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Abstract

Large language models (LLMs) have demon-
strated remarkable reasoning and planning ca-
pabilities, driving extensive research into task
decomposition. Existing task decomposition
methods focus primarily on memory, tool us-
age, and feedback mechanisms, achieving no-
table success in specific domains, but they of-
ten overlook the trade-off between performance
and cost. In this study, we first conduct a com-
prehensive investigation on task decomposition,
identifying six categorization schemes. Then,
we perform an empirical analysis of three fac-
tors that influence the performance and cost of
task decomposition: categories of approaches,
characteristics of tasks, and configuration of de-
composition and execution models, uncovering
three critical insights and summarizing a set of
practical principles. Building on this analysis,
we propose the Select-Then-Decompose strat-
egy, which establishes a closed-loop problem-
solving process composed of three stages: se-
lection, execution, and verification. This strat-
egy dynamically selects the most suitable de-
composition approach based on task charac-
teristics and enhances the reliability of the
results through a verification module. Com-
prehensive evaluations across multiple bench-
marks show that the Select-Then-Decompose
consistently lies on the Pareto frontier, demon-
strating an optimal balance between perfor-
mance and cost. Our code is publicly avail-
able at https://github.com/summervvind/
Select-Then-Decompose.

1 Introduction

Large Language Models (LLMs) have demon-
strated excellent performance in the field of Natural
Language Processing (Yang et al., 2024b; OpenAI,
2022, 2023; Touvron et al., 2023a,b). They have
not only achieved remarkable success in basic tasks
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† Corresponding authors.

such as language understanding and text genera-
tion, but also exhibit strong reasoning and planning
abilities (Qiao et al., 2023; Sun et al., 2023a; Chen
et al., 2024; Liu et al., 2025). Motivated by these ca-
pabilities, researchers have increasingly focused on
leveraging LLMs for task decomposition, allowing
them to tackle complex problems in a step-by-step
manner and improve overall accuracy and robust-
ness (Kojima et al., 2022; Wang et al., 2023; Sun
et al., 2023b; Yao et al., 2023).

Current research on task decomposition primar-
ily enhances the performance of LLMs by integrat-
ing tool usage, feedback mechanisms, and mem-
ory modules (Chen et al., 2023; Shen et al., 2023;
Zhang et al., 2025; Qian et al., 2024; Li et al., 2024).
However, there are still several questions that re-
main unanswered. For instance, what are the fac-
tors that influence performance and cost, and how
can we balance the trade-off between them?

In this work, we investigate task decomposition
in LLMs and introduce six categorization schemes:
❶ the interleaving sequence between decomposi-
tion and execution (Huang et al., 2024), ❷ the num-
ber of LLM calls required to complete a task, ❸

the topological structure of decomposition, ❹ the
format of decomposition, ❺ the range of subtask se-
lection during decomposition, and ❻ whether tool
usage is involved during execution.

Based on these categorization schemes, we sum-
marize five representative approaches for the fol-
lowing experiment and analysis. Subsequently,
we conduct an in-depth empirical analysis to ex-
plore the main elements that influence the perfor-
mance and cost of task decomposition, and identify
three major contributing factors: categories of task
decomposition approaches, characteristics of the
tasks, configuration of the decomposition model
and execution models. The experimental results re-
veal three important insights: ❶ The existing task
decomposition approaches are confronted with a
performance-cost dilemma; ❷ Task characteristics
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determine the sequence, calling form, and topol-
ogy of task decomposition; ❸ Scaling the execu-
tion model yields greater performance gains than
scaling the decomposition model, with the reason-
ing model further enhancing the execution stage.
Based on these insights, we summarize a set of
practical principles to guide task decomposition
in LLMs, providing valuable insights for future
research and practical deployment.

To further balance performance and cost, we
propose the Select-Then-Decompose strategy — a
closed-loop framework composed of three collab-
orative modules: selection, execution, and vali-
dation. Instead of relying on a fixed decomposi-
tion paradigm, the selection module dynamically
chooses the most suitable decomposition approach
based on task complexity and characteristics. The
execution module then applies the chosen approach
to generate candidate solutions, while the valida-
tion module evaluates the confidence of the solu-
tions and determines whether a fallback to a more
sophisticated approach is necessary. Extensive ex-
periments across diverse benchmarks demonstrate
that Select-Then-Decompose consistently lies on
the Pareto frontier, striking an effective balance
between performance and token cost.

Overall, our key contributions are: 1) We pro-
vide a comprehensive investigation of task decom-
position in LLMs, analyzing three key factors that
impact its performance and cost, which lead to valu-
able insights and a set of practical principles; 2)
We propose the Select-Then-Decompose strategy,
which dynamically selects appropriate decomposi-
tion approaches to mitigate the performance–cost
dilemma; 3) Experimental results validate the su-
periority of the Select-Then-Decompose strategy
in multiple tasks, achieving an effective balance
between task performance and token cost.

2 Categorization of Task Decomposition
Approaches

We systematically categorize existing task decom-
position approaches and introduce six categoriza-
tion schemes, with each scheme illustrated by a
corresponding diagram in Figure 1.

Decomposition-First vs. Interleaved Task de-
composition approaches generally consist of two
main stages: decomposition and execution. Based
on the interplay and sequence between these two
stages, existing approaches can be classified into
decomposition-first approach (Shen et al., 2023;

Singh et al., 2023; Sun et al., 2023b) and inter-
leaved approach (Yao et al., 2023; Wu et al., 2023;
Khot et al., 2022). The former first decomposes
the original task into a set of subtasks, which are
then executed sequentially. In contrast, the latter
performs decomposition and execution in an inter-
leaved manner—only one subtask is generated at a
time, and the next subtask is determined based on
the outcome of the current task’s execution.

Implicit vs. Explicit Since solving problems
with LLMs often involves multi-step generation,
the manner in which LLMs are invoked plays a
crucial role. Based on the frequency of LLM in-
vocations, existing task decomposition approaches
can be broadly categorized into explicit approach
(Shen et al., 2023; Singh et al., 2023; Zhou et al.,
2022) and implicit (Kojima et al., 2022; Wang et al.,
2023; Gao et al., 2023) approach. The explicit ap-
proach entails multiple LLM calls to separately
carry out task decomposition and execution. In
contrast, the implicit approach seeks to integrate
task understanding, decomposition, and execution
within a single LLM invocation.

DAG vs. Linear In the decomposition stage,
based on the dependency relationships between
subtasks, the decomposition results can typically
be classified into two common topological struc-
tures: linear structure (Shen et al., 2023; Singh
et al., 2023; Zhou et al., 2022) and directed acyclic
graph (DAG) structure (Chen et al., 2023; Wang
et al., 2024a; Kannan et al., 2024). In the linear
structure, a task is decomposed into a sequential
chain of subtasks, where the output of each subtask
directly serves as the input to the subsequent one.
In contrast, the DAG structure offers a more flexible
and expressive decomposition paradigm, allowing
for the parallel execution of independent subtasks
and supporting complex dependency relationships,
including both predecessors and successors.

Code vs. Text In the decomposition stage, the
representation format of subtasks impacts the sub-
sequent execution strategies and their effectiveness.
Based on the design of current mainstream ap-
proaches, the decomposed subtasks are expressed
in two common formats: code format (Singh et al.,
2023; Kannan et al., 2024; Gao et al., 2023) and
text format (Shen et al., 2023; Zhou et al., 2022;
Sun et al., 2023b). In the code format, subtask
representations leverage structured languages (e.g.,
Python functions, JSON structures) to capture the
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Figure 1: Task decomposition approaches are categorized from six perspectives, with those highlighted in color
representing the primary focus of this study, while the categories in gray are not within the scope of our investigation.

execution logic and input-output dependencies be-
tween tasks. In contrast, the text format describes
each subtask’s content and objectives in natural
language, offering greater flexibility and openness.

Limited Subtask Selection Range vs. Unlim-
ited Subtask Selection Range In the decompo-
sition stage, based on the size of the selectable
subtask space, existing approaches can be classi-
fied into two categories: approaches with a limited
subtask selection range (Singh et al., 2023; Sun
et al., 2023b; Wang et al., 2024a) and approaches
with an unrestricted subtask selection range (Shen
et al., 2023; Zhou et al., 2022; Chen et al., 2023).
The former relies on a predefined set of candidate
subtasks, from which the LLM must select when
decomposing. These approaches allow for explicit
control over the quality and relevance of the sub-
tasks through the candidate set, providing stronger
controllability and stability. In contrast, the latter
do not depend on a predefined set of candidates.
Instead, the LLM generates new subtasks freely
based on the semantics and objectives of the task.

