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Abstract
Text generated by Large Language Models
(LLMs) now rivals human writing, raising con-
cerns about its misuse. However, mainstream
AI-generated text detection (AGTD) methods
primarily target document-level long texts and
struggle to generalize effectively to sentence-
level short texts. And current sentence-level
AGTD (S-AGTD) research faces two signifi-
cant limitations: (1) lack of a comprehensive
evaluation on complex human-AI hybrid con-
tent, where human-written text (HWT) and
AI-generated text (AGT) alternate irregularly,
and (2) failure to incorporate contextual infor-
mation, which serves as a crucial supplemen-
tary feature for identifying the origin of the
detected sentence. Therefore, in our work,
we propose AutoFill-Refine, a high-quality
synthesis strategy for human-AI hybrid texts,
and then construct a dedicated S-AGTD bench-
mark dataset. Besides, we introduce SenDe-
tEX, a novel framework for sentence-level AI-
generated text detection via style and context
fusion. Extensive experiments demonstrate
that SenDetEX significantly outperforms all
baseline models in detection accuracy, while
exhibiting remarkable transferability and ro-
bustness. Source code is available at https:
//github.com/TristoneJiang/SenDetEX.

1 Introduction

In recent years, LLMs have advanced rapidly, driv-
ing significant progress in natural language pro-
cessing tasks. Their generated texts now rival hu-
man writing in fluency and coherence (Laskar et al.,
2024). However, the widespread adoption of LLMs
also carries potential risks. These include academic
misconduct (Koike et al., 2024), the spread of mis-
information (Yin et al., 2024), and the misuse of
generated content (Abdali et al., 2024). There-
fore, developing accurate and efficient AGTD ap-
proaches is crucial for ensuring content reliability
and mitigating potential threats.

Figure 1: Contextual clues reveal text’s authorship. The
target sentence is grammatically correct and poetic, mak-
ing it difficult to determine its origin solely based on its
content. However, compared to the depiction of nature
in the preceding sentences, its abrupt shift into abstract
sci-fi imagery aligns more closely with the tendency of
AI-generated text to blend “poetic + sci-fi” styles.

S-AGTD technology is proving increasingly
valuable across multiple fields. Academic miscon-
duct detection enables sentence-level analysis to
identify AGT mixed with HWT. For news and con-
tent moderation, it helps assess the originality of
AI-assisted texts. In legal and contract review, it
detects AI-drafted clauses with potential risks or
inconsistencies.

However, most existing AGTD works primar-
ily focus on long texts represented by documents,
while research on fine-grained analysis of short
texts represented by sentences remains relatively
scarce. Recent research highlights that the primary
challenge in sentence-level text detection tasks
stems from the insufficient stylistic cues resulting
from the short text length, rendering reliable author-
ship attribution difficult (Zeng et al., 2024b). Di-
rectly transferring existing document-level AGTD
(D-AGTD) methods to sentence-level texts is not
feasible. For instance, training-free methods like
DetectGPT (Mitchell et al., 2023) and DNA-GPT
(Yang et al., 2024) rely on sufficient token length to
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Figure 2: The relationship between sentence count and the detection performance of training-free detectors. The
test data is sourced from WritingPrompts, and the AI-generated texts are created by DeepSeek-V3 and GPT-4o.

ensure the reliability of statistical metrics, while su-
pervised methods such as Radar (Mao et al., 2024)
and SCRN (Huang et al., 2024) struggle to capture
stable and practical features in short texts and are
prone to overfitting to the details of the training
data.

Existing S-AGTD research also has certain limi-
tations. For instance, the works in (Wang et al.,
2023, 2024b) only discuss the boundary detec-
tion of author shifts under the “human-AI” writing
paradigm, without considering scenarios like “AI-
human,” “human-AI-human,” or other more com-
plex human-AI text alternation patterns. Another
work employs a pipeline of text segment separation
and detection (Zeng et al., 2024b). Still, in mixed
texts, frequent author shifts between adjacent sen-
tences make it difficult for the segment detector
to identify text segments with consistent author-
ship accurately. We carry out pre-experiments for
three training-free AGTD methods (Solaiman et al.,
2019; Bao et al., 2024; Yang et al., 2024) on the
WritingPrompt subset (Fan et al., 2018)1. The re-
sults shown in Figure 2 reveal that detectors usually
perform poorly when the input text length is very
short. Besides, as sentence length increases, detec-
tion performance improves significantly.

Therefore, when the information the detected
sentence provides is limited in identifying its au-
thorship, our intuition is that the preceding con-
text can offer distinctive features to the short-text
AGTD task. This intuition finds theoretical support
in distributional semantics (Lenci et al., 2008)
from cognitive science, which posits that textual
meaning is not determined by words in isolation
but is constructed through contextual interaction.

1Experimental details are provided in Appendix C.

As shown in Figure 1, contextual clues can po-
tentially reveal text authorship. Human language
comprehension involves active meaning construc-
tion, utilizing background knowledge and context,
rather than mechanical signal processing. Building
on this cognitive framework, we conceptualize S-
AGTD as a “computational construction process”
that essentially models a text’s “style” and “con-
text”, representing its intrinsic linguistic character-
istics and the surrounding semantic environment.

For style modeling, following prior works (Xu
et al., 2025; Wu et al., 2025), we employ token
probability sequences and token entropy sequences
to represent textual “precision” and “openness”
respectively, noting that HWT typically exhibits
lower average token probability and higher average
entropy compared to AGT. For context, we consider
not only the intrinsic semantics of the candidate
sentence but also the inferred semantics from a re-
generated sentence (sharing similar semantics with
the candidate sentence, yet not identical) based on
its preceding text. The inferred semantics reflect
contextual cues, and prior works (Zhu et al., 2023;
Mao et al., 2024) show that AGT typically exhibits
a stronger coupling between intrinsic and inferred
semantics than HWT.

In our work, we formally define the S-AGTD
task as: given a multi-sentence document, deter-
mining whether each sentence is authored by a
human or a specific LLM. We summarize our con-
tributions as follows:

(1) We first propose AutoFill-Refine, a high-
quality human-AI hybrid text synthesis strategy
that combines the contextual awareness of fill-in
models with the generative capability of autore-
gressive models, while ensuring more natural and
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Figure 3: Workflow of the SenDetEX framework. “Prob.”, “Emb.”, “Conv.”, “Attn.” donote “Probability”,
“Embedding”, “Convolution” and “Attention”, respectively. The feature encoding module generates preliminary
style and contextual representations. The style extraction module encodes the sequential probability and entropy
signals into a dense style representation. The information fusion module integrates multi-source information to
classify final sentence authorship attribution.

authentic text generation. This approach is used
to construct our benchmark dataset, specifically
designed for S-AGTD tasks.

(2) Recognizing that contextual information of
target text provides potentially discriminative fea-
tures for the short-text AGTD task, we propose
SenDetEX - a novel S-AGTD framework that ef-
fectively models and integrates both “stylistic” and
“contextual” information of target sentences for au-
thorship attribution.

(3) Extensive experiments demonstrate that
our proposed SenDetEX significantly outperforms
other baselines in terms of detection performance
across in-domain, cross-generator, and cross-
domain scenarios, while exhibiting superior robust-
ness against both word-level and sentence-level
adversarial attacks.

2 Related Work

In the field of AGTD, one line of current research
focuses on the tendency of LLMs to generate to-
kens with higher conditional probabilities at each
position, indicating their higher “precision.” Met-
rics such as perplexity (Hans et al., 2024) and log
probability (Xu et al., 2025) have been employed
as statistical indicators of AGT tendencies. The
average likelihood of AGT is shown to decrease
under perturbations (Mitchell et al., 2023), while to-
ken probability sequences are utilized as white-box
features for supervised learning (Shi et al., 2024;

Wang et al., 2023). Additionally, AGT often ex-
hibits lower textual entropy, reflecting its lower
“openness,” which has been leveraged in text water-
marking to identify watermark insertion locations
(Wu et al., 2025; Liu and Bu, 2024) and dynami-
cally adjust watermark weights (Lu et al., 2024).
Furthermore, some studies argue that stylistic in-
formation is more effective than content informa-
tion in characterizing authorship (Soto et al., 2024;
Tripto et al., 2024). We employ time-series analy-
sis methods to extract stylistic details embedded in
the probability and entropy sequence signals.

