
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing, pages 5539–5555
November 4-9, 2025 ©2025 Association for Computational Linguistics

HS-STAR: Hierarchical Sampling for Self-Taught Reasoners via
Difficulty Estimation and Budget Reallocation

Feng Xiong1*, Hongling Xu*, Yifei Wang1,2, Runxi Cheng3, Yong Wang1†, Xiangxiang Chu1

1AMAP, Alibaba Group 2University of Chinese Academy of Sciences 3Tsinghua University
jingxun.xf@icloud.com, wangyong.lz@alibaba-inc.com

Abstract

Self-taught reasoners (STaRs) enhance the
mathematical reasoning abilities of large lan-
guage models (LLMs) by leveraging self-
generated responses for self-training. Recent
studies have incorporated reward models to
guide response selection or decoding, aiming
to obtain higher-quality data. However, they
typically allocate a uniform sampling budget
across all problems, overlooking the varying
utility of problems at different difficulty levels.
In this work, we conduct an empirical study
and find that problems near the boundary of
the LLM’s reasoning capability offer signifi-
cantly greater learning utility than both easy
and overly difficult ones. To identify and ex-
ploit such problems, we propose HS-STAR,
a Hierarchical Sampling framework for Self-
Taught Reasoners. Given a fixed sampling bud-
get, HS-STAR first performs lightweight pre-
sampling with a reward-guided difficulty esti-
mation strategy to efficiently identify boundary-
level problems. Subsequently, it dynamically
reallocates the remaining budget toward these
high-utility problems during a re-sampling
phase, maximizing the generation of valuable
training data. Extensive experiments across
multiple reasoning benchmarks and backbone
LLMs demonstrate that HS-STAR significantly
outperforms other baselines without requiring
additional sampling budget.

1 Introduction

Large language models (LLMs) can improve
their capabilities by training on self-generated
data, characterizing them as self-taught reasoners
(STaRs) (Zelikman et al., 2022; Yuan et al., 2023;
Hosseini et al., 2024). This paradigm is also re-
ferred to as reinforced self-training (Gulcehre et al.,
2023) (ReST) or self-improvement (Huang et al.,
2023). For mathematical reasoning (Yang et al.,

* Equal contribution.
† Corresponding author and project lead.

2025; Tian et al., 2025a; Wang et al., 2025a), pio-
neer STaRs generally follow an iterative process:
(1) generating candidate responses for a given math
problem via temperature sampling; (2) selecting
responses based on answer correctness; and (3) up-
dating the model using either SFT or DPO (Singh
et al., 2024; Pang et al., 2024; Wu et al., 2025).

Building on previous efforts, recent work has
focused on enhancing STaRs by leveraging addi-
tional reward models, which can be categorized
into two main directions. One line of work, known
as reward-guided selection, introduces an auxiliary
reward model to re-rank or filter responses based
on their estimated quality, encouraging the model
to exploit higher-quality trajectories (Yang et al.,
2024; Zeng et al., 2025b; Tu et al., 2025). Another
line of work, reward-guided decoding, leverages
Monte Carlo Tree Search (MCTS), in which a pro-
cess reward model (PRM) (Wang et al., 2024a) is
trained and used to guide the decoding process,
aiming to improve both final answer accuracy and
the quality of intermediate reasoning steps (Zhang
et al., 2024; Chen et al., 2024a).

However, these studies primarily focus on re-
sponse quality through such reward-guided ap-
proaches, neglecting the utility of the problems
themselves. Specifically, a uniform allocation of
sampling budget across all problems fails to ac-
count for the varying difficulty levels of individ-
ual problems and their differential impacts on the
learning process (Zhu et al., 2024). Since auto-
regressive decoding is the principal bottleneck in
STaRs, such an indiscriminate allocation strategy
is highly inefficient. This issue raises two critical
questions: (i) Profiling: Which difficulty level of
problems are most beneficial for self-taught rea-
soners? Intuitively, problems that are too simple
provide limited learning value, while those that are
overly challenging may either waste sampling re-
sources by requiring numerous attempts to generate
correct responses or be beyond the model’s capabil-

5539

78

81

84

87
GSM8K

80.1
81.0

79.5

81.1
80.2 79.9

82.8

80.4

1
23

50

55

60

65
MATH500

51.4

55.2 55.6
57.2 57.0 56.8

61.4

56.6

1

2 3

24

28

32

AMC23

28.2 28.0

23.0

27.7

23.3
24.1

29.5

24.3

1
2 3

0

2

4

6

AIME24

1.6
2.5

0.9

2.5

1.0
1.8

2.8

1.5

123

36

40

44

College-Math

39.7 39.1

37.0

39.4

36.9 37.6

42.2

37.5

1
2 3

18

21

24

27
Olympiadbench

19.6

21.6
20.4 20.9

19.1 19.4

22.1

19.1

12 3

20

24

28

32
Minerva-Math

19.1

24.6 23.9 24.3
23.2 23.5

27.6

22.1

1
2 3

33

36

39

42

Avg.

34.2

36.0

34.3

36.2

34.4 34.7

38.3

34.5

1
23

RFT DPO DPO-Inlier DPO-Boundary DPO-Outlier DPO-Inlier-SR DPO-Boundary-SR DPO-Outlier-SR

Figure 1: Pilot experiments on Qwen2.5-3B.

ities, hindering effective learning. (ii) Allocation:
How can sampling resources be allocated to max-
imize the utility of valuable problems? Given the
high expense of sampling, it is essential to identify
and prioritize high-utility problems to optimize the
trade-off between resource usage and performance
improvement.

To address these questions, we first conduct a
pilot study to analyze the utility of problems across
varying difficulty levels (see Sec. 2 for details). We
begin by defining model-specific problem difficulty
based on the accuracy over multiple sampling at-
tempts (Snell et al., 2025; Tong et al., 2024). As
depicted in Fig. 1, we observe that training solely
on either Inlier or Outlier problems leads to a sig-
nificant decline in performance, whereas training
exclusively on Boundary problems yields even bet-
ter results than using the full set of problems. Fur-
thermore, allocating additional sampling budget to
these Boundary problems for self-training substan-
tially improves model performance, which under-
scores their importance in guiding more effective
learning in STaRs.

While the above findings highlight the high util-
ity of Boundary problems, identifying them typi-
cally relies on statistical estimation with extensive
sampling, limiting the practical applicability. To
address this limitation and further tackle the second
question, we propose the Hierarchical Sampling
framework for Self-Taught Reasoners (HS-STAR).
Given a fixed total sampling budget, HS-STAR
begins with a Difficulty Estimation phase, where a
small portion of the budget is used to estimate prob-
lem difficulty based on both answer accuracy and
response quality, a process we refer to as reward-
guided difficulty estimation. The remaining bud-
get is then dynamically reallocated to problems
estimated to be of high utility in a subsequent Re-
Sampling phase, thereby maximizing the exploita-

tion of valuable problems without incurring addi-
tional budget. Finally, the aggregated responses
are used to construct a preference dataset for self-
training in Preference Optimization phase, improv-
ing the overall effectiveness of STaRs.

Our contributions are summarized as follows:
• We conduct an empirical study that reveals

the high utility of Boundary problems in self-
taught reasoning. This motivates a problem-
centric perspective for optimizing sampling
resource allocation by identifying and priori-
tizing these problems.

• We propose HS-STAR, a hierarchical sam-
pling framework that integrates reward-guided
difficulty estimation to dynamically reallocate
sampling budgets toward high-utility prob-
lems, significantly enhancing training effec-
tiveness under a fixed sampling budget.

• Extensive experiments across seven reason-
ing benchmarks and various backbone LLMs
demonstrate the superiority of our HS-STAR.
Further analyses confirm the effectiveness of
each component within the framework.

2 Pilot Experiments

To analyze the core challenges of Profiling and
Allocation, we conduct a comprehensive empirical
study on the utility of problems in STaRs.

2.1 Preliminary

We begin by formalizing the iterative self-training
process of STaRs. At iteration t, we denote the
policy model as Mt and the utilized dataset as
Dt = {(xi, yi)}Ni=1, where xi is a math problem
and yi is the corresponding answer. This process
typically consists of three steps:
(1) Generation. For each problem x ∈ Dt, the
model Mt generates n responses by sampling,

5540

forming the set Rt,x = {rj |rj ∼ Mt(x)}nj=1.
(2) Selection. We apply a rule-based verifier
V (x, y, r) ∈ {0, 1} to assess response correct-
ness, and omit the answer y from the notation here-
after for simplicity. For Rejection Sampling Fine-
Tuning (RFT) (Yuan et al., 2023), we select only
correct responses to form Dcorr

t . For DPO (Rafailov
et al., 2023), we construct Dpairs

t by pairing correct
and incorrect responses.
(3) Updating. For RFT, the model M is updated
by minimizing the negative log-likelihood:

LRFT = − logM(r|x), (1)

where (x, r) ∈ Dcorr
t . For DPO, the model M is

updated by minimizing:

LDPO=−log σ
(
β

(
log

M(rw|x)
Mt(rw|x)

−log M(rl|x)
Mt(rl|x)

))
,

(2)

where (x, rw, rl) ∈ Dpairs
t , rw is a correct response

and rl is an incorrect response for problem x.
Additionally, we introduce Statistical Difficulty

Estimation (SDE) as an oracle for assessing prob-
lem difficulty. Following Snell et al. (2025), SDE
computes accuracy using a substantial sampling
budget (i.e., 100 samples per problem), providing
a reliable proxy for the model-specific difficulty of
each problem. Inspired by Chen et al. (2024b), we
partition problem instances as Inlier (accuracy >
87.5%), Outlier (accuracy < 12.5%), or Boundary
(otherwise), with their corresponding sets denoted
as DI

t , DO
t , and DB

t , respectively.

2.2 Analysis of Utility over Problem Difficulty
We conduct experiments of STaRs using our SDE-
based partitioning on Qwen-2.5 3B (Qwen et al.,
2025), as shown in Fig. 1. Training and dataset
details are provided in Sec. 4.1.

Difficulty-Aware Training Analysis. Given the
observed superiority of DPO over RFT, we adopt
DPO as the default training objective throughout
our study. We define three variants—DPO-Inlier,
DPO-Boundary, and DPO-Outlier—each trained
exclusively on one SDE-defined subset: DI , DB,
and DO, respectively, using a fixed sampling count
of n as 8. As shown in Fig. 1, we find that both
DPO-Inlier and DPO-Outlier yield significantly
worse performance, while DPO-Boundary produces
a slight improvement (+0.2%) than using all prob-
lems. These results highlight that boundary-level
problems offer the highest utility for STaRs.

