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Abstract

Stance detection aims to identify the attitude
expressed in text towards a specific target. Re-
cent studies on zero-shot and few-shot stance
detection focus primarily on learning general-
ized representations from explicit targets. How-
ever, these methods often neglect implicit yet
semantically important targets and fail to adap-
tively adjust the relative contributions of text
and target in light of contextual dependencies.
To overcome these limitations, we propose a
novel two-stage framework: First, a data aug-
mentation framework named Hierarchical Col-
laborative Target Augmentation (HCTA) em-
ploys Large Language Models (LLMs) to iden-
tify and annotate implicit targets via Chain-of-
Thought (CoT) prompting and multi-LLM vot-
ing, significantly enriching training data with
latent semantic relations. Second, we intro-
duce DyMCA, a Dynamic Multi-level Context-
aware Attention Network, integrating a joint
text-target encoding and a content-aware mech-
anism to dynamically adjust text-target con-
tributions based on context. Experiments on
the benchmark dataset demonstrate that our ap-
proach achieves state-of-the-art results, con-
firming the effectiveness of implicit target aug-
mentation and fine-grained contextual model-
ing. Our code is publicly available at https:
//github.com/EliaukoaYoW/DyMCA.

1 Introduction

Stance detection aims to identify the stance (e.g.,
Favor, Against, or Neutral ) that a speaker holds to-
ward a specific target (e.g., a person, policy, or con-
cept) within a text (Mohammad et al., 2016; Kiicgiik
and Can, 2020; ALDayel and Magdy, 2021). By
uncovering latent attitudinal tendencies in the text,
stance detection facilitates a deeper understanding
of textual information and is particularly crucial in
analyzing significant events, such as public policy
debates or presidential elections. Early research
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Figure 1: Example from VAST illustrating the omission
of implicit targets. Explicitly discussed targets with
clear textual cues are annotated, whereas implicit but
semantically important targets are overlooked.

in stance detection can primarily be divided into
two categories: in-target stance detection and cross-
target stance detection. In-target stance detection
focuses on in-depth analysis of a specific target
(Hasan and Ng, 2014; Mohammad et al., 2016;
Graells-Garrido et al., 2020), where the data for
model training and testing both share identical tar-
get (e.g., “Donald Trump”). Cross-target stance
detection (Augenstein et al., 2016; Xu et al., 2018;
Wei and Mao, 2019), which emphasizes transfer
learning between semantically related but distinct
targets (e.g., training on “Donald Trump” and test-
ing on “Hillary Clinton”). However, it is difficult
to acquire all possible (in-target) or related (cross-
target) targets in real scenarios. Therefore, Allaway
and McKeown (2020) introduces zero-shot stance
detection (ZSSD) and few-shot stance detection
(FSSD), which aim to predict stances of unseen
targets with little or no annotated data, promoting
the field toward more practical direction.

Current research in ZSSD and FSSD primarily
focus on learning stance representations of known
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targets through various techniques, including atten-
tion mechanisms (Allaway and McKeown, 2020),
knowledge graphs (Liu et al., 2021), and con-
trastive learning (Liang et al., 2022a), and then
generalize the learned features to unseen targets.
While these approaches have achieved notable suc-
cess, two fundamental limitations remain. Issuel:
Under-utilization of Implicit Targets. Existing
dataset annotation guidelines prioritize explicitly-
discussed targets with clear textual cues, systemati-
cally omitting implicitly-inferred yet semantically
crucial targets (e.g., the target “democracy” in Fig-
ure 1). This omission may hamper the model’s
ability to learn rich semantic representations, weak-
ening its capacity for semantic inference, especially
in handling indirect scenarios like metaphors or
irony. Issue2: Insufficient Contextual Adapta-
tion Capability of Models. As stance prediction
inherently relies on both the text and its associ-
ated target, it is imperative to dynamically calibrate
their respective roles according to contextual de-
pendencies. For instance, when a text explicitly ex-
presses its stance, the target information may serves
only as an auxiliary cue, while in implicit stance
cases, the target’s semantic guidance becomes cru-
cial. However, existing state-of-the-art methods
(Li et al., 2023) typically employ fixed-weight in-
teractions, which fail to capture such contextual
variation. This limitation reduces the adaptability
of the models and hinders their ability to generalize
to unseen targets.

To address the aforementioned issues, we pro-
pose solutions along two complementary axes: tar-
get augmentation and model design.

For issuel, we propose an LLM-based HCTA
(Hierarchical Collaborative Target Augmentation)
framework that leverages the semantic reasoning
capabilities of Large Language Models (LLMs) to
automatically discover and utilize implicit target
information in existing dataset. The framework
operates through two collaborative stages: First,
we employ Chain-of-Thought (CoT) prompting to
guide an LLM in identifying implicit targets from
the given text that were missed during annotation;
Then multiple LLMs work in parallel to predict
stances for these newly identified targets, with their
predictions subsequently aggregated via voting to
mitigate individual LLM bias. This strategy facil-
itates to make previously overlooked information
accessible for model training, while enhancing the
model’s semantic reasoning capabilities.