Tool-Augmented vs. Pure LLM-based In the
execution stage, existing approaches can be cate-
gorized according to whether external tools are in-
volved in the execution of subtasks, resulting in two
categories: tool-augmented execution (Shen et al.,
2023; Singh et al., 2023; Chen et al., 2023) and
pure LLM-based execution (Zhou et al., 2022; Sun
et al., 2023b; Khot et al., 2022). Tool augmented ex-
ecution approaches leverage external tools-such as
code interpreters, robots, or multi-modal models-to
assist in completing specific subtasks. In contrast,

pure LLM-based execution approaches rely solely
on the reasoning and generation capabilities of the
LLM without invoking any external tools.

Summary Among the aforementioned six cate-
gorization schemes, the latter three schemes each
contain a category that is typically tailored to spe-
cific tasks. For instance, the code format is primar-
ily applicable to domains such as robotic control
and mathematical problem solving. Similarly, the
limited subtask selection range has limited appli-
cability, as the set of candidate subtasks must be
predefined in advance. In contrast, this study fo-
cuses on evaluating the effectiveness of various
task decomposition approaches in general-purpose
scenarios. Therefore, in the following sections,
we concentrate on the categorization schemes in-
troduced in the former three schemes, and select
five representative approaches: CoT (Kojima et al.,
2022), P&S (Plan and solve) (Wang et al., 2023),
ReAct (Yao et al., 2023), P&E (Plan and execute)
(Sun et al., 2023b), and P&E with DAG structure
(Sun et al., 2023b), covering three categorization
schemes. Table 1 summarizes the specific cate-
gories of the five approaches. A comprehensive
categorization taxonomy of all task decomposition
approaches surveyed can be found in Appendix A.
The details of each of the five representative ap-
proaches are described in Appendix B.1.

3 Empirical Analysis

While most existing research concentrates on apply-
ing decomposition approaches for designing task-
specific workflows (Chen et al., 2023; Zhang et al.,
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Table 1: Category assignments of the five representative methods

Categorization COT P&S ReAct P&E P&E (DAG)

Decomposition-First(★) vs. Interleaved(✩) ✩ ★ ✩ ★ ★

Implicit(★) vs. Explicit(✩) ★ ★ ✩ ✩ ✩

DAG(★) vs. Linear(✩) ✩ ✩ ✩ ✩ ★

2025), they often neglect to explore the underly-
ing factors that fundamentally influence the perfor-
mance and cost of task decomposition in LLMs. In
this study, we conduct a systematic analysis of task
decomposition from three perspectives: the per-
formance–cost dilemma, the relationship between
tasks and approaches, and the impact of model dis-
crepancies. Based on extensive experiments and
analysis, we present three key insights and summa-
rize a set of practical principles.

3.1 Performance-Cost Dilemma

To emphasize the performance and cost variations
among different task decomposition approaches,
we choose six approaches in total: IO (direct LLM
invocation) and five representative approaches sum-
marized in Section 2. Experiments are conducted
on five widely used benchmarks: GSM8K (Cobbe
et al., 2021), MATH (Hendrycks et al., 2021), Hu-
manEval (Chen et al., 2021), Trivia Creative Writ-
ing (Wang et al., 2024b), and HotpotQA (Yang
et al., 2018). Detailed descriptions of these ap-
proaches and datasets are provided in the Ap-
pendix B. GPT-4o-mini (OpenAI, 2024) is adopted
as the base model, with the temperature parameter
set to zero, and the beta parameter applied to fix
the model seed at 42.1

To compare the effectiveness of these ap-
proaches, we conduct five independent runs and
report their mean performance and error bars across
all five benchmarks in Table 2. IO shows limited
effectiveness across tasks. In contrast, implicit ap-
proaches such as CoT and P&S perform well on
GSM8K, likely due to alignment with patterns en-
countered during post-training. However, their per-
formance significantly degrades on more complex
tasks like Trivia Creative Writing, which typically
cannot be handled within a single LLM call. On
the other hand, ReAct and P&E achieve superior
results on HumanEval and MATH. Notably, P&E
(DAG) delivers the best performance on Trivia Cre-
ative Writing and HotpotQA, and also performs

1https://platform.openai.com/docs/
api-reference/chat/create

competitively on the remaining benchmarks, result-
ing in the highest average score overall.

We also compare the average token consumption
and API call frequency across the six approaches.
Figure 2 presents the results for four representa-
tive benchmarks, with comprehensive results pro-
vided in Appendix E.1. While explicit approaches
achieve superior performance on certain bench-
marks, they inevitably incur substantial costs in
terms of token usage and API call frequency. For
example, in the Trivia Creative Writing task (N=5),
P&E’s token consumption exceeds that of the im-
plicit approach with the highest token usage by an
astonishing 10×, which is highly prohibitive. Al-
though the P&E (DAG) approach performs consis-
tently well across all tasks, it still results in approx-
imately 4× higher token consumption compared to
implicit approaches.
Takeaway I: The existing task decomposition ap-
proaches are confronted with a performance-cost
dilemma.

3.2 The Relationship between Tasks and
Approaches

Different studies have adopted diverse decomposi-
tion strategies to cope with domain-specific chal-
lenges. This has led us to a deeper exploration of
the relationship between task characteristics and
decomposition approaches.

Based on the results in Table 2, we observe that
for mathematical tasks, CoT and P&E exhibit the
best performance. For code generation tasks, Re-
Act is the only one that achieves a score closest
to 90. In writing and text comprehension tasks,
P&E (DAG) clearly outperforms other approaches.
We hypothesize that these differences mainly stem
from the distinct characteristics of each task type.
To validate this hypothesis, we further conduct ex-
periments on the MT-bench benchmark (Zheng
et al., 2023), with a detailed dataset setup described
in Appendix B.2. The model and parameter settings
are consistent with Section 3.1.

The experimental results, as shown in Table 3,
indicate that for mathematical and reasoning tasks,

5457

https://platform.openai.com/docs/api-reference/chat/create
https://platform.openai.com/docs/api-reference/chat/create


Table 2: Comparison of decomposition approaches across benchmarks.

Method
Math Code Generation Creative Writing Text Understanding

Avg.
GSM8K MATH HumanEval Trivia Creative Writing(N=5) Trivia Creative Writing(N=10) HotpotQA

IO 32.78 (±0.15) 17.06 (±0.21) 83.63 (±0.27) 46.50 (±0.36) 51.40 (±0.41) 60.26 (±0.24) 48.60
CoT 93.45 (±0.19) 50.11 (±0.24) 86.20 (±0.36) 49.58 (±0.31) 51.34 (±0.34) 63.21 (±0.35) 65.65
P&S 92.12 (±0.23) 49.40 (±0.39) 84.54 (±0.32) 48.82 (±0.47) 51.24 (±0.49) 62.06 (±0.29) 64.70
ReAct 91.56 (±0.29) 44.68 (±0.49) 89.85 (±0.44) 61.48 (±0.52) 62.72 (±0.58) 53.28 (±0.41) 67.26
P&E 92.47 (±0.25) 52.13 (±0.38) 82.46 (±0.55) 62.50 (±0.48) 54.26 (±0.55) 63.04 (±0.56) 67.81
P&E (DAG) 90.79 (±0.39) 48.02 (±0.37) 84.25 (±0.30) 64.34 (±0.49) 63.88 (±0.57) 65.15 (±0.48) 69.40
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Figure 2: Token cost and API call analysis across benchmarks. The bar represents the token cost, and the line
represents the API calls.

CoT achieved the highest subjective scores. For
writing and role-playing text tasks, P&E (DAG)
continued to excel, maintaining a leading posi-
tion. However, in code generation tasks, ReAct,
while ranking second, scored lower than CoT. We
attribute this to the absence of a code execution
component, which likely impacted ReAct’s perfor-
mance. Overall, this experiment not only mitigates
metric inconsistencies across different benchmarks,
but—through a unified subjective evaluation—also
reinforces our hypothesis concerning the relation-
ship between tasks and approaches. See the Ap-
pendix E.2 for complete data on MT-bench.

We then conduct a qualitative analysis to exam-
ine the relationship between task characteristics
and approach categories, such as sequence, calling
form, and topology. The logical rigor of math and
reasoning tasks makes them well-suited to CoT’s
<implicit > and P&E’s <linear > strategies, both of
which emphasize coherent, stepwise reasoning. In
contrast, the divergent thinking required by writing
and comprehension tasks aligns with P&E (DAG)’s
parallel decomposition. Code generation, charac-
terized by iterative refinement, benefits more from
ReAct’s <explicit, interleaved > strategy. These
findings suggest that task-specific cognitive de-
mands fundamentally influence the suitability of
decomposition approaches.
Takeaway II: Task characteristics determine the

sequence, calling form, and topology of task de-
composition.

