
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing, pages 5420–5438
November 4-9, 2025 ©2025 Association for Computational Linguistics

Search-o1: Agentic Search-Enhanced Large Reasoning Models

Xiaoxi Li1, Guanting Dong1, Jiajie Jin1, Yuyao Zhang1, Yujia Zhou2,
Yutao Zhu1, Peitian Zhang1, Zhicheng Dou1*

1Renmin University of China 2Tsinghua University
{xiaoxi_li, dou}@ruc.edu.cn

Abstract

Large reasoning models (LRMs) like OpenAI-
o1 have demonstrated impressive long stepwise
reasoning capabilities through large-scale rein-
forcement learning. However, their extended
reasoning processes often suffer from knowl-
edge insufficiency, leading to frequent uncer-
tainties and potential errors. To address this lim-
itation, we introduce Search-o1, a framework
that enhances LRMs with an agentic retrieval-
augmented generation (RAG) mechanism and
a Reason-in-Documents module for refining
retrieved documents. Search-o1 integrates an
agentic search workflow into the reasoning pro-
cess, enabling dynamic retrieval of external
knowledge when LRMs encounter uncertain
knowledge points. Additionally, due to the
verbose nature of retrieved documents, we de-
sign a separate Reason-in-Documents module
to deeply analyze the retrieved information be-
fore injecting it into the reasoning chain, min-
imizing noise and preserving coherent reason-
ing flow. Extensive experiments on complex
reasoning tasks in science, mathematics, and
coding, as well as six open-domain QA bench-
marks, demonstrate the strong performance
of Search-o1. This approach enhances the
trustworthiness of LRMs in complex reasoning
tasks, paving the way for advanced deep re-
search systems. The code is available at https:
//github.com/RUC-NLPIR/Search-o1.

1 Introduction

Recently emerged large reasoning models (LRMs),
exemplified by OpenAI’s o1 (Jaech et al., 2024),
Qwen-QwQ (Team, 2024), and DeepSeek-R1 (Guo
et al., 2025), employ large-scale reinforcement
learning to foster impressive long-sequence step-
wise reasoning capabilities, offering promising so-
lutions to complex reasoning problems (OpenAI,
2024; Lewkowycz et al., 2022; Wei et al., 2022).

*Corresponding author.

This advancement has inspired a series of founda-
tional efforts aimed at exploring and reproducing
o1-like reasoning patterns, to broaden their applica-
tion to a wider range of foundational models (Qin
et al., 2024; Min et al., 2024).

It is noteworthy that o1-like reasoning patterns
guide LRMs to engage in a slower thinking pro-
cess (Daniel, 2017) by implicitly breaking down
complex problems, generating a long internal rea-
soning chain, and then discovering suitable solu-
tions step by step. While this characteristic en-
hances logical coherence and interpretability of
reasoning, an extended chain of thought may cause
overthinking (Chen et al., 2024b) and increased
risks of knowledge insufficiency (Wong et al., 2021;
Raffel et al., 2020), where any knowledge gap can
propagate errors and disrupt the entire reasoning
chain (Ling et al., 2023; Liu et al., 2024).

To evaluate uncertainty in LRMs’ reasoning, we
conducted preliminary experiments to track the fre-
quency of uncertain words decoded by the LRMs.
As shown in Figure 1, the extended thinking pro-
cess leads LRM to frequently decode numerous
uncertain terms in challenging reasoning problems,
with “perhaps” averaging over 30 occurrences in
each reasoning process. Consequently, automat-
ing the supplementation of knowledge required for
the o1-like reasoning process has become a signif-
icant challenge, limiting the progress of LRMs in
achieving universally trustworthy reasoning.

To address these challenges, we introduce
Search-o1, which enhances LRMs by integrating
an agentic retrieval-augmented generation (RAG)
mechanism with a knowledge refinement module.
This design allows the model to retrieve relevant
knowledge as needed during the reasoning process,
ensuring step-by-step reasoning remains coherent.

Specifically, our results in Figure 1 reveal that
traditional problem-oriented RAG techniques do
not effectively address the knowledge gaps com-
pared to direct reasoning (Standard RAG vs. Direct

5420

https://github.com/RUC-NLPIR/Search-o1
https://github.com/RUC-NLPIR/Search-o1

Cases of Model-Expressed Uncertainty

Wait, perhaps it’s referring to dimethyl sulfone,
but that doesn’t seem right.

Alternatively, perhaps there’s a mistake in my
understanding of epistasis. Let me look up epis-
tasis quickly. Epistasis is ...

Alternatively, HBr could also abstract a hydro-
gen atom from the alkene, leading to a ...

As I recall, Quinuclidine is a seven-membered
ring with a nitrogen atom, likely not having the
required symmetry. perhaps alternatively wait likely

Uncertain Words

0

5

10

15

20

25

30

35

A
ve

ra
ge

 O
cc

ur
re

nc
e

30.4

27.1

7.8

2.8

26.4

21.6

9.3

3.2

15.8

11.9

8.2

2.6

Direct Reasoning

Standard RAG

Search-o1 (Ours)

Figure 1: Analysis of reasoning uncertainty with QwQ-32B-Preview. Left: Examples of uncertain
words identified during the reasoning process. Right: Average occurrence of high-frequency uncertain
words per output in the GPQA diamond set.

To address this limitation, we conduct preliminary experiments to assess the frequency of uncertain
words decoded by the LRMs due to knowledge gaps. As shown in Figure 1, the extended think-
ing process leads LRM to frequently decode numerous uncertain terms in challenging reasoning
problems, with “perhaps” averaging over 30 occurrences in each reasoning process. Notably, the
high specialization of these problems also complicates manual reasoning verification, often incurring
significant costs [63]. Consequently, automating the supplementation of knowledge required for
the o1-like reasoning process has become a significant challenge, limiting the progress of LRMs in
achieving universally trustworthy reasoning.

To shed light on this topic, our core motivation is to enhance the LRMs with o1-like reasoning pattern
through autonomous retrieval. We propose Search-o1, which integrates the reasoning process of
LRMs with two core components: an agentic retrieval-augmented generation (RAG) mechanism and
a knowledge refinement module. This design aims to enable LRMs to incorporate the agentic search
workflow into the reasoning process, retrieving external knowledge on demand to support step-wise
reasoning while preserving coherence throughout.

Specifically, our results in Figure 1 reveal that traditional problem-oriented RAG techniques do not
effectively address the knowledge gaps compared to direct reasoning (Standard RAG vs. Direct
Reasoning). This finding aligns with human intuition, as standard RAG retrieves relevant knowledge
only once in a problem-oriented manner, while the knowledge required for each step in complex
reasoning scenarios is often varied and diverse [83, 41, 11]. Unlike them, Search-o1 employs an
agentic RAG technique that guides the model to actively decode search queries when facing knowl-
edge shortages, thereby triggering the retrieval mechanism to obtain relevant external knowledge.
Owing to the benefits of this design, our retrieval mechanism can be triggered and iterated multiple
times within a single reasoning session to fulfill the knowledge needs of various reasoning steps.

To effectively integrate retrieved knowledge into the LRM’s reasoning process, we further identify
two key challenges when directly incorporating retrieved documents into the reasoning chain during
practical experiments: (1) Redundant Information in Retrieved Documents. Retrieved documents
are often lengthy and contain redundant information, directly inputting them into LRMs may disrupt
the original coherence of reasoning and even introduce noise [62, 72, 26]. (2) Limited Ability to
Understand Long Documents. Most LRMs have been specifically aligned for complex reasoning
tasks during the pre-training and fine-tuning stages. This focus has resulted in a degree of catastrophic
forgetting in their general capabilities [39, 10], ultimately limiting their long-context understanding
of retrieved documents.

To address these challenges, we introduce the Reason-in-Documents module, which operates inde-
pendently from the main reasoning chain. This module first conducts a thorough analysis of retrieved
documents based on both the current search query and previous reasoning steps, and then produces
refined information that seamlessly integrates with the prior reasoning chain.

In summary, our contributions are as follows:

2

Figure 1: Analysis of reasoning uncertainty. Left: Examples of uncertain words identified during the reasoning
process. Right: Average occurrence of high-frequency uncertain words per output in the GPQA diamond set.

Reasoning). This finding aligns with human intu-
ition, as standard RAG retrieves relevant knowl-
edge only once in a problem-oriented manner,
while the knowledge required for each step in com-
plex reasoning scenarios is often varied and di-
verse (Zheng et al., 2025; Liu et al., 2024; Dong
et al., 2025d). Unlike them, Search-o1 employs an
agentic RAG technique that guides the model to
actively decode search queries when facing knowl-
edge shortages, thereby triggering the retrieval
mechanism to obtain relevant external knowledge.
Owing to the benefits of this design, our retrieval
mechanism can be triggered and iterated multiple
times within a single reasoning session to fulfill the
knowledge needs of various reasoning steps.

To effectively integrate retrieved knowledge into
the LRM’s reasoning process, we further identify
two key challenges when directly incorporating
retrieved documents into the reasoning chain dur-
ing practical experiments: (1) Redundant Infor-
mation in Retrieved Documents. Retrieved doc-
uments are often lengthy and contain redundant
information, directly inputting them into LRMs
may disrupt the original coherence of reasoning
and even introduce noise (Wu et al., 2024; Yoran
et al., 2024). (2) Limited Ability to Understand
Long Documents. Most LRMs have been specif-
ically aligned for complex reasoning tasks during
the pre-training and fine-tuning stages. This focus
has resulted in a degree of catastrophic forgetting
in their general capabilities (Lin et al., 2024; Dong
et al., 2024), ultimately limiting their long-context
understanding of retrieved documents.

To address these challenges, we introduce the
Reason-in-Documents module, which operates
independently from the main reasoning chain. This
module first conducts a thorough analysis of re-

trieved documents based on both the current search
query and previous reasoning steps, and then pro-
duces refined information that seamlessly inte-
grates with the prior reasoning chain.

In summary, our contributions are as follows:

• We propose Search-o1, the first framework that
integrates the agentic search workflow into the
o1-like reasoning process of LRM for achieving
autonomous knowledge supplementation.

• To enhance reasoning with external knowledge,
Search-o1 incorporates an agentic RAG mecha-
nism and a knowledge refinement module. This
enables LRMs to retrieve relevant external infor-
mation as needed, while preserving the coher-
ence of the reasoning process.

• With five complex reasoning domains and six
open-domain QA benchmarks, we demonstrate
that Search-o1 achieves remarkable performance
in the reasoning field while maintaining substan-
tial improvements in the general knowledge.