For issue2, we propose DyMCA (Dynamic

Multi-level Context-aware Attention Network) to
enhance the contextual adaptability of text-target
interactions. DyMCA adopts a progressive strat-
egy that transitions from global comprehension to
localized refinement: (1) The Global module con-
structs a joint semantic representation to captures
holistic text-target relations; (2) The Local module
introduces a Content-aware Mechanism (CM) to
dynamically adjust the relative influence of text and
target according to contextual demands. This hier-
archical architecture not only enhances the model’s
sensitivity to contextual variation but also improves
its generalization to unseen targets while maintain-
ing robust performance under resource-constrained
conditions.
Our contributions are summarized as follows:

* We propose a novel LLM-driven framework
(HCTA) that automatically identifies and
leverages implicit target information through
CoT prompting and multi-LLM voting !.

* We propose the Dynamic Multi-level Context-
aware Attention Network (DyMCA) that
dynamically adjusts text-target interactions
weights through fine-grained contextual mod-
eling, enabling adaptive allocation of text and
target influence based on context, improving
model performance.

» Extensive experiments on benchmark datasets
show that our proposed methods achieves
state-of-the-art performance on both ZSSD
and FSSD tasks. Furthermore, we extend our
methods to related challenges to validate their
versatility and effectiveness.

2 Related Work

Zero-Shot and Few-Shot Stance Detection focuses
on identifying stances toward unseen or rarely
seen targets. Allaway and McKeown (2020) con-
structed the VAried Stance Topics (VAST) dataset
for ZSSD, which contains thousands of targets
spanning diverse domains including politics and ed-
ucation. Building upon VAST, Allaway and McKe-
own (2020) employed an unsupervised clustering
method to learn generalizable target representa-
tions. Liu et al. (2021) incorporated a common-
sense knowledge graph and utilized Graph Convo-
lution Networks (GCN) to model implicit connec-

'To the best of our knowledge, this represents the first

work in stance detection that explicitly addresses and utilizes
implicit target information requiring deep semantic reasoning.
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Figure 2: Overview of the proposed framework and model. (a) and (b) illustrate the HCTA process, where LLMs are
guided to identify implicit targets and collaboratively assign pseudo-labels via prompt-based reasoning. (c) shows
the DyMCA architecture, which employs a global awareness to localized focus for context-aware stance prediction.

tions between texts and targets. Liang et al. (2022a)
leveraged contrastive learning to model both target-
invariant and target-specific stance features. De-
spite progress in modeling unseen targets, a key
limitation in ZSSD remains the limited availability
of annotated data. To alleviate this, recent work has
turned to data augmentation as a promising direc-
tion. Zhang et al. (2023) constructed augmented in-
stances by extracting target-relevant text segments.
Li et al. (2023) proposed extracting additional tar-
gets via small pre-trained model and assigns pseudo
labels through a self-training. Most recently, Zhang
et al. (2024) utilized LLMs to extract target-text
relational knowledge for context enrichment. No-
tably, our work makes the first systematic attempt
to leverage LLMs for discovering implicit targets
and corresponding underlying stance information
for enhanced model training. This fundamentally

differs from prior approaches by: (1) leveraging
CoT reasoning to identify annotation-omitted yet
semantically crucial implicit targets, and (2) estab-
lishing a multi-LLMs collaborative framework to
ensure prediction reliability, ultimately advancing
both performance and generalization.

3 Methods

3.1 Task Description

Formally, let D = {(x;,t;, ;) f\i 1} denotes the
training dataset which contains N examples, where
x; 1s a text, ¢; is the corresponding target, and y; is
the associated stance label. The goal of the zero-
shot and few-shot stance detection is to infer stance
label y; given (x;,t;) pairs, where zero-shot as-
sumes that test examples are entirely unseen during
training, whereas few-shot allows limited.
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Text

Target

Regulation of corporations has been subverted by corporations. States that
incorporate corporations are not equipped to regulate corporations that are

regulation
political process

rich enough to influence elections, are rich enough to muster a legal team that

can bankrupt the state. Money from corporations and their principals cannot
be permitted in the political process if democracy is to survive.

democracy
legal system

Table 1: Sample Predictions using LLM for Implicit Target Extraction. This table compares the performance of the
model in extracting implicit targets with and without the use of CoT. The target is highlighted as: Without CoT ,

With CoT . Best viewed in color.

3.2 LLM-driven Hierarchical Collaborative
Target Augmentation

To mitigate the under-utilization of implicit target
information in the dataset, we propose a Hierarchi-
cal Collaborative Target Augmentation framework,
which leverages LLMs’ superior semantic reason-
ing capabilities to identify and exploit implicit tar-
get information. The framework comprises two
main stages: Implicit Target Extraction and Stance
Prediction via LLM Collaboration.