3.3 Impact of Model Discrepancies

The parameter scale and reasoning capability of a
model are key factors influencing its performance
(Kaplan et al., 2020; Shao et al., 2024). We simi-
larly focus on the specific roles these factors play in
the stages of decomposition and execution. Based
on the discussion in Section 3.1, we select the P&E
(DAG) approach as the research carrier, primar-
ily due to its explicit decomposition pattern and
the requirement of a structured plan. Systematic
experiments are conducted on the MATH dataset.

First, we explore the impact of model scale. We
use three language models from the Qwen2.5 se-
ries (Yang et al., 2024a) with different parameter
sizes (Qwen2.5-1.5B/7B/14B-instruct) as the de-
composition and execution models, forming nine
cross-model experiment combinations. As shown
in the left panel of Figure 3, from both the decom-
position and execution model perspectives, overall
accuracy improves with larger model parameter
sizes, indicating that model scale has a positive
impact on performance.

To further analyze the individual and compara-
tive impacts of the decomposition model and the
execution model, we design three sets of controlled
experiments, as shown in the right panel of Fig-
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Table 3: MT-bench evaluation results: turn 1, turn 2, and average scores across approaches and five task cate-
gories, evaluated by Claude-3.5-Sonnet (Anthropic, 2024) as the judge and using GPT-4o-mini as the base model.
Underlined values indicate the highest score in each turn, while bold values indicate the highest average score.

Method
MT-bench

Writing Roleplay Reasoning Math Coding

Turn 1 Turn 2 Avg Turn 1 Turn 2 Avg Turn 1 Turn 2 Avg Turn 1 Turn 2 Avg Turn 1 Turn 2 Avg

IO 8.92 7.63 8.28 8.28 6.96 7.62 5.85 6.05 5.95 4.75 3.87 4.31 5.15 4.50 4.83
CoT 9.06 7.38 8.22 8.50 6.98 7.74 8.55 7.66 8.11 9.73 8.55 9.14 7.82 5.69 6.76
P&S 8.91 8.03 8.47 8.90 7.06 7.98 7.61 7.00 7.31 9.63 7.93 8.78 6.25 5.90 6.08
ReAct 8.10 7.98 8.04 6.77 6.23 6.50 8.08 7.12 7.60 9.58 7.32 8.45 6.00 6.70 6.35
P&E 9.05 7.04 8.05 8.53 6.39 7.46 8.13 6.02 7.08 9.33 7.70 8.52 4.95 5.27 5.11
P&E (DAG) 9.27 7.78 8.53 8.80 7.77 8.29 8.08 6.83 7.46 9.47 7.50 8.49 4.86 4.87 4.87

1.5B 7B 14B
Execution Model

14
B

7B
1.

5BDe
co

m
po

sit
io

n 
M

od
el 17.85 44.30 53.22

15.04 39.17 43.14

12.73 34.88 38.67

Qwen2.5 P&E(DAG) (MATH)

1.5B 7B 14B
Model Scale

10

20

30

40

50

60

Ac
cu

ra
cy

 (%
)

17.85

38.67

12.73

44.30

43.14
39.17

53.22

Qwen2.5 P&E(DAG) (MATH)

Fixed Decomp. Model=14B
Fixed Exec. Model=14B
Same Decomp. and Exec. Model

15

20

25

30

35

40

45

50

Figure 3: The left panel presents nine cross-model ex-
periments, while the right panel shows three sets of
controlled experiments.

ure 3. We observe that the performance of the
execution model has a more significant impact on
overall task performance, as evidenced by two key
findings: First, the slope of the blue line is notice-
ably steeper than that of the green line, indicating
that performance improvements from scaling the
execution model size far exceed those from scaling
the decomposition model. Second, the blue line
closely aligns with the red line, confirming that the
adjustment in the execution model is the primary
driver behind the scaling law phenomenon.

In addition, we examine the impact of reasoning
capability by comparing the performance of models
(Qwen2.5-math-1.5B/7B-instruct, Qwen2.5-14B-
instruct) with their corresponding Deepseek-R1
distilled versions (DeepSeek-AI, 2025) as decom-
position models and execution models. Firstly,
we report the number of invalid plans generated
during the decomposition stage (left panel of Fig-
ure 4). The results show that non-reasoning models
at both 1.5B and 7B scales struggle to generate
plans that comply with the required format, while
their distilled reasoning counterparts show marked
improvements. However, at the 14B scale, rea-
soning models produce more invalid outputs, sug-
gesting that increased reasoning ability may com-
promise format control, especially when abstract
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Figure 4: Performance comparison between reasoning
and non-reasoning models in decomposition and execu-
tion stages.

reasoning is prioritized over structural compliance.
Secondly, we compare the execution-stage perfor-
mance of reasoning and non-reasoning models, us-
ing Qwen2.5-14B-instruct as a fixed decomposi-
tion model (right panel of Figure 4). The results
show that reasoning models consistently outper-
form their non-reasoning counterparts across all
parameter scales, highlighting their advantages in
the execution stage.
Takeaway III: Scaling the execution model yields
greater performance gains than scaling the decom-
position model, with the reasoning model further
enhancing the execution stage.

3.4 Practical Principles

Based on the above experiments and analysis, we
summarize a set of practical principles to guide
the selection of appropriate task decomposition
approaches and models, providing actionable guid-
ance for real-world applications.

The practical principles can be formulated as
follows: Firstly, when approaching a question,
one should choose a decomposition approach that
matches the task characteristics, such as logical
rigor, divergence, or iterativity. For example, CoT
is suitable for mathematical problems, P&E (DAG)
for writing tasks, and ReAct for coding tasks. Sec-
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ondly, the choice of models should depend on re-
source constraints and performance requirements.
If an implicit decomposition method is adopted,
selecting a single model with strong performance
is sufficient. In contrast, for explicit decomposi-
tion, it is recommended to use a model with strong
performance for execution and a model with basic
instruction-following ability for decomposition.

4 Methodology

4.1 Select-Then-Decompose Strategy

In addition to a set of practical principles, we also
endeavor to optimize the balance between task per-
formance and cost. Based on the insights in Sec-
tion 3.1 and Section 3.2, we propose a novel and
efficient strategy called Select-Then-Decompose
(S&D), which dynamically selects an appropriate
decomposition approach according to the task’s
complexity and characteristics. This allows for
achieving an optimal balance between performance
and cost.

The Select-Then-Decompose strategy mainly
consists of three functional modules: the Selection
Module, the Execution Module, and the Valida-
tion Module. These three modules work collabo-
ratively to form a closed-loop task-solving process.
The detailed algorithmic procedure is described in
Appendix C.

The Selection Module is the core component of
the Select-Then-Decompose strategy. Powered by
an LLM, this module employs a carefully designed
set of prompts P to guide the LLM in analyzing and
understanding the input question Q, and returns
the most suitable decomposition approach A along
with the reasoning R. The complete prompt for the
Selection Module is provided in the Appendix D.1.

The Execution Module follows the approach A
selected by the Selection Module and applies the
corresponding decomposition algorithm to the in-
put task Q, generating a candidate solution S. The
Execution Module is designed with high modular-
ity and extensibility.

The Validation Module leverages an LLM to
assess the confidence score C ∈ [0, 1] of the candi-
date solution S, based on the original question Q.
If C ≥ T , where T is a predefined threshold, the
solution is accepted; otherwise, the system initiates
a staged switching mechanism that sequentially ex-
plores {IO}, implicit approaches {CoT, P&S}, and
explicit approaches {ReAct, P&E, P&E (DAG)}.
Within each category, the method is selected via

uniform random sampling (M ∼ U(G)). De-
tailed prompting instructions are provided in the
Appendix D.1.

5 Experiments

5.1 Setup

The baselines and benchmarks in our experiments
follow the same settings as those described in Sec-
tion 3.1. Additionally, S&D strategy employs a val-
idation threshold of 0.7 and allows up to 3 switch-
ing iterations.

5.2 Main Results

The main experimental results as shown in Figure 5.
S&D consistently lies on the Pareto frontier across
five benchmark tasks, demonstrating a favorable
balance between performance and cost. The com-
plete raw data is in the Appendix E.1. Notably, on
tasks where candidate approaches show small per-
formance gaps, such as GSM8K and MATH, S&D
achieves higher accuracy with minimal additional
cost. This advantage stems from its LLM-based
selection mechanism, which can identify the ap-
propriate approach according to the question, thus
outperforming any individual method. On the Hu-
maneval and HotpotQA datasets, S&D attains near-
optimal performance while using only 24.77% of
the average token cost, achieving Pareto optimality.
In the Trivia Creative Writing task, where implicit
and explicit approaches exhibit significant perfor-
mance differences, S&D demonstrates an approxi-
mately linear trade-off between performance and
cost along the Pareto frontier.

