alignment via multimodal interaction. Despite
these advances, most TBPS methods still depend
on costly human-annotated text, limiting scalabil-
ity. Weakly supervised (Zhao et al., 2021) and
synthetic labeling (Yang et al., 2023; Tan et al.,
2024) offer partial relief but struggle with vague or
conversational queries.

To overcome this limitation, we propose a new
TBPS paradigm—CTGI—which eliminates the
reliance on manual annotations and significantly
enhances retrieval through multi-turn dialogue with
MLLMs. In contrast to earlier interactive retrieval
systems (Guo et al., 2018; Lee et al., 2024), which
often require task-specific data or model retrain-
ing, CTGI supports open-ended queries centered
on behavioral attributes and dynamically refines
both pseudo-labels during training and user queries
during inference. By leveraging MLLMs as plug-
and-play agents, CTGI achieves a robust, scalable,
and annotation-free TBPS framework.

Vision-Language Pre-training and Multimodal
Large Language Models

The landscape of multimodal research has been
fundamentally reshaped by the success of Vision-
Language Pre-training. This approach aligns visual
and textual data, enabling remarkable zero-shot
transfer capabilities that allow models to perform
a wide range of downstream tasks, such as text-
based image retrieval, without task-specific fine-
tuning. Building on this foundation, recent efforts
have advanced MLLMs. Key research directions
include enhancing their reasoning abilities (Guo
et al., 2025a), improving underlying representa-
tions for better cross-modal generalization (Huang
et al., 2025), and utilizing prompt-based learning
to steer model behavior. Studies have explored
techniques such as efficient prompting for adapta-
tion (Guo et al., 2025b), dynamic prompt calibra-
tion for continual retrieval tasks (Jin et al., 2024),
and contrast-augmented prompts to enhance ro-
bustness (Fu et al., 2024). Our proposed CTGI
framework is directly inspired by these advance-
ments. We leverage the descriptive and conversa-
tional power of MLLMs (Cheng et al., 2025) to
create an interactive, annotation-free system for
person search.
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3 Methodology

In this section, we briefly outline a Chat-Driven
Text Generation and Interaction (CTGI) model for
person retrieval. The CTGI model framework con-
sists of two main modules: (1) The Multi-Turn
Text Generation (MTG) module, which uses a
multimodal large language model to generate de-
tailed textual descriptions for given person images
through an interactive Q&A dialogue; and (2) The
Multi-Turn Text Interaction (MTI) module, which
is used in an inference-time pipeline that refines the
textual query by leveraging visual context from re-
trieved images and then performs re-ranking. The
overall framework is illustrated in Figure 2.

3.1 Multi-Turn Text Generation
The Multi-Turn Text Generation module generates
a comprehensive pseudo-label for each person im-
age I by iteratively querying a multimodal large
language model for fine-grained details. This pro-
cess is initiated with an initial captioning prompt
designed to elicit a general description. Given an
image I , we can use the MLLM with a prompt Pinit,
e.g., “Describe the person in the image,” yielding
an initial static caption Ts:

Ts = MLLM
(
I, Pinit

)
, (1)

However, Ts provides only a simple, basic tex-
tual description and often overlooks distinctive at-
tributes. To capture more distinctive attributes of a
person, the QA-guided refinement rounds method
provides a more detailed textual description im-
provement strategy. Specifically, in each round i,
the model generates an answer ai that aligns with
the image content based on a specific question qi,
e.g.,

qi: Is the person riding the bicycle?
ai: Yes, the person is riding the bicycle.

After N rounds of QA operations, we obtain all
preceding QA results {(qi, ai)}Ni=1 concatenated
together to obtain the enriched caption Te:

Te = MLLM
(
[a1, a2, ..., aN ]

)
, (2)

Compared to Ts, Te provides more fine-grained
attributes for the given person image, e.g., col-
ors, clothing details, and physical features, which
greatly enhance the textual description.

It is important to note that due to the presence of
similar questions in the question list, this may lead

to repetitive answers. To remove the redundant de-
scriptions, we use the MLLM again and reconstruct
Te by incorporating Ts:

Te = MLLM
(
Te | Ts, p

)
, (3)

where p denotes the input prompt to the MLLM,
e.g., “Rephrase the description using all the above
information." Compared to Te in Eq. (2), Te in Eq.
(3) provides a more concise and effective textual
description, rather than increasing the quantity of
image-related details. Meanwhile, compared to Ts

in Eq.(1), Te contains more details extracted during
the MLLM Q&A process, and better aligns with
human attention to core image information.