Another line of research posits that AGT ex-
hibits high similarity with its re-generated coun-
terparts. Common-used methods for generating re-
generated texts from the target text include revision
(Zhu et al., 2023), paraphrasing (Mao et al., 2024),
partial token deletion (Ma and Wang, 2024), multi-
ple rounds of negation (Nguyen-Son et al., 2024),
truncating portions of the text as prompts (Yang
et al., 2024), and reconstructing prompts (Yu et al.,
2024; Huang et al., 2025) for completion. In our
approach, we use the preceding context of the tar-
get text as a prompt to obtain the re-generated texts.
It will enable comparison of similarity with the tar-
get text, while also introducing richer contextual
information. Moreover, contextual information has
been shown to enhance the robustness of detectors
against adversarial attacks (Hou et al., 2024a; Liu
et al., 2024a; Hou et al., 2024b). Overall, our work
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aims to construct a style-context-aware S-AGTD
framework.

3 Proposed Method

Let si denote the i-th sentence of a document, our
framework aims to predict whether si is generated
by a human or a specific LLM. The re-generated
sentence ri of si is obtained by the white-box proxy
model Mproxy with the c (serves as context-aware
length) preceding sentences of si as the prompt2:

ri = Mproxy({si−c−1, . . . , si−1}),
The overall architecture is shown in Figure 3, which
consists of three major modules: the Feature En-
coding Module, the Style Extraction Module,
and the Information Fusion Module.

3.1 Feature Encoding Module
Given a candidate sentence si and its re-generated
counterpart ri, we use a frozen proxy model
Mproxy to extract token-level probabilistic signals
and sentence-level embeddings.

Token Probability and Entropy Series. First,
the proxy model computes the conditional proba-
bility of each token in si:

pi = (p(t1|·), p(t2|·), . . . , p(tLi |·)) ,
where Li is the token length of si, and p(tj |·) de-
notes the predicted probability of the ground-truth
token tj given the preceding context.

The entropy of each token prediction is defined
as:

hj = −
V∑

k=1

p
(j)
k log p

(j)
k ,

where p
(j)
k is the predicted probability for the k-th

token in the vocabulary at position j, and V is the
vocabulary size.

Thus, we obtain the entropy series:

ei = (h1, h2, . . . , hLi) ∈ RLi×1.

Sentence Embeddings. Additionally, we extract
the intrinsic semantics embedding zins

i and the in-
ferred semantics embedding zinf

i by:

zins
i = Membed

proxy (si) ∈ R1×d,

zinf
i = Membed

proxy (ri) ∈ R1×d,

where Membed
proxy (·) denotes the sentence encoder

module of the proxy model, and d is its embed-
ding size.

2Following Appendix E when c = 0 or i = 0.

3.2 Style Extraction Module
Input Features. We first concatenate pi and ei
along the feature dimension:

Si = Concat(pi, ei) ∈ RLi×2.

Dual-Path Encoding. The concatenated feature
Si is processed by two parallel branches:

• Local Branch.
We apply a dynamic depthwise separable con-
volution to extract local style information:

Slocal
i = DepthwiseConv1D(Si, k = 5),

Slocal
i = PointwiseConv1D(Slocal

i ) ∈ RLi×d,

where the depthwise convolution (Howard,
2017) captures token-level local dependencies
with kernel size k = 5, and pointwise convo-
lution (Howard, 2017) then maps the features
into RLi×d.

• Global Branch.
We apply a sparsely connected Transformer
(Child et al., 2019) encoder to extract global
style information:

S
global
i = SparseTransformer(Si),

where SparseTransformer applies two self-
attention layers with eight heads, but restricts
each token to only attend to its top-4 most
relevant tokens based on attention scores. We
adopt fixed sinusoidal positional encoding
to preserve order information, and do not
share parameters across attention heads. Af-
ter Transformer encoding, a linear projection
maps features into RLi×d.

Gated Fusion. The gating mechanism dynam-
ically determines the contribution of local and
global features at each position, enabling flexi-
ble adaptation across different sentence structures.
Then we dynamically combine local and global
information:

gi = σ(Wg[S
local
i ;S

global
i ]) ∈ RLi×d,

S
style
i = gi ⊙ Slocal

i + (1− gi)⊙ S
global
i ∈ RLi×d,

where Wg ∈ R2d×d is a learnable linear projec-
tion, σ(·) is the sigmoid activation, and ⊙ denotes
element-wise multiplication.

Finally, we perform average pooling over the
sequence length:

z
style
i = AvgPool(Sstyle

i ) ∈ R1×d.
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Source Generator Doc. count [MASK]
Rate (%)

Sen. Count
(train/valid/test)

Subset
Notification

XSUM
DeepSeek-V3 3162 31.6 34989/11570/11763 XD

GPT-4o 3248 32.2 37255/12078/12297 XG

WritingPrompts
DeepSeek-V3 1043 32.1 29009/9456/9075 WD

GPT-4o 1105 32.9 29794/9864/10089 WG

Table 1: Statistics of the human-AI hybrid text dataset synthesized by the AutoFill-Refine strategy in this work. “Doc.”
and “Sen.” denote “document” and “sentence”, respectively. “[MASK] Rate” corresponds to the actual proportion
of LLM-generated sentences. For each subset, the documents are randomly partitioned into training/validation/test
sets at ratios of 60%, 20%, and 20% respectively. We use the combination of “source” and “generator” as the
“subset notification”. For example, XD denotes “XSUM & DeepSeek-V3”.

3.3 Information Fusion Module
Triple Cross Attention. We fuse the style and
semantic embeddings using a triple cross-attention
module (Misra et al., 2021; Wang et al., 2024a):

Q1 = z
style
i , K1 = zins

i , V1 = zinf
i ,

Q2 = zins
i , K2 = zinf

i , V2 = z
style
i ,

Q3 = zinf
i , K3 = z

style
i , V3 = zins

i ,

where each query attends to the other two features.
The attention outputs are computed as:

a1 = MultiHeadAttn(Q1,K1,V1),

a2 = MultiHeadAttn(Q2,K2,V2),

a3 = MultiHeadAttn(Q3,K3,V3),

where each MultiHeadAttn (Vaswani et al., 2017)
uses 4 heads, with per-head dimension d/4.

The final cross features are:

zcross
i = Concat(a1,a2,a3)Wfusion ∈ R1×d,

where Wfusion ∈ R3d×d is a linear projection layer.

Classification. Then zcross
i is fed into a classifier

to predict the probability of being AI-generated:

pi = σ(Fcls(z
cross
i )),

where Fcls is a fully connected layer with weight
matrix W ∈ Rd×1 and bias b ∈ R, and σ(·) de-
notes the sigmoid activation. The final binary pre-
diction label ŷi = I[pi > 0.5].

Training Objective. The model is optimized us-
ing Mean Squared Error (MSE) loss for binary
classification:

L =
1

N

N∑

i=1

(pi − yi)
2,

where yi ∈ {0, 1} is the ground-truth label.