Sampling Budget Reallocation. We further ex-
amine whether allocating more sampling resources
to different difficulty levels can enhance self-
training effectiveness. We introduce three Sam-
pling Reallocation (SR) variants: DPO-Inlier-SR,
DPO-Boundary-SR, and DPO-Outlier-SR, where
the total sampling budget (8× |Dt|) is reallocated
exclusively to one difficulty category. This con-
centrated sampling allows each selected problem
to receive more candidate responses. Notably,
DPO-Boundary-SR significantly achieves the best
performance across all benchmarks, with an av-
erage score of 38.3%. These results reinforce
that boundary-level problems are more sampling-
efficient, indicating strategically prioritizing them
is key to enhance self-training.

3 Methodology

In this section, we provide a detailed introduction
to our HS-STAR, as shown in Fig. 2. Our approach
is divided into three main phases: Difficulty Estima-
tion, Re-Sampling, and Preference Optimization.

3.1 Phase 1: Difficulty Estimation

While SDE provides a reliable oracle for assessing
problem difficulty, it requires extensive sampling
and is computationally expensive. To enable prac-
tical difficulty estimation under limited resources,
we propose a lightweight alternative, including pre-
sampling and reward-guided estimation.
Pre-Sampling. We first perform a pre-sampling
step, where a small portion of the sampling budget
is used to generate responses for each question.
Concretely, given a problem x ∈ Dt, we derive
np responses from the policy model Mt, forming
Rp

t,x = {r1, . . . , rnp | ri ∼ Mt(x)}. Here, np

is set to a relatively small value, allowing more
remaining budget to be reallocated toward high-
utility problems in Phase 2.
Reward-Guided Estimation. Subsequently, we
evaluate Rp

t,x using both the ground-truth an-
swer and process reward model (PRM). Specifi-
cally, we propose a reward-guided difficulty es-
timation (RDE) strategy, which incorporates two
complementary metrics: ϕa(Rp

t,x) for assessing ac-
curacy, and ϕr(Rp

t,x) for evaluating the quality of
the underlying reasoning process. ϕa(Rp

t,x) is de-
fined as the average accuracy over all generated
responses: ϕa(Rp

t,x) = 1
np

∑np

i=1 V (x, ri). The
term ϕr(Rp

t,x) assesses the quality of the reason-
ing process produced by the policy model, which

5541

{𝑥} 𝑀!

𝑟!
"

⋮
𝑟#!
"

𝑉 𝑥, 𝑟!
"

⋮
𝑉 𝑥, 𝑟#!

"

Generated
Responses

Policy
Model

Total
Problems

Pre-Sampling

PRM &
Verifier

𝑆 𝑥, 𝑟!
"

⋮
𝑆 𝑥, 𝑟#!

" Select {𝑥!, [𝑟", 𝑟#]} 𝑀$%!

Preference OptimizationDifficulty Estimation

Partition

Preference
Pairs

Updated Policy
Model

{𝑥} 𝑀!

𝑟!&
⋮
𝑟#"
&

Generated
Responses

Policy
Model

Boundary
Problems

Re-Sampling

Reward
Score

Accuracy
Score

Reward-Guided Estimation

Figure 2: Illustration of the HS-STAR framework. Each iteration begins with a Difficulty Estimation phase, where
a limited sampling budget is used to generate candidate responses for each query, referred to as pre-sampling.
These responses are then evaluated using a reward-guided strategy to estimate problem difficulty. In the subsequent
Re-Sampling phase, the remaining budget is allocated to high-utility boundary problems identified in the previous
step. Finally, in the Preference Optimization phase, preference pairs are constructed from all collected responses
and used to update the policy model.

is achieved by leveraging the scores provided by
the PRM for each sampled response. We define
an aggregate process quality score as the average
of the reward values within all sampled responses:
ϕr(Rp

t,x) = 1
np

∑np

i=1 S (ri), where S(ri) repre-
sents the reward score assigned to the i-th response
ri. Given that a response ri consists of ni reason-
ing steps, with step j assigned a reward score si,j ,
the overall process quality score for a complete re-
sponse ri is defined as the minimum reward score
across all steps in the sequence (Tu et al., 2025):
S (ri) = minj∈{1,2,...,ni}{si,j}.

Based on these two critical dimensions of re-
sponses, we categorize the difficulty level for the
given model Mt on a specific problem x into three
distinct classes:

ΦMt(x)=





Inlier, if ϕa(Rp
t,x)=1∧ϕr(Rp

t,x)>τh

Outlier, if ϕa(Rp
t,x)=0∧ ϕr(Rp

t,x)<τl

Boundary, otherwise

,

(3)

where τh and τl are predefined thresholds. This
metric jointly captures the model’s ability to solve
a given problem by evaluating both the accuracy of
the final answer and the soundness of the reasoning
process, thereby providing an effective estimate of
problem difficulty even with limited responses.

3.2 Phase 2: Re-Sampling

Building on the insights from Sec. 2, which high-
light the critical role of boundary problems, we aim
to maximize their exploitation through targeted re-
sampling. Specifically, given an initial sampling
budget of nt per query, we subsequently assign
an additional sampling count nr to each bound-
ary sample estimated by our RDE during the Re-

Sampling phase, calculated as follows:

nr =

[
(nt − np)× |Dt|

|DB
t |

]
, (4)

where DB
t represents the subset of samples classi-

fied as Boundary in the Difficulty Estimation phase.
This reallocation of the sampling budget enables us
to focus computational resources on such instances,
which offer greater potential for optimization. Sub-
sequently, for each query xb ∈ DB

t , we utilize
the policy model Mt to generate nr candidate re-
sponses, forming Rr

t,xb
= {r1, r2, . . . , rnr | ri ∼

Mt(xb)}.

3.3 Phase 3: Preference Optimization
Based on the sampled responses from the afore-
mentioned two phases, we construct a preference
dataset to facilitate self-training via preference op-
timization. At iteration t, for each query x, the
policy model Mt has generated a response set
Rt,x = Rp

t,x ∪ Rr
t,x. To construct the preference

dataset Dpairs
t , these responses are systematically

categorized based on their correctness. For each
query x, the response set Rt,x is partitioned into
two subsets: the set of correct responses Rcorr

t,x =
{r ∈ Rt,x | V (x, r) = 1}, and the set of incorrect
responses Rincorr

t,x = {r ∈ Rt,x | V (x, r) = 0}.
Subsequently, the samples in sets Rcorr

t,x and
Rincorr

t,x are independently ranked in descend-
ing order according to their reward scores
S(r). This produces the ordered sequences
R̃corr

t = (rcorr
(1) , r

corr
(2) , . . . , r

corr
(|Rcorr

t |)) and R̃incorr
t =

(rincorr
(1) , rincorr

(2) , . . . , rincorr
(|Rincorr

t |)). The number of pairs

k for Dpairs
t is defined as the minimum cardinality

of these two sets: k = min(|Rcorr
t |, |Rincorr

t |). Fi-
nally, the paired dataset is constructed as Dpairs

t =
{(scorr

i , sincorr
i) | i = 1, . . . , k}, where each scorr

i

5542

and sincorr
i is a unique sample from the top k ele-

ments of Rcorr
t and Rincorr

t , respectively.
By training on the given set of preference pairs,

we derive the updated model Mt+1, initialized
from its predecessor Mt. The optimization fol-
lows the DPO objective (Rafailov et al., 2023), as
specified in Eq. 2.

4 Experiments

4.1 Setup

Dataset. Following Zhang et al. (2025a), we use
NuminaMath-1.5 (Li et al., 2024a) for iterative self-
taught reasoning. The original dataset contains ap-
proximately 900K math problems, and we apply a
filtering pipeline to ensure the quality of questions
and the verifiability of answers. In each iteration,
we randomly sample 7,500 problems without re-
placement, ensuring no overlap across iterations.
Additional details are provided in Appendix A.1.
Implementation Details. To facilitate the genera-
tion of stepwise solutions for reward labeling, we
first perform a warm-up training using synthetic
solutions. Specifically, we leverage the MATH
dataset (Hendrycks et al., 2021) and prompt gpt-4o-
2024-08-06 to systematically rewrite each solution
in a step-by-step format, then organize these steps
separated by "\n\n". The resulting model, denoted
as M0, serves as the initialization for iterative self-
training. In our experiments, each iteration oper-
ates under a fixed sampling budget, corresponding
to an average of 8 samples per problem. The pre-
sampling count np is set to 3, and thresholds τh and
τl for difficulty estimation are set to 0.15 and 0.65,
respectively. We utilize Skywork-PRM-7B (He
et al., 2024b) as our PRM and perform three itera-
tions in total. See more details in Appendix A.2.
Baselines. To ensure a comprehensive evalua-
tion, we apply HS-STAR across a diverse set of
open-source models, including DeepSeek-Math-
7B (Shao et al., 2024a), Phi-3.5-Mini-Instruct (Ab-
din et al., 2024), Qwen2.5-3B, and Qwen2.5-
7B (Qwen et al., 2025). We compare with the fol-
lowing baselines: (1) Vanilla SFT, using reference
solutions from NuminaMath for training without
any self-generated data; (2) Stepwise Initializa-
tion (M0), the base model trained on synthetic
step-by-step solutions without any self-training; (3)
STAR-RFT, using SFT as the training objective
in STaRs; and (4) STAR-DPO, using DPO as the
training objective in STaRs.
Evaluation. We evaluate our framework on seven

mathematical reasoning benchmarks, including
GSM8K (Cobbe et al., 2021), MATH500 (Yang
et al., 2024), OlympiadBench (He et al., 2024a),
Minerva-Math (Lewkowycz et al., 2022), College-
Math (Tang et al., 2024), as well as competition-
level benchmarks such as AMC23 (AI-MO, 2024b)
and AIME24 (AI-MO, 2024a). We report Pass@1
accuracy for all benchmarks, with the exception of
AMC23 and AIME24. For these two, we follow
standard protocol and report Avg@32, which is
calculated from 32 generated samples per problem,
using temperature as 0.6.