We further analyze the proportions of final ap-
proaches selected by the S&D strategy across differ-
ent benchmarks after the “Select-Execute-Verify”
process, as shown in Figure 6. Overall, Implicit
decomposition approaches dominate, comprising
approximately 85%, while explicit approaches ac-
count for only about 15%. This suggests that
S&D favors low-cost implicit strategies and only
switches to explicit methods mainly for complex
problems or failed verifications. Task-specific pat-
terns reveal that, relative to other tasks, CoT and
P&E are more common in mathematical tasks, Re-
Act sees greater usage in code generation, and P&E
(DAG) is more prevalent in writing and text under-
standing. These findings align with the insights in
Section 3.2, highlighting the relationship between
tasks and decomposition approaches. See the Ap-
pendix F for more examples.
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Figure 5: Performance vs. cost trade-offs across benchmarks
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5.3 Analysis

Ablation Study To assess the contributions of
the selection and verification modules in the S&D
strategy, we perform an ablation study on the key
components of the S&D strategy using the GPT-4o-
mini model on HumanEval: (1) w/o Select (IO),
removing the selection module and using IO as the
initial approach; (2) w/o Select (Random), remov-
ing the selection module and using a random initial
approach as the initial approach; and (3) w/o Val.,
removing the verification module. As shown in
Table 4, removing the selection module and using
IO as the initial approach reduces token usage but
degrades performance, while using a random ini-
tial approach increases token consumption and also
lowers accuracy. This suggests that the selection

module enhances efficiency and effectiveness by
guiding the choice of decomposition. Additionally,
omitting the verification module leads to a signif-
icant performance drop, underscoring its role in
mitigating hallucinations and improving solution
reliability.

Config. Performance Avg. Token Cost

w/ Select & Val. 88.55 845.82

w/o Select (IO) 86.59 (↓2.21%) 542.35 (↓35.89%)
w/o Select (Random) 87.19 (↓1.53%) 2782.34 (↑228.99%)
w/o Val. 85.98 (↓2.90%) 753.29 (↓10.94%)

Table 4: Ablation study for Select-Then-Decompose
strategy on HumanEval. Percentage changes are relative
to the full configuration.

Sensitivity Analysis We further investigate the
effect of the confidence threshold T through ex-
periments on the Trivia Creative Writing dataset.
As shown in Figure 7, raising the threshold no-
tably enhances system performance by filtering out
unreliable candidate solutions. However, this im-
provement comes at the cost of increased token
consumption, particularly beyond the 0.9 threshold.
From Figure 7, it can be observed that when the
threshold is set to 0.7, the model achieves a good
balance between performance and cost: the token
cost is minimized within the range of 0.5 to 1.0,
and the resulting performance even exceeds that of
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a threshold of 0.8, which motivates our choice of
T = 0.7 as the default threshold. Of course, one
can choose a larger threshold to achieve slightly bet-
ter performance, but this inevitably leads to higher
token costs.
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Figure 7: Impact of the choice of confidence threshold
T on the Trivia Creative Writing dataset.

Generalization Analysis The prompt for the se-
lection module (see Appendix D.1) is designed
based on the observations in Section 3, excluding
any task- or dataset-specific information. To fur-
ther demonstrate the generalizability of our method,
we conduct additional experiments on the DROP
benchmark (Dua et al., 2019). As shown in Table 8,
the results indicate that the Select-Then-Decompose
strategy still maintains a Pareto advantage. We
will discuss scenarios when S&D fails or performs
poorly in the limitations section.
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Figure 8: Generalization experiment on DROP.

6 Conclusion

In conclusion, our research explores the task de-
composition in LLMs. We first investigate existing
task decomposition research into six categoriza-

tion schemes and identify five representative ap-
proaches. Through experiments and analysis across
approaches, tasks, and models, we present three in-
sights into task decomposition and propose a set
of practical principles to guide real-world applica-
tions. In addition, the issue of the high cost of ex-
isting methods leads us to propose the Select-Then-
Decompose strategy, which dynamically chooses
suitable decomposition approaches based on the
task. Extensive experiments show that our strategy
consistently lies on the Pareto frontier, achieving a
strong balance between performance and cost. Our
contributions not only enhance the understanding
of LLM task decomposition and offer a practical
framework for balancing performance and cost.

Limitations

Although our research focuses on task decomposi-
tion in LLMs, we acknowledge two primary limita-
tions. First, we only examined the decomposition
mechanism, without exploring the representation
formats (e.g., code or text) or the use of external
tools, both of which have been shown in prior work
to improve performance. Thus, for tasks that re-
quire the use of specialized tools, the S&D strategy
might need to be adapted accordingly in order to
function properly. Second, our S&D strategy relies
solely on prompting the model to choose a suitable
decomposition approach based on the task, without
any additional training to enhance this capability.
So if the model used in the selection module is
relatively weak, its quality may degrade, leading
to poor overall performance. We encourage future
research in these two promising directions to fur-
ther advance our understanding of autonomous task
decomposition in LLMs.

Ethical Considerations

While task decomposition in LLMs offers signifi-
cant advancements in tackling complex problems
efficiently, it also raises important ethical con-
cerns. The increased use of LLMs with dynamic
decomposition strategies can lead to unintended
consequences such as over-reliance on automated
decision-making, potential biases inherited from
training data, and privacy risks when handling sen-
sitive information. Additionally, the token cost and
computational resources required may contribute
to environmental impacts and raise accessibility
issues for smaller organizations or communities.
Therefore, it is crucial to design task decomposi-
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tion approaches with transparency, fairness, and
sustainability in mind, ensuring that these technolo-
gies are deployed responsibly and inclusively.
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A Taxonomy of Task Decomposition
Methods

We categorize task decomposition methods from
six distinct perspectives, summarizing the cat-
egorization of existing approaches accordingly.
Specifically, "Perspective 1" corresponds to
"Decomposition-First vs. Interleaved", "Perspec-
tive 2" to "Implicit vs. Explicit", "Perspective 3"
to "DAG vs. Linear", "Perspective 4" to "Code
vs. Text", "Perspective 5" to "Limited Subtask
Selection Range vs. Unlimited Subtask Selection
Range", and "Perspective 6" to "Tool-Augmented
vs. Pure LLM-based". The symbol "★" denotes
the former category in each perspective, while "✩"
denotes the latter.

B Detailed Descriptions of Baselines and
Datasets

B.1 Baselines
We select five representative approaches: CoT,
P&S, ReAct, P&E, and P&E (DAG). The details
of these approaches are as follows:

• CoT (Kojima et al., 2022): CoT enables
LLMs’ zero-shot reasoning with the prompt
"Let’s think step-by-step."

• P&S (Wang et al., 2023): P&S improves
upon CoT by splitting it into two instructions:
"Let’s first devise a plan" and "Let’s carry out
the plan."

• ReAct (Wang et al., 2023): Unlike CoT,
which embeds reasoning within planning, Re-
Act alternates between reasoning (Thought)
and acting (Action).

• P&E (Sun et al., 2023b): P&E decomposes
the task into a multi-step plan and executes
each subtask sequentially.

• P&E (DAG) (Sun et al., 2023b): The key
difference between P&E (DAG) and P&E is
that the former produces a DAG-structured
plan, while P&E generates a linear-structured
plan.

B.2 Benchmarks
We select four representative task categories: rea-
soning, code generation, creative writing, and text
comprehension. To ensure a comprehensive and
multidimensional assessment, we adopt five ob-
jective benchmarks and one subjective benchmark.
The details of tasks and benchmarks are as follows:
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Table 5: Category assignments of the five representative methods

Approach Perspective 1 Perspective 2 Perspective 3 Perspective 4 Perspective 5 Perspective 6

HuggingGPT (Shen et al., 2023) ★ ✩ ✩ ✩ ✩ ★

ProgPrompt (Singh et al., 2023) ★ ✩ ✩ ★ ★ ★

Least-to-most (Zhou et al., 2022) ★ ✩ ✩ ✩ ✩ ✩

PEARL (Sun et al., 2023b) ★ ✩ ✩ ✩ ★ ✩

AutoAgents (Chen et al., 2023) ★ ✩ ★ ✩ ✩ ★

DART-LLM (Wang et al., 2024a) ★ ✩ ★ ✩ ★ ★

SMART-LLM (Kannan et al., 2024) ★ ✩ ★ ★ ★ ★

ReAct (Yao et al., 2023) ✩ ✩ ✩ ✩ ✩ ★

Visual ChatGPT (Wu et al., 2023) ✩ ✩ ✩ ✩ ✩ ★

Decomposed Prompting (Khot et al., 2022) ✩ ✩ ✩ ✩ ✩ ✩

Task Navigator (Ma et al., 2024) ✩ ✩ ✩ ✩ ✩ ✩

Plan-and-Solve (Wang et al., 2023) ★ ★ ✩ ✩ ✩ ✩

CoT (Kojima et al., 2022) ✩ ★ ✩ ✩ ✩ ✩

PAL (Gao et al., 2023) ✩ ★ ✩ ★ ✩ ★

PoT (Chen et al., 2022) ✩ ★ ✩ ★ ✩ ★

TDAG (Wang et al., 2025) ✩ ★ ✩ ✩ ✩ ✩

ADaPT (Prasad et al., 2023) ✩ ★ ✩ ✩ ✩ ✩

Re-TASK (Wang et al., 2024c) ✩ ★ ✩ ✩ ✩ ✩

Objective Benchmarks We employ five publicly
available benchmarks with well-defined quantita-
tive metrics covering four task categories.