4 Experiments and Main Results

4.1 Dataset Construction
Mask-filling models (e.g., BERT (Kenton and
Toutanova, 2019), RoBERTa (Liu et al., 2019))
demonstrate superior contextual awareness, while
advanced autoregressive models (e.g., GPT se-
ries (Hurst et al., 2024), Gemini (Team et al.,
2023)) exhibit remarkable generative capabilities.
We therefore propose combining their strengths
through prompt engineering, with a data filtering
mechanism to ensure synthesis quality, ultimately
forming the “AutoFill-Refine” human-AI hybrid
text synthesis strategy3. The detailed workflow is
as follows:

1. Original Data Selection: Select benchmark
corpus from human-written datasets, denoted
as Dori = {d1, d2, ..., dm}, where di repre-
sents a document containing multiple coher-
ent sentences and m is the total number of
documents.

2. Random Masking: Perform random sen-
tence masking by replacing a proportion γ
of sentences in Dori with [MASK] placehold-
ers, generating the masked dataset Dmask =
{d′1, d′2, ..., d′m}.

3. Generation: Use structured prompts to drive
the autoregressive model Mgen for comple-
tion tasks. The prompt template is:

“Fill in each [MASK] in the following docu-
ment with a single sentence to ensure overall
fluency, coherence, and logic. Original docu-
ment: d′i. New completed document:”

The generated results are denoted as Dre =
{d′′1, d′′2, ..., d′′m}.

3A synthesis sample is shown in Appendix F.
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Method XD→XD XG→XG WD→WD WG→WG

F1 AUC MCC F1 AUC MCC F1 AUC MCC F1 AUC MCC

Log Entropy 65.9 71.1 31.0 67.4 70.1 30.4 64.0 69.2 29.8 65.7 71.0 31.4
Log Probability 72.3 76.7 41.2 71.8 76.2 40.5 70.8 75.5 40.0 70.4 75.3 39.4
DNA-GPT 81.4 85.2 55.4 81.8 85.7 56.3 80.9 84.8 54.4 80.2 83.9 54.1
Fast-DetectGPT 84.0 88.0 59.6 84.7 88.5 60.5 81.7 85.6 57.7 83.8 87.5 59.1
SeqXGPT 91.2 93.6 69.8 91.5 94.0 70.5 91.8 94.3 71.1 90.6 93.2 69.5
POGER 92.7 95.2 72.1 93.1 95.6 72.6 90.2 92.8 69.0 92.2 94.7 71.6
SenDetEX 97.4 98.6 79.5 97.7 98.8 80.0 96.8 98.1 79.0 97.1 98.3 79.2

Table 2: The overall detection results under the in-domain scenario.

Method XD→XG XG→XD WD→WG WG→WD

F1 AUC MCC F1 AUC MCC F1 AUC MCC F1 AUC MCC

SeqXGPT 88.4 91.2 66.9 89.0 91.7 67.5 89.1 91.8 68.1 88.1 90.9 66.7
POGER 89.6 92.4 68.8 90.2 92.9 69.4 87.6 90.4 66.2 89.5 92.2 68.6
SenDetEX 96.0 97.5 77.7 96.2 97.7 78.0 95.3 96.9 77.2 95.5 97.2 77.4

Table 3: The detection results under the cross-generator scenario.

4. Quality Filtering: Compute perplexity (PPL)
using an oracle model, retaining only docu-
ments in Dre that satisfy PPL(d′′i ) < PPL(di).

Following the works in (Bao et al., 2024; Xu
et al., 2025), we select XSUM (Narayan et al.,
2018) and WritingPrompts (Fan et al., 2018)
as benchmark corpora. We employ DeepSeek-
V3 (Liu et al., 2024b) and GPT-4o (Hurst et al.,
2024) as Mgen (temperature set to 0.7), and
LLaMA-3-8B (Grattafiori et al., 2024) as the oracle
model, with m set to 5,000 and 1,500 respectively
and γ = 0.35. Except for the temperature, we
adopt the default API parameters, and the maxi-
mum number of attempts is set to 10 when gen-
erating sentences that meet the “quality filtering”
requirements. Besides, we use WordNet (Miller,
1995) for sentence segmentation of the text. The
statistics of the final synthesized dataset are shown
in Table 1.

4.2 Experiment Settings

We select four representative training-free meth-
ods—Log Probability (Solaiman et al., 2019),
Log Entropy (Gehrmann et al., 2019), DNA-GPT
(Yang et al., 2024), and Fast-DetectGPT (Bao
et al., 2024)—along with two supervised baselines
closely related to our work, SeqXGPT (Wang et al.,
2023) and POGER (Shi et al., 2024), with detailed
descriptions and configurations provided in Ap-
pendix A. To mitigate distribution shifts and en-

hance generalization, we follow the work in (Zeng
et al., 2024a) to implement a fine-tuned LLaMA2-
7B model (Touvron et al., 2023) as Mproxy, with
fine-tuning details presented in Appendix B. The
temperature of Mproxy is set to 0.7 during its gen-
eration process.

In line with the work in (Cornelius et al., 2024),
we adopt AUC, F1, and MCC (Matthews Corre-
lation Coefficient) as evaluation metrics for the
S-AGTD task. To assess the robustness of the de-
tectors, we follow the work in (Pan et al., 2024) and
implement four adversarial attack strategies: ran-
dom deletion, random substitution, paraphrasing,
and back-translation, with implementation details
in Appendix D.

SenDetEX is trained by the AdamW optimizer
(Loshchilov and Hutter, 2017) with a learning rate
of 1× 10−4 and a weight decay of 0.01. We train
the model for up to 50 epochs, applying early stop-
ping with a patience of 5 based on the validation
loss. The batch size is set to 32, and the context-
aware length c is default to 3 (further discussed in
Section 4.3.1). All experiments are conducted on
two NVIDIA A100 GPUs.

4.3 Main Results

4.3.1 In-domain Detection

In this paper, we use the notation “X→Y” to indi-
cate that the training set of “X” is used for training
(supervised methods), and the test set of “Y” is
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Method XD→WD WD→XD XG→WG WG→XG

F1 AUC MCC F1 AUC MCC F1 AUC MCC F1 AUC MCC

SeqXGPT 87.1 89.8 65.4 88.9 91.6 67.8 86.4 89.2 64.8 86.8 89.6 65.4
POGER 88.5 91.2 67.3 87.6 90.3 65.9 87.7 90.4 66.6 88.2 90.9 67.2
SenDetEX 95.0 96.5 76.7 95.2 96.7 77.1 94.5 96.1 76.2 94.8 96.3 76.5

Table 4: The detection results under cross-domain scenario.

Figure 4: The relationship between context-aware
length and in-domain detection performance.

used for evaluation. We first conduct in-domain
AGTD evaluations on the XD, XG, WD, and WG
datasets, where the source and target domains share
the same source and generator. The results are
shown in Table 2. The results demonstrate that our
proposed SenDetEX consistently achieves the best
in-domain AGTD detection performance across
all datasets. Compared with the best-performing
baselines, SenDetEX improves the F1 score by
4.7%–5.0%, AUC by 3.2%–3.8%, and MCC by
7.4%–7.8%, respectively.

The context-aware length c is a critical hyperpa-
rameter in SenDetEX, which controls the quality
of the re-generated sentences. We set c to 0, 1, 2,
3, 4, and 5, and re-conduct the above in-domain
experiments. The relationship between detection
performance and c is illustrated in Figure 4. The re-
sults show that when c is small (c < 3), increasing
c leads to better F1 scores, indicating that moder-
ate context provides valuable semantic information.
However, when c exceeds 3, further increases do
not lead to significant performance improvement.
The preceding text directly influences the gener-
ation of the regenerated sentence, which in turn
affects the inferred embedding. The subsequent im-
pact on the prediction performance of the SenDe-

tEX framework is implicit and complex. Therefore,
a larger c does not necessarily guarantee stable or
theoretically supported improvements in detection
accuracy. Based on the above analysis, we recom-
mend setting c = 3, under which the XD→XD,
WD→WD, and WG→WG experiments achieve
the best detection performance.