Implicit Target Extraction (ITE): We employ
CoT prompting (Wei et al., 2022) to guide an
LLM in discovering semantically but annotation-
omitted targets. As demonstrated in Table 1, in a
text discussing “corporations”, the LLM equipped
with CoT reasoning significantly outperforms its
non-CoT counterpart, successfully identifying im-
plicit targets like “democracy” that lack explicit
textual cues but maintain crucial semantic rele-
vance. This process generates a augmented dataset
Drrg = {(z4,t;)}, where each original text z;
is paired with one or more implicit targets {¢;}.
While these text-target pairs lack initial stance la-
bels, they capture valuable latent semantic relation-
ships that prove essential for following module.

Stance Prediction via LLM Collaboration:
For each text-target pair (x;,t;) € Dirg, we em-
ploy multiple LLMs to predict its stances. However,
prior studies indicate that individual LLMs may in-
troduce the bias (Gongalves and Strubell, 2023).
To mitigate the such biases, we adopt a multi-LLM
voting strategy: L distinct LLMs independently
predict stances through customized prompts:

s,ﬁj = LLM* (z;, t;, prompt) (1)
where sf ; 1s the stance predicted by the k-th LLM

and k € ’{1, 2,---, L}. The resulting predictions
are aggregated using a majority voting to produce

pseudo-labels s; ; :

L

8i,j = argmaxycy ZH(Sﬁj =s) (2)
k=1

where ) € {Favor, Against, Neutral} denotes the
set of predefined stance labels and I(-) is the in-
dicator function. To ensure label quality, text-
target pairs without clear consensus (fewer than
L/2 votes) on the predicted label are discarded.
The remaining instances are used to construct the
final augmented dataset Diie™ = {(xi,t;,57;)},
which incorporates previously underutilized im-
plicit targets while maintaining annotation reliabil-
ity. This enriched augmented dataset significantly
improves the model’s semantic inference, thereby
improving the model’s generalization to complex
semantic scenarios.

3.3 Dynamic Multi-level Context-aware
Attention Network (DyMCA)

Existing approaches for ZSSD and FSSD predom-
inantly adopt fixed-weight text-target interaction
processes, which fail to adapt to contextual dynam-
ics (Zhang et al., 2023; Li et al., 2023). To ad-
dress this limitation, We propose the DyMCA that
enhances contextual adaptability by progressively
transitioning from global understanding to local
adjustment. As illustrated in Figure 2, DyMCA’s
architecture comprises three key modules: Joint
Text-Target Representation, Content-aware Mecha-
nism and Stance Predictor.

Joint Text-Target Representation (JTTR): To
establish a holistic semantic basis, we first concate-
nate the text sequence X and target sequence T'
along the token dimension, and then passed through
the BART (Lewis et al., 2019) encoder to obtain a
joint contextual token representations:

[hiext; hiarget] = Encoder([.X; T7) 3)
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where [; | denotes concatenation along the token
sequence dimension. This yields text and target rep-
resentations heeye € REe ¥4 and hiarget € R Liargec <
both enriched with mutual contextual priors respec-
tively. Liext and Liarger being their respective se-
quence lengths, and d represents the hidden di-
mension size. For implementation, sequences are
padded to a maximum length L,,x for efficient
computation.

Content-aware Mechanism (CM): Stance pre-
diction requires not only an comprehensive under-
standing but also the capacity to regulate how the
text-target respectively contribute to the stance deci-
sion. To address this need, we propose CM, which
dynamically adjust the contributions of the text and
target according to their contextual relevance.

Specifically, we first concatenate the text and
target representations to compute a relevance score
that reflects indicates the extent to which the stance
can be directly inferred from the text:

heoncat = heext @ htarget (4)

where hconcat € R??. This joint representation is
then fed into a single-layer perceptron with a sig-
moid activation:

w = sigmoid (Wheoncat + b) 5)

where W € R'24 p ¢ R. The resulting scalar
w € [0, 1] represents the relative contribution of the
text. The final fused representation is then obtained
by adaptively weighting text and target:

F=w- htext + (1 - w) : htarget + htarget (6)

This adaptive fusion enables the model to contex-
tually prioritize either the text or target. Moreover,
the residual target term serves as a stable semantic
anchor that supports reliable inference even when
stance expressions are ambiguous.

Stance Predictor: A classifier transforms the
fused representation F into stance probability
scores:

p = Classifier(F) 7

Where p € R3 represents the predicted probabili-
ties over the three stance classes (Against, Favor,
Neutral).

Training Phase: The mode optimization em-
ploys multi-class cross-entropy:

N
1 i i
£=—N§;y“log<p“> ®)

Train Dev  Test
# Examples 13,477 2,062 3,006
# Unique Comments 1,845 682 786
# Zero-shot Topics 4,003 383 600

# Few-shot Topics 638 114 159

Table 2: Statistics of VAST Dataset.

where p() represents the predicted probability for
the i-th stance category, y(*) indicates the corre-
sponding ground-truth label, and N specifies the
predefined number of stance categories. the model
is trained on a mixture of original annotations D,

. inal
and augmented instances Djz .