• Reasoning Task. GSM8K (Cobbe et al., 2021)
provides a comprehensive set of elementary
school-level word problems, designed to eval-
uate arithmetic reasoning capabilities. We assess
the quality of generated solutions via accuracy
(%), with the full dataset for testing. MATH
(Hendrycks et al., 2021) integrates high-difficulty
mathematical competition problems covering
seven mathematical fields, categorized into five
difficulty levels. We similarly assess using the ac-
curacy (%) for measuring the quality of the gen-
erated solutions. Following (Hong et al., 2024),
we select 617 problems from four representa-
tive problem types (Combinatorics & Probability,
Number Theory, Pre-algebra, and Pre-calculus)
at difficulty level 5.

• Code Generation Task. HumanEval (Chen
et al., 2021) is a widely recognized function-level
code generation benchmark, tailored for assess-
ing fundamental programming skills. We assess
adopting the pass@k as a measure of function
correctness across multiple standard test cases,
with the full dataset for testing.

• Creative Writing Task. Trivia Creative Writ-
ing (Wang et al., 2024b) requires generating a
coherent narrative based on a given topic while
integrating answers from N(=5/10) trivia ques-
tions, designed to quantify the model’s informa-
tion synthesis and writing abilities. We assess

using an automatic metric score, calculated by
the proportion of correct answer mentions. We
use the full dataset consists of 100 instances each
for N=5 and N=10, totaling 200 samples.

• Text Comprehension Task. HotpotQA (Yang
et al., 2018) integrates Wikipedia-based multi-
hop question-answer pairs, designed to assess
text comprehension abilities by requiring an-
swers derived from multiple supporting docu-
ments. We assess via the F1 score, which quan-
tifies the balance between precision and recall
in identifying the correct answers. In line with
prior works (Hu et al., 2025; Shinn et al., 2023),
we randomly select 1,000 samples for evaluation.
DROP (Dua et al., 2019) is an English reading
comprehension benchmark. Unlike HotpotQA,
DROP focuses more on discrete reasoning oper-
ations—such as addition, subtraction, and com-
parison—within a single paragraph.

Subjective Benchmark To mitigate the impact
of evaluation differences caused by different bench-
mark indicators, we choose MT-bench (Zheng
et al., 2023), which provides 80 high-quality open-
ended questions covering 8 task categories and
is evaluated through models or human subjective
scores. We asses using Claude-3.5-Sonnect as the
evaluation model to rate the responses on a scale
from 0 to 10. We selected 50 high-quality open-
ended questions from MT-bench, corresponding
to different task categories (mathematics, reason-
ing, coding, writing, and role-playing). Through
this benchmark, we ensure consistency in evalua-
tion metrics across tasks and effectively assess the
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performance of various decomposition methods in
handling open-ended questions.

C Algorithm of Select-Then-Decompose
Strategy

To balance task performance and computational
cost, we propose the Select-Then-Decompose
(S&D) strategy.

The strategy comprises three key modules: Se-
lection, Execution, and Validation, forming a
closed-loop task-solving framework (see Algo-
rithm 1).

• Selection Module: Utilizes an LLM guided
by a prompt P to analyze the input question Q,
selecting a suitable decomposition approach
A along with reasoning R.

• Execution Module: Applies the selected ap-
proach A to the input task Q, producing a
candidate solution S.

• Validation Module: Assesses the confidence
score C ∈ [0, 1] of the solution S based on the
original question Q. If C ≥ T , the solution
is accepted. Otherwise, the system initiates
a staged switching mechanism, sequentially
exploring {IO}, implicit approaches {CoT,
P&S}, and explicit approaches {ReAct, P&E,
P&E (DAG)}, with uniform random sampling
within each group.

This modular design enables flexible and
efficient task resolution with adaptive cost-
performance tradeoffs.

D Complete Prompts

D.1 Prompt for Select-Then-Decompose
Strategy

For the Selection Module, to improve the LLM’s
decision-making ability, the prompt systematically
introduces various decomposition approaches and
guides the model to consider task complexity and
semantic features when making a choice. We stan-
dardize the model’s output format, requiring it to
return two key elements: the name of the selected
method M , and the reason for selection R.

For the Validation Module, to let LLM score the
solutions purely without other interference, we sim-
ply prompt the big model to generate a confidence
score between 0 and 1 based on the problem and
solution, and also specify that it format the output
Reason and score.

Prompt for Selection Module
Please analyze the characteristics of the task description
and select the most suitable method to solve the task from
the candidate methods.

Task description: {problem}

Please analyze the characteristics of the task from the
following dimensions:
- Whether it has clear goals and solution steps (logic).
- Whether it may require multiple rounds of attempts,
corrections, or dynamic adjustments (iterative).
- Whether it involves information collection, viewpoint
exploration (divergent).

Candidate methods and introduction:
- io: Input-Output, directly outputs the answer, suitable for
simple problems.
- cot: Chain of Thought, step-by-step thinking and
reasoning to generate answers, suitable for problems that
require logical deduction.
- ps: Plan & Solve, make a plan first and then execute,
suitable for problems that require logical deduction.
- react: Reason+Act, alternate reasoning and execution,
suitable for iterative tasks.
- pe: Plan & Execute, generate a plan and execute it in
sequence, suitable for vertical tasks with strict logic.
- dag_flow: build a task structure of a directed acyclic
graph, suitable for divergent tasks of parallel processing
and extensive information collection.

When choosing a method, please combine the specific
characteristics of the task with the applicable scenarios of
the above methods to explain your reasons for choosing.

Please strictly follow the following format:
<think>
Your analysis
</think>
<answer>
Your choice (only fill in the method name, such as: cot, ps,
etc.)
</answer>

Prompt for Validation Module
Please, as a serious evaluator, rate the quality of the
following "solution".

Problem:
{problem}

Solution:
{solution}

Please give your **confidence score** for the solution,
give your explanation, and return a floating point number
between 0 and 1.

Please strictly follow the following format:
<think>
Your analysis
</think>
<score>
Your confidence score
</score>
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Algorithm 1 Select-Then-Decompose Strategy

Require: Question Q, Threshold T , Max attempts K, Instruction prompt P , Define groups DG: {IO},
Implicit {CoT, P&S}, Explicit {ReAct, P&E, P&E (DAG)}

Ensure: Solution S or ∅
1: k ← 0, S ← ∅
2: while k < K do
3: if k = 0 then
4: (A,R)←LLM(Q,Pseletion) ▷ Generate selected method and reason
5: else
6: G← next group in DG ▷ Staged order:IO→Implicit→Explicit
7: Sample M randomly from U(G)
8: end if
9: S ← Execute(A,Q)

10: C ← LLM(Q,S, Pvalidation) ▷ Generate confidence score C ∈ [0, 1]
11: if C ≥ T then
12: return S ▷ Generate a satisfactory solution
13: else
14: k ← k + 1 ▷ Update the attempt count
15: end if
16: end while
17: return ∅ ▷ No appropriate solution

D.2 Prompt for IO

Prompt for IO
Q: {question}

A: Please output the final answer directly.

D.3 Prompt for CoT

Prompt for CoT (Zero Shot)
Q: {question}

A: Let’s think step by step.

D.4 Prompt for Plan-and-Solve

Prompt for Plan-and-Solve
Q: {question}

A: Let’s first understand the problem and devise a plan to
solve the problem.
<Plan>
Step 1. xxx
Step 2. xxx
...(repeat as needed)
</Plan>

Then, let’s carry out the plan to solve the problem step by
step.
<Solution>
Place your solution for each step in the plan.
</Solution>

D.5 Prompt for ReAcT

Prompt for ReAcT
Answer the following questions as best you can.

Use the following format:

Question: the input question you must answer.
Thought: you should always think about what to do.
Subtask: your subtask to carry out.
Result: the result of the subtask.
... (this Thought/Subtask/Result can repeat N times).
Thought: I now know the final answer.
Final Answer: the final answer to the original input
question.

Begin!