2 Related Work

Large Reasoning Models. Large reasoning mod-
els focus on enhancing performance at test time by
utilizing extended reasoning steps, contrasting with
traditional large pre-trained models that achieve
scalability during training by increasing model size
or expanding training data (Henighan et al., 2020;
Zeng et al., 2024). Recently, models like OpenAI-
o1 (Jaech et al., 2024), Qwen-QwQ (Team, 2024)
and DeepSeek-R1 (Guo et al., 2025) explicitly
demonstrate chain-of-thought reasoning (Wei et al.,
2022). Various approaches have been explored to
achieve o1-like reasoning capabilities. Some meth-
ods combine policy and reward models with Monte

5421

Carlo Tree Search (MCTS) (Jiang et al., 2024),
though this does not internalize reasoning within
the model. Other studies incorporate deliberate er-
rors in reasoning paths during training to partially
internalize these abilities (Qin et al., 2024). Ad-
ditionally, distilling training data has been shown
to enhance models’ o1-like reasoning skills (Min
et al., 2024). The o1-like reasoning paradigm has
demonstrated strong performance across diverse
domains, including vision-language reasoning (Xu
et al., 2024b; Dong et al., 2025d), code generation
(Zhang et al., 2024), healthcare (Chen et al., 2024a),
and machine translation (Wang et al., 2024). How-
ever, these approaches are limited by their reliance
on static, parameterized models, which cannot
leverage external world knowledge when internal
knowledge is insufficient.

Retrieval-Augmented Generation. Retrieval-
augmented generation (RAG) enhances genera-
tive models by incorporating retrieval mechanisms,
overcoming the limitations of static parameters
and enabling access to external knowledge (Lewis
et al., 2020; Li et al., 2025c). Advanced research in
this field enhances the RAG system from multiple
aspects, including the necessity of retrieval (Tan
et al., 2024), pre-processing of queries (Wang
et al., 2023), retrieved documents compressing (Xu
et al., 2024a; Liu et al., 2025), denoising (Liu
et al., 2024), refining (Jin et al., 2025a), instruc-
tion following (Dong et al., 2025b), and so on.
Furthermore, some studies have explored end-to-
end model training to implement RAG systems (Li
et al., 2024, 2025b) and knowledge-graph-based
RAG systems (Edge et al., 2024). Recently, agentic
RAG systems empower models to autonomously
determine when and what knowledge to retrieve
as needed, showcasing enhanced planning and
problem-solving capabilities (Yao et al., 2023;
Dong et al., 2025a; Li et al., 2025a; Jin et al., 2025b;
Dong et al., 2025c). However, existing RAG ap-
proaches have not incorporated the strong reason-
ing capabilities of o1-like models, limiting the po-
tential to further enhance system performance in
solving complex tasks.

3 Methodology

3.1 Problem Formulation

We consider a complex reasoning task that necessi-
tates multi-step reasoning and the retrieval of exter-
nal knowledge to derive solutions. The objective is

to generate a comprehensive solution for each ques-
tion q, consisting of both a logical reasoning chain
R and the final answer a. In this work, we enable
the reasoning model to utilize external knowledge
sources during the reasoning process. Specifically,
we consider three primary inputs in the problem-
solving process: the task instruction I , the question
q, and externally retrieved documents D. Here, I
provides an overarching description of the reason-
ing task, q is the specific complex question to be
answered, andD comprises background knowledge
dynamically retrieved from an external corpus.

The goal is to design a reasoning mechanism
that effectively integrates I , q, and D to produce a
coherent reasoning chain R and a final answer a.
This can be formalized as the mapping (I, q,D)→
(R, a). The generation of the reasoning sequence
and the final answer can be expressed as:

P (R, a | I, q,D) =
∏Tr

t=1
P (Rt | R<t, I, q,D<t)

︸ ︷︷ ︸
Reasoning Process

·

∏Ta

t=1
P (at | a<t,R, I, q)

︸ ︷︷ ︸
Answer Generation

,

(1)

where Tr is the number of tokens in the reasoning
sequenceR. The token at the position t isRt, and
R<t represents all tokens generated before position
t. D≤t represents all documents retrieved up to
token t in the reasoning chain. Similarly, Ta is
the length of the answer sequence a, with at being
the token at the position t and a<t indicating all
generated answer tokens before the position t.

3.2 Overview of the Search-o1 Framework
The Search-o1 framework addresses knowledge
insufficiency in large reasoning models (LRMs)
by seamlessly integrating external knowledge re-
trieval into their reasoning process while maintain-
ing chain-of-thought coherence. As illustrated in
Figure 2, we present a comparative analysis of three
approaches: vanilla reasoning, agentic retrieval-
augmented generation (RAG), and our proposed
Search-o1 framework.

Vanilla Reasoning Pattern. Consider the ex-
ample in Figure 2(a), where the task involves
determining the carbon atom count in the final
product of a three-step chemical reaction. The
vanilla reasoning approach falters when encounter-
ing knowledge gaps (e.g., the “structure of trans-
Cinnamaldehyde”). Without access to accurate

5422

(b) Reason with Agentic RAG (Ours)(a) Vanilla Reasoning Pattern (c) The Search-o1 Framework (Ours)

Original Question:

Step 1: trans-Cinnamaldehyde +

Methylmagnesium Bromide → Product 1

Step 2: Product 1 + … → Product 2

Step 3: Product 2 + (Dimethyl(oxo)-16-

sulfaneylidene)methane … → Product 3

Question: carbon atoms count of Product 3

Large Reasoning

Model (e.g. o1)
Start thinking.

I need the structure of

trans-Cinnamaldehyde.

Step n

Provide final

answer.

Step n+1

Encounter

unfamiliar

knowledge.

Make a guess

and continue

reasoning.

Large Reasoning

Model (e.g. o1)
Start thinking.

Step n

Structure of trans-

Cinnamaldehyde

(E)-cinnamaldehyde is the

E(trans) stereoisomer of …

Product 3 contains 14

carbon atoms. (✗)

Provide final

answer.

…

Step n+1

Step n+2

Final Step

Search for

helpful info

on-demand.

Return long

and redundant

documents,

which disrupt

reasoning.

Large Reasoning

Model (e.g. o1)
Start thinking.

Step n

Structure of trans-

Cinnamaldehyde

Product 3 contains 11

carbon atoms. (✓)

Provide final

answer.

…

Step n+1

Step n+2

Final Step

Search for

helpful info

on-demand.

Integrate helpful

information into

the previous

reasoning chain.

Original Question:

Step 1: … Step 2: … Step 3: …

Question: carbon atoms count of Product 3

Search Instruction:

When you encounter unfamiliar knowledge,

you can perform web searches to help you …

Reason-in-

Documents

Retrieved

Documents

Trans-Cinnamaldehyde

has the structure

C6H5CH=CHCHO. (✓)

Original Question:

Step 1: … Step 2: … Step 3: …

Question: carbon atoms count of Product 3

Search Instruction:

When you encounter unfamiliar knowledge,

you can perform web searches to help you …

Get concise

information

and continue

coherent

reasoning.

Physics

Chemistry

Biology

Math

Code

ODQA

Domains:

Product 3 contains 10

carbon atoms. (✗)

…

Final Step

Perhaps the structure of

trans-Cinnamaldehyde is

C6H5CH=CH-CO-CH3. (✗)

Step n+2

iterable iterable

Figure 2: Comparison of reasoning approaches: (a) Direct reasoning without retrieval often results in inaccuracies
due to missing knowledge. (b) Our agentic retrieval-augmented reasoning approach improves knowledge access but
usually returns lengthy, redundant documents, disrupting coherent reasoning. (c) Our Search-o1 integrates concise
retrieved knowledge seamlessly into the reasoning process, enabling precise and coherent problem-solving.

information, the model must rely on assumptions,
potentially leading to cascading errors throughout
subsequent reasoning steps.

Agentic RAG. To bridge the knowledge gaps
during reasoning, we build the agentic RAG mech-
anism (Figure 2(b)) to enable the model to au-
tonomously retrieve external knowledge when
needed. When uncertainty arises—such as regard-
ing the compound’s structure—the model gener-
ates targeted search queries (e.g., “structure of
trans-Cinnamaldehyde”). However, the direct in-
sertion of retrieved documents, which often contain
lengthy and irrelevant information, may disrupt the
reasoning flow and hurt coherence.

Search-o1. Our Search-o1 framework (Fig-
ure 2(c)) extends the agentic RAG mechanism
by incorporating a Reason-in-Documents mod-
ule. This module condenses retrieved documents
into focused reasoning steps that integrate external
knowledge while maintaining the logical flow of
the reasoning chain. It considers the current search
query, retrieved documents, and the existing reason-
ing chain to generate coherent steps. This iterative
process continues until the final answer is reached.

3.3 Agentic Retrieval-Augmented Generation
Mechanism

The agentic RAG mechanism is a pivotal compo-
nent of the Search-o1 framework, empowering the
reasoning model to autonomously determine when
to retrieve external knowledge during the reasoning
process. This mechanism allows the model itself
to decide whether to continue generating reasoning
steps or to initiate a retrieval step. Detailed model
instructions can be found in Appendix A.1.

During the generation of the reasoning chain
R, the model may intermittently generate search
queries q(i)search encapsulated between special sym-
bols <|begin_search_query|> and <|end_search_query|> , where
i indexes the i-th search step. Each search query
is generated based on the current state of the
reasoning process and the previously retrieved
knowledge. The generation of each search query
is expressed as: P (q

(i)
search | I, q,R(i−1)) =

∏T
(i)
q

t=1 P
(
q
(i)
search,t | q

(i)
search,<t, I, q,R(i−1)

)
, where

T
(i)
q is the length of the i-th search query, q(i)search,t

denotes the token generated at step t of the i-th
search query, andR(i−1) represents all the reason-
ing steps prior to the i-th search step, including
both search queries and search results.

Once a new pair of special symbols for the search

5423

query is detected in the reasoning sequence, we
pause the reasoning process, and the search query
q
(i)
search is extracted. The retrieval function Search

is invoked to obtain relevant documents:

D(i) = Search(q
(i)
search), (2)

where D(i) = d
(i)
1 , d

(i)
2 , . . . , d

(i)
ki

represents the set
of top-ki relevant documents retrieved for the i-th
search query. The retrieved documentsD(i) are sub-
sequently injected into the reasoning chainR(i−1)

between the special symbols <|begin_search_result|> and
<|end_search_result|> , allowing the reasoning model to
utilize the external knowledge to continue the rea-
soning process.

This agentic mechanism enables the model to
dynamically and efficiently incorporate external
knowledge, maintaining the coherence and rele-
vance of the reasoning process while avoiding in-
formation overload from excessive or irrelevant
retrieval results.

3.4 Knowledge Refinement via
Reason-in-Documents

While the agentic RAG mechanism addresses
knowledge gaps in reasoning, directly inserting
full documents can disrupt coherence due to their
length and redundancy. To overcome this, the
Search-o1 framework includes the knowledge re-
finement module, which selectively integrates only
relevant and concise information into the reason-
ing chain through a separate generation process
using the original reasoning model. This mod-
ule processes retrieved documents to align with
the model’s specific reasoning needs, transforming
raw information into refined, pertinent knowledge
while maintaining coherence and logical consis-
tency of the main reasoning chain.

The refinement guidelines for Reason-in-
Documents are detailed in Appendix A.1. These
guidelines instruct the model to analyze the re-
trieved web pages based on the previous reason-
ing steps, current search query, and the content of
the searched web pages. The objective is to ex-
tract relevant and accurate information that directly
contributes to advancing the reasoning process for
the original question, ensuring seamless integration
into the existing reasoning chain.