Inference phase: The augmented data D{lfg“l
is only used during training, while model evalua-
tion is conducted solely on the original annotated
datasets Dgey and Dieg to assess stance prediction

performance.

4 Experiments

4.1 Dataset and Evaluation Metrics

We evaluate our model on the VAried Stance Topics
(VAST) dataset, a large-scale benchmark with di-
verse targets for ZSSD and FSSD (Allaway and
McKeown, 2020). The statistics of VAST are
demonstrated in Table 2. Following the previous
work (Allaway and McKeown, 2020), the macro
average of F1-score is adopted as evaluation metric.

4.2 Experimental Settings

We conduct all experiments on a single NVIDIA
RTX A6000 GPU. For implicit target extrac-
tion, we employ GPT-40°. For stance prediction,
we leverage multiple LLMs, including GPT-4o,
DeepSeek-V3? and Qwen-Max* to independently
infer stance labels. We adopt the encoder of the
BART? model pretrained on the MNLI dataset
(Williams et al., 2018) as the Encoder. The learning
rates of the Encoder and fully-connected layers are
set to 2e-5 and 1e-3. AdamW (Loshchilov and Hut-
ter, 2017) is utilized as the optimizer with a weight
decay of le-4. The batch-size is 64, the maximum
sequence length is 200 and hidden dimension of
1024.

We compare our model with several state-of-the-
art baselines into two groups:

Zhttps://chatgpt.com/
3https://platform.deepseek.com/
*https://bailian.console.aliyun.com/
>https://huggingface.co/facebook/bart-large-mnli
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Zero-Shot Few-Shot ALL
Model
Con Pro Neu ALL Con Pro Neu ALL Con Pro Neu ALL
BiCond ! 0475 0459 0349 0427 0463 0454 0259 0392 0468 0457 0306 0410
Cross-Net 0434 0462 0404 0434 0505 0.508 0410 0474 0471 0486 0408  0.455
BERTjoint? | 0.584 0546 0853 0660 0597 0543 0796 0.646 0591 0545 0.823  0.653
TGA-Net ! 0.585 0.568 0.858 0.666 0.595 0.589 0.805 0.663 0.590 0.573 0.831  0.665
"PTHCL® 0.617 0635 089.6 0716 0623 0670 0843 0712 - - -
JointCL ° 0.649 0632 0889 0723 0632 0.667 0846 0.715 - - - -
DyMCA w/o HCTA  0.735 0.726 0916 0.792 0.708 0.676 0.871 0.751 0.715 0.666 0.893  0.758
SEKT # 0442 0504 0308 0418 0479 0510 0215 0474 0462 0507 0263 0411
CKE-Net 0.612 0612 0880 0702 0.622 0.644 0.835 0701 0617 0.629 0.857 0.701
BS-RGCN ¢ 0.674 0.608 0.895 0.726 0.665 0.600 0.839 0702 0.669 0.604 0.866 0.713
"CRMTR® 0652 0601 0.886 0713 0638 0636 0860 0712 0645 0620 0873 0713
TTS? 0.751 0725 0925 0.801 0.684" 0.669" 0.878" 0.744" 0.696" 0.684T 0.8937 0.758"
LKI-BART® 0751 0.729 0.907 0.796 - - - - - - - -
TTS with HCTA 0.755 0734 0921 0.803 0.692 0.691 0883 0755 0.712 0.694 0.893 0.766
DyMCA with HCTA 0.758 0.746* 0.925 0.810* 0.702* 0.719* 0.891 0.771* 0.723* 0.705* 0.899 0.776 *

Table 3: Performance comparison of models on stance detection across zero-shot, few-shot and all settings. b
denotes results are taken from (Liu et al., 2021), # are taken from (Zhang et al., 2023), T indicates results from
our reproduction, ” are taken from the original papers and * improves the best baseline at p < 0.05 with paired
t-test. Results are highlighted with blue (1) for improvements, purple (—) for stable and red ({) for degradations

relative to corresponding baselines. Best viewed in color.

Zero-Shot 10% Train

Model

Con Pro Neu ALL
BiCond * 0401 0298 0346 0.348
Cross-Net ! 0.329 0.373 0.385 0.362
TGA-Net ! 0.582 0476 0.864 0.641
BERT-joint 0.552 0496 0.888 0.645
TTS & 0.721 0.719 0.913 0.784
DyMCA 0.741 0.732 0.908 0.794
"TTS with HCTA  0.735  0.727 0916 0.793
DyMCA with HCTA 0.747 0.738 0.919 0.801

Table 4: Zero-Shot 10% Train. ? denotes numbers are
taken from (Li et al., 2023).