4.3.2 Out-of Distribution Detection
In our work, we investigate two types of out-
of-distribution (OOD) detection scenarios: cross-
generator and cross-domain. These scenarios re-
fer to cases where the generator or text domain
of the target domain text differs from that of the
source domain, respectively. The results of the
cross-generator experiments are shown in Table 3.
Our proposed SenDetEX consistently achieves
the best detection performance across all four
experiment groups. Specifically, for XD→XG,
XG→XD, WD→WG, and WG→WD, SenDetEX
outperforms the best baseline by 6.0%–6.4% in F1,
4.8%–5.1% in AUC, and 8.7%–9.1% in MCC.

The results of the cross-domain experiments are
presented in Table 4. Although SenDetEX ex-
periences a slight performance drop under cross-
domain settings compared to the cross-generator
scenarios, it still significantly outperforms all base-
lines. For XD→WD, WD→XD, XG→WG, and
WG→XG, SenDetEX shows improvements of
6.6%–6.8% in F1, 5.1%–5.7% in AUC, and 9.3%–
9.5% in MCC over the best baseline.

Based on the above discussion, SenDetEX
demonstrates strong transferability in S-AGTD
tasks and can quickly adapt to new environments.
We attribute this capability to the coupling between
the detected text’s intrinsic semantics and its re-
generated counterpart’s inferred semantics, which
provides generalizable and domain-invariant dis-
criminative features for authorship distribution.

4.3.3 Robustness Study
The robustness of the AGTD method refers to the
detector’s ability to correctly identify the origin of
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Method random deletion random substitution paraphrasing back-translation

F1 AUC MCC F1 AUC MCC F1 AUC MCC F1 AUC MCC

Log Entropy 61.5 67.4 27.4 59.8 65.6 26.0 54.9 60.9 22.9 53.4 59.4 21.8
Log Probability 69.0 73.7 37.9 67.5 72.3 36.7 63.6 68.6 34.4 62.5 67.4 33.5
DNA-GPT 79.1 83.0 52.4 78.9 82.6 53.8 74.0 78.6 48.3 73.2 77.6 47.3
Fast-DetectGPT 80.0 83.8 54.7 77.6 81.6 51.4 77.2 81.2 52.4 76.3 80.3 51.8
SeqXGPT 88.6 91.3 67.1 88.0 90.7 66.5 85.8 88.7 64.6 86.4 89.5 66.0
POGER 89.9 92.6 69.0 89.2 92.0 68.3 87.2 90.1 66.6 85.1 88.0 64.0
SenDetEX 95.6 97.1 77.4 95.2 96.7 76.9 93.9 95.7 75.6 93.5 95.3 75.2

Table 5: The overall detection results under adversarial attack scenario on XD→XD.

Method XD→XD XD→XG XD→WD paraphrasing

F1 AUC MCC F1 AUC MCC F1 AUC MCC F1 AUC MCC

SenDetEX 97.4 98.6 79.5 96.0 97.5 77.7 95.0 96.5 76.7 93.9 95.7 75.6
-E 96.1 97.6 77.8 94.7 96.3 75.8 93.8 95.3 75.0 92.5 94.6 73.8
-R 95.6 97.3 77.2 92.6 94.9 73.1 91.6 93.6 72.0 90.0 92.5 70.5
-C 94.7 96.7 75.8 91.6 94.1 71.7 90.4 92.8 70.5 88.8 91.5 68.9
-E-R 93.5 95.7 73.4 90.4 93.0 70.0 89.3 91.8 68.5 88.1 90.8 67.8
-E-C 92.2 94.9 71.8 89.2 92.1 68.6 87.7 90.7 67.2 85.9 89.2 65.5

Table 6: Ablation Study on four S-AGTD scenarios. “-E”: Removes entropy information by duplicating pi as ei.
“-R”: Removes inferred semantics by duplicating zins

i as zinf
i . “-C”: Removes both intrinsic and inferred semantics

by replacing zcross
i with direct input of zstyle

i into Fcls.

the input text even when it is subjected to adver-
sarial perturbations. We redeploy our experiments
on the XD→XD setting, and the results are pre-
sented in Table 5. Under word-level attacks, the
performance of SenDetEX is barely affected. Com-
pared to the non-adversarial setting shown in Ta-
ble 2, the F1, AUC, and MCC scores under random
deletion decrease by only 1.8%, 1.5%, and 2.1%,
respectively. Under random substitution, the F1,
AUC, and MCC scores drop by just 2.2%, 1.9%,
and 2.6%, respectively, still outperforming other
baselines. Compared to the best-performing base-
line, SenDetEX achieves improvements of 6.7%,
5.6%, and 9.0% in F1, AUC, and MCC under para-
phrasing attacks. Under back-translation attacks,
SenDetEX further improves F1, AUC, and MCC
by 7.1%, 5.8%, and 9.2%, respectively. Therefore,
SenDetEX maintains strong robustness under vari-
ous adversarial attacks.

We attribute this capability to two main factors:
(1) perturbations that preserve semantic equiva-
lence do not cause significant changes in the em-
beddings; and (2) our model considers and encodes
contextual information, so modifying the input text
does not affect the re-generated sentence and its
inferred semantics.

4.3.4 Proxy Model and Sampling Strategy
We have already analyzed the context-aware length
c in Section 4.3.1. In this section, we provide sup-
plementary experimental results focusing on the
impact of the sampling strategy (via the [MASK]
rate) and the proxy model size (LLaMA-2 7B vs.
13B). We constructed two subsets from the XD
dataset (detailed in Section 4.1): one with the high-
est proportion of LLM-generated sentences (do-
nated as XD-max) and one with the lowest (donated
as XD-min). The statistics of the supplementary
datasets are shown in Table 7. The results in Ta-
ble 8 show that SenDetEX consistently outperforms
other baselines across both high and low [MASK]
rate subsets, confirming its resilience to sampling
strategy variation. Furthermore, larger proxy mod-
els (LLaMA-2 13B) yield slightly higher F1 scores,
suggesting that stronger proxy models may lead to
better detection, which is consistent with findings
in (Mao et al., 2024).

4.3.5 Ablation Study
We conduct an ablation study on the XD subset, and
the results are shown in Table 6. Compared to the
vanilla SenDetEX, the variant SenDetEX-E shows
a performance drop of 1.2%–1.4% in F1, 1.0%–
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Source Generator Doc. count [MASK]
Rate (%)

Sen. Count
(train/valid/test)

Subset
Notification

XSUM
DeepSeek-V3 300 50.4 3185/1052/1099 XD-max
DeepSeek-V3 300 15.3 3308/1086/1087 XD-min

Table 7: Statistics of the XD subsets. “Doc.” and “Sen.” denote “document” and “sentence”, respectively. “[MASK]
Rate” corresponds to the actual proportion of LLM-generated sentences.

Proxy Model Method XD-max XD-min

LLaMA2-7B SeqXGPT 91.3 90.8
LLaMA2-7B POGER 93.0 92.5
LLaMA2-7B SenDetEX 98.0 97.0

LLaMA2-13B SeqXGPT 92.0 91.1
LLaMA2-13B POGER 93.6 92.7
LLaMA2-13B SenDetEX 98.4 97.5

Table 8: Detection results across different proxy models
and methods on XD subsets with maximum (XD-max)
and minimum (XD-min) LLM-generated sentence pro-
portions under the in-domain scenario.

1.2% in AUC, and 1.7%–1.9% in MCC across all
settings. This indicates that entropy information,
as a complementary stylistic signal beyond prob-
ability, brings improvements to the overall detec-
tion performance. In the XD→XG, XD→WD, and
paraphrasing settings, SenDetEX-R exhibits a drop
of 3.4%–3.9% in F1, while SenDetEX-C shows a
decrease of 4.4%–5.1%. These results demonstrate
that contextual information significantly enhances
performance under OOD and perturbation condi-
tions, consistent with our attributions to its transfer-
ability and robustness in Sections 4.3.2 and 4.3.3.
Furthermore, contextual and stylistic information
complement SenDetEX’s detection performance,
validating the effectiveness of our joint modeling
approach. We provide an extended analysis of the
ablation study in Appendix G.