Question: {question}

D.6 Prompt for Plan-and-Execute

Prompt for Plan
Let’s first understand the following problem and devise a
linear plan to solve the problem.
{question}

Use the following format:
Subtask 1: [First step to solve the problem]
Subtask 2: [Second step to solve the problem]
...(repeat as needed)

Provide only the subtasks as a plan. Do not execute or
generate results for any subtask.
Begin!
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Prompt for Execute
{question}

{context}

{subtask_id}: {subtask_description}

Please execute this {subtask_id} and provide the result:

D.7 Prompt for Plan-and-Execute (DAG)

Prompt for Plan
Let’s first understand the following problem and devise
a directed acyclic graph (DAG) of subtasks to solve the
problem.

{question}

Use the following JSON format to break down the
problem into subtasks:

{subtasks_example}

Rules:
1. Each subtask must have a unique ID (e.g., "Subtask 1").
2. Each subtask must have a clear description of what
needs to be done.
3. If a subtask depends on other subtasks, list their IDs in
the "dependencies" field.
4. Ensure the subtasks form a directed acyclic graph
(DAG) with no circular dependencies.
5. Provide only the JSON output. Do not include any
additional text.

Begin!

Subtasks_example
{
"subtasks": [
{
"id": "Subtask 1",
"description": "[First step to solve the problem]",
"dependencies": []
},
{
"id": "Subtask 2",
"description": "[Second step to solve the problem]",
"dependencies": ["Subtask 1"]
},
{
"id": "Subtask 3",
"description": "[Third step to solve the problem]",
"dependencies": ["Subtask 1", "Subtask 2"]
}
]
}

Prompt for Execute
Here is the original question: {question}

Here is the context of previous subtasks and their results:
{context}

The current subtask is: {subtask_id}: {sub-
task_description}

Dependencies: {subtask_dependencies}

Please execute this subtask and provide the result. If the
subtask depends on previous subtasks, use their results to
complete the task.

E Original Data

E.1 Original Data for Five Objective
Benchmarks

We present the raw data of various decomposition
approaches on five benchmarks, including evalua-
tion metrics, token consumption, and the number
of API calls in Table 6–11. Additionally, token cost
and API call analysis across all five benchmarks
are shown in Figure 9.

Table 6: Original Data for GSM8K

Method Accuracy (%) Tokens API Calls

IO 33.13 106.37 1.00
CoT 93.17 396.45 1.00
P&S 92.72 467.70 1.00
ReAct 91.66 2700.04 6.81
P&E 92.34 2442.82 5.13
P&E (DAG) 90.67 1943.24 4.08

Select-Then-Decompose 93.56 516.57 1.28

Table 7: Original Data for MATH

Method Accuracy (%) Tokens API Calls

IO 17.02 240.25 1.00
CoT 50.73 890.47 1.00
P&S 49.10 973.55 1.00
ReAct 44.83 5865.86 6.75
P&E 52.09 10521.10 6.26
P&E (DAG) 48.06 4330.35 4.13

Select-Then-Decompose 52.39 2560.22 2.31

Table 8: Original Data for HumanEval

Method Accuracy (%) Tokens API Calls

IO 84.73 328.03 1.00
CoT 86.26 724.98 1.00
P&S 84.73 767.08 1.00
ReAct 90.07 3421.78 6.08
P&E 83.21 7887.10 6.02
P&E (DAG) 83.97 3856.52 4.09

Select-Then-Decompose 88.55 845.82 1.18
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Figure 9: Token cost and API call analysis across all five benchmarks.

Table 9: Original Data for Creative Writing(N=5)

Method Score Tokens API Calls

IO 47.00 497.24 1.00
CoT 49.80 591.00 1.00
P&S 49.20 740.42 1.00
ReAct 62.00 3552.34 5.80
P&E 62.80 8630.23 6.78
P&E (DAG) 64.60 3432.22 4.20

Select-Then-Decompose 59.20 2902.72 1.39

Table 10: Original Data for Creative Writing(N=10)

Method Score Tokens API Calls

IO 51.50 720.74 1.00
CoT 51.20 815.77 1.00
P&S 51.20 948.31 1.00
ReAct 63.00 4965.75 5.21
P&E 54.20 18783.87 8.36
P&E (DAG) 64.10 6596.20 4.02

Select-Then-Decompose 55.70 1461.76 1.57

Table 11: Original Data for HotpotQA

Method Score Tokens API Calls

IO 60.54 1348.62 1.00
CoT 63.00 1466.95 1.00
P&S 61.93 1584.43 1.00
ReAct 53.52 5181.09 3.34
P&E 63.22 8254.73 5.06
P&E (DAG) 65.52 6600.19 4.02

Select-Then-Decompose 65.26 1639.99 1.14

E.2 Original Data for MT-Bench

We present the raw data of five classic decompo-
sition approaches on MT-Bench in Table 12–16,
including scores of two turns, token consumption,
and the number of API calls.

Table 12: Original Data for MT-Bench: Writing

Method Turn 1 Turn 2 Tokens API Calls

IO 8.92 7.63 1031.20 2.00
CoT 9.06 7.38 1156.77 2.00
P&S 8.91 8.03 1292.13 2.00
ReAct 8.10 7.98 7170.17 9.93
P&E 9.05 7.04 22482.47 14.17
P&E (DAG) 9.27 7.78 7635.53 8.07
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Table 13: Original Data for MT-Bench: Roleplay

Method Turn 1 Turn 2 Tokens API Calls

IO 8.28 6.96 803.70 2.00
CoT 8.50 6.98 1312.97 2.00
P&S 8.90 7.06 1616.60 2.00
ReAct 6.77 6.23 5195.17 9.17
P&E 8.53 6.39 36750.83 14.67
P&E (DAG) 8.80 7.77 10553.40 8.00

Table 14: Original Data for MT-Bench: Reasoning

Method Turn 1 Turn 2 Tokens API Calls

IO 5.85 6.05 308.03 2.00
CoT 8.55 7.66 1037.83 2.00
P&S 7.61 7.00 1200.50 2.00
ReAct 8.08 7.12 3544.23 6.93
P&E 8.13 6.02 17796.23 11.33
P&E (DAG) 8.08 6.83 9270.87 8.10

Table 15: Original Data for MT-Bench: Math

Method Turn 1 Turn 2 Tokens API Calls

IO 4.75 3.87 239.70 2.00
CoT 9.73 8.55 1416.63 2.00
P&S 9.63 7.93 1615.77 2.00
ReAct 9.58 7.32 7822.17 11.50
P&E 9.33 7.70 15064.93 11.13
P&E (DAG) 9.47 7.50 9702.77 8.27

Table 16: Original Data for MT-Bench: Coding

Method Turn 1 Turn 2 Tokens API Calls

IO 5.15 4.50 921.80 2.00
CoT 7.82 5.69 1762.10 2.00
P&S 6.25 5.90 1844.20 2.00
ReAct 6.00 6.70 5231.80 9.20
P&E 4.95 5.27 24217.20 12.90
P&E (DAG) 4.86 4.87 8388.40 8.20

E.3 Original Data for DROP

Table 17: Original Data for DROP

Metric IO CoT P&S ReAct

Performance(%) 66.80 72.40 71.66 70.49
Token Cost 319.31 471.16 567.41 2017.96

Metric P&E P&E (DAG) S&D

Performance(%) 75.30 76.58 74.34
Token Cost 2424.74 2461.81 851.35

F Examples

Example of IO in GSM8K
Question:

Janet sells 16 − 3 − 4 = 9 duck eggs a day. She makes
9× 2 = 18 dollars every day at the farmer’s market.

Answer:

Janet makes $18 every day at the farmer’s market.

Example of CoT in MATH
Question:

What is the value of x if − 2
3
(x− 5) = 3

2
(x+ 1)?

Answer:

To solve the equation − 2
3
(x − 5) = 3

2
(x + 1), we will

follow these steps:

1. Distribute both sides:

−2

3
(x− 5) = −2

3
x+

10

3
3

2
(x+ 1) =

3

2
x+

3

2

So the equation becomes:

−2

3
x+

10

3
=

3

2
x+

3

2

2. Eliminate the fractions:

Multiply both sides of the equation by the least com-
mon multiple (LCM) of the denominators, which is
6:

6

(
−2

3
x+

10

3

)
= 6

(
3

2
x+

3

2

)

This simplifies to:

−4x+ 20 = 9x+ 9

3. Combine like terms:

Move all terms involving x to one side and constants
to the other:

−4x− 9x = 9− 20

−13x = −11

4. Solve for x:

Divide both sides by −13:

x =
−11

−13
=

11

13

Thus, the value of x is
11

13
.
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Example of P&S in HotpotQA
Question:

"Constantin Medien AG (formerly EM.Entertainment and
EM.TV & Merchandising AG, then EM.TV AG, and fi-
nally em.sport media ag) is a German media group, based
in Ismaning near Munich, active in the area of sports, film,
and event marketing to medium-sized media companies."
...(Omit the subsequent text)

Read and understand the above text, and answer the
following questions.