3.2 More Text Positional Embeddings
CLIP’s original 77-token limit, imposed by its
fixed-length absolute positional embeddings, re-
stricts its ability to process long and detailed
text—a critical limitation for tasks such as Text-
Based Person Search (TBPS). To address this, we
adopt a knowledge-preserving positional embed-
ding stretching technique that extends the model’s
input capacity while maintaining compatibility
with pretrained weights.

Following Long-CLIP (Zhang et al., 2024)and
FineLIP(Asokan et al., 2025), we preserve the first
20 learned positional embeddings, which are em-
pirically the most well-trained, and interpolate the
remaining positions (21–77) to reach a new input
length of 248 tokens by applying a 4× stretching
factor.

Let PE(pos) denote the original positional em-
bedding at position pos ∈ [1, 77]. We construct the
stretched embedding PE∗(pos) for the extended
range pos ∈ [1, 248] as:

PE
∗
(pos) =





PE(pos), for pos ≤ 20

(1 − α) · PE
(⌊

pos
λ2

⌋)

+α · PE
(⌈

pos
λ2

⌉)
, for 21 ≤ pos ≤ 77

(4)

Here, λ = 248−20
77−20 ≈ 4 is the interpolation factor,

and α is the fractional part of pos−20
λ . This ensures

smooth interpolation while preserving pretrained
embeddings for the initial positions.

Inspired by LiT (Zhai et al., 2022), this approach
avoids reinitialization or retraining, and allows
CLIP to encode longer, semantically rich descrip-
tions generated by the MTG module. Empirical re-
sults in Table 4 confirm that this strategy enhances
retrieval performance without sacrificing alignment
learned during pretraining.
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3.3 Multi-Turn Text Interaction (MTI)
MTI operates during inference to resolve under-
specified or vague user queries through multi-turn
interaction.

Step 1: Anchor Identification. Given a user
query q, the system retrieves top-K candidates
{v̂1, ..., v̂K} using similarity score Sq,v. For each
v̂k, the MLLM is prompted to judge alignment with
q. The first affirmative response identifies the an-
chor v̄. If no match is found within K attempts, no
refinement is applied.

Step 2: Interactive Refinement. With anchor
v̄, MTI generates a diagnostic question set {ci}
focused on missing attributes. Responses are ob-
tained via visual Q&A:

rv̄ = MLLM(Tvqa({ci}, v̄)) (5)

The final query q̂ is synthesized using a template
prompt to merge rv̄ and q:

q̂ = MLLM(Taggr(rv̄, q)) (6)

Step 3: Re-ranking. The final similarity is com-
puted as:

Ŝq,v = λSq,v + (1− λ)Sq̂,v (7)

with Ŝq,v̄ = 1 to promote anchor matching.
Early stopping is triggered when v̂1 surpasses
threshold ξ = 0.85.

3.4 Reconstructor
The Reconstructor plays a pivotal role in trans-
forming fragmented outputs from multi-turn Q&A
into coherent and high-quality descriptions. It is
deployed in both training and inference pipelines
to enhance the effectiveness of CTGI without re-
quiring any manual annotations or dataset-specific
tuning. To ensure the quality of generated descrip-
tions during training, MTG maintains a dynamic
question pool and discards Q&A pairs that exhibit
low semantic relevance or redundant information.
This filtering helps avoid overlong or repetitive cap-
tions.

For synthesis, the Reconstructor leverages the
GPT-4o API to convert structured Q&A logs
into fluent and semantically rich pseudo-captions.
These refined captions serve as supervision signals
for training downstream retrieval models.

In the inference stage, the Reconstructor also
contributes to query refinement within MTI. A set
of curated diagnostic templates is used to identify

typical ambiguities. These templates help elicit
missing attributes without introducing generic or
noisy questions. The responses are then aggregated
into a revised query that is semantically aligned
with the visual anchor.

This unified design ensures that CTGI can sup-
port both training-time pseudo-label generation and
test-time query refinement effectively—without
reliance on human-written descriptions or task-
specific engineering.