4.2 Main Results
Table 1 presents a comparative study of training
methods across multiple mathematical reasoning
benchmarks and backbone LLMs. We can draw the
following conclusions:
HS-STAR achieves superior performance.
Across all model backbones and benchmarks, HS-
STAR consistently outperforms baseline methods.
For example, it improves the overall accuracy by
2.2% on DeepSeek-Math-7B, 1.4% on Qwen2.5-
3B, and 1.8% on Qwen2.5-7B compared to their
respective best-performing baselines. These results
demonstrate the significance of identifying and ex-
ploiting high-utility problems. Furthermore, on
challenging datasets such as AIME24 and AMC23,
HS-STAR also outperforms the most competitive
counterparts, demonstrating the robustness of our
boundary-focused sampling strategy.
DPO consistently outperforms RFT. Across most
settings, STAR-DPO achieves higher accuracy than
STAR-RFT. For instance, on Qwen2.5-7B and
Qwen2.5-3B, STAR-DPO yields relative gains of
2.7% and 1.8%, respectively. We assume that this
stems from DPO’s ability to leverage both correct
and incorrect responses, whereas RFT relies solely
on correct trajectories and may underutilize infor-
mative failure cases.
Iterative self-training brings improvements. We
observe that all STaR-based methods consistently
outperform their initializations and vanilla SFT
baselines, validating the effectiveness of the train-
ing paradigm. Among the backbones, the rela-
tively modest improvement observed on Phi-3.5-
Mini-Instruct is likely due to the extensive post-
training it has already undergone. Moreover, we
find that stepwise initialization not only enables
format-consistent reasoning but also outperforms
vanilla SFT, demonstrating its effectiveness as a
lightweight and generalizable warm-up strategy.

5543

Table 1: Main results across mathematical reasoning benchmarks. All STAR-based methods are trained iteratively
for three self-training rounds. Bold values indicate the best performance, while underlined ones denote the second-
best results. For AMC23 and AIME24, we report Avg@32, and Pass@1 is used for others.

Method GSM8K MATH
500

Olympiad
Bench

Minerva
Math AMC23 College

Math AIME24 Avg.

DeepSeek-Math-7B 30.3 18.6 5.3 5.9 7.3 17.2 0.0 12.1
Vanilla SFT 54.4 28.4 9.9 7.0 10.9 28.4 0.6 19.9
Stepwise Init. 62.9 32.8 10.7 8.1 11.3 25.4 0.4 21.7

+STAR-RFT 66.0 30.2 8.6 11.8 11.7 26.8 0.5 22.2
+STAR-DPO 63.1 33.8 9.9 10.7 12.6 26.7 0.7 22.5
+HS-STAR (Ours) 67.7 35.4 12.0 13.6 13.4 29.8 1.1 24.7

Phi-3.5-Mini-Instruct 83.5 46.2 13.2 16.2 16.2 36.1 0.8 30.3
Vanilla SFT 81.7 47.8 14.7 11.4 15.8 32.0 0.5 29.1
Stepwise Init. 85.4 45.2 13.5 24.3 16.2 35.9 1.2 31.7

+STAR-RFT 84.9 45.2 15.6 23.9 16.6 36.1 1.1 31.9
+STAR-DPO 86.5 46.4 14.8 24.6 16.2 36.2 0.8 32.2
+HS-STAR (Ours) 86.1 49.2 15.7 24.3 17.4 36.5 1.9 33.0

Qwen2.5-3B 72.9 49.4 16.3 17.3 21.1 33.8 2.6 30.5
Vanilla SFT 62.9 58.6 23.6 13.2 25.5 31.0 3.6 31.2
Stepwise Init. 72.8 50.2 19.6 16.9 20.8 35.4 2.8 31.2

+STAR-RFT 80.1 51.4 19.6 19.1 28.2 39.7 1.6 34.2
+STAR-DPO 81.0 55.2 21.6 24.6 28.0 39.1 2.5 36.0
+HS-STAR (Ours) 82.6 60.0 22.7 24.3 28.4 40.7 3.0 37.4

Qwen2.5-7B 81.8 54.2 25.6 25.4 26.4 39.3 3.7 36.6
Vanilla SFT 84.2 66.8 25.9 17.3 37.0 36.8 6.9 39.3
Stepwise Init. 86.4 65.0 27.9 25.0 35.0 41.7 5.2 40.9

+STAR-RFT 86.7 66.8 27.2 31.4 45.2 38.7 4.8 43.0
+STAR-DPO 88.6 69.8 33.3 29.8 44.3 45.7 8.3 45.7
+HS-STAR (Ours) 90.3 72.8 35.9 31.6 46.5 46.4 8.9 47.5

Inlier Boundary Outlier
0

20

40

60

80

100
Iteration 0

76.3

23.7

0.0
8.4

77.1

14.5

0.0

21.5

78.5

Inlier Boundary Outlier

Iteration 1
89.1

10.9
0.0

16.5

72.5

11.1
0.0

20.7

79.3

Inlier Boundary Outlier

Iteration 2
85.3

14.7

0.0

17.0

73.3

9.7
0.0

22.4

77.6

Pr
op

or
ti

on
 (

%
)

Inlier (SDE >87.5%) Boundary (SDE 12.5-87.5%) Outlier (SDE <12.5%)

Figure 3: Estimation performance of our RDE on
Qwen2.5-7B model. Sample categories identified by
ours are presented along the horizontal axis, and for
each category, the vertical dimension indicates the pro-
portion of samples belonging to that category as esti-
mated by SDE.

4.3 “Zero Training” of HS-STAR
Settings. The recent emergence of DeepSeek-
R1 (DeepSeek-AI et al., 2025) has sparked a trend
of R1-Zero-like training (Chu et al., 2025; Yu et al.,
2025), where reinforcement learning is applied di-
rectly to pre-trained models. Following this, we
explore a similar “Zero Training” setup to fur-
ther evaluate our approach. Specifically, we con-
duct HS-STAR on Qwen2.5-Math-7B (Yang et al.,
2024) by skipping the initial warm-up SFT. We
compare against various advanced LLM reasoning
training methods over the same backbone, includ-
ing Qwen2.5-Math-7B-Instruct (Yang et al., 2024),

Inlier Boundary Outlier
0

20

40

60

80

100
Qwen2.5-3B

75.4

24.6

0.0 5.3

74.1

20.6

0.0

14.4

85.6

Inlier Boundary Outlier

Phi-3.5-Mini-Instruct

73.6

26.4

0.0
6.4

70.2

23.4

0.0
10.2

89.8

Inlier Boundary Outlier

Qwen2.5-Math-7B

72.7

27.3

0.0
10.8

70.8

18.4

0.0

25.5

74.5

Pr
op

or
ti

on
 (

%
)

Inlier (SDE >87.5%) Boundary (SDE 12.5-87.5%) Outlier (SDE <12.5%)

Figure 4: Estimation performance of our RDE on
Qwen2.5-3B, Phi3.5-Mini-Instruct, and Qwen2.5-Math-
3B. Notably, Qwen2.5-Math-7B is evaluated under the
“Zero Training” setting.

SimpleRL (Zeng et al., 2025a), PURE-VR (Cheng
et al., 2025), DPO-VP (Tu et al., 2025), STAR-RFT
(named Online RFT in Zeng et al. (2025b)), and
STAR-DPO (referred to as Online DPO in Zhang
et al. (2025a)). Detailed descriptions of these meth-
ods are provided in Appendix A.3.
Results. As illustrated in Table 2, we observe
that HS-STAR also demonstrates strong perfor-
mance in zero training setting, achieving a 6.4% im-
provement over the backbone model. Among self-
training approaches, HS-STAR achieves the high-
est accuracy, surpassing the second-best method by
1.2%. Moreover, we find that HS-STAR can even
achieve performance comparable to SimpleRL,
which leverages GRPO (Shao et al., 2024b) for

5544

Table 2: Comparison with other “Zero Training” models. All models are fine-tuned based on the Qwen2.5-Math-7B.
We evaluate SimpleRL, PURE-VR, and DPO-VP using their publicly released checkpoints, while STAR-RFT and
STAR-DPO are reproduced under the same experimental settings as ours.

Method Training
Strategy

MATH
500

Olympiad
Bench

Minerva
Math AMC23 College

Math AIME24 Avg.

Qwen2.5-Math-7B - 72.0 34.8 27.6 56.1 43.0 17.2 41.8
Qwen2.5-Math-7B-Instruct - 82.8 40.3 35.7 59.5 46.9 11.4 46.1
SimpleRL online RL 78.2 42.5 34.2 62.3 49.1 23.9 48.4
PURE-VR online RL 79.0 40.6 36.4 63.1 47.3 15.6 47.0
DPO-VP STaR 74.4 36.4 31.2 57.5 45.1 18.9 43.9
STAR-RFT STaR 73.8 37.9 36.0 62.3 47.0 18.3 45.9
STAR-DPO STaR 77.6 41.3 34.9 60.5 48.0 19.5 47.0
HS-STAR (Ours) STaR 77.8 41.8 36.4 64.3 48.0 20.8 48.2

reinforcement learning. This suggests that the pro-
posed framework can match the performance of on-
line RL through a more flexible framework, while
avoiding the complexity of hyperparameter tuning
and the computational costs (Abdin et al., 2024; Tu
et al., 2025; Liu et al., 2025; Fu et al., 2025; Wang
et al., 2025b).

4.4 Analysis of Difficulty Estimation

Impact on Estimation Strategy of HS-STAR.
Our HS-STAR can be seamlessly integrated with
several alternative approaches to difficulty estima-
tion. Specifically, we have developed three variants:
HS-STAR-Acc, which solely utilizes accuracy-
based estimation, HS-STAR-Reward, which solely
utilizes reward-based estimation, and HS-STAR-
SDE, which employs SDE (defined in Sec. 2.1) as
an oracle measure of problem difficulty. Further de-
tails of these variants are provided in Appendix A.3.
As summarized in Table 3, HS-STAR-SDE, which
uses oracle difficulty and allocates more samples
to boundary-level problems, leads to the best over-
all performance across all iterations, confirming
the high utility of such problems. Among all vari-
ants that employ the same resource constraints,
HS-STAR performs best, with accuracy only 0.4%
lower than the HS-STAR-SDE oracle. In contrast,
both ablation variants result in noticeable perfor-
mance drops, yet still outperform the naive STAR-
DPO without difficulty estimation and budget re-
allocation. These results suggest that RDE offers
an effective solution for difficulty estimation by
combining two complementary signals, without
requiring extensive sampling.
Estimation Accuracy. To evaluate the perfor-
mance of our difficulty estimation method, we em-
ploy the labels derived by the SDE as the ground
truth. As illustrated in Fig. 3, our method achieve
an estimation accuracy on the three types of sam-

Table 3: Ablation study on difficulty estimation. We re-
port the average performance across seven benchmarks.