Formally, for each search step i, letR(<i) denote
the reasoning chain accumulated up to just before
the i-th search query. Given R(<i), the current
search query q

(i)
search, and the retrieved documents

D(i), the knowledge refinement process operates
in two stages: first generating an intermediate
reasoning sequence r

(i)
docs to analyze the retrieved

documents, then producing refined knowledge
r
(i)
final based on this analysis. The generation

of the intermediate reasoning sequence r
(i)
docs is

expressed as: P (r
(i)
docs | R(<i), q

(i)
search,D(i)) =

∏T
(i)
d

t=1 P
(
r
(i)
docs,t | r

(i)
docs,<t,R(<i), q

(i)
search,D(i)

)
,

where T
(i)
d is the length of the intermediate reason-

ing sequence, and r
(i)
docs,t denotes the token at step t.

The refined knowledge r(i)final is then generated based
on this analysis: P (r

(i)
final | r

(i)
docs,R(<i), q

(i)
search) =

∏T
(i)
r

t=1 P
(
r
(i)
final,t | r

(i)
final,<t, r

(i)
docs,R(<i), q

(i)
search

)
,

where T
(i)
r is the length of the refined knowledge

sequence, and r
(i)
final,t denotes the token at step t.

The refined knowledge r(i)final is then incorporated
into the reasoning chainR(i), enabling the model
to continue generating coherent reasoning steps
with access to the external knowledge.

P (R, a | I, q) =
∏Tr

t=1
P
(
Rt | R<t, I, q, {r(j)final}j≤i(t)

)
·

∏Ta

t=1
P (at | a<t,R, I, q) ,

(3)

where {r(j)final}j≤i(t) denotes all previously refined
knowledge up to the i(t)-th search step. Here, i(t)
represents the index of the search step correspond-
ing to the current reasoning step t. This refined
knowledge integration ensures that each reason-
ing step can access relevant external information
while maintaining the conciseness and focus of the
reasoning process.

3.5 Search-o1 Inference Process

The Search-o1 inference process starts by combin-
ing the task instruction I with the specific question
q. As the reasoning modelM generates the reason-
ing chain R, it may create search queries marked
by <|begin_search_query|> and <|end_search_query|> . When
the <|end_search_query|> symbol is detected, the search
query qsearch is extracted and used to fetch relevant
documents D through the Search function. These
documents, along with the instruction Idocs and the
reasoning chain R, are processed by the Reason-
in-Documents module, which refines the informa-
tion into a more concise and relevant form rfinal.
This refined information is then added back into

5424

Table 1: Main results on challenging reasoning tasks, including PhD-level science QA, math, and code benchmarks.
We report Pass@1 metric for all tasks. For models with 32B parameters, the best results are in bold and the
second-best are underlined. Results from larger or non-proprietary models are in gray color for reference. Symbol
“†” indicates results from their official releases.

Method
GPQA (PhD-Level Science QA) Math Benchmarks LiveCodeBench

Physics Chemistry Biology Overall MATH500 AMC23 AIME24 Easy Medium Hard Overall

Direct Reasoning (w/o Retrieval)
Qwen2.5-32B 57.0 33.3 52.6 45.5 75.8 57.5 23.3 42.3 18.9 14.3 22.3
Qwen2.5-Coder-32B 37.2 25.8 57.9 33.8 71.2 67.5 20.0 61.5 16.2 12.2 25.0
QwQ-32B 75.6 39.8 68.4 58.1 83.2 82.5 53.3 61.5 29.7 20.4 33.0

Qwen2.5-72B 57.0 37.6 68.4 49.0 79.4 67.5 20.0 53.8 29.7 24.5 33.0
Llama3.3-70B 54.7 31.2 52.6 43.4 70.8 47.5 36.7 57.7 32.4 24.5 34.8
DeepSeek-R1-Lite† - - - 58.5 91.6 - 52.5 - - - 51.6
GPT-4o† 59.5 40.2 61.6 50.6 60.3 - 9.3 - - - 33.4
o1-preview† 89.4 59.9 65.9 73.3 85.5 - 44.6 - - - 53.6

Retrieval-augmented Reasoning
RAG-Qwen2.5-32B 57.0 37.6 52.6 47.5 82.6 72.5 30.0 61.5 24.3 8.2 25.9
RAG-QwQ-32B 76.7 38.7 73.7 58.6 84.8 82.5 50.0 57.7 16.2 12.2 24.1
RAgent-Qwen2.5-32B 58.1 33.3 63.2 47.0 74.8 65.0 20.0 57.7 24.3 6.1 24.1
RAgent-QwQ-32B 76.7 46.2 68.4 61.6 85.0 85.0 56.7 65.4 18.9 12.2 26.8

Retrieval-augmented Reasoning with Reason-in-Documents
Search-o1 (Ours) 77.9 47.3 78.9 63.6 86.4 85.0 56.7 57.7 32.4 20.4 33.0

the reasoning chain R within <|begin_search_result|>

and <|end_search_result|> symbols. The process repeats
to ensure the reasoning model includes external
knowledge while keeping the reasoning coherent
and logically consistent, leading to the final answer
a. For more details, refer to Appendix B.

4 Experiments

4.1 Tasks and Datasets

Challenging reasoning tasks: (1) GPQA (Rein
et al., 2023) is a PhD-level science multiple-choice
QA dataset. The questions are authored by do-
main experts in physics, chemistry, and biology.
(2) Math benchmarks include MATH500 (Light-
man et al., 2024), AMC2023, and AIME2024.
MATH500 consists of 500 questions from the
MATH test set (Hendrycks et al., 2021). AMC2023
and AIME2024 are middle school math competi-
tions covering arithmetic, algebra, geometry, etc.,
containing 40 and 30 questions respectively. (3)
LiveCodeBench (Jain et al., 2024) is a benchmark
for evaluating LLMs’ coding capabilities, consist-
ing of easy, medium, and hard difficulty problems.

Open-domain QA tasks: (1) Single-hop QA
datasets: Natural Questions (NQ) (Kwiatkowski
et al., 2019) contains questions from Google search
queries with answers from Wikipedia. Trivi-
aQA (Joshi et al., 2017) includes questions from

trivia websites and competitions. (2) Multi-
hop QA datasets: HotpotQA (Yang et al.,
2018) requires reasoning across multiple Wikipedia
paragraphs. 2WikiMultihopQA (2WIKI) (Ho
et al., 2020) provides explicit reasoning paths.
MuSiQue (Trivedi et al., 2022) consists of 2-4 hop
questions derived from single-hop datasets. Bam-
boogle (Press et al., 2023) includes complex ques-
tions that Google answers incorrectly, assessing
compositional reasoning.

4.2 Baselines

Direct Reasoning. These methods use the
model’s internal knowledge without retrieval.
Open-source models include Qwen2.5-32B-
Instruct (Qwen et al., 2024), Qwen2.5-
Coder-32B-Instruct (Hui et al., 2024), QwQ-
32B-Preview (Team, 2024), Qwen2.5-72B-
Instruct (Qwen et al., 2024), Llama3.3-70B-
Instruct (Dubey et al., 2024), and DeepSeek-R1-
Lite (Guo et al., 2025). Closed-source models
include OpenAI GPT-4o (Hurst et al., 2024) and
o1-preview (Jaech et al., 2024).

Retrieval-augmented Reasoning. These meth-
ods use external information for reasoning. We
consider: (1) Standard RAG: Retrieves the top-10
documents for reasoning and answer generation.
(2) RAG Agent (RAgent): Lets the model decide
when to query for retrieval, as described in Sec-

5425

1 2 3 5 10
Top-k Docs

74

76

78

80

Pa
ss

@
1

Physics

1 2 3 5 10
Top-k Docs

36

39

42

45

48

51
Chemistry

1 2 3 5 10
Top-k Docs

55

60

65

70

75

80

85
Biology

1 2 3 5 10
Top-k Docs

56

58

60

62

64

Overall

Search-o1 (Ours) Direct Reasoning Standard RAG (k=10)

Figure 3: Scaling analysis of top-k retrieved documents utilized in reasoning.

Table 2: Performance comparison with different back-
bone large reasoning models.

Method GPQA MATH500 AIME24 LiveCode

Sky-T1-32B-Preview
Direct Reasoning 57.6 83.2 43.3 26.8
RAG-Agent 59.1 83.8 46.7 25.0
Search-o1 60.6 84.4 50.0 27.7

DeepSeek-R1-Distill-Qwen-32B
Direct Reasoning 65.7 88.2 73.3 42.9
RAG-Agent 66.2 88.4 70.0 42.0
Search-o1 67.2 89.0 73.3 43.8

tion 3.3. Inspired by ReAct (Yao et al., 2023), we
first retrieve the top-10 snippets and then fetch full
documents when needed.

4.3 Implementation Details

For the backbone large reasoning model in Search-
o1, we utilize the open-sourced QwQ-32B-Preview.
For generation settings, we use a maximum of
32,768 tokens, temperature of 0.7, top_p of 0.8,
top_k of 20, and a repetition penalty of 1.05 across
all models. For retrieval, we employ the Bing Web
Search API, setting the region to US-EN and the
top-k retrieved documents to 10. For baseline mod-
els not specifically trained for o1-like reasoning, we
apply Chain-of-Thought prompting to perform rea-
soning before generating answers. Detailed instruc-
tions for all models are provided in Appendix A.

4.4 Results on Challenging Reasoning Tasks

Main Results. Table 1 shows Search-o1’s perfor-
mance on complex reasoning tasks: (1) Reason-
ing model QwQ-32B-Preview consistently outper-
forms traditional general LLMs in both retrieval
and non-retrieval settings, even surpassing larger
models like Qwen2.5-72B and Llama3.3-70B in
direct reasoning, highlighting the effectiveness of
the o1-like long CoT approach. (2) RAgent-QwQ-
32B outperforms both standard RAG models

Table 3: Performance comparison with human experts
on the GPQA extended set (Rein et al., 2023).

Method Physics Chemistry Biology Overall

Human Experts
Physicists 57.9 31.6 42.0 39.9
Chemists 34.5 72.6 45.6 48.9
Biologists 30.4 28.8 68.9 37.2

Reasoning Models
QwQ-32B 61.7 36.9 61.0 51.8
RAG-QwQ-32B 64.3 38.3 66.7 54.6
Search-o1 68.7 40.7 69.5 57.9

and QwQ-32B in most tasks, thanks to its agentic
search mechanism, which autonomously retrieves
information to supplement knowledge required
for reasoning at each step. In contrast, the non-
reasoning model Qwen2.5-32B with agentic RAG
performs similarly to standard RAG on GPQA
but worse on math and code tasks, indicating that
general LLMs struggle with complex reasoning.
(3) Search-o1 surpasses RAgent-QwQ-32B in
most tasks, demonstrating the effectiveness of the
Reason-in-Documents strategy. Specifically, on av-
erage across all five datasets, Search-o1 exceeds
RAgent-QwQ-32B and QwQ-32B by 4.7% and
3.1%, respectively, and significantly outperforms
non-reasoning LLMs Qwen2.5-32B and Llama3.3-
70B by 44.7% and 39.3%.

Scaling Analysis on Number of Retrieved Doc-
uments. We analyze performance variation with
respect to the number of retrieved documents (Fig-
ure 3). Search-o1 effectively leverages an increas-
ing number of retrieved documents, improving
its handling of complex reasoning tasks. Notably,
retrieving even one document can outperform Di-
rect Reasoning and standard RAG models using
ten documents, showcasing the power of agentic
search and Reason-in-Documents strategies.