4 Experiments

To validate the efficacy and robustness of our pro-
posed framework, we conduct a comprehensive
set of experiments. Our evaluation strategy begins
by re-annotating three public datasets, generating
enriched textual descriptions that provide greater
semantic depth and diversity than the original cap-
tions. We then systematically compare retrieval
models trained on these generated pseudo-labels
against baseline models trained on the original an-
notations. To assess the framework’s generalizabil-
ity, we integrate our method into standard TBPS
pipelines to evaluate its impact. Finally, a series
of in-depth ablation studies and visual analyses are
performed to comprehensively dissect the contribu-
tions of each component and better understand the
method’s overall effectiveness.

4.1 Datasets and Performance Measurements
Datasets. We evaluate our approach using three
Text-based Person Retrieval datasets: CUHK-
PEDES (Li et al., 2017b), ICFG-PEDES (Ding
et al., 2021b), and RSTPReid (Zhu et al., 2021b).
Our training solely utilizes image data, devoid of
any dependency on manually annotated text data.
During the testing phase, captions from the dataset
are leveraged for re- trieval.

Evaluation Metrics. Following standard prac-
tice, we evaluate using Rank-k (k=1,5,10), mean
Average Precision (mAP). Higher values indicate
better retrieval performance.

4.2 Implementation Details
We evaluate CTGI using two strong TBPS base-
lines: IRRA (Jiang and Ye, 2023a) and RDE (Qin
et al., 2024), both built on CLIP-ViT/B-16 (Rad-
ford et al., 2021). For multimodal reasoning, we
adopt Qwen2-VL-7B (Wang et al., 2024a) as the
core MLLM, while the Reconstructor leverages
the OpenAI GPT-4o API (OpenAI, 2023) for
pseudo-caption synthesis.
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Table 1: Performance on CUHK-PEDES . *: trained with LLaVA-1.5 captions. The best and second-best results are
in bold and underline, respectively.

Methods Ref. Image Enc. Text Enc. R-1 R-5 R-10 mAP

Fully Supervised

TIMAM (Sarafianos et al., 2019) ICCV’19 RN101 BERT 54.51 77.56 79.27 -
ViTAA (Wang et al., 2020) ECCV’20 RN50 LSTM 54.92 75.18 82.90 51.60
NAFS (Gao et al., 2021) arXiv’21 RN50 BERT 59.36 79.13 86.00 54.07
DSSL (Zhu et al., 2021a) ACMMM’21 RN50 BERT 59.98 80.41 87.56 -
SSAN (Ding et al., 2021a) arXiv’21 RN50 LSTM 61.37 80.15 86.73 -
Lapscore (Wu et al., 2021) ICCV’21 RN50 BERT 63.40 - 87.80 -
ISANet (Yan et al., 2022b) arXiv’22 RN50 LSTM 63.92 82.15 87.69 -
SAF (Li et al., 2022) ICASSP’22 ViT-Base BERT 64.13 82.62 88.40 -
DCEL (Qin et al., 2022) ACMMM’22 CLIP-ViT CLIP-Xformer 71.36 88.11 92.48 64.25
IVT (Shu et al., 2022) ECCV’22 ViT-Base BERT 65.59 83.11 89.21 -
CFine (Yan et al., 2022a) TIP’23 CLIP-ViT BERT 69.57 85.93 91.15 -
IRRA (Jiang and Ye, 2023c) CVPR’23 CLIP-ViT CLIP-Xformer 73.38 89.93 93.71 66.13
BiLMa (Fujii and Tarashima, 2023) ICCV’23 CLIP-ViT CLIP-Xformer 74.03 89.59 93.62 66.57
PBSL (Shen et al., 2023) ACMMM’23 RN50 BERT 65.32 83.81 89.26 -
BEAT (Ma et al., 2023) ACMMM’23 RN101 BERT 65.61 83.45 89.54 -
LCR2S (Yan et al., 2023) ACMMM’23 RN50 TextCNN 67.36 84.19 89.62 59.24
DCEL (Li et al., 2023) ACMMM’23 CLIP-ViT CLIP-Xformer 75.02 90.89 94.52 -
UniPT (Shao et al., 2023) ICCV’23 CLIP-ViT CLIP-Xformer 68.50 84.67 - -
TBPS (Cao et al., 2024) AAAI’24 CLIP-ViT CLIP-Xformer 73.54 88.19 92.35 65.38
RDE (Qin et al., 2024) CVPR’24 CLIP-ViT CLIP-Xformer 75.94 90.14 94.12 67.56
CFAM (Zuo et al., 2024) CVPR’24 CLIP-ViT CLIP-Xformer 75.60 90.53 - 67.27
MGRL (Lv et al., 2024) ICASSP’24 CLIP-ViT CLIP-Xformer 73.91 90.68 - 67.28
OCDL (Li et al., 2025a) ICASSP’25 CLIP-ViT CLIP-Xformer 75.10 89.43 - 68.18