Method Iter. 1 Iter. 2 Iter. 3

HS-STAR-SDE (Oracle) 45.7 47.0 47.9
STAR-DPO 44.2 45.1 45.7
HS-STAR-Acc 44.7 46.2 46.8
HS-STAR-Reward 45.4 46.3 46.7
HS-STAR 45.6 46.6 47.5

1 2 3 4 5 6 7 8
Pre-Sampling Times

40

50

60

70

80

90

Co
ve

ra
ge

 R
at

io
 (

%
)

(a) Boundary Samples Cover-
age in Re-Sampling Stage.

1 2 3 4 5 6 7 8
Pre-Sampling Times

25k

28k

30k

32k

35k

38k

40k

Sa
m

pl
in

g
Bu

dg
et

(b) Total Sampling Budget on
Boundary Samples.

Figure 5: Analysis of the effects of Pre-Sampling times
on Qwen2.5-7B. Subfig. 5a shows the trend of coverage
of SDE estimated boundary samples as Pre-Sampling
times vary. Subfig. 5b illustrates how the total sampling
budget for SDE estimated boundary samples evolves as
Pre-Sampling times vary.

ples, exceeding 70% across three iterations con-
ducted on the Qwen2.5-7B model. Furthermore,
as shown in Fig. 4, our method show considerable
effectiveness across various models. Notably, it
maintains high accuracy even when evaluated on
the Qwen2.5-Math-7B model trained under “Zero
Training” settings.

4.5 Impact of Pre-Sampling Times

Since the number of pre-sampling directly influ-
ences both estimation accuracy and budget alloca-
tion, we examine its impact in detail. As shown
in Fig. 5a, increasing the number of pre-sampling
times improves the accuracy of difficulty estima-
tion, leading to better coverage of Boundary sam-

5545

40

42

44

46

48

Pre-Sampling = 1

40.9

44.9
45.7 46.3

40

42

44

46

48

Pre-Sampling = 2

40.9

44.7 45.2
46.7

40

42

44

46

48

Pre-Sampling = 3

40.9

45.6
46.6

47.5

40

42

44

46

48

Pre-Sampling = 4

40.9

45.6 46.1 46.8

40

42

44

46

48

Pre-Sampling = 5

40.9

45.1 45.3
46.7

40

42

44

46

48

Pre-Sampling = 6

40.9

44.7
45.7 46.4

40

42

44

46

48

Pre-Sampling = 7

40.9

44.6
45.5

46.4

40

42

44

46

48

Pre-Sampling = 8

40.9

44.0
44.9

46.0

M0 M1 M2 M3

Figure 6: Performance under different Pre-Sampling
Times on Qwen2.5-7B. For comparative analysis, we
use the performance at a Pre-Sampling Time of 3 as the
baseline, indicated by the dashed line.

Table 4: Impact of threshold ranges on precision, recall,
and average performance. Our chosen setting strikes a
balance, leading to the highest average performance.

Configuration Precision Recall Avg.

Narrower Range 81.6 67.8 47.0
Broader Range 52.9 92.5 46.6
Standard 77.1 73.8 47.5

ples. However, this gain in estimation accuracy
introduces a trade-off. As depicted in Fig. 5b, un-
der a fixed total sampling budget, allocating more
resources to pre-sampling reduces the budget avail-
able for exploiting high-utility Boundary samples,
weakening overall reallocation effectiveness. This
tradeoff is further confirmed in Fig. 6, which shows
that performance peaks when pre-sampling is per-
formed three times, balancing estimation accuracy
and budget efficiency. Beyond this point, further in-
creasing pre-sampling leads to performance degra-
dation due to insufficient sampling of critical in-
stances.

4.6 Sensitive Analysis of Thresholds

In our reward-guided difficulty estimation ap-
proach, the hyperparameters τl and τh are pivotal
for defining and selecting boundary cases. These
thresholds are empirically determined through pilot
experiments, as detailed in Sec. 2. Importantly, this
calibration constitutes a one-time overhead for a
given process reward model. The resulting thresh-
olds generalize robustly across all policy models in
our main experiments, thereby obviating the need
for model-specific fine-tuning.

Our selection process was primarily guided by
the trade-off between precision and recall in identi-
fying these boundary samples. Using the boundary
cases identified by the SDE method as the ground
truth, we define Precision as the fraction of sam-

Table 5: Ablation study of Re-Sampling strategies on
Qwen2.5-7B. For these variants, the estimation of Inlier,
Boundary, and Outlier samples is performed using RDE.

Re-Sampling Strategy Iter. 1 Iter. 2 Iter. 3

w/o Re-Sampling 44.2 45.1 45.7
Inlier 42.0 43.0 44.2
Outlier 41.7 41.9 42.2
Inlier+Outlier 41.9 41.5 42.8
Inlier+Boundary 45.3 46.4 47.2
Boundary+Outlier 44.2 44.7 46.0
Boundary (Ours) 45.6 46.6 47.5

ples classified as boundary cases by our method
that are also identified as such by the SDE method,
and Recall as the fraction of all boundary cases
identified by the SDE method that our method suc-
cessfully detects. These two metrics dictate the
balance between the sampling budget allocated to
boundary cases and the diversity of these cases
captured during the Re-Sampling phase.

To further validate our choice and elucidate the
impact of these thresholds, we conducted an ab-
lation study that considered a narrower range by
setting τl = 0.4 and τh = 0.6, as well as a broader
range with τl = 0.2 and τh = 0.8. As the results
in Table 4 indicate, a clear trade-off emerges. A
narrower range yields higher precision but at the
cost of significantly lower recall. Conversely, a
broader range substantially increases recall, but
this is achieved at the expense of a sharp decline in
precision. These experimental results confirm that
our chosen thresholds achieve an effective balance
between precision and recall, and that this equilib-
rium is conducive to better overall performance.

4.7 Comparison of Re-Sampling Strategies

In HS-STAR, the re-sampling budget is allocated
based on difficulty levels estimated by our RDE
strategy, with a focus on boundary-level prob-
lems. To better assess the utility of different dif-
ficulty levels, we compare re-sampling strategies
constructed from all possible combinations of In-
lier, Outlier, and Boundary samples, excluding
the boundary-only configuration used in our main
approach. The results are presented in Table 5,
where re-sampling exclusively on Boundary sam-
ples consistently yields the best performance across
all iterations, confirming the effectiveness of prior-
itizing such problems to maximize training utility.
Strategies involving Inlier+Boundary also perform
competitively, likely due to the predominance of
boundary samples in the combined set. In contrast,

5546

strategies based on Inlier, Outlier, or their combi-
nations result in significantly lower performance.
These findings highlight the importance of focusing
on boundary-level queries during the re-sampling
stage for effective self-improvement.

5 Related Work

5.1 Self-Taught Reasoners

Recent studies have shown that LLMs can pro-
gressively improve themselves by training on self-
generated responses using SFT or DPO (Zelikman
et al., 2022; Gulcehre et al., 2023; Huang et al.,
2023; Yuan et al., 2024; Li et al., 2025; Wang et al.,
2025c). In mathematical reasoning tasks, response
selection is typically guided by answer correctness,
enabling LLMs to act as self-taught reasoners with-
out relying on human-annotated reasoning trajecto-
ries (Yuan et al., 2023; Singh et al., 2024; Hosseini
et al., 2024; Pang et al., 2024; Wu et al., 2025;
Zhang et al., 2025a).

Previous research has primarily explored two
further directions. One line of work incorporates
auxiliary reward model signals beyond answer cor-
rectness (Yang et al., 2024; Zeng et al., 2025b;
Tu et al., 2025). Another focuses on enhancing the
quality or accuracy of sampled responses, including
designing MCTS strategy (Zhang et al., 2024; Tian
et al., 2024; Chen et al., 2024a; Wang et al., 2024b)
and integrating teacher guidance (Ding et al., 2025).
However, these methods mainly aim to improve re-
sponse quality, without accounting for the varying
utility of problems. In contrast, our study reveals
that boundary-level problems play a pivotal role in
self-taught reasoning and introduces a hierarchical
sampling strategy to efficiently exploit their utility.

5.2 Difficulty-Aware LLM Training

Difficulty-aware strategies have proven effective
for improving the training of LLMs. For instance,
in instruction tuning, prior work commonly adopts
instruction-following difficulty (Li et al., 2024d,c)
or uncertainty-based techniques (Liu et al., 2024;
Zhang et al., 2025b) to select high-utility data. In
mathematical reasoning, problem difficulty is typi-
cally estimated by pass rate. On this basis, DART-
MATH (Tong et al., 2024) allocates more sampling
budget to synthesize hard examples, while some
recent studies advocate avoiding overly difficult
questions (Tian et al., 2025b; Bae et al., 2025; Yu
et al., 2025). Within STaR, a few studies have
explored difficulty-aware sampling by allocating

more resources to challenging problems (Ding
et al., 2025; Xue et al., 2025). However, our analy-
sis demonstrates that such difficult questions con-
tribute significantly less compared to those near the
model’s capability boundary. Therefore, we pro-
pose HS-STAR that efficiently identifies and priori-
tizes boundary-level problems during self-training.

6 Conclusion

In this paper, we empirically demonstrate that the
utility of self-training data is largely determined
by the difficulty level of problems, with problems
near the model’s capability boundary being sub-
stantially more valuable than overly simple or ex-
cessively hard ones. Motivated by these findings,
we propose HS-STAR, a hierarchical sampling
framework that improves self-taught reasoning by
explicitly estimating and exploiting problem utility.
Concretely, HS-STAR first performs lightweight
reward-guided difficulty estimation, then reallo-
cates the sampling budget to prioritize high-utility
boundary-level problems for preference optimiza-
tion, thereby maximizing training effectiveness un-
der a fixed sampling resource constraint. Experi-
mental results confirm that our method significantly
outperforms various baselines. We believe this
work provides valuable insights for difficulty-aware
optimization in LLM post-training.

Limitations

Despite the proposed framework HS-STAR effec-
tively enhances the self-training for mathematical
reasoning, it has two primary limitations.
• HS-STAR relies on difficulty estimation tech-

niques such as reward-guided estimation to
identify high-utility problems. Therefore, our
framework is inherently tied to mathematical
tasks, where problem difficulty is relatively well-
defined. This limits the generalizability of HS-
STAR to other domains where difficulty estima-
tion is more ambiguous.