(1) Models without External Information: Bi-
Cond (Augenstein et al., 2016) and CrossNet (Xu
et al., 2018) predict the class label based on the con-
ditional encoding of the BILSTM model. BERT-
joint (Allaway and McKeown, 2020)and TGA-Net
(Allaway and McKeown, 2020) encode the texts
and targets using the BERT model, followed by
classification with two fully-connected layers. PT-
HCL (Liang et al., 2022a) and JointCL (Liang
et al., 2022b) adopt a contrastive learning strategy
to mine the relationships and differences within
stance features.

(2) Models with External Information: SEKT
(Zhang et al., 2020), CKE-Net (Liu et al., 2021)
and BS-RGCN (Luo et al., 2022) apply the GCN
to incorporate external knowledge into the stance

detection process. CR-MTR (Zhang et al., 2023)
and TTS (Li et al., 2023) both devise custom-made
augmentation strategies from diverse dimensions.
LKI-BART (Zhang et al., 2024) integrates contex-
tual knowledge generated by LLM.

4.3 Results

4.3.1 Results of Different Scenarios

We conduct comprehensive evaluations of our pro-
posed DyMCA across three distinct scenarios:
Zero-Shot, Few-Shot and All. The overall results
of our model and main baselines are summarized
in Table 3, our model achieves state-of-the-art per-
formance with macro F1-scores of 0.81, 0.771 and
0.776 respectively, representing improvements of
1.12%, 3.63% and 2.37 % over the strongest com-
petitor (TTS). Our analysis reveals three key find-
ings:

First, compared to models without leveraging
external knowledge or augmented strategy (shown
in the first block of Table 3) DyMCA without
HCTA strategy achieves a remarkable 9.5% im-
provement in zero-shot performance over the best
competitor in this category. This highlights the
critical role of dynamic contribution regulation and
demonstrates DyMCA’s ability to adaptively adjust
its focus under different contexts, thereby enhanc-
ing overall performance.

Second, when incorporating HCTA strategy (re-
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Model Zero-Shot Few-Shot ALL
CR-MTR 0.713 0.712 0.713
TTS 0.801 0.744 0.758
LKI-BART 0.796 - -
DyMCA with HCTA 0.810 0.771 0.776
“HCTA
w/o All 0.792 0.751 0.758
w/o CoT 0.796 0.753 0.762
w/o Vote 0.793 0.746 0.754
' Model Architecture
w/o JTTR 0.791 0.753 0.766
w/o CM 0.787 0.756 0.751
- residual target 0.790 0.757 0.757

Table 5: Ablation study of HCTA framework and
DyMCA architecture. ‘w/o All’ removes the HCTA
entirely; ‘w/o CoT’ excludes Chain-of-Thought in im-
plicit target extraction; ‘w/o Vote’ uses a single model
for stance prediction; ‘w/o JTTR’ removes Joint Text-
Target Representation, where text and target are encoded
independently; ‘w/o CM’ omits content-aware mecha-
nism including residual target.

Model Imp mIiT mlS Qte Sarc
BERT-joint 571 59.0 524 634 60.1
TGA-Net 594 60.5 532 66.1 63.7
CKE-Net 625 634 553 69.5 682
BS-RGCN 621 647 556 70.1 71.7
CR-MTR 610 659 558 67.1 70.8
TTS | 63.1 665 574 713 1719
DyMCA 653 679 59.8 725 73.1
" TTS with HCTA 664 685 604 733 732
DyMCA with HCTA 67.6 69.8 625 75.1 75.4

Table 6: Accuracy (%) on five phenomena in the VAST.

sults in the second block of Table 3), DyMCA ad-
ditional performance gains, achieves new state-of-
the-art results across all scenarios. In particular, it
obtains an overall macro-score of 0.81 in the Zero-
Shot setting, outperforming all prior augmented
baselines with improvements of 1.12%, demon-
strating the complementary benefits of our model
design and augmentation strategy.

Third, further experiments shows that applying
HCTA to the TTS baseline yields improvements
of 1.48% (Few-Shot) and 1.06% (ALL), confirm-
ing the general effectiveness of our augmentation
method. However, the performance gap between
enhanced TTS and DyMCA highlights the funda-
mental advantages of our model’s architectural in-
novations in stance detection tasks.

4.3.2 Low-resource scenario Evaluation

We conduct experiments under low-resource con-
ditions using only 10% of the training data (Ta-
ble 4) to evaluate the effectiveness of the pro-
posed DyMCA framework and HCTA strategy. Re-
sults demonstrate that DyMCA (without HCTA)
achieves significant performance improvements
over the state-of-the-art TTS baseline, particularly
for Con and Pro labels with gains of 2.77% and
1.81% respectively. A slight decrease on Neu la-
bel might arise because neutral expressions often
lack explicit stance signals, this adaptive weight-
ing may introduce noise that interferes with the
accurate recognition of neutrality. Furthermore,
the HCTA strategy proves particularly beneficial
in this resource-constrained setting: while TTS
with HCTA shows a 1.15% improvement, DyMCA
with HCTA achieves a new state-of-the-art macro-
F1 score of 0.801. This results confirm that the
implicit target information captured by HCTA pro-
vides valuable supplementary signals that effec-
tively enhance model generalization, complement-
ing DyMCA’s architectural strengths. Overall, our
framework demonstrates strong robustness and ef-
fectiveness even with severely limited training data.