Unsupervised

IRRA* (Li et al., 2025b) CVPR’23 CLIP-ViT CLIP-Xformer 32.94 54.37 64.67 30.87
BLIP* (Li et al., 2025b) ICML’22 BLIP-ViT BLIP-Xformer 51.41 71.41 78.76 44.73
GTR (Bai et al., 2023) MM’23 BLIP-ViT BLIP-Xformer 47.53 68.23 75.91 42.91
MUMA (Li et al., 2025b) AAAI’25 BLIP-ViT BLIP-Xformer 59.52 77.79 - 52.75
Ours (with IRRA) EMNLP’25 CLIP-ViT CLIP-Xformer 63.53 80.25 87.84 52.37
Ours (with RDE) EMNLP’25 CLIP-ViT CLIP-Xformer 67.82 85.45 90.63 55.14

All models follow the original training setups of
IRRA and RDE. Input images are resized to 384×
128, and standard augmentations (flip, crop, erase)
are applied. To support longer text, we extend
CLIP’s 77-token limit to 248 tokens by preserving
the first 20 positional embeddings and interpolating
the rest 4×, following (Zhai et al., 2022). The
learning rate is set to 1 × 10−5 (with 5 warmup
epochs from 1×10−6), and 5×10−5 for randomly
initialized layers. Cosine decay is used throughout
60 training epochs.

During training, the MTG module runs 6 Q&A
rounds per image to generate dense pseudo-labels.
For inference, MTI examines the top K = 20
retrieval candidates, and early exits if the top-1
similarity exceeds ξ = 0.85 and is confirmed by

the MLLM. Final retrieval scores are fused via
weighted re-ranking. All experiments are con-
ducted on 2× NVIDIA RTX 4090 GPUs with
generation temperature fixed at 0.01 for stability.

4.3 Comparison with the State-of-the-Art

We evaluate the effectiveness of our proposed
CTGI framework on three widely used benchmark
datasets for text-based person search, comparing
against both unsupervised and fully supervised
state-of-the-art methods. Our framework is instan-
tiated with two variants, Our+IRRA and Our+RDE,
which employ different retrieval backbones while
sharing the same underlying CTGI components.

CUHK-PEDES: As reported in Table 1, under
the unsupervised setting, our Our+RDE achieves
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a Rank-1 of 67.82% and mAP of 55.14%, sub-
stantially outperforming the strongest unsuper-
vised baseline MUMA, which obtains 59.52% and
52.75% respectively. Notably, Our+IRRA also sur-
passes MUMA by a clear margin, demonstrating
the strong efficacy of CTGI in generating informa-
tive pseudo-labels and improving retrieval without
manual annotations. Compared with fully super-
vised methods, our results approach competitive
levels, surpassing several mid-tier supervised mod-
els and narrowing the gap to the top performers.

ICFG-PEDES: Table 2 shows that our frame-
work maintains state-of-the-art performance in the
unsupervised category with a Rank-1 of 56.16%
and mAP of 32.40% for Our+RDE, exceeding the
best supervised methods in some metrics. This
highlights CTGI’s robustness and generalization
ability across datasets with different granularity and
annotation styles. The improvements over other un-
supervised baselines such as BLIP and GTR further
confirm the superiority of our approach.

RSTPReid: As shown in Table 3, on the RST-
PReid dataset, Our+RDE achieves a Rank-1 of
66.35% and mAP of 51.51%, outperforming the
second-best unsupervised method MUMA by ap-
proximately 12% in Rank-1 and over 11% in mAP.
Moreover, our method exceeds the performance of
several fully supervised models, including CFine,
illustrating the strong competitiveness and scala-
bility of CTGI without reliance on any manual
annotations.

Across all datasets, our CTGI framework demon-
strates a consistent and significant improvement
over existing unsupervised methods, closing the
gap towards fully supervised performance. These
results validate the effectiveness of leveraging mul-
timodal large language models for pseudo-label
generation and interactive query refinement, en-
abling robust and scalable text-based person search
in practical scenarios.