5 Conclusion

Sentence-level AI-generated text detection is both
practically significant and technically challenging.
Our work mainly addresses two major limitations
of existing S-AGTD works: the lack of evaluation
on complex human-AI hybrid content and the fail-
ure to incorporate contextual information. We first
propose AutoFill-Refine, a high-quality synthesis
method for human-AI hybrid texts, and construct a
dedicated S-AGTD benchmark dataset. Inspired by

cognitive science and preliminary experiments, we
introduce the SenDetEX framework, which models
and integrates stylistic and contextual information.
Extensive experiments demonstrate the effective-
ness of SenDetEX. We hope our work will provide
valuable insights for future AGTD works.

Limitations

Although our proposed SenDetEX demonstrates
promising performance, several limitations remain.
First, SenDetEX’s effectiveness relies on the pre-
ceding context of the sentence to be detected. Its
advantage will diminish in sparse or noisy context
scenarios, such as isolated sentences or fragmented
documents. Second, the proxy model plays a cru-
cial role in SenDetEX, and there is room for further
exploration regarding the present fine-tuning strat-
egy. Additionally, the prompts used in synthesizing
our dataset can be further optimized. We plan to
address these issues in future work.
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Mitrović, Ljiljana Dolamic, and Fabio Rinaldi. 2024.
Bust: Benchmark for the evaluation of detectors of
llm-generated text. In Proceedings of the 2024 Con-
ference of the North American Chapter of the Asso-
ciation for Computational Linguistics: Human Lan-
guage Technologies (Volume 1: Long Papers), pages
8029–8057.

Angela Fan, Mike Lewis, and Yann Dauphin. 2018.
Hierarchical neural story generation. In Proceedings
of the 56th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 889–898.

Sebastian Gehrmann, Hendrik Strobelt, and Alexan-
der M Rush. 2019. Gltr: Statistical detection and
visualization of generated text. In Proceedings of the
57th Annual Meeting of the Association for Compu-
tational Linguistics: System Demonstrations, pages
111–116.

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri,
Abhinav Pandey, Abhishek Kadian, Ahmad Al-
Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten,
Alex Vaughan, et al. 2024. The llama 3 herd of mod-
els. arXiv preprint arXiv:2407.21783.

Abhimanyu Hans, Avi Schwarzschild, Valeriia
Cherepanova, Hamid Kazemi, Aniruddha Saha,
Micah Goldblum, Jonas Geiping, and Tom Goldstein.
2024. Spotting llms with binoculars: Zero-shot
detection of machine-generated text. Preprint,
arXiv:2401.12070.

Abe Hou, Jingyu Zhang, Tianxing He, Yichen Wang,
Yung-Sung Chuang, Hongwei Wang, Lingfeng Shen,
Benjamin Van Durme, Daniel Khashabi, and Yulia
Tsvetkov. 2024a. Semstamp: A semantic watermark
with paraphrastic robustness for text generation. In
Proceedings of the 2024 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies
(Volume 1: Long Papers), pages 4067–4082.

Abe Hou, Jingyu Zhang, Yichen Wang, Daniel
Khashabi, and Tianxing He. 2024b. k-semstamp:
A clustering-based semantic watermark for detection
of machine-generated text. In Findings of the As-
sociation for Computational Linguistics ACL 2024,
pages 1706–1715.

Andrew G Howard. 2017. Mobilenets: Efficient convo-
lutional neural networks for mobile vision applica-
tions. arXiv preprint arXiv:1704.04861.

Edward J Hu, yelong shen, Phillip Wallis, Zeyuan Allen-
Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and Weizhu

Chen. 2022. LoRA: Low-rank adaptation of large
language models. In International Conference on
Learning Representations.

Guanhua Huang, Yuchen Zhang, Zhe Li, Yongjian You,
Mingze Wang, and Zhouwang Yang. 2024. Are ai-
generated text detectors robust to adversarial pertur-
bations? In Proceedings of the 62nd Annual Meeting
of the Association for Computational Linguistics (Vol-
ume 1: Long Papers), pages 6005–6024.

Yifei Huang, Jiuxin Cao, Hanyu Luo, Xin Guan, and
Bo Liu. 2025. Magret: Machine-generated text de-
tection with rewritten texts. In Proceedings of the
31st International Conference on Computational Lin-
guistics, pages 8336–8346.

Aaron Hurst, Adam Lerer, Adam P Goucher, Adam
Perelman, Aditya Ramesh, Aidan Clark, AJ Os-
trow, Akila Welihinda, Alan Hayes, Alec Radford,
et al. 2024. Gpt-4o system card. arXiv preprint
arXiv:2410.21276.

Jacob Devlin Ming-Wei Chang Kenton and Lee Kristina
Toutanova. 2019. Bert: Pre-training of deep bidirec-
tional transformers for language understanding. In
Proceedings of naacL-HLT, volume 1, page 2. Min-
neapolis, Minnesota.

Ryuto Koike, Masahiro Kaneko, and Naoaki Okazaki.
2024. Outfox: Llm-generated essay detection
through in-context learning with adversarially gen-
erated examples. In Proceedings of the AAAI Con-
ference on Artificial Intelligence, volume 38, pages
21258–21266. Association for the Advancement of
Artificial Intelligence (AAAI).

Md Tahmid Rahman Laskar, Sawsan Alqahtani, M Sai-
ful Bari, Mizanur Rahman, Mohammad Abdul-
lah Matin Khan, Haidar Khan, Israt Jahan, Amran
Bhuiyan, Chee Wei Tan, Md Rizwan Parvez, Enamul
Hoque, Shafiq Joty, and Jimmy Huang. 2024. A sys-
tematic survey and critical review on evaluating large
language models: Challenges, limitations, and recom-
mendations. In Proceedings of the 2024 Conference
on Empirical Methods in Natural Language Process-
ing, pages 13785–13816, Miami, Florida, USA. As-
sociation for Computational Linguistics.

Mina Lee, Percy Liang, and Qian Yang. 2022. Coau-
thor: Designing a human-ai collaborative writing
dataset for exploring language model capabilities. In
Proceedings of the 2022 CHI conference on human
factors in computing systems, pages 1–19.

Alessandro Lenci et al. 2008. Distributional semantics
in linguistic and cognitive research. Italian journal
of linguistics, 20(1):1–31.

Aiwei Liu, Leyi Pan, Xuming Hu, Shiao Meng, and
Lijie Wen. 2024a. A semantic invariant robust water-
mark for large language models. In ICLR.

Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang,
Bochao Wu, Chengda Lu, Chenggang Zhao, Chengqi
Deng, Chenyu Zhang, Chong Ruan, et al. 2024b.

5296

https://arxiv.org/abs/2401.12070
https://arxiv.org/abs/2401.12070
https://openreview.net/forum?id=nZeVKeeFYf9
https://openreview.net/forum?id=nZeVKeeFYf9
https://doi.org/10.18653/v1/2024.emnlp-main.764
https://doi.org/10.18653/v1/2024.emnlp-main.764
https://doi.org/10.18653/v1/2024.emnlp-main.764
https://doi.org/10.18653/v1/2024.emnlp-main.764
https://openreview.net/forum?id=6p8lpe4MNf
https://openreview.net/forum?id=6p8lpe4MNf


Deepseek-v3 technical report. arXiv preprint
arXiv:2412.19437.

Yepeng Liu and Yuheng Bu. 2024. Adaptive text water-
mark for large language models. In International
Conference on Machine Learning, pages 30718–
30737. PMLR.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach. arXiv preprint arXiv:1907.11692.