4.3.3 Ablation Study

We conduct ablation studies to assess the impact of
key components in DyMCA and HCTA, as shown
in Table 5.

Within the HCTA pipeline, we complete re-
moval of the augmentation strategy (w/o All) leads
to significant performance degradation, demonstrat-
ing the importance of LLM-driven implicit target
information mining. While eliminating the Chain-
of-Thought prompting (w/o CoT) causes modest
performance drops, confirming its value in eliciting
comprehensive reasoning from LLMs, and remov-
ing the multi-LLM voting mechanism (w/o Vote)
also reduces performance, indicating that single
LLM predictions may introduce stance bias and
result in reduced predictive reliability.

On the architectural side, DyMCA exhibits
performance declines when critical components
are ablated. Removing the joint text-target repre-
sentation (w/o JTTR) degrades performance, vali-
dating the benefit of unified global context model-
ing. Additionally, eliminating the Content-aware
Mechanism (w/o CM) or its residual target design
causes performance drops, supporting our hypothe-
sis about the relative contributions of text and target
must vary with context. The residual target addi-
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DyMCA with

Text Target TTS DyMCA HCTA
If we keep using fossil fuels like we’re doing now,
future generations are definitely going to enjoy our renewable energy ~ AGAINST FAVOR FAVOR
smog-filled skies. What a legacy to leave behind!

* Online learning has changed the way students
access education, especially during the past few online education FAVOR FAVOR NEUTRAL

years.

Table 7: Case study comparing stance prediction results across different models. We evaluate the strongest
competitor TTS, our DyMCA model, and DyMCA enhanced with the HCTA strategy. Predictions are highlighted

as CORRECT and INCORRECT .

tionally proves indispensable by providing a stable
semantic reference across diverse scenarios. Over-
all, these findings confirm the complementary roles
of global and local context modeling in DyMCA’
architecture.

4.3.4 Results of Different Phenomena

We conduct a experiment evaluation of DyMCA
and HCTA across five challenging phenomena: (1)
Imp, the target is not contained in the text and
the label is non-neutral, (2) mIT, multiple samples
share the same text but differ in target, (3) mlS, the
same text appears varying non-neutral stance la-
bels, (4) Qte, the text includes quoted content, and
(5) Sarc, the text contains sarcasm. As shown in
Table 6, DyMCA both with and without HCTA aug-
mentation, achieves the best performance across all
challenging phenomena. Notably, when equipped
with HCTA, the baseline TTS model also shows
significant performance improvements in all com-
plex scenarios. These results validate the robust-
ness of both DyMCA’s adaptive architecture and
HCTA’s augmentation strategy in handling diverse
and challenging target-stance phenomena.

4.4 Case Study

We present comparative case analyzing our model
with TTS trained under the zero-shot setting (as
shown in Table 7) to highlight the effectiveness
of DyMCA and HCTA. The first example reflects
implicit sentiment toward the target “renewable
energy”’, expressed through sarcasm about fossil
fuels. While TTS incorrectly predicts an Against
stance, DyMCA correctly identifies a Favor stance,
showing that its adaptive mechanism can recali-
brate text—target contributions based on context
and capture implicit stance signals more effec-
tively. The improvement is further solidified by
the HCTA, showing the benefit of augmented con-
textual grounding. In the second case, the target

“online education” presented through factual state-
ments without explicit stance indicators. While
both TTS and DyMCA erroneously predict Favor,
the DyMCA with HCTA correctly outputs Neutral.
These cases collectively demonstrate DyMCA’s ad-
vancements in processing both explicit and implicit
stance indicators through its integrated architecture
and augmentation strategy.

5 Conclusion

In this work, we address two key challenges in
ZSSD and FSSD: under-utilization of implicit tar-
gets and insufficient contextual adaptation capa-
bility. To this end, we propose HCTA, a hierar-
chical framework that leverages LLMs to extract
and incorporate implicit target information, and
DyMCA, a dynamic multi-level context-aware net-
work that adaptively balances text—target contribu-
tions under different contexts. Extensive experi-
ments on benchmark dataset demonstrate that our
approach achieves state-of-the-art performance on
both ZSSD and FSSD tasks, underscoring the effec-
tiveness of integrating LLM-driven target augmen-
tation and context-sensitive interaction modeling
to enhance stance detection beyond explicit target
supervision and rigid interaction schemes.