4.4 Ablation Study
We conduct ablation experiments on the RSTPReid
dataset to systematically analyze the individual
and combined effects of MTG and MTI. When
employed separately, MTG enhances retrieval by
generating detailed and semantically rich pseudo-
labels, resulting in notable improvements in Rank-1
accuracy and mAP over the baseline. For instance,
with the IRRA backbone, MTG alone achieves a
Rank-1 of 52.30%, indicating its strong ability to
provide effective training supervision through en-

Table 2: Performance on ICFG-PEDES. *: trained with
LLaVA-1.5 captions.The best and second-best results
are in bold and underline, respectively.

Method R@1 R@5 R@10 mAP

Fully Supervised

Dual Path (Zheng et al., 2020) 38.99 59.44 68.41 -
CMPM/C (Zhang and Lu, 2018) 43.51 65.44 74.26 -
ViTAA (Wang et al., 2020) 50.98 68.79 75.78 -
SSAN (Ding et al., 2021a) 54.23 72.63 79.53 -
IVT (Shu et al., 2022) 56.04 73.60 80.22 -
ISANet (Yan et al., 2022b) 57.73 75.42 81.72 -
CFine (Yan et al., 2022a) 60.83 76.55 82.42 -
IRRA (Jiang and Ye, 2023c) 63.46 80.25 85.82 38.06
BiLMa (Fujii and Tarashima, 2023) 63.83 80.15 85.74 38.26
PBSL (Shen et al., 2023) 57.84 75.46 82.15 -
BEAT (Ma et al., 2023) 58.25 75.92 81.96 -
LCR2S (Yan et al., 2023) 57.93 76.08 82.40 38.21
DCEL (Li et al., 2023) 64.88 81.34 86.72 -
UniPT (Shao et al., 2023) 60.09 76.19 - -
TBPS (Cao et al., 2024) 65.05 80.34 85.47 39.83
CFAM (Zuo et al., 2024) 65.38 81.17 - 39.42
MGRL (Lv et al., 2024) 67.28 63.87 - 82.34
OCDL (Li et al., 2025a) 64.53 80.23 - 40.76

Unsupervised

IRRA* (Li et al., 2025b) 21.23 37.37 46.04 11.47
BLIP* (Li et al., 2025b) 31.58 52.03 61.73 13.20
GTR (Bai et al., 2023) 28.25 45.21 53.51 13.82
MUMA (Li et al., 2025b) 38.11 56.01 63.96 19.02
Ours (with IRRA) 48.76 67.38 74.66 27.42
Ours (with RDE) 56.16 73.18 79.42 32.40

riched textual descriptions.
Similarly, MTI, which refines user queries at

inference time via multi-turn dialogue, indepen-
dently boosts performance by improving the se-
mantic alignment between queries and visual fea-
tures. This is reflected by an increased Rank-1 ac-
curacy of 55.50% with IRRA, highlighting MTI’s
effectiveness in mitigating ambiguity in free-form
textual queries.

Importantly, the integration of MTG and MTI
yields complementary benefits, producing the high-
est gains across all metrics. Combined, they
achieve Rank-1 accuracies of 64.20% and 66.35%
with IRRA and RDE backbones respectively, along-
side corresponding mAP improvements. These
results confirm that the synergy between richer
pseudo-label generation and dynamic query refine-
ment substantially advances cross-modal retrieval
performance and robustness.

4.5 Visualization of Retrieval Results

To evaluate the effectiveness of MTI, we conducted
controlled experiments with a fixed operation cycle.
Figure 3 visualizes the top-10 retrieval results be-
fore and after applying MTI. Notably, the retrieval
model is trained solely on pseudo-captions gen-
erated by the MTG module, without any manual
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Figure 3: Top-10 retrieval results on the RSTPReid dataset. The first column is the ground-truth image. The first row
shows retrieval results using IRRA; the second row shows results after applying IRRA with MTI. Refined queries
generated by multi-turn interaction are shown alongside each example. Green borders indicate correct matches.

Table 3: Performance on RSTPReid. *: trained with
LLaVA-1.5 captions.The best and second-best results
are in bold and underline, respectively.