Ilya Loshchilov and Frank Hutter. 2017. Decou-
pled weight decay regularization. arXiv preprint
arXiv:1711.05101.

Yijian Lu, Aiwei Liu, Dianzhi Yu, Jingjing Li, and Ir-
win King. 2024. An entropy-based text watermarking
detection method. In Proceedings of the 62nd An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 11724–
11735.

Shixuan Ma and Quan Wang. 2024. Zero-shot detec-
tion of LLM-generated text using token cohesiveness.
In Proceedings of the 2024 Conference on Empiri-
cal Methods in Natural Language Processing, pages
17538–17553, Miami, Florida, USA. Association for
Computational Linguistics.

Chengzhi Mao, Carl Vondrick, Hao Wang, and Junfeng
Yang. 2024. Raidar: generative AI detection via
rewriting. In The Twelfth International Conference
on Learning Representations.

George A Miller. 1995. Wordnet: a lexical database for
english. Communications of the ACM, 38(11):39–41.

Diganta Misra, Trikay Nalamada, Ajay Uppili Arasani-
palai, and Qibin Hou. 2021. Rotate to attend: Convo-
lutional triplet attention module. In Proceedings of
the IEEE/CVF winter conference on applications of
computer vision, pages 3139–3148.

Eric Mitchell, Yoonho Lee, Alexander Khazatsky,
Christopher D Manning, and Chelsea Finn. 2023. De-
tectgpt: Zero-shot machine-generated text detection
using probability curvature. In International Con-
ference on Machine Learning, pages 24950–24962.
PMLR.

Shashi Narayan, Shay B Cohen, and Mirella Lapata.
2018. Don’t give me the details, just the summary!
topic-aware convolutional neural networks for ex-
treme summarization. In Proceedings of the 2018
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 1797–1807.

Hoang-Quoc Nguyen-Son, Minh-Son Dao, and Koji
Zettsu. 2024. Simllm: Detecting sentences generated
by large language models using similarity between
the generation and its re-generation. In Proceedings
of the 2024 Conference on Empirical Methods in
Natural Language Processing, pages 22340–22352.

Leyi Pan, Aiwei Liu, Zhiwei He, Zitian Gao, Xuan-
dong Zhao, Yijian Lu, Binglin Zhou, Shuliang Liu,
Xuming Hu, Lijie Wen, Irwin King, and Philip S. Yu.
2024. MarkLLM: An open-source toolkit for LLM
watermarking. In Proceedings of the 2024 Confer-
ence on Empirical Methods in Natural Language
Processing: System Demonstrations, pages 61–71,
Miami, Florida, USA. Association for Computational
Linguistics.

Yuhui Shi, Qiang Sheng, Juan Cao, Hao Mi, Beizhe Hu,
and Danding Wang. 2024. Ten words only still help:
Improving black-box ai-generated text detection via
proxy-guided efficient re-sampling. arXiv preprint
arXiv:2402.09199.

Irene Solaiman, Miles Brundage, Jack Clark, Amanda
Askell, Ariel Herbert-Voss, Jeff Wu, Alec Rad-
ford, Gretchen Krueger, Jong Wook Kim, Sarah
Kreps, et al. 2019. Release strategies and the so-
cial impacts of language models. arXiv preprint
arXiv:1908.09203.

Rafael Alberto Rivera Soto, Kailin Koch, Aleem
Khan, Barry Y. Chen, Marcus Bishop, and Nicholas
Andrews. 2024. Few-shot detection of machine-
generated text using style representations. In The
Twelfth International Conference on Learning Repre-
sentations.

Zhixiong Su, Yichen Wang, Herun Wan, Zhaohan
Zhang, and Minnan Luo. 2025. HACo-det: A study
towards fine-grained machine-generated text detec-
tion under human-AI coauthoring. In Proceedings
of the 63rd Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 22015–22036, Vienna, Austria. Association
for Computational Linguistics.

Gemini Team, Rohan Anil, Sebastian Borgeaud, Jean-
Baptiste Alayrac, Jiahui Yu, Radu Soricut, Johan
Schalkwyk, Andrew M Dai, Anja Hauth, Katie
Millican, et al. 2023. Gemini: a family of
highly capable multimodal models. arXiv preprint
arXiv:2312.11805.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, et al. 2023. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint
arXiv:2307.09288.

Nafis Irtiza Tripto, Saranya Venkatraman, Dominik
Macko, Robert Moro, Ivan Srba, Adaku Uchendu,
Thai Le, and Dongwon Lee. 2024. A ship of theseus:
Curious cases of paraphrasing in llm-generated texts.
In Proceedings of the 62nd Annual Meeting of the
Association for Computational Linguistics (Volume
1: Long Papers), pages 6608–6625.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. Advances in neural information processing
systems, 30.

5297

https://doi.org/10.18653/v1/2024.emnlp-main.971
https://doi.org/10.18653/v1/2024.emnlp-main.971
https://openreview.net/forum?id=bQWE2UqXmf
https://openreview.net/forum?id=bQWE2UqXmf
https://doi.org/10.18653/v1/2024.emnlp-demo.7
https://doi.org/10.18653/v1/2024.emnlp-demo.7
https://openreview.net/forum?id=cWiEN1plhJ
https://openreview.net/forum?id=cWiEN1plhJ
https://doi.org/10.18653/v1/2025.acl-long.1069
https://doi.org/10.18653/v1/2025.acl-long.1069
https://doi.org/10.18653/v1/2025.acl-long.1069


Lei Wang, Deke Guo, Huaming Wu, Keqiu Li, and
Wei Yu. 2024a. Tc-gcn: Triple cross-attention and
graph convolutional network for traffic forecasting.
Information Fusion, 105:102229.

Pengyu Wang, Linyang Li, Ke Ren, Botian Jiang, Dong
Zhang, and Xipeng Qiu. 2023. Seqxgpt: Sentence-
level ai-generated text detection. In Proceedings
of the 2023 Conference on Empirical Methods in
Natural Language Processing, pages 1144–1156.

Yuxia Wang, Jonibek Mansurov, Petar Ivanov, Jinyan
Su, Artem Shelmanov, Akim Tsvigun, Osama Mo-
hammed Afzal, Tarek Mahmoud, Giovanni Puccetti,
Thomas Arnold, et al. 2024b. M4gt-bench: Evalu-
ation benchmark for black-box machine-generated
text detection. In Proceedings of the 62nd Annual
Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), pages 3964–3992.

Junchao Wu, Runzhe Zhan, Derek F Wong, Shu Yang,
Xuebo Liu, Lidia S Chao, and Min Zhang. 2025.
Who wrote this? the key to zero-shot llm-generated
text detection is gecscore. In Proceedings of the 31st
International Conference on Computational Linguis-
tics, pages 10275–10292.

Yihuai Xu, Yongwei Wang, Yifei Bi, Huangsen Cao,
Zhouhan Lin, Yu Zhao, and Fei Wu. 2025. Training-
free LLM-generated text detection by mining token
probability sequences. In The Thirteenth Interna-
tional Conference on Learning Representations.

Xianjun Yang, Wei Cheng, Yue Wu, Linda Ruth Pet-
zold, William Yang Wang, and Haifeng Chen. 2024.
Dna-gpt: Divergent n-gram analysis for training-free
detection of gpt-generated text. In ICLR.

Shu Yin, Peican Zhu, Lianwei Wu, Chao Gao, and Zhen
Wang. 2024. Gamc: an unsupervised method for
fake news detection using graph autoencoder with
masking. In Proceedings of the Thirty-Eighth AAAI
Conference on Artificial Intelligence and Thirty-Sixth
Conference on Innovative Applications of Artificial
Intelligence and Fourteenth Symposium on Educa-
tional Advances in Artificial Intelligence, pages 347–
355.