• Recent advances in rule-based RL have shown
promising improvements in LLM reasoning. Al-
though HS-STAR is developed for offline rein-
forced self-training, we believe that dynamically
identifying high-utility problems during rollout
could further improve the effectiveness of online
RL, leaving this to our future work.

We believe that addressing these limitations could
broaden the applicability of HS-STAR.

5547

References
Marah Abdin, Jyoti Aneja, Hany Awadalla, Ahmed

Awadallah, Ammar Ahmad Awan, Nguyen Bach,
Amit Bahree, Arash Bakhtiari, Jianmin Bao, Harkirat
Behl, Alon Benhaim, Misha Bilenko, Johan Bjorck,
Sébastien Bubeck, Martin Cai, Qin Cai, Vishrav
Chaudhary, Dong Chen, Dongdong Chen, and 110
others. 2024. Phi-3 technical report: A highly capa-
ble language model locally on your phone. Preprint,
arXiv:2404.14219.

AI-MO. 2024a. Aimo validation aime dataset.
https://huggingface.co/datasets/AI-MO/
aimo-validation-aime.

AI-MO. 2024b. Aimo validation amc dataset.
https://huggingface.co/datasets/AI-MO/
aimo-validation-amc.

Sanghwan Bae, Jiwoo Hong, Min Young Lee, Hanbyul
Kim, JeongYeon Nam, and Donghyun Kwak. 2025.
Online difficulty filtering for reasoning oriented rein-
forcement learning. Preprint, arXiv:2504.03380.

Guoxin Chen, Minpeng Liao, Chengxi Li, and Kai Fan.
2024a. Alphamath almost zero: Process supervision
without process. In The Thirty-eighth Annual Con-
ference on Neural Information Processing Systems.

Qiguang Chen, Libo Qin, Jiaqi WANG, Jingxuan Zhou,
and Wanxiang Che. 2024b. Unlocking the capabil-
ities of thought: A reasoning boundary framework
to quantify and optimize chain-of-thought. In The
Thirty-eighth Annual Conference on Neural Informa-
tion Processing Systems.

Jie Cheng, Ruixi Qiao, Lijun Li, Chao Guo, Junle Wang,
Gang Xiong, Yisheng Lv, and Fei-Yue Wang. 2025.
Stop summation: Min-form credit assignment is all
process reward model needs for reasoning. Preprint,
arXiv:2504.15275.

Xiangxiang Chu, Hailang Huang, Xiao Zhang, Fei Wei,
and Yong Wang. 2025. Gpg: A simple and strong
reinforcement learning baseline for model reasoning.
arXiv preprint arXiv:2504.02546.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian,
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro
Nakano, Christopher Hesse, and John Schulman.
2021. Training verifiers to solve math word prob-
lems.

DeepSeek-AI, Daya Guo, Dejian Yang, Haowei Zhang,
Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, Xiaokang Zhang,
Xingkai Yu, Yu Wu, Z. F. Wu, Zhibin Gou, Zhi-
hong Shao, Zhuoshu Li, Ziyi Gao, and 181 others.
2025. Deepseek-r1: Incentivizing reasoning capa-
bility in llms via reinforcement learning. Preprint,
arXiv:2501.12948.

Yiwen Ding, Zhiheng Xi, Wei He, Lizhuoyuan
Lizhuoyuan, Yitao Zhai, Shi Xiaowei, Xunliang Cai,

Tao Gui, Qi Zhang, and Xuanjing Huang. 2025. Mit-
igating tail narrowing in LLM self-improvement via
socratic-guided sampling. In Proceedings of the 2025
Conference of the Nations of the Americas Chapter of
the Association for Computational Linguistics: Hu-
man Language Technologies (Volume 1: Long Pa-
pers), pages 10627–10646, Albuquerque, New Mex-
ico. Association for Computational Linguistics.

Yuqian Fu, Yuanheng Zhu, Jiajun Chai, Guojun Yin,
Wei Lin, Qichao Zhang, and Dongbin Zhao. 2025.
Rlae: Reinforcement learning-assisted ensemble for
llms. Preprint, arXiv:2506.00439.

Caglar Gulcehre, Tom Le Paine, Srivatsan Srini-
vasan, Ksenia Konyushkova, Lotte Weerts, Abhishek
Sharma, Aditya Siddhant, Alex Ahern, Miaosen
Wang, Chenjie Gu, Wolfgang Macherey, Arnaud
Doucet, Orhan Firat, and Nando de Freitas. 2023.
Reinforced self-training (rest) for language modeling.
Preprint, arXiv:2308.08998.

Chaoqun He, Renjie Luo, Yuzhuo Bai, Shengding Hu,
Zhen Thai, Junhao Shen, Jinyi Hu, Xu Han, Yujie
Huang, Yuxiang Zhang, Jie Liu, Lei Qi, Zhiyuan
Liu, and Maosong Sun. 2024a. OlympiadBench:
A challenging benchmark for promoting AGI with
olympiad-level bilingual multimodal scientific prob-
lems. In Proceedings of the 62nd Annual Meeting of
the Association for Computational Linguistics (Vol-
ume 1: Long Papers), pages 3828–3850, Bangkok,
Thailand. Association for Computational Linguistics.

Jujie He, Tianwen Wei, Rui Yan, Jiacai Liu, Chaojie
Wang, Yimeng Gan, Shiwen Tu, Chris Yuhao Liu,
Liang Zeng, Xiaokun Wang, Boyang Wang, Yong-
cong Li, Fuxiang Zhang, Jiacheng Xu, Bo An, Yang
Liu, and Yahui Zhou. 2024b. Skywork-o1 open se-
ries. https://huggingface.co/Skywork.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul
Arora, Steven Basart, Eric Tang, Dawn Song, and
Jacob Steinhardt. 2021. Measuring mathematical
problem solving with the MATH dataset. In Thirty-
fifth Conference on Neural Information Processing
Systems Datasets and Benchmarks Track (Round 2).

Arian Hosseini, Xingdi Yuan, Nikolay Malkin, Aaron
Courville, Alessandro Sordoni, and Rishabh Agarwal.
2024. V-STar: Training verifiers for self-taught rea-
soners. In First Conference on Language Modeling.

Jiaxin Huang, Shixiang Gu, Le Hou, Yuexin Wu, Xuezhi
Wang, Hongkun Yu, and Jiawei Han. 2023. Large
language models can self-improve. In Proceedings
of the 2023 Conference on Empirical Methods in Nat-
ural Language Processing, pages 1051–1068, Singa-
pore. Association for Computational Linguistics.

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying
Sheng, Lianmin Zheng, Cody Hao Yu, Joseph E.
Gonzalez, Hao Zhang, and Ion Stoica. 2023. Effi-
cient memory management for large language model
serving with pagedattention. In Proceedings of the
ACM SIGOPS 29th Symposium on Operating Systems
Principles.

5548

https://arxiv.org/abs/2404.14219
https://arxiv.org/abs/2404.14219
https://huggingface.co/datasets/AI-MO/aimo-validation-aime
https://huggingface.co/datasets/AI-MO/aimo-validation-aime
https://huggingface.co/datasets/AI-MO/aimo-validation-amc
https://huggingface.co/datasets/AI-MO/aimo-validation-amc
https://arxiv.org/abs/2504.03380
https://arxiv.org/abs/2504.03380
https://openreview.net/forum?id=VaXnxQ3UKo
https://openreview.net/forum?id=VaXnxQ3UKo
https://openreview.net/forum?id=pC44UMwy2v
https://openreview.net/forum?id=pC44UMwy2v
https://openreview.net/forum?id=pC44UMwy2v
https://arxiv.org/abs/2504.15275
https://arxiv.org/abs/2504.15275
https://arxiv.org/abs/2504.02546
https://arxiv.org/abs/2504.02546
https://arxiv.org/abs/2501.12948
https://arxiv.org/abs/2501.12948
https://aclanthology.org/2025.naacl-long.533/
https://aclanthology.org/2025.naacl-long.533/
https://aclanthology.org/2025.naacl-long.533/
https://arxiv.org/abs/2506.00439
https://arxiv.org/abs/2506.00439
https://arxiv.org/abs/2308.08998
https://doi.org/10.18653/v1/2024.acl-long.211
https://doi.org/10.18653/v1/2024.acl-long.211
https://doi.org/10.18653/v1/2024.acl-long.211
https://doi.org/10.18653/v1/2024.acl-long.211
https://huggingface.co/Skywork
https://huggingface.co/Skywork
https://huggingface.co/Skywork
https://openreview.net/forum?id=7Bywt2mQsCe
https://openreview.net/forum?id=7Bywt2mQsCe
https://openreview.net/forum?id=stmqBSW2dV
https://openreview.net/forum?id=stmqBSW2dV
https://doi.org/10.18653/v1/2023.emnlp-main.67
https://doi.org/10.18653/v1/2023.emnlp-main.67

Aitor Lewkowycz, Anders Andreassen, David Dohan,
Ethan Dyer, Henryk Michalewski, Vinay Ramasesh,
Ambrose Slone, Cem Anil, Imanol Schlag, Theo
Gutman-Solo, Yuhuai Wu, Behnam Neyshabur, Guy
Gur-Ari, and Vedant Misra. 2022. Solving quantita-
tive reasoning problems with language models. In
Advances in Neural Information Processing Systems,
volume 35, pages 3843–3857. Curran Associates,
Inc.

Jia Li, Edward Beeching, Lewis Tunstall, Ben
Lipkin, Roman Soletskyi, Shengyi Costa Huang,
Kashif Rasul, Longhui Yu, Albert Jiang, Ziju
Shen, Zihan Qin, Bin Dong, Li Zhou, Yann
Fleureau, Guillaume Lample, and Stanislas Polu.
2024a. Numinamath. [https://huggingface.co/
AI-MO/NuminaMath-1.5](https://github.com/
project-numina/aimo-progress-prize/blob/
main/report/numina_dataset.pdf).

Jia Li, Edward Beeching, Lewis Tunstall, Ben
Lipkin, Roman Soletskyi, Shengyi Costa Huang,
Kashif Rasul, Longhui Yu, Albert Jiang, Ziju
Shen, Zihan Qin, Bin Dong, Li Zhou, Yann
Fleureau, Guillaume Lample, and Stanislas Polu.
2024b. Numinamath. [https://huggingface.
co/AI-MO/NuminaMath-CoT](https://github.
com/project-numina/aimo-progress-prize/
blob/main/report/numina_dataset.pdf).