Methods R-1 R-5 R-10 mAP

Fully Supervised

DSSL (Zhu et al., 2021a) 39.05 62.60 73.95 -
SSAN (Ding et al., 2021a) 43.50 67.80 77.15 -
LBUL (Wang et al., 2022b) 45.55 68.20 77.85 -
IVT (Shu et al., 2022) 46.70 70.00 78.80 -
CFine (Yan et al., 2022a) 50.55 72.50 81.60 -
IRRA (Jiang and Ye, 2023c) 60.20 81.30 88.20 47.17
BiLMA (Fujii and Tarashima, 2023) 61.20 81.50 88.80 48.51
PBSL (Shen et al., 2023) 47.80 71.40 79.90 -
BEAT (Ma et al., 2023) 48.10 73.10 81.30 -
LCR2S (Yan et al., 2023) 54.95 76.65 84.70 40.92
DCEL (Li et al., 2023) 61.35 83.95 90.45 -
TBPS (Cao et al., 2024) 61.95 83.55 88.75 48.26
CFAM (Zuo et al., 2024) 62.45 83.55 - 49.50
OCDL (Li et al., 2025a) 61.60 82.35 - 49.77

Unsupervised

IRRA* (Li et al., 2025b) 37.60 60.65 72.30 27.42 -
BLIP* (Li et al., 2025b) 44.45 67.70 77.25 33.73 -
GTR (Bai et al., 2023) 45.60 70.35 79.95 33.30
MUMA (Li et al., 2025b) 54.35 76.05 83.65 40.50
Ours (with IRRA) 64.20 83.55 90.30 49.66
Ours (with RDE) 66.35 85.50 91.25 51.51

annotations. Due to the incomplete alignment be-
tween initial queries and ground-truth test captions,
retrieval without MTI often yields suboptimal re-
sults. In contrast, MTI dynamically refines the
query through interactive optimization, enabling
more accurate and robust ranking performance.

Table 4: Ablation study on the RSTPReid dataset. MTG:
Multi-Turn Text Generation, MTI: Multi-Turn Text In-
teraction, PES: Positional Embedding Stretching.

Method MTG MTI Rank-1 Rank-5 Rank-10 mAP

Ours (with IRRA) ✓ 52.30 74.65 84.05 40.03
Ours (with IRRA) ✓ 55.50 77.50 86.55 44.87
Ours (with IRRA) ✓ ✓ 64.20 83.55 90.30 48.03
Ours (with IRRA) (w/o PES) ✓ ✓ 63.00 82.65 88.80 47.60

Ours (with RDE) ✓ 60.55 79.85 86.30 44.98
Ours (with RDE) ✓ 62.55 82.85 89.00 46.43
Ours (with RDE) ✓ ✓ 66.35 85.50 91.25 49.66
Ours (with RDE) (w/o PES) ✓ ✓ 65.75 84.05 90.60 49.60

5 Conclusion

In this work, we introduced CTGI (Chat-Driven
Text Generation and Interaction), a unified and
annotation-free framework for Text-Based Person
Search (TBPS) that removes the dependency on
manually crafted textual descriptions. CTGI inte-
grates two synergistic modules: Multi-Turn Text
Generation (MTG) for training supervision and
Multi-Turn Text Interaction (MTI) for inference-
time refinement. Together, they leverage the ex-
pressive capabilities of MLLMs to generate rich
pseudo-labels and iteratively enhance user queries
via natural language dialogue. Extensive exper-
iments across multiple TBPS benchmarks show
that CTGI achieves competitive or superior per-
formance compared to fully supervised methods,
while seamlessly adapting to existing retrieval
pipelines. Ablation studies and qualitative visu-
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alizations further underscore the value of multi-
turn interaction and MLLM-guided refinement in
improving cross-modal alignment and retrieval ro-
bustness.

Limitations

While CTGI demonstrates strong performance
without manual annotations, several challenges re-
main. First, pseudo-labels generated by MTG may
contain semantic noise or redundancy. Although
robust retrieval backbones like RDE are designed
for noisy environments and thus benefit more from
such supervision, other models without inherent
noise-filtering may be more vulnerable to degraded
performance. Second, MTI introduces additional
inference overhead due to multi-turn interactions
with MLLMs. Even with early stopping and anchor
validation, this can limit deployment in latency-
sensitive applications. Third, both MTG and MTI
rely on the generalization ability of the underly-
ing MLLM, which may yield suboptimal results in
unfamiliar domains or when handling fine-grained
attributes. Future work could address these issues
through uncertainty-aware label filtering, more ef-
ficient MLLMs, and domain-adaptive interaction
strategies.
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