Xiao Yu, Yuang Qi, Kejiang Chen, Guoqiang Chen,
Xi Yang, Pengyuan Zhu, Xiuwei Shang, Weiming
Zhang, and Nenghai Yu. 2024. Dpic: Decoupling
prompt and intrinsic characteristics for llm gener-
ated text detection. Advances in Neural Information
Processing Systems, 37:16194–16212.

Cong Zeng, Shengkun Tang, Xianjun Yang, Yuanzhou
Chen, Yiyou Sun, Zhiqiang Xu, Yao Li, Haifeng
Chen, Wei Cheng, and Dongkuan DK Xu. 2024a.
Dald: Improving logits-based detector without logits
from black-box llms. Advances in Neural Informa-
tion Processing Systems, 37:54947–54973.

Zijie Zeng, Shiqi Liu, Lele Sha, Zhuang Li, Kaixun
Yang, Sannyuya Liu, Dragan Gašević, and Guan-
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A Introduction of Baseline Methods

We categorize the baselines into training-free and
supervised methods based on whether annotated
training data is required. Unless otherwise speci-
fied, all methods follow the original experimental
settings described in their respective papers.

A.1 Training-free Methods

Log Entropy (Gehrmann et al., 2019) assumes
that AI-generated text exhibits lower “openness,”
i.e., the mean token entropy tends to be lower than
that of HWT. We compute the mean log entropy of
the detected text using the fine-tuned proxy model
LLaMA2-7B (denoted as FTPM), consistent with
the setup in Section 4.2.

Log Probability (Solaiman et al., 2019) assumes
that AI-generated text has higher “precision,” i.e.,
the mean token probability is typically higher than
that of HWT. We use FTPM to compute the mean
log probabilities of the detected text.

DNA-GPT (Yang et al., 2024) assumes that AGT
differs from HWT in its N-gram distribution. DNA-
GPT detects AGT by truncating the input and regen-
erating the missing portion using a re-generation
model, then comparing the N-gram distributions
between the original and re-generated text. We use
FTPM as the re-generation model.

Fast-DetectGPT (Bao et al., 2024) is an en-
hanced version of DetectGPT (Mitchell et al.,
2023), which posits that humans and AI exhibit
discernible differences in token choice given a text.
Fast-DetectGPT replaces the “perturbation” step in
DetectGPT with a more efficient “sampling” pro-
cess, improving detection efficiency and accuracy.
We use FTPM to compute the token conditional
probabilities.
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A.2 Supervised Methods

SeqXGPT (Wang et al., 2023) is the first work
designed for the S-AGTD task, which utilizes log
probability lists from white-box LLMs as features
for sentence-level detection. Its framework is based
on convolutional and self-attention mechanisms.
We use FTPM as the white-box LLM.

POGER (Shi et al., 2024) is a proxy-guided
efficient re-sampling method, which selects a small
subset of representative words to perform multiple
rounds of re-sampling for AIGT detection. We use
FTPM as the resampling model.

B Details of Fine-tuning Proxy Model

The work in (Zeng et al., 2024a) points out that
fine-tuning the proxy model to align its probability
distribution with the target model helps mitigate
distribution shifts and enhances cross-model gen-
eralization. In our proposed SenDetEX framework
(details in Section 3), the proxy model plays a cru-
cial role—it is responsible for computing proba-
bility series, entropy series, self-embeddings, and
contextual embeddings. Therefore, the fine-tuning
process has the potential to further improve the
detector’s performance. Our fine-tuning configura-
tion follows the Distribution-Aligned LLMs Detect
(DALD) strategy proposed by (Zeng et al., 2024a).
Specifically:

The fine-tuned model is LLaMA-2-7B, which
serves as our base proxy model. In line with
Section 4.1, the target detection models include
GPT-4o and DeepSeek-v3 (temperature is set to
0.7). The training data is automatically gener-
ated via API calls to the target models, collect-
ing 2,000 samples for each model. The data is
structured as prompt-response pairs, denoted as
S = {(Pi, Xi)}2000i=1 , where Pi is the prompt and
Xi is the corresponding output from the target
model. The prompts are sourced from the pub-
licly shared prompts in the WildChat dataset (Zhao
et al., 2024).

To enable parameter-efficient fine-tuning, we
adopt the Low-Rank Adaptation (LoRA) technique
(Hu et al., 2022), which introduces lightweight
adapters while keeping the original model param-
eters frozen. The LoRA configuration is as fol-
lows: the rank is 16, and the scaling factor is 32.
The adaptation modules are applied to several pro-
jection layers in LLaMA-2-7B, including q_proj,
v_proj, k_proj, o_proj, gate_proj, down_proj,
and up_proj.

The fine-tuning objective is to maximize the con-
ditional likelihood of the target model outputs un-
der the proxy model. Formally, the objective is:

max
Θ

∑

[P,X]∈S

l(P )+l(X)∑

l=l(P )+1

log p(yl | y<l; sur +Θ)

where l(X) denotes the length of the output text X ,
yl is the l-th token to be predicted, and Θ represents
the trainable parameters of the LoRA adapters. Gra-
dients concerning the prompt P are blocked during
training, and optimization is performed only on the
generated part X .

During the fine-tuning process, the learning rate
is set to 1e-4, with a per-device batch size of 1
and gradient accumulation steps set to 4 to enable
multi-GPU parallelism. The maximum sequence
length varies by model: 512 for GPT-4o and 2048
for DeepSeek-V3. The training is conducted on
two NVIDIA A100 GPUs.

C Impact of Sentence Length on Detector
Performance

In the experiment investigating the relationship
between sentence length and the performance of
AGTD methods, we randomly selected 1,000 docu-
ments from the WritingPrompt dataset (Fan et al.,
2018), each containing both a “prompt” and a “long
answer” field. We use DeepSeek-V3 and GPT-4o
(in line with Section 4.1) as generators to produce
AI-generated answers based on the “prompt” text,
with the generation temperature set to 0.7. For each
generator, we select 650 “long answer” documents
as HWT and 350 AI-generated answers as AGT
for evaluation. We make sure that each document
contains at least 10 sentences.

We evaluate three training-free AGTD methods:
Log Probability, Fast-DetectGPT, and DNA-GPT,
whose detailed descriptions are provided in Ap-
pendix A. For each document under detection, we
construct sub-documents by extracting the first N
sentences, which serve as the input for the detector.
The relationship between different values of N and
the corresponding average F1 scores under each
method is shown in Figure 2.

D Details of Adversarial Attacks

We evaluate two commonly used word-level attack
strategies: random deletion and synonym substitu-
tion, where synonym substitution is implemented
using the NLTK extension package (Bird et al.,
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2009). with the character modification ratio fixed
at 0.2.

In addition to word-level attacks, we conduct
experiments in two sentence-level attacks: the para-
phrasing attack and the back-translation attack.
For the paraphrasing attack, we use the GPT-4o
model (temperature is set to 0.7) with the following
prompt design:

“Please rewrite the following sentence. The sen-
tence is: [Insert your sentence here] The rewritten
sentence is: ”

For the back-translation attack, we use the GPT-
4o model (temperature is set to 0.7) with the fol-
lowing prompt design:

“Please perform the following steps to finish the
back-translation task: 1. Translate the following
English sentence into German. 2. Then, translate
the German version back into English. 3. Only
return the translated English sentence. The sen-
tence is: [Insert your English sentence here] The
back-translation sentence is:”.

According to the work of (Tripto et al., 2024)
and others, for HWT, small-scale word-level modi-
fications generally do not alter the attribution of au-
thorship, which remains with the human. However,
when the text undergoes large-scale modifications
based on LLMs, the attribution of authorship may
become ambiguous. Therefore, we generate four
types of adversarial texts for each test sentence la-
beled as AI-based, using the aforementioned attack
strategies. We only consider the random deletion
and random substitution attacks for human-written
sentences. We present two representative examples
in Table 9.