5426

Table 4: Performance comparison on open-domain QA tasks, including single-hop QA and multi-hop QA datasets.
For models with 32B parameters, the best results are in bold and the second-best are underlined. Results from larger
models are in gray color for reference.

Method

Single-hop QA Multi-hop QA

NQ TriviaQA HotpotQA 2WIKI MuSiQue Bamboogle

EM F1 EM F1 EM F1 EM F1 EM F1 EM F1

Direct Reasoning (w/o Retrieval)
Qwen2.5-32B 22.8 33.9 52.0 60.3 25.4 34.7 29.8 36.3 8.4 18.0 49.6 63.2
QwQ-32B 23.0 33.1 53.8 60.7 25.4 33.3 34.4 40.9 9.0 18.9 38.4 53.7

Qwen2.5-72B 27.6 41.2 56.8 65.8 29.2 38.8 34.4 42.7 11.4 20.4 47.2 61.7
Llama3.3-70B 36.0 48.7 68.8 76.8 37.8 49.1 46.0 54.2 14.8 23.6 54.4 67.8

Retrieval-augmented Reasoning
RAG-Qwen2.5-32B 33.4 49.3 65.8 79.2 38.6 50.4 31.6 40.6 10.4 19.8 52.0 66.0
RAG-QwQ-32B 29.6 44.4 65.6 77.6 34.2 46.4 35.6 46.2 10.6 20.2 55.2 67.4
RAgent-Qwen2.5-32B 32.4 47.8 63.0 72.6 44.6 56.8 55.4 69.7 13.0 25.4 54.4 66.4
RAgent-QwQ-32B 33.6 48.4 62.0 74.0 43.0 55.2 58.4 71.2 13.6 25.5 52.0 64.7

Retrieval-augmented Reasoning with Reason-in-Documents
Search-o1 (Ours) 34.0 49.7 63.4 74.1 45.2 57.3 58.0 71.4 16.6 28.2 56.0 67.8

Analysis of Performance with Different Back-
bone LRMs. We examine the effectiveness of
integrating search with different reasoning models,
specifically Sky-T1-32B-Preview and DeepSeek-
R1-Distill-Qwen-32B (Figure 2). The results show
that RAgent consistently outperforms direct rea-
soning, with Search-o1 delivering the highest
performance across all tasks. These findings un-
derscore the robustness of the Search-o1 frame-
work, which enhances the reasoning capabilities
of various LRMs and lays a solid foundation for
real-world applications.

Comparison with Human Experts. We com-
pare Search-o1’s performance with human experts
across various domains in the GPQA extended set
(Table 3). Search-o1 outperforms human experts
overall (57.9), particularly in physics (68.7) and
biology (69.5). Although it trails chemists in chem-
istry (40.7 vs. 72.6), it remains competitive overall,
highlighting Search-o1’s ability to leverage docu-
ment retrieval and reasoning to achieve expert-
level cross-domain performance.

4.5 Results on Open-Domain QA Tasks
In addition to the reasoning tasks where LRMs ex-
cel, we also explore the performance of our Search-
o1 on open-domain QA tasks. Table 4 shows the
results of Search-o1 on open-domain QA tasks: (1)
Without retrieval, QwQ-32B performs similarly to
Qwen2.5-32B, with slight performance drop (31.3
vs. 30.7 EM), suggesting LRMs are weaker on
open-domain QA tasks than on reasoning tasks.

(2) Retrieval significantly improves performance
for both reasoning and non-reasoning models, in-
dicating knowledge gaps in these tasks. Agentic
RAG boosts QwQ-32B’s performance by 23.2%
on multi-hop QA tasks, but shows little change
in single-hop tasks (47.8 vs. 47.6 EM), proving
agentic search can better unleash the potential
of LRMs in more complex QA tasks. (3) For our
Search-o1, we find that it generally outperforms
all baselines on multi-hop tasks. Specifically, in
terms of the average EM metric, our Search-o1 ex-
ceeds RAG-QwQ-32B and RAgent-QwQ-32B by
29.6% and 5.3%, respectively, demonstrating the
effectiveness of our Reason-in-Documents strategy
in complex QA tasks. This further emphasizes
the importance of maintaining consistency be-
tween external knowledge and the logical chain
of reasoning.

5 Conclusion

In this work, we present Search-o1, a framework
that addresses the knowledge insufficiency inherent
in large reasoning models (LRMs) by integrating
an agentic retrieval-augmented generation mech-
anism alongside a Reason-in-Documents module.
Our approach enables LRMs to autonomously re-
trieve and seamlessly incorporate external knowl-
edge during the reasoning process, thereby enhanc-
ing both the accuracy and coherence of their long-
step reasoning capabilities. Comprehensive exper-
iments across diverse complex reasoning tasks in
science, mathematics, and coding, as well as mul-

5427

tiple open-domain QA benchmarks, demonstrate
that Search-o1 consistently outperforms existing
retrieval-augmented and direct reasoning methods.
This work opens up the potential of integrating
tools such as search into LRMs, paving the way for
more trustworthy and effective intelligent systems
in complex problem-solving scenarios.

6 Limitations

Search-o1 has three main limitations that future
research could address: (1) it currently enhances
o1-like reasoning models solely through search
tools. Future work could incorporate additional
tools, such as calculators, code interpreters, and
various real-world APIs; (2) this work focuses on
using instructions to enable reasoning models to
leverage search capabilities. To improve search exe-
cution and the use of search results, future research
could explore fine-tuning and reinforcement learn-
ing techniques to further optimize Search-o1; and
(3) this study focuses on large reasoning language
models. Expanding the Search-o1 framework to
support multimodal reasoning models represents a
promising avenue for future exploration.

Acknowledgment

This work was supported by Beijing Mu-
nicipal Science and Technology Project No.
Z231100010323009, National Natural Science
Foundation of China No. 62272467, Beijing Nat-
ural Science Foundation No. L233008. The work
was partially done at the Engineering Research
Center of Next-Generation Intelligent Search and
Recommendation, MOE.

References
Junying Chen, Zhenyang Cai, Ke Ji, Xidong Wang,

Wanlong Liu, Rongsheng Wang, Jianye Hou, and
Benyou Wang. 2024a. Huatuogpt-o1, towards med-
ical complex reasoning with llms. arXiv preprint
arXiv:2412.18925.

Xingyu Chen, Jiahao Xu, Tian Liang, Zhiwei He,
Jianhui Pang, Dian Yu, Linfeng Song, Qiuzhi
Liu, Mengfei Zhou, Zhuosheng Zhang, Rui Wang,
Zhaopeng Tu, Haitao Mi, and Dong Yu. 2024b. Do
not think that much for 2+3=? on the overthinking of
o1-like llms. Preprint, arXiv:2412.21187.

Kahneman Daniel. 2017. Thinking, fast and slow.

Guanting Dong, Yifei Chen, Xiaoxi Li, Jiajie Jin,
Hongjin Qian, Yutao Zhu, Hangyu Mao, Guorui

Zhou, Zhicheng Dou, and Ji-Rong Wen. 2025a. Tool-
star: Empowering llm-brained multi-tool reasoner
via reinforcement learning. CoRR, abs/2505.16410.

Guanting Dong, Keming Lu, Chengpeng Li, Tingyu
Xia, Bowen Yu, Chang Zhou, and Jingren Zhou.
2025b. Self-play with execution feedback: Improv-
ing instruction-following capabilities of large lan-
guage models. In The Thirteenth International Con-
ference on Learning Representations, ICLR 2025,
Singapore, April 24-28, 2025. OpenReview.net.

Guanting Dong, Hangyu Mao, Kai Ma, Licheng Bao,
Yifei Chen, Zhongyuan Wang, Zhongxia Chen, Ji-
azhen Du, Huiyang Wang, Fuzheng Zhang, Guorui
Zhou, Yutao Zhu, Ji-Rong Wen, and Zhicheng Dou.
2025c. Agentic reinforced policy optimization.
Preprint, arXiv:2507.19849.

Guanting Dong, Hongyi Yuan, Keming Lu, Chengpeng
Li, Mingfeng Xue, Dayiheng Liu, Wei Wang, Zheng
Yuan, Chang Zhou, and Jingren Zhou. 2024. How
abilities in large language models are affected by
supervised fine-tuning data composition. In Proceed-
ings of the 62nd Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Pa-
pers), ACL 2024, Bangkok, Thailand, August 11-16,
2024, pages 177–198. Association for Computational
Linguistics.

Guanting Dong, Chenghao Zhang, Mengjie Deng, Yu-
tao Zhu, Zhicheng Dou, and Ji-Rong Wen. 2025d.
Progressive multimodal reasoning via active retrieval.
In Proceedings of the 63rd Annual Meeting of the
Association for Computational Linguistics (Volume
1: Long Papers), ACL 2025, Vienna, Austria, July 27
- August 1, 2025, pages 3579–3602. Association for
Computational Linguistics.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey,
Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman,
Akhil Mathur, Alan Schelten, Amy Yang, Angela
Fan, et al. 2024. The llama 3 herd of models. arXiv
preprint arXiv:2407.21783.

Darren Edge, Ha Trinh, Newman Cheng, Joshua
Bradley, Alex Chao, Apurva Mody, Steven Truitt,
and Jonathan Larson. 2024. From local to global: A
graph rag approach to query-focused summarization.
Preprint, arXiv:2404.16130.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song,
Ruoyu Zhang, Runxin Xu, Qihao Zhu, Shirong Ma,
Peiyi Wang, Xiao Bi, et al. 2025. Deepseek-r1: In-
centivizing reasoning capability in llms via reinforce-
ment learning. arXiv preprint arXiv:2501.12948.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul
Arora, Steven Basart, Eric Tang, Dawn Song, and Ja-
cob Steinhardt. 2021. Measuring mathematical prob-
lem solving with the MATH dataset. In Proceedings
of the Neural Information Processing Systems Track
on Datasets and Benchmarks 1, NeurIPS Datasets
and Benchmarks 2021, December 2021, virtual.

5428

https://arxiv.org/abs/2412.21187
https://arxiv.org/abs/2412.21187
https://arxiv.org/abs/2412.21187
https://doi.org/10.48550/ARXIV.2505.16410
https://doi.org/10.48550/ARXIV.2505.16410
https://doi.org/10.48550/ARXIV.2505.16410
https://openreview.net/forum?id=cRR0oDFEBC
https://openreview.net/forum?id=cRR0oDFEBC
https://openreview.net/forum?id=cRR0oDFEBC
https://arxiv.org/abs/2507.19849
https://doi.org/10.18653/V1/2024.ACL-LONG.12
https://doi.org/10.18653/V1/2024.ACL-LONG.12
https://doi.org/10.18653/V1/2024.ACL-LONG.12
https://aclanthology.org/2025.acl-long.180/
https://arxiv.org/abs/2404.16130
https://arxiv.org/abs/2404.16130
https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/hash/be83ab3ecd0db773eb2dc1b0a17836a1-Abstract-round2.html
https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/hash/be83ab3ecd0db773eb2dc1b0a17836a1-Abstract-round2.html

Tom Henighan, Jared Kaplan, Mor Katz, Mark Chen,
Christopher Hesse, Jacob Jackson, Heewoo Jun,
Tom B Brown, Prafulla Dhariwal, Scott Gray, et al.
2020. Scaling laws for autoregressive generative
modeling. arXiv preprint arXiv:2010.14701.