Ming Li, Lichang Chen, Jiuhai Chen, Shwai He, Jiuxi-
ang Gu, and Tianyi Zhou. 2024c. Selective reflection-
tuning: Student-selected data recycling for LLM
instruction-tuning. In Findings of the Association
for Computational Linguistics: ACL 2024, pages
16189–16211, Bangkok, Thailand. Association for
Computational Linguistics.

Ming Li, Yong Zhang, Zhitao Li, Jiuhai Chen, Lichang
Chen, Ning Cheng, Jianzong Wang, Tianyi Zhou, and
Jing Xiao. 2024d. From quantity to quality: Boosting
LLM performance with self-guided data selection
for instruction tuning. In Proceedings of the 2024
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies (Volume 1: Long Papers).

Zhong-Zhi Li, Duzhen Zhang, Ming-Liang Zhang, Ji-
axin Zhang, Zengyan Liu, Yuxuan Yao, Haotian Xu,
Junhao Zheng, Pei-Jie Wang, Xiuyi Chen, Yingy-
ing Zhang, Fei Yin, Jiahua Dong, Zhiwei Li, Bao-
Long Bi, Ling-Rui Mei, Junfeng Fang, Zhijiang Guo,
Le Song, and Cheng-Lin Liu. 2025. From system 1
to system 2: A survey of reasoning large language
models. Preprint, arXiv:2502.17419.

Liangxin Liu, Xuebo Liu, Derek F. Wong, Dongfang
Li, Ziyi Wang, Baotian Hu, and Min Zhang. 2024.
SelectIT: Selective instruction tuning for LLMs via
uncertainty-aware self-reflection. In The Thirty-
eighth Annual Conference on Neural Information
Processing Systems.

Zichen Liu, Changyu Chen, Wenjun Li, Penghui Qi,
Tianyu Pang, Chao Du, Wee Sun Lee, and Min Lin.

2025. Understanding r1-zero-like training: A critical
perspective. Preprint, arXiv:2503.20783.

Richard Yuanzhe Pang, Weizhe Yuan, He He,
Kyunghyun Cho, Sainbayar Sukhbaatar, and Jason
Weston. 2024. Iterative reasoning preference opti-
mization. Advances in Neural Information Process-
ing Systems, 37:116617–116637.

Qwen, :, An Yang, Baosong Yang, Beichen Zhang,
Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan
Li, Dayiheng Liu, Fei Huang, Haoran Wei, Huan
Lin, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin
Yang, Jiaxi Yang, Jingren Zhou, and 25 oth-
ers. 2025. Qwen2.5 technical report. Preprint,
arXiv:2412.15115.

Rafael Rafailov, Archit Sharma, Eric Mitchell, Christo-
pher D Manning, Stefano Ermon, and Chelsea Finn.
2023. Direct preference optimization: Your language
model is secretly a reward model. In Thirty-seventh
Conference on Neural Information Processing Sys-
tems.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu,
Junxiao Song, Xiao Bi, Haowei Zhang, Mingchuan
Zhang, Y. K. Li, Y. Wu, and Daya Guo. 2024a.
Deepseekmath: Pushing the limits of mathemati-
cal reasoning in open language models. Preprint,
arXiv:2402.03300.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu,
Junxiao Song, Xiao Bi, Haowei Zhang, Mingchuan
Zhang, Y. K. Li, Y. Wu, and Daya Guo. 2024b.
Deepseekmath: Pushing the limits of mathemati-
cal reasoning in open language models. Preprint,
arXiv:2402.03300.

Avi Singh, John D Co-Reyes, Rishabh Agarwal, Ankesh
Anand, Piyush Patil, Xavier Garcia, Peter J Liu,
James Harrison, Jaehoon Lee, Kelvin Xu, Aaron T
Parisi, Abhishek Kumar, Alexander A Alemi, Alex
Rizkowsky, Azade Nova, Ben Adlam, Bernd Bohnet,
Gamaleldin Fathy Elsayed, Hanie Sedghi, and 21 oth-
ers. 2024. Beyond human data: Scaling self-training
for problem-solving with language models. Transac-
tions on Machine Learning Research. Expert Certifi-
cation.

Charlie Victor Snell, Jaehoon Lee, Kelvin Xu, and Avi-
ral Kumar. 2025. Scaling LLM test-time compute
optimally can be more effective than scaling param-
eters for reasoning. In The Thirteenth International
Conference on Learning Representations.

Zhengyang Tang, Xingxing Zhang, Benyou Wang, and
Furu Wei. 2024. Mathscale: scaling instruction tun-
ing for mathematical reasoning. In Proceedings of
the 41st International Conference on Machine Learn-
ing, ICML’24. JMLR.org.

Shi-Yu Tian, Zhi Zhou, Kun-Yang Yu, Ming Yang,
Lin-Han Jia, Lan-Zhe Guo, and Yu-Feng Li. 2025a.
Vc search: Bridging the gap between well-defined
and ill-defined problems in mathematical reasoning.
Preprint, arXiv:2406.05055.

5549

https://proceedings.neurips.cc/paper_files/paper/2022/file/18abbeef8cfe9203fdf9053c9c4fe191-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/18abbeef8cfe9203fdf9053c9c4fe191-Paper-Conference.pdf
[https://huggingface.co/AI-MO/NuminaMath-1.5](https://github.com/project-numina/aimo-progress-prize/blob/main/report/numina_dataset.pdf)
[https://huggingface.co/AI-MO/NuminaMath-1.5](https://github.com/project-numina/aimo-progress-prize/blob/main/report/numina_dataset.pdf)
[https://huggingface.co/AI-MO/NuminaMath-1.5](https://github.com/project-numina/aimo-progress-prize/blob/main/report/numina_dataset.pdf)
[https://huggingface.co/AI-MO/NuminaMath-1.5](https://github.com/project-numina/aimo-progress-prize/blob/main/report/numina_dataset.pdf)
[https://huggingface.co/AI-MO/NuminaMath-CoT](https://github.com/project-numina/aimo-progress-prize/blob/main/report/numina_dataset.pdf)
[https://huggingface.co/AI-MO/NuminaMath-CoT](https://github.com/project-numina/aimo-progress-prize/blob/main/report/numina_dataset.pdf)
[https://huggingface.co/AI-MO/NuminaMath-CoT](https://github.com/project-numina/aimo-progress-prize/blob/main/report/numina_dataset.pdf)
[https://huggingface.co/AI-MO/NuminaMath-CoT](https://github.com/project-numina/aimo-progress-prize/blob/main/report/numina_dataset.pdf)
https://doi.org/10.18653/v1/2024.findings-acl.958
https://doi.org/10.18653/v1/2024.findings-acl.958
https://doi.org/10.18653/v1/2024.findings-acl.958
https://aclanthology.org/2024.naacl-long.421/
https://aclanthology.org/2024.naacl-long.421/
https://aclanthology.org/2024.naacl-long.421/
https://arxiv.org/abs/2502.17419
https://arxiv.org/abs/2502.17419
https://arxiv.org/abs/2502.17419
https://openreview.net/forum?id=QNieOPt4fg
https://openreview.net/forum?id=QNieOPt4fg
https://arxiv.org/abs/2503.20783
https://arxiv.org/abs/2503.20783
https://arxiv.org/abs/2412.15115
https://openreview.net/forum?id=HPuSIXJaa9
https://openreview.net/forum?id=HPuSIXJaa9
https://arxiv.org/abs/2402.03300
https://arxiv.org/abs/2402.03300
https://arxiv.org/abs/2402.03300
https://arxiv.org/abs/2402.03300
https://openreview.net/forum?id=lNAyUngGFK
https://openreview.net/forum?id=lNAyUngGFK
https://openreview.net/forum?id=4FWAwZtd2n
https://openreview.net/forum?id=4FWAwZtd2n
https://openreview.net/forum?id=4FWAwZtd2n
https://arxiv.org/abs/2406.05055
https://arxiv.org/abs/2406.05055

Xiaoyu Tian, Sitong Zhao, Haotian Wang, Shuaiting
Chen, Yiping Peng, Yunjie Ji, Han Zhao, and Xian-
gang Li. 2025b. Deepdistill: Enhancing llm reason-
ing capabilities via large-scale difficulty-graded data
training. Preprint, arXiv:2504.17565.

Ye Tian, Baolin Peng, Linfeng Song, Lifeng Jin, Dian
Yu, Lei Han, Haitao Mi, and Dong Yu. 2024. Toward
self-improvement of llms via imagination, searching,
and criticizing. In Advances in Neural Information
Processing Systems, volume 37, pages 52723–52748.
Curran Associates, Inc.

Yuxuan Tong, Xiwen Zhang, Rui Wang, Ruidong Wu,
and Junxian He. 2024. Dart-math: Difficulty-aware
rejection tuning for mathematical problem-solving.
In Advances in Neural Information Processing Sys-
tems, volume 37, pages 7821–7846. Curran Asso-
ciates, Inc.

Songjun Tu, Jiahao Lin, Xiangyu Tian, Qichao Zhang,
Linjing Li, Yuqian Fu, Nan Xu, Wei He, Xiangyuan
Lan, Dongmei Jiang, and Dongbin Zhao. 2025.
Enhancing llm reasoning with iterative dpo: A
comprehensive empirical investigation. Preprint,
arXiv:2503.12854.

Haozhe Wang, Long Li, Chao Qu, Fengming Zhu, Weidi
Xu, Wei Chu, and Fangzhen Lin. 2025a. To code or
not to code? adaptive tool integration for math lan-
guage models via expectation-maximization. arXiv
preprint arXiv:2502.00691.

Haozhe Wang, Qixin Xu, Che Liu, Junhong Wu,
Fangzhen Lin, and Wenhu Chen. 2025b. Emergent
hierarchical reasoning in llms through reinforcement
learning. arXiv preprint arXiv:2509.03646.

Peiyi Wang, Lei Li, Zhihong Shao, Runxin Xu, Damai
Dai, Yifei Li, Deli Chen, Yu Wu, and Zhifang Sui.
2024a. Math-shepherd: Verify and reinforce LLMs
step-by-step without human annotations. In Proceed-
ings of the 62nd Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Pa-
pers), pages 9426–9439.

Xiyao Wang, Linfeng Song, Ye Tian, Dian Yu, Baolin
Peng, Haitao Mi, Furong Huang, and Dong Yu.
2024b. Towards self-improvement of llms via mcts:
Leveraging stepwise knowledge with curriculum pref-
erence learning. Preprint, arXiv:2410.06508.