Limitations

Despite the demonstrated effectiveness, our ap-
proach has several limitations. First, the reliabil-
ity of extracted implicit targets and corresponding
pseudo-labels is inherently tied to the reasoning
quality and consistency of LLMs, which may vary
across model families and domain shifts. Second,
the computational cost of multiple LLMs collabora-
tion could pose challenges for large-scale applica-
tions. Future work may explore more efficient yet
reliable target augmentation strategies, as well as
principled methods for uncertainty-aware filtering
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of noisy LLM outputs to ensure robust augmenta-
tion strategy.
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Appendix

A CoT Prompt Details of Implicit Target
Extraction

Task Description: Your task is to read
a given segment of text and identify the
target entity or entities that are implied
but not explicitly mentioned. To do this
effectively, please think through the prob-
lem step by step, using the following pro-
cess steps as a guide.

Steps:

1. Understand Context: Briefly grasp
the text’s main topic and argument.

2. Identify Clues: Look for keywords
or phrases suggesting related but un-
mentioned entities.

3. Infer Potential Targets: Deduce pos-

sible implicit targets based on these
clues and the overall context.

4. Verify Rationality: Briefly justify
why the inferred target is relevant
to the text’s meaning.

5. Formulate Target: Clearly state the
identified implicit target(s).

Text: < The given text >

Annotation Targets: |17, 75, ..., T},
Output Format: [A comma-separated
list of the inferred implicit targets]

B LLM-Prediction Prompt Details

Task: As an expert in sentiment analy-
sis within Natural Language Processing,
your task is to understand and analyze
the stance that the given text expresses
towards the corresponding target.

Text: < The given text >

Target: < The specified target >
Output Format: [ FAVOR | AGAINST
| NEUTRAL ]

C Impact of Implicit Target Augmented
Data Quantity

First, we present comprehensive statistics of the
implicit target augmented data. The augmented
dataset contains 6,988 instances with a well-
balanced distribution across three stance categories:
FAVOR (29%), AGAINST (38%), and NEUTRAL
(33%).

We further investigate how varying quantities of
implicit target augmented data affect model per-
formance in zero-shot stance detection. The line
chart in Figure 3 reveals a clear positive correlation
between the amount of augmented data used (from
0% to 100% of the augmented set) and the model’s
macro average F1 score when combined with the
original training data. This consistent performance
improvement demonstrates that our implicit tar-
get augmentation strategy effectively uncovers la-
tent beneficial patterns in the dataset, leading to
enhanced model performance and generalization
capability. The results suggest that incorporating
more augmented data helps the model better cap-
ture the nuanced relationships between implicit
targets and their corresponding stances.

D Comparative Analysis of Language
Model Scales for Target Augmentation
and Stance Prediction

Prior work (Li et al., 2023) has predominantly em-
ployed small pre-trained language models for both
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Target-Extract Stance-Predict Zero-Shot  Few-Shot ALL
Small-LM Small-LM 0.773 0.749 0.755
Small-LM Large-LM 0.786 0.758 0.758
Large-LM Small-LM 0.785 0.747 0.753
Large-LM Large-LM 0.810 0.771 0.776

Table 8: Performance comparison of different combinations of target extraction and stance prediction modules using
Small Language Models and Large Language Models under zero-shot, few-shot, and combined (ALL) settings.

Method Combination = Annotation Targets Implicit Targets Stance Prediction
company corporations AGAINST
SLM SLM . .
corporate regulation regulation AGAINST
(Targets) (Stance) ) ]
regulation corporation democracy AGAINST
company corporations AGAINST
SLM LLMs . .
corporate regulation regulation AGAINST
(Targets) (Stance) ) )
regulation corporation democracy FAVOR
company democracy AGAINST
LLM SLM . .
corporate regulation campaign AGAINST
(Targets) (Stance) . .
regulation corporation legal system AGAINST
company democracy FAVOR
LLM LLMs . .
corporate regulation campaign AGAINST
(Targets) (Stance) . .
regulation corporation legal system AGAINST

Table 9: Exploration of Implicit Target Identification and Stance Prediction Using Different Model Combinations.
SLM denotes the Small Language Model, and LLM(s) denotes Large Language Models. This analysis evaluates
the effectiveness of combining these methods to uncover implicit targets and predict stances, with a focus on
leveraging LLLMs for both tasks due to their advanced contextual understanding and predictive capabilities. This

text corresponds to the text of first example in Table 11.

target mining and stance prediction to achieve data
augmentation. However, we argue that compared
to Large Language Models (LLMs), these smaller
models exhibit weaker semantic reasoning capabil-
ities, making them inadequate for comprehensively
capturing complex and implicit target patterns. To
validate this claim, we present the following exper-
imental analysis and case study.

Based on the results shown in Table 8, we con-
ducted an analysis to assess the impact of differ-
ent model combinations on implicit target identi-
fication and stance prediction. The results clearly
demonstrate that using Large Language Models
(LLMs) for either target extraction or stance pre-
diction leads to noticeable improvements. Further-
more, combining LLMs for both tasks results in
significant performance gains. This highlights the
complementary strengths of LLMs in capturing im-
plicit semantics and performing stance inference.