Xanh Ho, Anh-Khoa Duong Nguyen, Saku Sugawara,
and Akiko Aizawa. 2020. Constructing A multi-hop
QA dataset for comprehensive evaluation of reason-
ing steps. In Proceedings of the 28th International
Conference on Computational Linguistics, COLING
2020, Barcelona, Spain (Online), December 8-13,
2020, pages 6609–6625. International Committee on
Computational Linguistics.

Binyuan Hui, Jian Yang, Zeyu Cui, Jiaxi Yang, Day-
iheng Liu, Lei Zhang, Tianyu Liu, Jiajun Zhang,
Bowen Yu, Kai Dang, An Yang, Rui Men, Fei Huang,
Xingzhang Ren, Xuancheng Ren, Jingren Zhou, and
Junyang Lin. 2024. Qwen2.5-coder technical report.
CoRR, abs/2409.12186.

Aaron Hurst, Adam Lerer, Adam P Goucher, Adam
Perelman, Aditya Ramesh, Aidan Clark, AJ Os-
trow, Akila Welihinda, Alan Hayes, Alec Radford,
et al. 2024. Gpt-4o system card. arXiv preprint
arXiv:2410.21276.

Aaron Jaech, Adam Kalai, Adam Lerer, Adam Richard-
son, Ahmed El-Kishky, Aiden Low, Alec Helyar,
Aleksander Madry, Alex Beutel, Alex Carney, et al.
2024. Openai o1 system card. arXiv preprint
arXiv:2412.16720.

Naman Jain, King Han, Alex Gu, Wen-Ding Li, Fanjia
Yan, Tianjun Zhang, Sida Wang, Armando Solar-
Lezama, Koushik Sen, and Ion Stoica. 2024. Live-
codebench: Holistic and contamination free eval-
uation of large language models for code. CoRR,
abs/2403.07974.

Jinhao Jiang, Zhipeng Chen, Yingqian Min, Jie Chen,
Xiaoxue Cheng, Jiapeng Wang, Yiru Tang, Haoxiang
Sun, Jia Deng, Wayne Xin Zhao, et al. 2024. Tech-
nical report: Enhancing llm reasoning with reward-
guided tree search. arXiv preprint arXiv:2411.11694.

Jiajie Jin, Xiaoxi Li, Guanting Dong, Yuyao Zhang, Yu-
tao Zhu, Yongkang Wu, Zhonghua Li, Ye Qi, and
Zhicheng Dou. 2025a. Hierarchical document refine-
ment for long-context retrieval-augmented genera-
tion. In Proceedings of the 63rd Annual Meeting of
the Association for Computational Linguistics (Vol-
ume 1: Long Papers), ACL 2025, Vienna, Austria,
July 27 - August 1, 2025, pages 3502–3520. Associa-
tion for Computational Linguistics.

Jiajie Jin, Xiaoxi Li, Guanting Dong, Yuyao Zhang,
Yutao Zhu, Zhao Yang, Hongjin Qian, and Zhicheng
Dou. 2025b. Decoupled planning and execution: A
hierarchical reasoning framework for deep search.
CoRR, abs/2507.02652.

Mandar Joshi, Eunsol Choi, Daniel Weld, and Luke
Zettlemoyer. 2017. TriviaQA: A large scale distantly

supervised challenge dataset for reading comprehen-
sion. In ACL, pages 1601–1611, Vancouver, Canada.
Association for Computational Linguistics.

Tom Kwiatkowski, Jennimaria Palomaki, Olivia Red-
field, Michael Collins, Ankur Parikh, Chris Alberti,
Danielle Epstein, Illia Polosukhin, Jacob Devlin, Ken-
ton Lee, et al. 2019. Natural questions: a benchmark
for question answering research. Transactions of the
Association for Computational Linguistics, 7:453–
466.

Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio
Petroni, Vladimir Karpukhin, Naman Goyal, Hein-
rich Küttler, Mike Lewis, Wen-tau Yih, Tim Rock-
täschel, et al. 2020. Retrieval-augmented generation
for knowledge-intensive nlp tasks. Advances in Neu-
ral Information Processing Systems, 33:9459–9474.

Aitor Lewkowycz, Anders Andreassen, David Dohan,
Ethan Dyer, Henryk Michalewski, Vinay V. Ra-
masesh, Ambrose Slone, Cem Anil, Imanol Schlag,
Theo Gutman-Solo, Yuhuai Wu, Behnam Neyshabur,
Guy Gur-Ari, and Vedant Misra. 2022. Solving quan-
titative reasoning problems with language models. In
Advances in Neural Information Processing Systems
35: Annual Conference on Neural Information Pro-
cessing Systems 2022, NeurIPS 2022, New Orleans,
LA, USA, November 28 - December 9, 2022.

Xiaoxi Li, Zhicheng Dou, Yujia Zhou, and Fangchao
Liu. 2024. Corpuslm: Towards a unified language
model on corpus for knowledge-intensive tasks. In
Proceedings of the 47th International ACM SIGIR
Conference on Research and Development in Infor-
mation Retrieval, SIGIR 2024, Washington DC, USA,
July 14-18, 2024, pages 26–37. ACM.

Xiaoxi Li, Jiajie Jin, Guanting Dong, Hongjin Qian, Yu-
tao Zhu, Yongkang Wu, Ji-Rong Wen, and Zhicheng
Dou. 2025a. Webthinker: Empowering large rea-
soning models with deep research capability. CoRR,
abs/2504.21776.

Xiaoxi Li, Jiajie Jin, Yujia Zhou, Yongkang Wu,
Zhonghua Li, Ye Qi, and Zhicheng Dou. 2025b.
Retrollm: Empowering large language models to re-
trieve fine-grained evidence within generation. In
Proceedings of the 63rd Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), ACL 2025, Vienna, Austria, July 27 -
August 1, 2025, pages 16754–16779. Association for
Computational Linguistics.

Xiaoxi Li, Jiajie Jin, Yujia Zhou, Yuyao Zhang, Peitian
Zhang, Yutao Zhu, and Zhicheng Dou. 2025c. From
matching to generation: A survey on generative infor-
mation retrieval. ACM Trans. Inf. Syst., 43(3):83:1–
83:62.

Hunter Lightman, Vineet Kosaraju, Yuri Burda, Harri-
son Edwards, Bowen Baker, Teddy Lee, Jan Leike,
John Schulman, Ilya Sutskever, and Karl Cobbe.
2024. Let’s verify step by step. In The Twelfth In-
ternational Conference on Learning Representations,

5429

https://doi.org/10.18653/V1/2020.COLING-MAIN.580
https://doi.org/10.18653/V1/2020.COLING-MAIN.580
https://doi.org/10.18653/V1/2020.COLING-MAIN.580
https://doi.org/10.48550/ARXIV.2409.12186
https://doi.org/10.48550/ARXIV.2403.07974
https://doi.org/10.48550/ARXIV.2403.07974
https://doi.org/10.48550/ARXIV.2403.07974
https://aclanthology.org/2025.acl-long.176/
https://aclanthology.org/2025.acl-long.176/
https://aclanthology.org/2025.acl-long.176/
https://doi.org/10.48550/ARXIV.2507.02652
https://doi.org/10.48550/ARXIV.2507.02652
http://papers.nips.cc/paper_files/paper/2022/hash/18abbeef8cfe9203fdf9053c9c4fe191-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/18abbeef8cfe9203fdf9053c9c4fe191-Abstract-Conference.html
https://doi.org/10.1145/3626772.3657778
https://doi.org/10.1145/3626772.3657778
https://doi.org/10.48550/ARXIV.2504.21776
https://doi.org/10.48550/ARXIV.2504.21776
https://aclanthology.org/2025.acl-long.819/
https://aclanthology.org/2025.acl-long.819/
https://doi.org/10.1145/3722552
https://doi.org/10.1145/3722552
https://doi.org/10.1145/3722552
https://openreview.net/forum?id=v8L0pN6EOi

ICLR 2024, Vienna, Austria, May 7-11, 2024. Open-
Review.net.

Bill Yuchen Lin, Abhilasha Ravichander, Ximing
Lu, Nouha Dziri, Melanie Sclar, Khyathi Raghavi
Chandu, Chandra Bhagavatula, and Yejin Choi. 2024.
The unlocking spell on base llms: Rethinking align-
ment via in-context learning. In The Twelfth Inter-
national Conference on Learning Representations,
ICLR 2024, Vienna, Austria, May 7-11, 2024. Open-
Review.net.

Zhan Ling, Yunhao Fang, Xuanlin Li, Zhiao Huang,
Mingu Lee, Roland Memisevic, and Hao Su. 2023.
Deductive verification of chain-of-thought reason-
ing. In Advances in Neural Information Processing
Systems 36: Annual Conference on Neural Informa-
tion Processing Systems 2023, NeurIPS 2023, New
Orleans, LA, USA, December 10 - 16, 2023.

Jingyu Liu, Jiaen Lin, and Yong Liu. 2024. How
much can RAG help the reasoning of llm? CoRR,
abs/2410.02338.

Wenhan Liu, Xinyu Ma, Weiwei Sun, Yutao Zhu,
Yuchen Li, Dawei Yin, and Zhicheng Dou.
2025. Reasonrank: Empowering passage rank-
ing with strong reasoning ability. Preprint,
arXiv:2508.07050.

Yingqian Min, Zhipeng Chen, Jinhao Jiang, Jie Chen,
Jia Deng, Yiwen Hu, Yiru Tang, Jiapeng Wang, Xi-
aoxue Cheng, Huatong Song, et al. 2024. Imitate,
explore, and self-improve: A reproduction report
on slow-thinking reasoning systems. arXiv preprint
arXiv:2412.09413.

OpenAI. 2024. Learning to reason with llms.

Ofir Press, Muru Zhang, Sewon Min, Ludwig Schmidt,
Noah A. Smith, and Mike Lewis. 2023. Measuring
and narrowing the compositionality gap in language
models. In Findings of the Association for Compu-
tational Linguistics: EMNLP 2023, Singapore, De-
cember 6-10, 2023, pages 5687–5711. Association
for Computational Linguistics.

Yiwei Qin, Xuefeng Li, Haoyang Zou, Yixiu Liu, Shijie
Xia, Zhen Huang, Yixin Ye, Weizhe Yuan, Hector
Liu, Yuanzhi Li, et al. 2024. O1 replication journey:
A strategic progress report–part 1. arXiv preprint
arXiv:2410.18982.

Qwen, :, An Yang, Baosong Yang, Beichen Zhang,
Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan Li,
Dayiheng Liu, Fei Huang, Haoran Wei, Huan Lin,
Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin Yang,
Jiaxi Yang, Jingren Zhou, Junyang Lin, Kai Dang,
Keming Lu, Keqin Bao, Kexin Yang, Le Yu, Mei
Li, Mingfeng Xue, Pei Zhang, Qin Zhu, Rui Men,
Runji Lin, Tianhao Li, Tingyu Xia, Xingzhang Ren,
Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang,
Yu Wan, Yuqiong Liu, Zeyu Cui, Zhenru Zhang, and
Zihan Qiu. 2024. Qwen2.5 technical report. Preprint,
arXiv:2412.15115.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J. Liu. 2020. Exploring the limits
of transfer learning with a unified text-to-text trans-
former. J. Mach. Learn. Res., 21:140:1–140:67.