Yifei Wang, Feng Xiong, Yong Wang, Linjing Li, Xi-
angxiang Chu, and Daniel Dajun Zeng. 2025c. Po-
sition bias mitigates position bias:mitigate position
bias through inter-position knowledge distillation.
Preprint, arXiv:2508.15709.

Ting Wu, Xuefeng Li, and Pengfei Liu. 2025. Progress
or regress? self-improvement reversal in post-
training. In The Thirteenth International Conference
on Learning Representations.

Boyang Xue, Qi Zhu, Hongru Wang, Rui Wang, Sheng
Wang, Hongling Xu, Fei Mi, Yasheng Wang, Lifeng
Shang, Qun Liu, and Kam-Fai Wong. 2025. Dast:

Difficulty-aware self-training on large language mod-
els. Preprint, arXiv:2503.09029.

An Yang, Beichen Zhang, Binyuan Hui, Bofei Gao,
Bowen Yu, Chengpeng Li, Dayiheng Liu, Jian-
hong Tu, Jingren Zhou, Junyang Lin, Keming Lu,
Mingfeng Xue, Runji Lin, Tianyu Liu, Xingzhang
Ren, and Zhenru Zhang. 2024. Qwen2.5-math tech-
nical report: Toward mathematical expert model via
self-improvement. Preprint, arXiv:2409.12122.

Minglai Yang, Ethan Huang, Liang Zhang, Mihai Sur-
deanu, William Wang, and Liangming Pan. 2025.
How is llm reasoning distracted by irrelevant context?
an analysis using a controlled benchmark. Preprint,
arXiv:2505.18761.

Qiying Yu, Zheng Zhang, Ruofei Zhu, Yufeng Yuan,
Xiaochen Zuo, Yu Yue, Tiantian Fan, Gaohong
Liu, Lingjun Liu, Xin Liu, Haibin Lin, Zhiqi Lin,
Bole Ma, Guangming Sheng, Yuxuan Tong, Chi
Zhang, Mofan Zhang, Wang Zhang, Hang Zhu,
and 16 others. 2025. Dapo: An open-source llm
reinforcement learning system at scale. Preprint,
arXiv:2503.14476.

Weizhe Yuan, Richard Yuanzhe Pang, Kyunghyun Cho,
Xian Li, Sainbayar Sukhbaatar, Jing Xu, and Jason
Weston. 2024. Self-rewarding language models. In
Proceedings of the 41st International Conference on
Machine Learning, ICML’24. JMLR.org.

Zheng Yuan, Hongyi Yuan, Chengpeng Li, Guanting
Dong, Keming Lu, Chuanqi Tan, Chang Zhou, and
Jingren Zhou. 2023. Scaling relationship on learning
mathematical reasoning with large language models.
Preprint, arXiv:2308.01825.

Eric Zelikman, Yuhuai Wu, Jesse Mu, and Noah Good-
man. 2022. STar: Bootstrapping reasoning with rea-
soning. In Advances in Neural Information Process-
ing Systems.

Weihao Zeng, Yuzhen Huang, Qian Liu, Wei Liu, Ke-
qing He, Zejun Ma, and Junxian He. 2025a. Simplerl-
zoo: Investigating and taming zero reinforcement
learning for open base models in the wild. Preprint,
arXiv:2503.18892.

Weihao Zeng, Yuzhen Huang, Lulu Zhao, Yijun Wang,
Zifei Shan, and Junxian He. 2025b. B-STar: Mon-
itoring and balancing exploration and exploitation
in self-taught reasoners. In The Thirteenth Interna-
tional Conference on Learning Representations.

Dan Zhang, Sining Zhoubian, Ziniu Hu, Yisong Yue,
Yuxiao Dong, and Jie Tang. 2024. ReST-MCTS*:
LLM self-training via process reward guided tree
search. In The Thirty-eighth Annual Conference on
Neural Information Processing Systems.

Hanning Zhang, Jiarui Yao, Chenlu Ye, Wei Xiong,
and Tong Zhang. 2025a. Online-dpo-r1: Unlocking
effective reasoning without the ppo overhead. Notion
Blog.

5550

https://arxiv.org/abs/2504.17565
https://arxiv.org/abs/2504.17565
https://arxiv.org/abs/2504.17565
https://proceedings.neurips.cc/paper_files/paper/2024/file/5e5853f35164e434015716a8c2a66543-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2024/file/5e5853f35164e434015716a8c2a66543-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2024/file/5e5853f35164e434015716a8c2a66543-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2024/file/0ef1afa0daa888d695dcd5e9513bafa3-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2024/file/0ef1afa0daa888d695dcd5e9513bafa3-Paper-Conference.pdf
https://arxiv.org/abs/2503.12854
https://arxiv.org/abs/2503.12854
https://aclanthology.org/2024.acl-long.510/
https://aclanthology.org/2024.acl-long.510/
https://arxiv.org/abs/2410.06508
https://arxiv.org/abs/2410.06508
https://arxiv.org/abs/2410.06508
https://arxiv.org/abs/2508.15709
https://arxiv.org/abs/2508.15709
https://arxiv.org/abs/2508.15709
https://openreview.net/forum?id=RFqeoVfLHa
https://openreview.net/forum?id=RFqeoVfLHa
https://openreview.net/forum?id=RFqeoVfLHa
https://arxiv.org/abs/2503.09029
https://arxiv.org/abs/2503.09029
https://arxiv.org/abs/2503.09029
https://arxiv.org/abs/2409.12122
https://arxiv.org/abs/2409.12122
https://arxiv.org/abs/2409.12122
https://arxiv.org/abs/2505.18761
https://arxiv.org/abs/2505.18761
https://arxiv.org/abs/2503.14476
https://arxiv.org/abs/2503.14476
https://arxiv.org/abs/2308.01825
https://arxiv.org/abs/2308.01825
https://openreview.net/forum?id=_3ELRdg2sgI
https://openreview.net/forum?id=_3ELRdg2sgI
https://arxiv.org/abs/2503.18892
https://arxiv.org/abs/2503.18892
https://arxiv.org/abs/2503.18892
https://openreview.net/forum?id=P6dwZJpJ4m
https://openreview.net/forum?id=P6dwZJpJ4m
https://openreview.net/forum?id=P6dwZJpJ4m
https://openreview.net/forum?id=8rcFOqEud5
https://openreview.net/forum?id=8rcFOqEud5
https://openreview.net/forum?id=8rcFOqEud5

Jia Zhang, Chen-Xi Zhang, Yao Liu, Yi-Xuan Jin, Xiao-
Wen Yang, Bo Zheng, Yi Liu, and Lan-Zhe Guo.
2025b. D3: Diversity, difficulty, and dependability-
aware data selection for sample-efficient llm instruc-
tion tuning. Preprint, arXiv:2503.11441.

Weiyao Zhu, Ou Wu, Fengguang Su, and Yingjun Deng.
2024. Exploring the learning difficulty of data: The-
ory and measure. ACM Trans. Knowl. Discov. Data,
18(4).

5551

https://arxiv.org/abs/2503.11441
https://arxiv.org/abs/2503.11441
https://arxiv.org/abs/2503.11441
https://doi.org/10.1145/3636512
https://doi.org/10.1145/3636512

A Experimental Settings

This section offers comprehensive descriptions of
the datasets, baselines, and implementations.

A.1 Dataset Details

NuminaMath-1.5 (Li et al., 2024a) is the second
iteration of the widely used NuminaMath (Li et al.,
2024b) dataset. This dataset provides a substantial
collection of high-quality data suitable for post-
training applications, comprising approximately
900,000 competition-level mathematics problems.
Each problem is accompanied by a detailed solu-
tion presented in a Chain of Thought (CoT) format,
which delineates the step-by-step reasoning pro-
cess. The dataset encompasses a broad spectrum
of mathematical content, drawing from diverse
sources such as Chinese high school mathemat-
ics exercises and problems featured in prominent
US and international mathematics olympiad com-
petitions. The data collection primarily involved
extracting content from online examination paper
PDFs and mathematics discussion forums, thereby
ensuring both the diversity and rigor of the included
mathematical material.

A.2 Implementation Details

We conducted both data sampling and model evalu-
ation using the vLLM framework (Kwon et al.,
2023). During sampling, we set the tempera-
ture to 0.7. All models underwent full-parameter
fine-tuning. Specifically, we used a learning rate
of 5 × 10−7 for Qwen2.5-7B, while we trained
Qwen2.5-Math-7B, Qwen2.5-3B, DeepSeek-Math-
7B, and Phi-3.5-Instruct with a learning rate of
1 × 10−6. Common hyperparameters included a
maximum sequence length of 2048, a coefficient
β of 0.1, and a batch size of 256. For models in-
corporating a warmup phase, τl and τh were set to
0.15 and 0.65, respectively. In the "Zero-Training"
scenario, τl and τh were assigned values of 0.15
and 0.4, respectively.

A.3 Baseline Details

A.3.1 Baselines on Qwen2.5-Math-7B
Qwen2.5-Math-7B-Instruct. (Qwen et al., 2025)
An instruct model in the Qwen2.5 series with
strong mathematical reasoning capabilities.
SimpleRL. (Zeng et al., 2025a) A reinforcement
learning framework that enables zero-RL training
from a base model, utilizing simple rule-based re-
wards to improve reasoning accuracy.

Algorithm 1: HS-STAR
Input: Iterations T , initial policy modelM0, dataset

{Dt}Tt=1, sampling budgets np, nt, functions
V (x, r), S(x, r), thresholds τh, τl.

Output: Optimized modelMT .
1 for t = 0 to T − 1 do
2 Initialize Dpairs

t ← ∅, DB
t ← ∅

3 foreach x ∈ Dt do
4 Rp

t,x ← {ri ∼Mt(x)}np

i=1

5 Calculate ϕa(Rp
t,x) =

1
np

∑
i V (x, ri) and

ϕr(Rp
t,x) =

1
np

∑
i S(x, ri)

6 if x is classified as Boundary then
7 Add x to DB

8 end
9 end

10 if |DB| > 0 then
11 nr ←

[
(nt−np)×|D|

|DB|

]

12 foreach x ∈ DB do
13 Generate responses:

Rr
t,x ← {ri ∼Mt(x)}nr

i=1

14 end
15 end
16 foreach x ∈ DB do
17 Rt,x ←Rp

t,x ∪Rr
t,x

18 PartitionRt,x intoRcorr
t,x andRincorr

t,x

19 SortRcorr
t,x andRincorr

t,x in descending order
20 k ← min(|Rcorr

t,x |, |Rincorr
t,x |)

21 Sample k pairs from top-k responses:
Dpairs

t ← Dpairs
t ∪ {(rcorr

(i) , r
incorr
(i))}ki=1

22 end
23 UpdateMt+1 using DPO loss on Dpairs

t

24 end
25 returnMT

PURE-VR. (Cheng et al., 2025) PURE is a rein-
forcement learning approach for LLM fine-tuning
that replaces the standard sum-form credit assign-
ment with a novel min-form, where the value func-
tion is defined as the minimum of future rewards.