IVA Media AG changed its name in 2004. What does their
new acronym stand for?

Answer:

Plan

• Step 1: Identify the new name of VIVA Media AG
after it changed its name in 2004.

• Step 2: Determine if the new name has a specific
acronym that needs to be explained.

• Step 3: Provide the full form of the acronym if it
stands for something specific.

Solution

• Step 1: The name of VIVA Media AG was changed
to VIVA Media GmbH in 2004.

• Step 2: The acronym "GmbH" stands for
"Gesellschaft mit beschränkter Haftung," which is a
type of legal entity in Germany and other German-
speaking countries that denotes a company with lim-
ited liability.

• Step 3: Therefore, the new acronym "GmbH" specif-
ically indicates the legal structure of the company
rather than an acronym with a unique meaning re-
lated to the media industry.

Result
Gesellschaft mit beschränkter Haftung

Example of ReAcT in HumanEval
Question:

def solve(N):
""" Given a positive integer N, return

the total sum of its digits in
binary.

Example
For N = 1000, the sum of digits

will be 1 the output should be
"1".

For N = 150, the sum of digits
will be 6 the output should be
"110".

For N = 147, the sum of digits
will be 12 the output should
be "1100".

Variables:
@N integer
sConstraints: 0 <= N <=le 10000.

Output:
a string of binary number

"""

Answer:

Thought: I need to implement a function that calculates
the sum of the digits of a given integer N and then converts
that sum into its binary representation.
Subtask: First, I will calculate the sum of the digits of N .
Result: To calculate the sum of the digits of N , I will con-
vert N to a string, iterate through each character, convert
it back to an integer, and sum these integers.

def sum_of_digits(N):
return sum(int(digit) for digit in

str(N))

Now, I will apply this function to N .
Thought: I need to apply the sum_of_digits function to
the input N to get the total sum of its digits.
Subtask: I will call the sum_of_digits function with N
as the argument.
Result:

digit_sum = sum_of_digits(N)

Thought: I now need to convert the calculated digit sum
into its binary representation.
Subtask: I will use Python’s built-in bin function, which
gives the binary representation of an integer. The result
includes a ’0b’ prefix, so I’ll slice off the first two charac-
ters.
Result:

binary_representation=bin(digit_sum)
[2:]

Final Thought: I now know the final answer.
Final Answer: The final answer to the original input
question is the implementation of the function solve(N):

def solve(N):
def sum_of_digits(N):

return sum(int(digit) for
digit in str(N))

digit_sum = sum_of_digits(N)
binary_representation = bin(

digit_sum)[2:]
return binary_representation
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Example of P&E in MATH
Question:

Find the smallest positive integer that is greater than 1
and relatively prime to the product of the first 20 positive
integers. Reminder: two numbers are relatively prime if
their greatest common divisor is 1.

Answer:

Plan:

• Subtask 1: Calculate the product of the first 20 posi-
tive integers, known as 20!.

• Subtask 2: Determine the prime factorization of 20!.

• Subtask 3: Identify the smallest positive integer
greater than 1 that is not included in the prime fac-
torization of 20!.

• Subtask 4: Verify that the identified integer is rela-
tively prime to 20! by checking its greatest common
divisor with 20!.

• Subtask 5: Conclude and report the smallest positive
integer greater than 1 that is relatively prime to the
product of the first 20 positive integers.

Execution:
Subtask 1: Calculate 20!.

20! = 20× 19× 18× · · · × 2× 1

Calculating stepwise:

1× 2 = 2

2× 3 = 6

6× 4 = 24

24× 5 = 120

120× 6 = 720

720× 7 = 5040

5040× 8 = 40320

40320× 9 = 362880

362880× 10 = 3628800

3628800× 11 = 39916800

39916800× 12 = 479001600

479001600× 13 = 6227020800

6227020800× 14 = 87178291200

87178291200× 15 = 1307674368000

1307674368000× 16 = 20922789888000

20922789888000× 17 = 355687428096000

355687428096000× 18 = 6402373705728000

6402373705728000× 19 = 121645100408832000

121645100408832000× 20 = 2432902008176640000

Therefore,

20! = 2432902008176640000

Example of P&E in MATH
Subtask 2: Prime factorization of 20!.
The prime numbers up to 20 are: 2, 3, 5, 7, 11, 13, 17, 19.
The exponent of a prime p in n! is given by

∞∑

k=1

⌊
n

pk

⌋
.

Calculate each exponent for 20!:

For p = 2 :

⌊
20

2

⌋
+

⌊
20

4

⌋
+

⌊
20

8

⌋
+

⌊
20

16

⌋

= 10 + 5 + 2 + 1 = 18

For p = 3 :

⌊
20

3

⌋
+

⌊
20

9

⌋
= 6 + 2 = 8

For p = 5 :

⌊
20

5

⌋
+

⌊
20

25

⌋
= 4 + 0 = 4

For p = 7 :

⌊
20

7

⌋
= 2

For p = 11 :

⌊
20

11

⌋
= 1

For p = 13 :

⌊
20

13

⌋
= 1

For p = 17 :

⌊
20

17

⌋
= 1

For p = 19 :

⌊
20

19

⌋
= 1

Hence,

20! = 218 × 38 × 54 × 72 × 11× 13× 17× 19.

Subtask 3: Identify the smallest positive integer greater
than 1 relatively prime to 20!.
Since 20! includes all prime factors up to 19, the smallest
integer greater than 1 that shares no prime factors with 20!
must be a prime greater than 19.
The smallest such prime is

23 .

Subtask 4: Verify gcd(23, 20!) = 1.
Because 23 is prime and greater than all prime factors of
20!, it shares no common prime factor with 20!.
Therefore,

gcd(23, 20!) = 1,

which means 23 is relatively prime to 20!.

Subtask 5: Conclusion
The smallest positive integer greater than 1 that is relatively
prime to the product of the first 20 positive integers is

23 .
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Example of P&E (DAG) in Trivia Creative
Writing
Question:

Write a short and coherent story about Harry Potter that
incorporates the answers to the following 5 questions:
Who was the man behind The Chipmunks? Which Lloyd
Webber musical premiered in the US on 10th December
1993? Who was the next British Prime Minister after
Arthur Balfour? Who had a 70s No. 1 hit with Kiss
You All Over? What claimed the life of singer Kathleen
Ferrier?

Answer:

Plan:

{
"subtasks": [

{
"id": "Subtask 1",
"description": "Identify

the five key questions
that must be answered
to create a story

about Harry Potter.",
"dependencies": []

},
{

"id": "Subtask 2",
"description": "Research

the answers to each of
the five questions:

The man behind The
Chipmunks , the Lloyd
Webber musical , the
next British Prime
Minister after Arthur
Balfour , the artist of
'Kiss You All Over ',

and the cause of
Kathleen Ferrier 's
death.",

"dependencies": ["Subtask
1"]

},
{

"id": "Subtask 3",
"description": "Compose a

coherent story about
Harry Potter that
integrates the answers
to the five questions
found in Subtask 2.",

"dependencies": ["Subtask
1", "Subtask 2"]

}
]

}

Execution:
Subtask 1: Identify the five key questions that must be
answered to create a story about Harry Potter. Depen-
dencies: []
Result: To create a story about Harry Potter that incorpo-
rates the answers to the specified questions, the five key
questions to be answered are:

Example of P&E (DAG) in Trivia Creative
Writing

1. Who was the man behind The Chipmunks?

2. Which Lloyd Webber musical premiered in the US
on 10th December 1993?

3. Who was the next British Prime Minister after Arthur
Balfour?

4. Who had a 70s No 1 hit with “Kiss You All Over”?

5. What claimed the life of singer Kathleen Ferrier?

These questions provide the necessary details that need to
be woven into the narrative about Harry Potter.
Subtask 2: Research the answers to each of the five
questions. Dependencies: [Subtask 1]
Result: Here are the answers to the five key questions:

1. Who was the man behind The Chipmunks?
The man behind The Chipmunks was Ross Bagdasar-
ian Sr., who created the characters and the music that
made them famous.

2. Which Lloyd Webber musical premiered in the
US on 10th December 1993?
The Lloyd Webber musical that premiered in the US
on 10th December 1993 is Sunset Boulevard.

3. Who was the next British Prime Minister after
Arthur Balfour?
The next British Prime Minister after Arthur Balfour
was David Lloyd George.

4. Who had a 70s No 1 hit with “Kiss You All Over”?
The artist who had a 70s No. 1 hit with “Kiss You
All Over” is Exile.

5. What claimed the life of singer Kathleen Ferrier?
Kathleen Ferrier’s life was claimed by cancer, specif-
ically breast cancer.