David Rein, Betty Li Hou, Asa Cooper Stickland,
Jackson Petty, Richard Yuanzhe Pang, Julien Di-
rani, Julian Michael, and Samuel R. Bowman. 2023.
GPQA: A graduate-level google-proof q&a bench-
mark. CoRR, abs/2311.12022.

Jiejun Tan, Zhicheng Dou, Yutao Zhu, Peidong Guo,
Kun Fang, and Ji-Rong Wen. 2024. Small models,
big insights: Leveraging slim proxy models to decide
when and what to retrieve for llms. In Proceedings
of the 62nd Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
ACL 2024, Bangkok, Thailand, August 11-16, 2024,
pages 4420–4436. Association for Computational
Linguistics.

Qwen Team. 2024. Qwq: Reflect deeply on the bound-
aries of the unknown.

Harsh Trivedi, Niranjan Balasubramanian, Tushar Khot,
and Ashish Sabharwal. 2022. musique: Multi-
hop questions via single-hop question composition.
Transactions of the Association for Computational
Linguistics, 10:539–554.

Jiaan Wang, Fandong Meng, Yunlong Liang, and Jie
Zhou. 2024. Drt-o1: Optimized deep reasoning
translation via long chain-of-thought. arXiv preprint
arXiv:2412.17498.

Liang Wang, Nan Yang, and Furu Wei. 2023.
Query2doc: Query expansion with large language
models. In Proceedings of the 2023 Conference on
Empirical Methods in Natural Language Process-
ing, EMNLP 2023, Singapore, December 6-10, 2023,
pages 9414–9423. Association for Computational
Linguistics.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou,
et al. 2022. Chain-of-thought prompting elicits rea-
soning in large language models. Advances in neural
information processing systems, 35:24824–24837.

Ken C. L. Wong, Hongzhi Wang, Etienne E. Vos,
Bianca Zadrozny, Campbell D. Watson, and Tan-
veer F. Syeda-Mahmood. 2021. Addressing deep
learning model uncertainty in long-range climate
forecasting with late fusion. CoRR, abs/2112.05254.

Siye Wu, Jian Xie, Jiangjie Chen, Tinghui Zhu, Kai
Zhang, and Yanghua Xiao. 2024. How easily do
irrelevant inputs skew the responses of large language
models? Preprint, arXiv:2404.03302.

Fangyuan Xu, Weijia Shi, and Eunsol Choi. 2024a. RE-
COMP: improving retrieval-augmented lms with con-
text compression and selective augmentation. In The
Twelfth International Conference on Learning Rep-
resentations, ICLR 2024, Vienna, Austria, May 7-11,
2024. OpenReview.net.

5430

https://openreview.net/forum?id=wxJ0eXwwda
https://openreview.net/forum?id=wxJ0eXwwda
http://papers.nips.cc/paper_files/paper/2023/hash/72393bd47a35f5b3bee4c609e7bba733-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/72393bd47a35f5b3bee4c609e7bba733-Abstract-Conference.html
https://doi.org/10.48550/ARXIV.2410.02338
https://doi.org/10.48550/ARXIV.2410.02338
https://arxiv.org/abs/2508.07050
https://arxiv.org/abs/2508.07050
https://openai.com/index/learning-to-reason-with-llms
https://doi.org/10.18653/V1/2023.FINDINGS-EMNLP.378
https://doi.org/10.18653/V1/2023.FINDINGS-EMNLP.378
https://doi.org/10.18653/V1/2023.FINDINGS-EMNLP.378
https://arxiv.org/abs/2412.15115
https://jmlr.org/papers/v21/20-074.html
https://jmlr.org/papers/v21/20-074.html
https://jmlr.org/papers/v21/20-074.html
https://doi.org/10.48550/ARXIV.2311.12022
https://doi.org/10.48550/ARXIV.2311.12022
https://doi.org/10.18653/V1/2024.ACL-LONG.242
https://doi.org/10.18653/V1/2024.ACL-LONG.242
https://doi.org/10.18653/V1/2024.ACL-LONG.242
https://qwenlm.github.io/blog/qwq-32b-preview/
https://qwenlm.github.io/blog/qwq-32b-preview/
https://doi.org/10.18653/V1/2023.EMNLP-MAIN.585
https://doi.org/10.18653/V1/2023.EMNLP-MAIN.585
https://arxiv.org/abs/2112.05254
https://arxiv.org/abs/2112.05254
https://arxiv.org/abs/2112.05254
https://arxiv.org/abs/2404.03302
https://arxiv.org/abs/2404.03302
https://arxiv.org/abs/2404.03302
https://openreview.net/forum?id=mlJLVigNHp
https://openreview.net/forum?id=mlJLVigNHp
https://openreview.net/forum?id=mlJLVigNHp

Guowei Xu, Peng Jin, Li Hao, Yibing Song, Lichao
Sun, and Li Yuan. 2024b. Llava-o1: Let vision lan-
guage models reason step-by-step. arXiv preprint
arXiv:2411.10440.

Zhilin Yang, Peng Qi, Saizheng Zhang, Yoshua Bengio,
William Cohen, Ruslan Salakhutdinov, and Christo-
pher D. Manning. 2018. HotpotQA: A dataset for
diverse, explainable multi-hop question answering.
In EMNLP, pages 2369–2380, Brussels, Belgium.
Association for Computational Linguistics.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak
Shafran, Karthik R. Narasimhan, and Yuan Cao. 2023.
React: Synergizing reasoning and acting in language
models. In The Eleventh International Conference
on Learning Representations, ICLR 2023, Kigali,
Rwanda, May 1-5, 2023. OpenReview.net.

Ori Yoran, Tomer Wolfson, Ori Ram, and Jonathan Be-
rant. 2024. Making retrieval-augmented language
models robust to irrelevant context. In The Twelfth
International Conference on Learning Representa-
tions, ICLR 2024, Vienna, Austria, May 7-11, 2024.
OpenReview.net.

Zhiyuan Zeng, Qinyuan Cheng, Zhangyue Yin,
Bo Wang, Shimin Li, Yunhua Zhou, Qipeng Guo,
Xuanjing Huang, and Xipeng Qiu. 2024. Scaling of
search and learning: A roadmap to reproduce o1 from
reinforcement learning perspective. arXiv preprint
arXiv:2412.14135.

Yuxiang Zhang, Shangxi Wu, Yuqi Yang, Jiangming
Shu, Jinlin Xiao, Chao Kong, and Jitao Sang. 2024.
o1-coder: an o1 replication for coding. arXiv
preprint arXiv:2412.00154.

Chujie Zheng, Zhenru Zhang, Beichen Zhang, Runji
Lin, Keming Lu, Bowen Yu, Dayiheng Liu, Jingren
Zhou, and Junyang Lin. 2025. Processbench: Iden-
tifying process errors in mathematical reasoning. In
Proceedings of the 63rd Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), ACL 2025, Vienna, Austria, July 27 -
August 1, 2025, pages 1009–1024. Association for
Computational Linguistics.

5431

https://doi.org/10.18653/v1/D18-1259
https://doi.org/10.18653/v1/D18-1259
https://openreview.net/forum?id=WE_vluYUL-X
https://openreview.net/forum?id=WE_vluYUL-X
https://openreview.net/forum?id=ZS4m74kZpH
https://openreview.net/forum?id=ZS4m74kZpH
https://aclanthology.org/2025.acl-long.50/
https://aclanthology.org/2025.acl-long.50/

Appendix

A Instruction Templates

This section outlines the instructions utilized in
this work, including those for the Search-o1 main
reasoning chain, Reason-in-Documents, standard
RAG, RAG agent, and task-specific guidelines.

A.1 Instructions for Search-o1

Instruction for Search-o1
You are a reasoning assistant with the ability to perform
web searches to help you answer the user’s question accu-
rately. You have special tools:
To perform a search: write <|begin_search_query|> your
query here <|end_search_query|>.
Then, the system will search and analyze relevant
web pages, then provide you with helpful information
in the format <|begin_search_result|> ...search results...
<|end_search_result|>.
You can repeat the search process multiple times if neces-
sary. The maximum number of search attempts is limited
to {MAX_SEARCH_LIMIT}.
Once you have all the information you need, continue your
reasoning.
Example:
Question: “...”
Assistant thinking steps:
- I might need to look up details about ...
Assistant:
<|begin_search_query|>...<|end_search_query|>
(System returns processed information from relevant web
pages)
Assistant continues reasoning with the new information...
Remember:
- Use <|begin_search_query|> to request a web search and
end with <|end_search_query|>.
- When done searching, continue your reasoning.

Instruction for Reason-in-Documents
Task Instruction:
You are tasked with reading and analyzing web pages based
on the following inputs: Previous Reasoning Steps, Current
Search Query, and Searched Web Pages. Your objective
is to extract relevant and helpful information for Current
Search Query from the Searched Web Pages and seamlessly
integrate this information into the Previous Reasoning Steps
to continue reasoning for the original question.
Guidelines:
1. Analyze the Searched Web Pages:
- Carefully review the content of each searched web page.
- Identify factual information that is relevant to the Current
Search Query and can aid in the reasoning process for the
original question.
2. Extract Relevant Information:
- Select the information from the Searched Web Pages that
directly contributes to advancing the Previous Reasoning
Steps.
- Ensure that the extracted information is accurate and rele-
vant.
3. Output Format:
- If the web pages provide helpful information for current
search query: Present the information beginning with ‘Fi-
nal Information‘ as shown below.

Final Information
[Helpful information]
- If the web pages do not provide any helpful information
for current search query: Output the following text.
Final Information
No helpful information found.
Inputs:
- Previous Reasoning Steps:
{prev_reasoning}
- Current Search Query:
{search_query}
- Searched Web Pages:
{document}
Now you should analyze each web page and find
helpful information based on the current search query
“{search_query}” and previous reasoning steps.

A.2 Instructions for Standard RAG

Instruction for Standard RAG
You are a knowledgeable assistant that utilizes the provided
documents to answer the user’s question accurately.
Question: {question}
Documents: {documents}
Guidelines:
- Analyze the provided documents to extract relevant infor-
mation. Synthesize the information to formulate a coherent
and accurate answer.
- Ensure that your response directly addresses the user’s
question using the information from the documents.