DPO-VP. (Tu et al., 2025) DPO-VP enhances LLM
reasoning via iterative preference learning with
DPO. It iteratively refines the generator and reward
model using simple verifiable rewards, achieving
efficient performance comparable to RL.

STAR-RFT. STAR-RFT is an iterative self-
training method. At each iteration, it filters and
selects correct answers based on their correctness to
use for further training, thereby effectively achiev-
ing self-improvement.

STAR-DPO. STAR-DPO is an iterative self-
training method based on DPO. In each iteration,
it partitions the generated responses based on their
correctness and sorts the samples by reward to con-
struct a preference dataset for DPO optimization.

5552

Table 6: Prompt Templates for Stepwise Solutions Construction.

Category Prompt Template

Reformat Please reformat the provided solution for the given problem by dividing it into multiple detailed steps.
These steps must explicitly present the final answer within \boxed{}. For each step, enrich the content
with the minimal necessary details to enhance clarity. Ensure that any added information is precise and
unambiguous to avoid potential misunderstandings. Return the response in explicit JSON format as
follows:
[

"[STEP 1 CONTENT]",
"[STEP 2 CONTENT]",
//Continue for each step...

]

Post-process Please check and fix any LaTeX formatting errors in the following mathematical solution step. Return
only the corrected step with proper LaTeX syntax.

Table 7: Detailed Results on HS-STAR Invariants.

Estimation Strategy Iteration GSM8K MATH
500

Olympiad
Bench

Minerva
Math AMC23 College

Math AIME24 Avg.

HS-STAR-SDE (Oracle)
1 88.8 71.8 34.4 28.3 44.8 45.2 7.3 45.8
2 90.2 71.6 37.2 30.9 44.2 47.2 8.3 47.1
3 90.6 73.8 34.5 32.7 46.2 46.7 10.9 47.9

STAR-DPO
1 87.4 69.8 30.8 25.4 43.7 45.4 6.7 44.2
2 87.3 68.4 32.4 29.8 44.1 45.3 8.3 45.1
3 88.6 69.8 33.3 29.8 44.3 45.7 8.3 45.7

HS-STAR-Acc
1 87.2 70.4 31.7 27.9 42.7 46.0 7.0 44.7
2 88.6 71.8 32.3 32.0 45.1 45.7 8.2 46.2
3 89.8 71.0 35.4 29.8 46.9 46.5 8.3 46.8

HS-STAR-Reward
1 87.6 70.4 33.5 28.3 45.1 45.3 7.6 45.4
2 89.0 70.2 33.6 31.2 45.2 46.0 8.9 46.3
3 89.3 73.8 35.4 28.3 44.5 46.8 9.0 46.7

1 88.0 69.8 33.3 29.8 45.2 46.0 7.3 45.6
HS-STAR (Ours) 2 89.5 71.8 34.2 31.2 45.7 46.0 7.8 46.6

3 90.3 72.8 35.9 31.6 46.5 46.4 8.9 47.5

A.3.2 HS-STAR Variants

STAR-DPO. This baseline configuration employs
standard sampling techniques followed by iterative
preference optimization.
HS-STAR-Acc. A variant of HS-STAR. In the
Difficulty Estimation phase, the estimation is solely
based on the accuracy of responses sampled dur-
ing Pre-Sampling. Subsequently, Re-Sampling is
performed on the identified boundary examples. Fi-
nally, the collected data from both phases is utilized
for preference optimization.
HS-STAR-Reward A variant of HS-STAR. In
the Difficulty Estimation phase, the estimation is
solely based on the reward of responses sampled
during Pre-Sampling. Subsequently, Re-Sampling
is performed on the identified boundary examples.
Finally, the collected data from both phases is uti-
lized for preference optimization.

HS-STAR-SDE A variant of HS-STAR. In the
Difficulty Estimation phase, the estimation is based
on SDE method. Subsequently, Re-Sampling with
the full sampling budget is conducted on the iden-
tified boundary examples. Finally, the collected
data from both phases is utilized for preference
optimization.

A.3.3 Re-Sampling Strategies
w/o Re-Sampling. This configuration serves as
a standard baseline, employing conventional sam-
pling techniques followed by iterative preference
optimization without difficulty-based re-sampling.
Re-Sampling on Inlier. Following prior difficulty
estimation in the pre-sampling phase, remaining
sampling efforts are exclusively focused on Inlier
samples for subsequent iterative preference opti-
mization.
Re-Sampling on Outlier. Following prior diffi-

5553

Table 8: Detailed Ablation Study on Re-sampling Strategies.

Re-Sampling Strategy Iteration GSM8K MATH
500

Olympiad
Bench

Minerva
Math AMC23 College

Math AIME24 Avg.

w/o Re-Sampling
1 87.4 69.8 30.8 25.4 43.7 45.4 6.7 44.2
2 87.3 68.4 32.4 29.8 44.1 45.3 8.3 45.1
3 88.6 69.8 33.3 29.8 44.3 45.7 8.3 45.7

Inlier
1 86.7 65.8 30.5 23.2 39.0 43.4 5.7 42.0
2 87.3 67.4 30.8 24.6 40.3 44.4 6.1 43.0
3 87.2 70.0 32.1 27.6 41.2 45.2 6.2 44.2

Outlier
1 85.7 66.2 29.8 25.4 36.1 42.7 6.2 41.7
2 86.4 67.4 29.6 25.7 37.3 42.2 5.0 41.9
3 86.1 67.2 30.4 25.0 37.7 43.2 5.7 42.2

Inlier + Boundary
1 87.7 69.8 33.8 27.6 44.9 45.3 8.1 45.3
2 89.2 71.6 35.1 29.4 44.9 45.7 8.8 46.4
3 89.5 72.0 36.1 33.1 45.0 46.5 8.5 47.2

Boundary + Outlier
1 87.1 70.6 32.0 24.6 42.5 45.2 7.2 44.2
2 87.1 69.6 32.1 27.6 43.2 45.5 8.1 44.7
3 88.4 71.2 33.6 30.5 44.6 45.7 8.2 46.0

Inlier + Outlier
1 86.8 65.8 30.2 24.6 38.5 42.8 4.9 41.9
2 86.0 66.8 28.9 23.5 37.3 43.3 4.8 41.5
3 86.1 67.8 30.4 25.4 40.4 43.7 6.1 42.8

1 88.0 69.8 33.3 29.8 45.2 46.0 7.3 45.6
Boundary 2 89.5 71.8 34.2 31.2 45.7 46.0 7.8 46.6

3 90.3 72.8 35.9 31.6 46.5 46.4 8.9 47.5

culty estimation in the pre-sampling phase, remain-
ing sampling efforts are exclusively focused on
Outlier samples for subsequent iterative preference
optimization.

Re-Sampling on Inlier + Outlier. Following prior
difficulty estimation in the pre-sampling phase, re-
maining sampling efforts are allocated to both In-
lier and Outlier samples for subsequent iterative
preference optimization.

Re-Sampling on Inlier + Boundary. Follow-
ing prior difficulty estimation in the pre-sampling
phase, remaining sampling efforts are allocated to
both Inlier and Boundary samples for subsequent
iterative preference optimization.

Re-Sampling on Outlier + Boundary. Follow-
ing prior difficulty estimation in the pre-sampling
phase, remaining sampling efforts are allocated to
both Outlier and Boundary samples for subsequent
iterative preference optimization.

Re-Sampling on Boundary (Ours). Following
prior difficulty estimation in the pre-sampling
phase, remaining sampling efforts are exclusively
focused on Boundary samples for subsequent itera-
tive preference optimization.

B Algorithm

The overall procedure of our algorithm is illustrated
in Algorithm 1.

C Prompt Template

To construct the stepwise warmup dataset, we lever-
aged the MATH dataset (Hendrycks et al., 2021)
and prompted GPT-4o-2024-08-06 to systemati-
cally rewrite each solution in a JSON format. Sub-
sequently, these rewritten solutions were separated
by the delimiter “\n\n”. The prompt template used
for this process is presented in Table 6. We initially
employed a Reformat prompt to guide the model in
restructuring the solutions in json format. In cases
where the Reformat attempt failed, a Post-process
prompt was utilized to further refine or reshape
the output. Finally, the resulting data was filtered
based on the provided answer.

D Additional Experimental Results

D.1 Iterative Results on Qwen2.5-7B

As illustrated in Fig. 7, HS-STAR consistently out-
performed all baseline methods across all evalu-
ated benchmarks. As the number of iterations in-
creased, the performance of all methods gradually

5554

M0 M1 M2 M3

84

86

88

90

GSM8K

M0 M1 M2 M3
64

66

68

70

72

MATH500

M0 M1 M2 M3

25.0

27.5

30.0

32.5

35.0

Olympiadbench

M0 M1 M2 M3

20

25

30

Minerva-Math

M0 M1 M2 M3

35.0

37.5

40.0

42.5

45.0

47.5
AMC23

M0 M1 M2 M3

37.5

40.0

42.5

45.0

47.5
College-Math

M0 M1 M2 M3

5

6

7

8

9

AIME24

M0 M1 M2 M3

40

42

44

46

48
Avg.

Ac
cu

ra
cy

 (
%

)

STaR-RFT STaR-DPO HS-STaR (Ours) SFT

Figure 7: Comparison of the performance improvements
of Qwen2.5-7B across three training iterations.

improved; notably, HS-STAR attained the high-
est M3 accuracy on every benchmark. Moreover,
the overall average accuracy highlights that HS-
STAR delivers the most substantial improvement
compared to other approaches.

D.2 Results on HS-STAR Invariants
As shown in Table 7, we additionally present the
performance of various Difficulty Estimation abla-
tion strategies across different evaluation datasets
at each iterative round.

D.3 Results on Re-sampling Strategies
As shown in Table 8, we also provide the perfor-
mance of various difficulty Re-Sampling ablation
strategies across different evaluation datasets at
each iteration round.

5555