E Special Cases of Re-generated Sentence

Our re-generated sentences are generated by the
proxy model based on the preceding context of the
sentence to be detected. The context-aware length
c is a vital hyperparameter. No additional context is
used when the target sentence si is at the beginning
of the text (i = 0) or there is no context-aware infor-
mation (c = 0). Following the work of (Mao et al.,
2024), we use proxy model-generated synonymous
rephrasings of the target sentence as approxima-
tions of the re-generated sentence. Specifically, we
use the following prompt:

“Please rewrite the following sentence. The orig-
inal sentence is: si. The rewritten sentence is: ”

F Cases in Dataset Construction

In Table 11, we present two examples from the con-
struction process of our human-AI hybrid bench-
mark dataset described in Section 4.1. The original
texts in both cases are sourced from human-written
summaries in the XSUM dataset, and the genera-
tor is DeepSeek-V3 (in line with Sections 4.1 and
4.2).

We also provide a detailed comparison between
our dataset generated by AutoFill-Refine and four
closely related datasets in CoAuthor(Lee et al.,
2022), SeqXGPT(Wang et al., 2023), M4GT(Wang
et al., 2024b), and HACo-Det(Su et al., 2025). The
comparison is conducted across four dimensions:

• Randomness: Irregular alternation of hu-
man/AI sentences.

• Label Clarity: Only human or AI labels, with-
out ambiguous collaborations.

• Recency: Incorporates recently developed
LLMs (within the past three years).

• Quality Control: Applies filtering and clean-
ing strategies to ensure data quality.

As shown in Table 10, the dataset constructed using
AutoFill-Refine simultaneously satisfies all these
conditions and thus best meets the criteria for our
S-AGTD tasks.

G Extended Ablation Analysis

To further illustrate the motivation of the SenDe-
tEX design, we extend the ablation study beyond
Section 4.3.5 and Table 6, providing a more system-
atic and progressive decomposition of the model
architecture. The structure of our ablation settings
is organized incrementally as follows:

• (Setting 0) SeqXGPT: Uses the probability
series as input and adopts a “CNN + Trans-
former” architecture for feature extraction and
classification.

• (Setting 1) -E-C: Disables all contextual infor-
mation while retaining only the basic style sig-
nal. This setting is equivalent to Setting 0 in
terms of input, and the performance gain here
reflects the stronger temporal feature extrac-
tion capability of our Style Extraction Mod-
ule.
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Label Human AI

Original
sentence

Underwater sonar equipment turned up a
strange object more than two miles beneath

the waves just before Christmas.

Honour crimes are a serious issue in the UK,
with many cases going unreported due to

fear and family pressure.

Random
deletion

sonar equipment up a strange object than
two miles beneath the waves just before

Christmas.

Honour crimes are issue in UK, with many
cases going unreported due to fear and

family.

Random
Substitution

Underwater sonar equipment turned up a
foreign object more than ii miles beneath

the waves just earlier Christmas .

Honour criminal offence are payoff in UK ,
with many cases going unreported due to

fright and family.

Paraphrasing (N.A.)

Honour crimes represent a significant
problem in the UK, as numerous incidents

remain unreported because of fear and
pressure from families.

Back-
translation (N.A.)

Honour crimes are a serious problem in the
UK, with many cases remaining unreported

because of fear and pressure from the
family.

Table 9: Two examples of adversarial attack cases on XSUM. “(N.A)”: Not associated, meaning that for HWT, we
do not consider its paraphrasing or back-translation scenarios.

Datasets Randomness Label Clarity Recency Quality Control

CoAuthor Yes No No No
SeqXGPT No Yes Yes No

M4GT No Yes Yes Yes
HACo-Det Yes Yes Yes No

Ours Yes Yes Yes Yes

Table 10: Comparison of datasets across four dimensions.

• (Setting 2) -E-R: Builds on Setting 1 by
partially incorporating contextual informa-
tion. The observed performance improvement
demonstrates the value of intrinsic semantics.

• (Setting 3) -C: Builds on Setting 1 by lever-
aging the full style signal. The performance
gain is attributed to the inclusion of openness
information.

• (Setting 4) -R: Builds on Setting 1 by includ-
ing both the full style signal and partial con-
textual information. This setting captures the
synergistic effect between intrinsic semantics
and openness.

• (Setting 5) -E: Builds on Setting 1 by incor-
porating full contextual information. Com-
pared with Setting 2, the performance gain

here demonstrates the added value of inferred
semantics in combination with intrinsic se-
mantics.

This progressive ablation strategy helps disentangle
the contributions of each component and provides
a more principled perspective on the fusion strategy
in SenDetEX.
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Case 1 Case 2

Original
document

(di)

Home Office statistics show there were 22
arrests at Imps games between September

2014 and September 2015. [SEP] All were
home fixtures, and 14 alone were made at a

pre-season friendly against Doncaster
Rovers. [SEP] Lincoln play in the National

League - the fifth tier of English football.
[SEP] Out of 12 banning orders issued in
the same period, eight also came after the

Doncaster game. · · ·

A leading activist, Nikolai Alexeyev,
brought the case after the city authorities

repeatedly rejected his requests to organise
marches. [SEP] The Moscow authorities

had argued the parades would cause a
violent reaction. [SEP] But the court in

Strasbourg said Russia had discriminated
against Mr Alexeyev on the grounds of
sexual orientation. [SEP] It said that by

refusing to allow the parades, the authorities
had “effectively approved of and supported

groups who had called for (their)
disruption”. · · ·

Masked
document

(d′i)

Home Office statistics show there were 22
arrests at Imps games between September
2014 and September 2015. [SEP] [MASK]
[SEP] Lincoln play in the National League -
the fifth tier of English football. [SEP] Out

of 12 banning orders issued in the same
period, eight also came after the Doncaster

game. · · ·

A leading activist, Nikolai Alexeyev,
brought the case after the city authorities

repeatedly rejected his requests to organise
marches. [SEP] The Moscow authorities

had argued the parades would cause a
violent reaction. [SEP] [MASK] [SEP] It
said that by refusing to allow the parades,

the authorities had “effectively approved of
and supported groups who had called for

(their) disruption”. · · ·

Shared
prompt

Fill in each [MASK] in the following document with a single sentence to ensure overall
fluency, coherence, and logic. Original document: d′i. New completed document:

Recovered
document

(d′′i )

Home Office statistics show there were 22
arrests at Imps games between September

2014 and September 2015. [SEP] The
majority of these arrests occurred during
a match against Doncaster Rovers. [SEP]
Lincoln play in the National League - the
fifth tier of English football. [SEP] Out of

12 banning orders issued in the same period,
eight also came after the Doncaster game.

· · ·

A leading activist, Nikolai Alexeyev,
brought the case after the city authorities

repeatedly rejected his requests to organise
marches. [SEP] The Moscow authorities

had argued the parades would cause a
violent reaction. [SEP] The European

Court of Human Rights ruled in favor of
Nikolai Alexeyev, stating that the Moscow

authorities’ ban on the marches was
unjustified. [SEP] It said that by refusing
to allow the parades, the authorities had
“effectively approved of and supported

groups who had called for (their)
disruption”. · · ·

Perplexity
Calculation

PPL(di) = 26.83
PPL(d′′i ) = 22.21

PPL(di) = 23.64
PPL(d′′i ) = 24.88

Decision Accept Reject

Table 11: Two examples from our benchmark dataset construction process through the AutoFill-Refine strategy,
where [SEP] denotes the sentence separator. Bolded sentences indicate content generated by the LLM. From top
to bottom, the table illustrates the steps of loading the original document, randomly masking the text, loading the
shared LLM prompt, generating the recovered text, performing PPL verification, and making the final decision.

5302