Subtask 3: Compose a coherent story about Harry
Potter that integrates the answers to the five questions.
Dependencies: [Subtask 1, Subtask 2]
Result:
Once upon a time in the magical world of Hogwarts, Harry
Potter found himself in a peculiar situation. It all began
when he stumbled upon an old, dusty book in the library
titled The Enchanted History of Muggle Music. Intrigued,
Harry opened it to find a chapter dedicated to the legendary
Ross Bagdasarian Sr., the man behind The Chipmunks.
The book described how Bagdasarian had enchanted the
world with his high-pitched melodies, and Harry couldn’t
help but imagine what it would be like to hear the Chip-
munks sing a wizarding song.
As he flipped through the pages, Harry discovered a men-
tion of a famous musical that had premiered in the Muggle
world on December 10, 1993—Andrew Lloyd Webber’s
Sunset Boulevard. The story of a faded star and her strug-
gles resonated with Harry, who often felt the weight of
expectations on his shoulders. He wondered if the char-
acters in the musical ever faced dark wizards or had to
navigate the complexities of friendship like he did.
...(Omit the subsequent story)
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Example of S&D (No Switch)
Question:

For Halloween, Megan received 11 pieces of candy from
neighbors and 5 pieces from her older sister. If she only
ate 8 pieces a day, how long would the candy last her?

Answer:

Selection Module:

<think>
The task has a clear goal: to determine how long Megan’s
candy will last given the total amount of candy and her
daily consumption rate. The solution steps involve straight-
forward arithmetic: first, calculating the total amount of
candy and then dividing that by the daily consumption.
This indicates a logical deduction process, which aligns
well with methods that emphasize step-by-step reasoning.
The task does not require multiple rounds of attempts or
dynamic adjustments, as it is a straightforward calculation
without the need for iterative refinement. Therefore, it
does not fit the characteristics of an iterative method.
Additionally, the task does not involve extensive informa-
tion collection or viewpoint exploration, as it is focused
on a single calculation rather than exploring multiple per-
spectives or gathering varied data.
Given these characteristics, the most suitable method for
this task is one that emphasizes logical deduction and
step-by-step reasoning, making the Chain of Thought (cot)
method the best fit.
</think>

<answer>
cot
</answer>

Execution Module Process (CoT):

1. Total Candy Calculation:

• Megan received 11 pieces of candy from
neighbors.

• She also received 5 pieces from her older sis-
ter.

• Total candy:

11 + 5 = 16 pieces of candy

2. Daily Consumption:

• Megan eats 8 pieces of candy per day.

3. Duration Calculation:

• To find out how many days the candy will
last, divide the total amount of candy by the
amount she eats per day:

16 pieces
8 pieces/day

= 2 days

Validation Module:

Example of S&D (No Switch)
<think>
The solution provided is accurate and follows a logical
step-by-step approach to solve the problem. It correctly
calculates the total amount of candy Megan has by adding
the pieces received from neighbors and her sister. The
daily consumption is also correctly stated, and the final
calculation to determine how many days the candy will last
is performed correctly by dividing the total candy by the
daily consumption. The conclusion that Megan’s candy
will last her 2 days is correct based on the calculations pro-
vided. Therefore, I would rate the quality of this solution
as very high.
</think>

<score>
1.0
</score>

Confidence Score: 1.0

confidence_score =1.0 > threshold =0.7

Validate: True, no switching required

Final Approach: CoT
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Example of S&D (Switched)
Question:

Write a short and coherent story about Pikachu that
incorporates the answers to the following 5 questions:
Who directed the classic 30s western Stagecoach? Dave
Gilmore and Roger Waters were in which rock group?
Which highway was revisited in a classic ’60s album by
Bob Dylan? Which was the only Eastern Bloc country to
participate in the 1984 LA Olympics? Which 90s sci-fi
series with James Belushi was based on Bruce Wagner’s
comic strip of the same name?

Answer:

Selection Module:

<think>
The task requires writing a coherent story about Pikachu
while incorporating answers to five specific questions. This
involves several characteristics:
1. **Clear Goals and Solution Steps**: The task has a
clear goal of creating a story that includes specific infor-
mation. However, the steps to achieve this are not strictly
linear, as the story must weave in the answers creatively.
2. **Iterative Nature**: The task may require multiple
rounds of attempts and adjustments to ensure that the story
flows well and incorporates the answers seamlessly. This
suggests an iterative approach might be beneficial.
3. **Information Collection and Viewpoint Exploration**:
The task involves collecting specific information (the an-
swers to the questions) and creatively exploring how to
integrate that information into a narrative. This indicates a
need for a method that can handle divergent thinking.
Given these characteristics, the most suitable method
would be one that allows for both planning and iterative
refinement, as well as the ability to explore different narra-
tive angles. The "Plan & Solve" method (PS) is appropriate
here because it allows for an initial plan to be made regard-
ing how to structure the story and then execute it while
being open to adjustments as needed.
Thus, the method that best fits the task is "ps" as it
combines planning with the flexibility to adapt the story
as it is being written.
</think>

<answer>
ps
</answer>

Execution Module Process (P&S):

Plan:

Step 1: Introduce Pikachu in a setting that connects to the
themes of adventure and exploration.
Step 2: Incorporate elements from the questions into the
story, ensuring they flow naturally.
Step 3: Conclude the story with a resolution that ties back
to Pikachu’s journey.

Solution:

...(Omitted steps)

Once upon a time in the vibrant world of Pokémon,
Pikachu found himself yearning for adventure beyond the
familiar fields of Pallet Town.

Example of S&D (Switched)
One sunny morning, he decided to embark on a journey
along the famous Route 66, a highway that had been
revisited in many tales, including a classic album by Bob
Dylan. With a spark of excitement, Pikachu set off, his
cheeks crackling with electricity.
... (Omit the subsequent story)

Validation Module:

<think>
The solution effectively incorporates the required elements
from the questions into a coherent story about Pikachu.
The references to Route 66 and Bob Dylan’s album are
smoothly integrated, as is the mention of the classic west-
ern "Stagecoach" directed by John Ford. The inclusion
of Pink Floyd and the Eastern Bloc country participat-
ing in the 1984 LA Olympics adds depth to the narrative,
while the reference to the sci-fi series "The Last Precinct"
provides a fitting climax to Pikachu’s adventure.
However, while the story is creative and engaging, some
connections may feel a bit forced or less natural, partic-
ularly the transition between the various elements. The
overall flow is good, but the integration of the trivia could
be more seamless. Additionally, the story could benefit
from more character development or emotional depth to
enhance the reader’s connection to Pikachu’s journey.
Overall, the solution meets the requirements of the prompt
and presents a fun and imaginative story, but there is room
for improvement in the integration of the trivia elements
and character depth.
</think>

<score>
0.65
</score>

Confidence Score: 0.65

confidence_score =0.65 < threshold =0.7

Validate: False, switching to the next group of ap-
proaches... The next approach is P&E.

Execution Module Process (P&E):

Plan:

Subtask 1: Identify the key elements from each of the five
questions that need to be incorporated into the story about
Pikachu.
Subtask 2: Research and confirm the answers to the five
questions to ensure accuracy.
Subtask 3: Create a rough outline of the story, determin-
ing how Pikachu will interact with the elements from the
answers.
Subtask 4: Write a draft of the story, weaving in the an-
swers to the questions in a coherent and engaging manner.
Subtask 5: Revise the draft to improve flow, coherence,
and ensure all elements are included appropriately.

Execution: ... (Omit)

**Pikachu’s Adventure on Highway 61**
One sunny day in the Pokémon world, Pikachu was feeling
particularly adventurous.
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Example of S&D (Switched)
He had heard tales of a legendary place called Highway
61, where trainers from all over gathered to challenge each
other and share stories. Inspired by the grand adventures
depicted in classic films, especially those directed by John
Ford, who had once captured the spirit of the wild west in
his iconic film "Stagecoach," Pikachu decided it was time
to embark on his own journey.
... (Omit the subsequent story)

Validation Module:

<think>
The solution provided is a well-structured and coherent
story that successfully incorporates the answers to the five
questions into a narrative about Pikachu. The story flows
logically, with each element being integrated in a way that
enhances the overall adventure. The key elements from the
questions are clearly represented: John Ford’s influence is
acknowledged, Pink Floyd’s music is featured, Highway
61 is the setting, Romania’s Olympic participation is
mentioned, and the concept of "The Tenth Dimension"
is creatively woven into the plot. The narrative captures
the essence of adventure and friendship, which aligns
well with Pikachu’s character. Overall, the execution is
strong, and the story is engaging and imaginative. </think>

<score>
0.95
</score>

Confidence Score: 0.95

confidence_score =0.95 > threshold =0.7

Validate: True, no switching required

Final Approach: P&E
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