A.3 Instructions for RAG Agent

Instruction for RAG Agent

You are a reasoning assistant with the ability to perform
web searches and retrieve webpage content to help you
answer the user’s question accurately. You have special
tools:
- To perform a search: Write ‘<|begin_search_query|>’ your
query here ‘<|end_search_query|>’.
The system will call the web search API with
your query and return the search results in the
format ‘<|begin_search_result|> ...search results...
<|end_search_result|>’.
The search results will include a list of webpages with titles,
URLs, and snippets (but not full content).
- To retrieve full page content: After receiving the search
results, if you need more detailed information from specific
URLs, write ‘<|begin_url|> url1, url2, ... <|end_url|>’.
The system will fetch the full page content of those URLs
and return it as ‘<|begin_full_page|> ...full page content...
<|end_full_page|>’.
You can repeat the search process multiple times if nec-
essary. The maximum number of search attempts is lim-
ited to {MAX_SEARCH_LIMIT}. You can fetch up to
{MAX_URL_FETCH} URLs for detailed information.
Once you have all the information you need, continue your
reasoning.
Example:
Question: “...”
Assistant thinking steps: - I need to find out ...
Assistant: ‘<|be-
gin_search_query|>...<|end_search_query|>’
(System returns search results)
Assistant: ‘<|begin_search_result|> ...search results without
full page... <|end_search_result|>’

5432

Assistant thinks: The search results mention several URLs.
I want full details from one of them.
Assistant: ‘<|begin_url|>http://...<|end_url|>’
(System returns full page content)
Assistant: ‘<|begin_full_page|> ...full page content...
<|end_full_page|>’
Now the assistant has enough information and can continue
reasoning.
Remember:
- Use ‘<|begin_search_query|>’ to request a web search and
end with ‘<|end_search_query|>’.
- Use ‘<|begin_url|>’ to request full page content and end
with ‘<|end_url|>’.
- When done retrieving information, continue your reason-
ing.

A.4 Task-Specific Instructions

A.4.1 Open-Domain QA Tasks Instruction

Instruction for Open-Domain QA Tasks

Please answer the following question.
You should provide your final answer in the format
\boxed{YOUR_ANSWER}.
Question:
{question}

A.4.2 Math Tasks Instruction

Instruction for Math Tasks
Please answer the following math question.
You should provide your final answer in the format
\boxed{YOUR_ANSWER}.
Question:
{question}

A.4.3 Multi-choice Tasks Instruction

Instruction for Multi-choice Tasks
You are to answer the following multiple-choice question
by selecting the correct option.
Your final choice should be one of the letters A, B, C, or
D. Do not include any answer content beyond the choice
letter.
You should provide your final choice in the format
\boxed{YOUR_CHOICE}.
Question: {question}

A.4.4 Code Tasks Instruction

Instruction for Code Tasks
Generate a correct Python program that passes all tests for
the given problem. You should provide your final code
within a Python code block using triple backticks.

```python
# YOUR CODE HERE
```

Problem Title: {question_title}
Problem Statement:
{question}

A.5 Additional Notes

For all the instructions above, we input them as user
prompts, not system prompts. The task-specific
instructions in A.4 are used for the QwQ-32B-
Preview model. For non-reasoning models like
Qwen2.5-32B-Instruct, Qwen2.5-72B-Instruct, and
Llama3.3-70B-Instruct, etc., we add a Chain-of-
Thought prompt "You should think step by step
to solve it." before the question to explicitly make
these models reason before giving the final answer.

B Search-o1 Inference Process

B.1 Inference Logic for a Single Question.

For each question, the Search-o1 inference be-
gins by initializing the reasoning sequence with
the task instruction I concatenated with the spe-
cific question q. As the reasoning model M
generates the reasoning chain R, it may produce
search queries encapsulated within the special sym-
bols <|begin_search_query|> and <|end_search_query|> . Upon
detecting the <|end_search_query|> symbol, the corre-
sponding search query qsearch is extracted, trigger-
ing the retrieval function Search to obtain rele-
vant external documents D. These retrieved docu-
ments, along with the reason-in-documents instruc-
tion Idocs and the current reasoning sequence R,
are then processed by the Reason-in-Documents
module. This module refines the raw documents
into concise, pertinent information rfinal, which
is seamlessly integrated back into the reasoning
chain R within symbols <|begin_search_result|> and
<|end_search_result|> . This iterative process ensures that
the reasoning model incorporates necessary exter-
nal knowledge while maintaining coherence and
logical consistency, leading to the generation of
a comprehensive reasoning chain R and the final
answer a.

B.2 Batch Inference Mechanism.

To efficiently handle multiple questions simultane-
ously, the Search-o1 framework employs a batch
inference mechanism that optimizes both token
generation and knowledge refinement. Initially,
a set of unfinished reasoning sequences S is cre-
ated by concatenating the task instruction I with
each question q in the batch Q. The reasoning
modelM then generates tokens for all sequences
in S in parallel, advancing each reasoning chain
until it either completes or requires external knowl-
edge retrieval. When a search query is identified
within any sequence, the corresponding queries

5433

Algorithm 1 Search-o1 Inference
Require: Reasoning ModelM, Search function Search

1: Input: QuestionsQ, Task instruction I , Reason-in-documents instruction Idocs
2: Initialize set of unfinished sequences S ← {I ⊕ q | q ∈ Q}
3: Initialize set of finished sequences F ← {}
4: while S ≠ ∅ do
5: Generate all sequences in S until EOS or <|end_search_query|> : T ←M(S) ▷ Batch Generate
6: Initialize empty set Sr ← {} ▷ Reason-in-documents Inputs
7: for each sequence Seq ∈ T do
8: if Seq ends with <|end_search_query|> then
9: Extract search query: qsearch ← Extract(Seq, <|begin_search_query|> , <|end_search_query|>)

10: Retrieve documents: D ← Search(qsearch) ▷ Retrieval
11: Construct input for Reason-in-documents: ID ← Idocs ⊕ Seq⊕ qsearch ⊕D
12: Append the tuple (ID, Seq) to Sr
13: else if Seq ends with EOS then
14: Remove Seq from S , add Seq to F ▷ Sequence Finished
15: end if
16: end for
17: if Sr ̸= ∅ then
18: Prepare batch inputs: Ir ← {ID | (ID, Seq) ∈ Sr}
19: Reason-in-documents: Tr ←M(Ir) ▷ Batch Generate
20: for i← {1, ..., |Tr|} do
21: Let r ← Tr[i], Seq← Sr[i].Seq
22: Extract knowledge-injected reasoning step: rfinal ← Extract(r)
23: Update sequence in S: Seq← Insert

(
<|begin_search_result|> , rfinal, <|end_search_result|>

)

24: end for
25: end if
26: end while
27: Output: Finished Sequences F

are extracted and processed in batches through the
Search function to retrieve relevant documents D.
These documents are then collectively refined by
the Reason-in-Documents module, which gener-
ates the refined knowledge rfinal for each sequence.
The refined knowledge is subsequently inserted
back into the respective reasoning chains. Com-
pleted sequences are moved to the finished set F ,
while ongoing sequences remain in S for further
processing. By leveraging parallel processing for
both generation and refinement steps, the batch in-
ference mechanism enhances system throughput
associated with handling multiple inputs concur-
rently.

C Tasks and Datasets

The evaluations used in this experiment include the
following two categories:

Challenging reasoning tasks: (1) GPQA (Rein
et al., 2023) is a PhD-level science multiple-choice
QA dataset. The questions are authored by domain
experts in physics, chemistry, and biology. In our
main experiments, we use the highest quality dia-
mond set containing 198 questions, and in Table 3,
we use a more comprehensive extended set contain-
ing 546 questions to compare with the performance

of human experts. (2) Math benchmarks include
MATH500 (Lightman et al., 2024), AMC2023 1,
and AIME2024 2. MATH500 consists of 500 ques-
tions from the MATH test set (Hendrycks et al.,
2021). AMC2023 and AIME2024 are middle
school math competitions covering arithmetic, al-
gebra, geometry, etc., containing 40 and 30 ques-
tions respectively. Among these three datasets,
MATH500 and AMC are relatively simple, while
AIME is more difficult. (3) LiveCodeBench (Jain
et al., 2024) is a benchmark for evaluating LLMs’
coding capabilities, consisting of easy, medium,
and hard difficulty problems. It collects recently
published programming problems from competi-
tive platforms to avoid data contamination. We
utilize problems from August to November 2024,
comprising 112 problems.

Open-domain QA tasks: (1) Single-hop QA
datasets: Natural Questions (NQ) (Kwiatkowski
et al., 2019) contains questions from real Google
search queries with answers from Wikipedia ar-
ticles. TriviaQA (Joshi et al., 2017) is a large-

1https://huggingface.co/datasets/AI-MO/
aimo-validation-amc

2https://huggingface.co/datasets/AI-MO/
aimo-validation-aime

5434

https://huggingface.co/datasets/AI-MO/aimo-validation-amc
https://huggingface.co/datasets/AI-MO/aimo-validation-amc
https://huggingface.co/datasets/AI-MO/aimo-validation-aime
https://huggingface.co/datasets/AI-MO/aimo-validation-aime

scale dataset with questions from trivia web-
sites and competitions, featuring complex en-
tity relationships. (2) Multi-hop QA datasets:
HotpotQA (Yang et al., 2018) is the first
large-scale dataset requiring reasoning across
multiple Wikipedia paragraphs. 2WikiMulti-
hopQA (2WIKI) (Ho et al., 2020) provides ex-
plicit reasoning paths for multi-hop questions.
MuSiQue (Trivedi et al., 2022) features 2-4
hop questions built from five existing single-hop
datasets. Bamboogle (Press et al., 2023) collects
complex questions that Google answers incorrectly
to evaluate models’ compositional reasoning across
various domains.

D Baselines

We evaluate our approach against the following
baseline methods:

Direct Reasoning: These methods utilize
the model’s internal knowledge without re-
trieval. The open-source models include
Qwen2.5-32B-Instruct (Qwen et al., 2024),
Qwen2.5-Coder-32B-Instruct (Hui et al., 2024),
QwQ-32B-Preview (Team, 2024), Qwen2.5-72B-
Instruct (Qwen et al., 2024), and Llama3.3-70B-
Instruct (Dubey et al., 2024). Closed-source
non-proprietary models include DeepSeek-R1-Lite-
Preview (?), OpenAI GPT-4o (Hurst et al., 2024),
and o1-preview (Jaech et al., 2024). Results
for open-source models are based on our imple-
mentations, while closed-source model results are
sourced from their official releases.

Retrieval-augmented Reasoning: These meth-
ods retrieve external information to enhance the
reasoning process. We consider two retrieval aug-
mentation approaches: (1) Standard RAG: Re-
trieves the top-10 documents for the original ques-
tion and inputs them alongside the question into
the model for reasoning and answer generation.
(2) RAG Agent (RAgent): Allows the model to
decide when to generate queries for retrieval, as
detailed in Section 3.3. To manage the length of
retrieved documents, inspired by ReAct (Yao et al.,
2023), we first retrieve the top-10 snippets during
reasoning. The model then decides which URLs to
obtain for the full documents when necessary.

E Implementation Details

For the backbone large reasoning model in
Search-o1, we utilize the open-sourced QwQ-32B-
Preview (Team, 2024). For generation settings, we

use a maximum of 32,768 tokens, temperature of
0.7, top_p of 0.8, top_k of 20, and a repetition
penalty of 1.05 across all models. For retrieval, we
employ the Bing Web Search API, setting the re-
gion to US-EN and the top-k retrieved documents
to 10. We use Jina Reader API to fetch the content
of web pages for given URLs. For all retrieval-
based methods, following (Rein et al., 2023), we
apply a back-off strategy where, when a final an-
swer is not provided, we use the result from direct
reasoning. For baseline models not specifically
trained for o1-like reasoning, we apply Chain-of-
Thought (CoT) (Wei et al., 2022) prompting to
perform reasoning before generating answers. De-
tailed instructions for all models are provided in
Appendix A. All experiments are conducted on
eight NVIDIA A800-80GB GPUs.