We provide a specific example for each model

combination to further illustrate the conclusions
mentioned above, as shown in Table 9. When using
small pre-trained language model for both tasks
(SLM+SLM), the model generates limited and
partially redundant targets, resulting in consistent
but incorrect stance predictions. Substituting the
stance module with an LLM (SLM+LLMs) yields
more accurate stance labeling for implicit target
like “democracy”, despite target limitations. In con-
trast, replacing the target identification module with
an LLM (LLM+SLM) produces more diverse and
semantically rich targets, though stance predictions
remain constrained by the small language model’s
limited inference capacity. The full LLM com-
bination (LLM+LLMSs) achieves the most coher-
ent target-statement alignment and accurate stance
recognition, highlighting the advantage of leverag-
ing LLMs for both contextual comprehension and
predictive reasoning in implicit stance scenarios.
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Text

Implicit Target ChatGPT  DeepSeek Qwen

Regulation of corporations has been subverted by cor-
porations. States that incorporate corporations are not
equipped to regulate corporations that are rich enough
to influence elections, are rich enough to muster a legal
team that can bankrupt the state. Money from corpo-
rations and their principals cannot be permitted in the
political process if democracy is to survive.

"...one must ask how much money they must make

to demonstrate that they are among the best managed
companies on the planet." They must make enough
money to insure that they can never fail and threaten
the stability of the worlds economy again. That much
money.

FAVOR AGAINST

democracy FAVOR

management AGAINST AGAINST FAVOR

Table 10: Illustrative stance predictions for implicit targets from various Large Language Models. Correct predictions
are highlighted: CORRECT , INCORRECT . Optimal viewing in color.

E Motivation for Multi-LLM Voting in
Stance Prediction

We showcase in Table 10 the stance predictions
produced by multiple LLMs (ChatGPT, DeepSeek,
and Qwen) for texts toward implicit targets. The
results from different LLMs are not always consis-
tent, with some models yielding incorrect stance
predictions due to varied interpretations or reason-
ing paths. This variation highlights a core chal-
lenge in leveraging LLMs for complex semantic
tasks: despite their strong individual capabilities,
no single model can guarantee reliable performance
across all instances. To address this, we adopt
a simple yet effective voting strategy within our
HCTA framework to aggregate predictions from
multiple LLMs. By relying on collective agreement
that can mitigate individual model biases or occa-
sional errors, yielding more robust and accurate fi-
nal predictions. This ensemble approach leverages
the complementary strengths of different models
and introduces a form of redundancy that is partic-
ularly beneficial when dealing with ambiguous or
under-annotated data. The examples in the table
clearly demonstrate cases where voting corrects
individual misjudgments, further justifying the ne-
cessity of collaborative inference in our framework.

F Case Study: Small-LM vs. Large-LM
Collaboration in Stance Prediction

We presents representative examples (Table 11)
to illustrate the effectiveness of our LLMs-
collaboration strategy in predicting stances toward
implicit targets. Specifically, we compare the pre-
dictions made by a standard small pre-trained lan-
guage model (BART-large-mnli) and our collab-
orative LLM-based approach. The implicit tar-

«+X-+ Zero-Shot Few-Shot --4-- ALL
0.82
0.81 e X
..... Xeee
08 e Xeeeegeent X
b JURTIR Siiidel
& o7 XX
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) A_.,..A
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Retention Ratio of Implicit Target Augmented Data

Figure 3: Variation in performance when combing differ-
ent proportions of augmented data with original training
dataset.

gets shown in the examples are not explicitly men-
tioned in the input texts but are instead inferred
through deeper semantic understanding. As demon-
strated, the pre-trained model tends to misclassify
the stance due to its limited capacity for indirect
reasoning. In contrast, the LL.Ms-collaboration
approach correctly identifies the intended stance
by leveraging richer contextual inference. This
underscores the advantage of our HCTA frame-
work, which equips models with more fine-grained
comprehension, particularly in cases involving ab-
stract, metaphorical, or ideologically charged con-
tent. These examples further validate the necessity
of incorporating implicit supervision signals and
highlight the limitations of relying solely on off-the-
shelf pre-trained encoders for challenging stance
detection scenarios.
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Text Implicit Target

Small-LM LLM-Collaboration

Regulation of corporations has been subverted by cor-

porations. States that incorporate corporations are not

equipped to regulate corporations that are rich enough

to influence elections, are rich enough to muster a legal democracy
team that can bankrupt the state. Money from corpo-

rations and their principals cannot be permitted in the

political process if democracy is to survive.

"...one must ask how much money they must make

to demonstrate that they are among the best managed
companies on the planet." They must make enough
money to insure that they can never fail and threaten
the stability of the worlds economy again. That much
money.

management

AGAINST FAVOR

FAVOR AGAINST

Table 11: Comparative examples of stance prediction, contrasting the output of a Small Language Model (BART-
large-mnli) with the LLM-collaboration approach. Predictions are color-coded: CORRECT , INCORRECT . Best

viewed in color.

5884