F Case Study

Tables 5, 6, and 7 present examples of out-
puts from our Search-o1 model on the GPQA,
AMC2023, and HotpotQA datasets, respectively.
The model-generated search queries are enclosed
within <|begin_search_query|> and <|end_search_query|> ,
while the refined search results are enclosed within
<|begin_search_result|> and <|end_search_result|> . We ob-
serve that our Reason-in-Documents mechanism
provides coherent information that effectively
meets the information needs of the model’s cur-
rent reasoning step and seamlessly integrates with
the preceding reasoning process.

5435

Table 5: An example from Search-o1 on GPQA dataset, with special symbols used in the search queries and search
results highlighted in green box and blue box , respectively.

Example #1 from GPQA Dataset

Question:
trans-cinnamaldehyde was treated with methylmagnesium bromide, forming product 1.
1 was treated with pyridinium chlorochromate, forming product 2.
3 was treated with (dimethyl(oxo)-l6-sulfaneylidene)methane in DMSO at elevated temperature, forming product 3.
how many carbon atoms are there in product 3? Choices:
(A) 10
(B) 11
(C) 14
(D) 12
Labeled Answer:
B

Model Output by Search-o1

Alright, so I have this problem here about some chemical reactions, and I need to figure out how many carbon atoms are in the
final product, which is product 3. Let’s break this down step by step.
First, there’s trans-cinnamaldehyde, and it’s being treated with methylmagnesium bromide to form product 1. I know that
methylmagnesium bromide is a Grignard reagent, which is nucleophilic and usually adds to carbonyl compounds. So,
trans-cinnamaldehyde has a carbonyl group, right? It’s an aldehyde, so it has a C=O bond. The Grignard reagent should attack
the carbonyl carbon, adding the methyl group and turning the aldehyde into an alcohol, I think. But let me make sure.
Wait, maybe I should look up what exactly happens when a Grignard reagent reacts with an aldehyde. Let me try to search for
that.
<|begin_search_query|> reaction of grignard reagent with aldehyde <|end_search_query|>

<|begin_search_result|> Reacting a Grignard reagent with an aldehyde results in the formation of a secondary alcohol, incorpo-
rating one additional carbon atom from the Grignard reagent. Therefore, if trans-cinnamaldehyde (9 carbon atoms) reacts
with methylmagnesium bromide (1 carbon atom), the resulting product (product 1) will have 10 carbon atoms. Subsequent
protonation to form product 2 and further reactions to form product 3 do not change the carbon atom count, assuming no
carbon is added or removed in those steps. Hence, product 3 should have 10 carbon atoms. <|end_search_result|>
Hmm, according to this, product 1 should have 10 carbon atoms, starting from trans-cinnamaldehyde, which has 9 carbon
atoms, plus the methyl group from the Grignard reagent, adding one more carbon atom. That makes sense.
Next, product 1 is treated with pyridinium chlorochromate to form product 2. Pyridinium chlorochromate (PCC) is used for
oxidations, particularly for oxidizing primary alcohols to aldehydes or secondary alcohols to ketones. Since product 1 is a
secondary alcohol (from the previous step), PCC should oxidize it to a ketone. Again, this shouldn’t change the number of
carbon atoms; it’s just changing the functional group.
...
Alternatively, perhaps the initial trans-cinnamaldehyde has more or fewer carbon atoms than I thought. Let me confirm its
structure.
<|begin_search_query|> structure of trans-cinnamaldehyde <|end_search_query|>

<|begin_search_result|> Trans-cinnamaldehyde, also known as (E)-cinnamaldehyde, has the molecular formula C9H8O. It
consists of a phenyl ring connected to a propenal group via a double bond, forming a conjugated system that makes the
molecule planar. The structure comprises 9 carbon atoms, 8 hydrogen atoms, and 1 oxygen atom, with the functional groups
indicating its reactivity in chemical transformations. <|end_search_result|>
Yes, confirmed: trans-cinnamaldehyde has 9 carbon atoms.
Now, reacting with methylmagnesium bromide, which provides a methyl group (-CH3), adds one carbon atom, making
product 1 have 10 carbon atoms.
Then, oxidation with PCC to convert the alcohol to a ketone doesn’t change the carbon skeleton, so product 2 still has 10
carbon atoms.
...
Therefore, starting from 9 carbon atoms in trans-cinnamaldehyde, adding one carbon atom from the Grignard reagent to make
10, and then adding another carbon atom in the cyclopropanation to make 11.
So, the final answer is B

5436

Table 6: An example from Search-o1 on AMC2023 dataset, with special symbols used in the search queries and
search results highlighted in green box and blue box , respectively.

Example #2 from AMC2023 Dataset

Question:
There is a unique sequence of integers a1, a2, · · · a2023 such that

tan 2023x =
a1 tanx+ a3 tan

3 x+ a5 tan
5 x+ · · ·+ a2023 tan

2023 x

1 + a2 tan2 x+ a4 tan4 x · · ·+ a2022 tan2022 x

whenever tan 2023x is defined. What is a2023?
Labeled Answer:
-1

Model Output by Search-o1

Alright, so I’ve got this problem here involving trigonometric identities, specifically with the tangent function. The equation
given is:
...
And I need to find the value of a2023.
First off, I know that there are multiple-angle identities for tangent, but I’m not sure if there’s a direct formula for such a high
multiple like 2023. Maybe there’s a general formula for tannx in terms of tanx, and perhaps this problem is asking for the
coefficients in that expansion.
...
Wait, I remember that tangent of multiple angles can be expressed using the Bernoulli polynomials or something similar, but
I’m not sure. Maybe I need to search for a general formula for tannx.
Let me try to search for ẗangent multiple angle formulaẗo see if there’s a general expression.
<|begin_search_query|> tangent multiple angle formula <|end_search_query|>

<|begin_search_result|> The recursive formula for tan(nθ) is given by:

tan(nθ) =
tan[(n− 1)θ] + tan θ

1− tan[(n− 1)θ] tan θ

This formula can be used iteratively to compute tan(nθ) for any integer n, making it particularly useful for large values of n,
such as n=2023, as encountered in the problem. This approach avoids the complexity of deriving high-degree polynomial
expressions directly and leverages the tangent addition formula in a step-by-step manner. <|end_search_result|>
Okay, so there’s a recursive formula for tan(nθ):

tan(nθ) =
tan[(n− 1)θ] + tan θ

1− tan[(n− 1)θ] tan θ

That seems useful, especially for large n, like 2023. But I’m not sure how to apply this recursively up to 2023 without going
through each step, which isn’t practical.
Maybe there’s a general expression for tan(nx) in terms of tan(x) as a rational function.
...
Looking at n = 1:

tanx =
a1 tanx

1
=⇒ a1 = 1

For n = 3, a3 = −1
For n = 5, a5 = 1

So it seems that an = (−1)(n−1)/2 for odd n.
Wait, let’s check:
For n = 1, (−1)(1−1)/2 = (−1)0 = 1, which matches a1 = 1

For n = 3, (−1)(3−1)/2 = (−1)1 = −1, which matches a3 = −1

For n = 5, (−1)(5−1)/2 = (−1)2 = 1, which matches a5 = 1

So, generalizing, for odd n, an = (−1)(n−1)/2

Now, 2023 is odd, so a2023 = (−1)(2023−1)/2 = (−1)1011 = −1
Therefore, a2023 = −1
I think that’s the answer.
*Final Answer**

−1

5437

Table 7: An example from Search-o1 on HotpotQA dataset, with special symbols used in the search queries and
search results highlighted in green box and blue box , respectively.

Example #3 from HotpotQA Dataset

Question:
Were Goo Goo Dolls and Echosmith formed in the same city?
Labeled Answer:
no

Model Output by Search-o1

Alright, I’ve got this question: Ẅere Goo Goo Dolls and Echosmith formed in the same city?Ḧmm, I don’t know much about
these bands, so I’ll need to look that up.
First, I should find out where each band was formed. Maybe start with Goo Goo Dolls. I think they’re an older band, but I’m
not sure. Let me search for their formation place.
<|begin_search_query|> where was Goo Goo Dolls formed? <|end_search_query|>

<|begin_search_result|> The Goo Goo Dolls were formed in Buffalo, New York, in 1986. They initially performed under the
name Sex Maggots but changed to Goo Goo Dolls in 1986 for a gig, choosing the name from an ad in True Detective magazine.
<|end_search_result|>

Okay, so Goo Goo Dolls were formed in Buffalo, New York. Now, I need to find out where Echosmith was formed.
<|begin_search_query|> where was Echosmith formed? <|end_search_query|>

<|begin_search_result|> Echosmith was formed in Chino, California, in February 2009. <|end_search_result|>

Chino, California, huh? That sounds different from Buffalo, New York. But maybe I should double-check to make sure I have
the right information.
Let me look up Echosmith again to confirm their formation city.
<|begin_search_query|> Echosmith formation location <|end_search_query|>

<|begin_search_result|> Echosmith was formed in Toluca Lake, Los Angeles, California, in February 2009. The initial confusion
about the formation location being Chino, California, or Buffalo, New York, is resolved by multiple recent sources confirming
their formation in Los Angeles. Chino might be their hometown, but the band was established in Toluca Lake, Los
Angeles. <|end_search_result|>
Wait, now it says Toluca Lake, Los Angeles, California. Earlier, I had Chino, California. Maybe there’s some confusion here.
I should check more sources to make sure.
<|begin_search_query|> Echosmith origin city <|end_search_query|>

<|begin_search_result|> Echosmith was born in Chino, California, but formed the band in Toluca Lake, Los Angeles, California,
in February 2009. Chino is their hometown, while Toluca Lake is where they officially formed as a band. <|end_search_result|>
So, it seems like Echosmith originates from Chino, California, but was formed in Toluca Lake, Los Angeles, California.
Now, comparing that to Goo Goo Dolls, who were formed in Buffalo, New York.
Clearly, Buffalo, New York, is different from Toluca Lake, Los Angeles, California.
But just to be thorough, maybe there’s a connection I’m missing.
Let me see if Echosmith has any ties to Buffalo, New York.
<|begin_search_query|> Echosmith Buffalo, New York <|end_search_query|>

<|begin_search_result|> Echosmith has performed in Buffalo, New York, in the past, as evidenced by a setlist from a concert
at Waiting Room on November 1, 2013. However, there are no current tour dates listed for Buffalo in the searched web
pages. <|end_search_result|>
So, they’ve played in Buffalo, but that doesn’t mean they were formed there.
Let me see if there’s any other connection between the two bands.
<|begin_search_query|> Goo Goo Dolls and Echosmith connection <|end_search_query|> <|begin_search_result|> The maximum search

limit is exceeded. You are not allowed to search. <|end_search_result|>
Hmm, it seems I’ve reached my search limit. Based on the information I have so far, Goo Goo Dolls were formed in Buffalo,
New York, and Echosmith was formed in Toluca Lake, Los Angeles, California. These are different cities, so the answer
should be no, they were not formed in the same city.
Therefore, I can confidently say that Goo Goo Dolls and Echosmith were not formed in the same city.
*Final Answer**

no

5438

