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Abstract

Multimodal Stance Detection (MSD) aims to
determine a user’s stance - support, oppose, or
neutral - toward a target by analyzing multi-
modal content such as texts and images from
social media. Existing MSD methods strug-
gle with generalizing to unseen targets and
handling modality inconsistencies. To ad-
dress these challenges, we propose the Target-
driven Multi-modal Alignment and Dynamic
Weighting Model (T-MAD), which combines
target-driven multi-modal alignment and dy-
namic weighting mechanisms to capture target-
specific relationships and balance modality con-
tributions. The model incorporates iterative rea-
soning to iteratively refine predictions, achiev-
ing robust performance in both in-target and
zero-shot settings. Experiments on the MMSD
and MultiClimate datasets show that T-MAD
outperforms state-of-the-art models, with op-
timal results achieved using RoBERTa, ViT,
and an iterative depth of 5. Ablation studies
further confirm the importance of multi-modal
alignment and dynamic weighting in enhancing
model effectiveness.

1 Introduction

Multimodal Stance Detection (MSD) identifies a
user’s stance - support, oppose, or neutral - toward
a target by analyzing multimodal content like texts
and images, often from social media (Kii¢iik and
Can, 2021; Carnot et al., 2023; Liang et al., 2024).
MSD is crucial for sentiment analysis and social
media monitoring, as understanding public opinion
and user intent is vital (Thakkar et al., 2024; Liu
et al., 2024a; Hu et al., 2024; Feng et al., 2024).
However, detecting stances across text and images
remains challenging due to the complexities of
combining these modalities.

Despite progress, existing MSD methods face
key limitations (Kii¢iik and Can, 2021; Carnot et al.,
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2023; Liang et al., 2024). First, models struggle
with unseen targets (Liu et al., 2021a; Liang et al.,
2022; Wen and Hauptmann, 2023) as social media
content often covers unpredictable topics absent
during training. Second, modality inconsistencies
(Lei et al., 2024; Yang et al., 2023) arise when text
and images present conflicting information. For
instance, as shown in figure 1, an image might sug-
gest opposition, while the text expresses support.

Current approaches like MLLM-SD and TMPT
utilize large language models and target-specific
prompts but face challenges in fine-grained align-
ment between modalities (Niu et al., 2024; Liang
et al., 2024). Similarly, methods such as MultiCli-
mate use advanced models but rely on single-pass
inference, limiting flexibility for dynamic adjust-
ments (Wang et al., 2024). These limitations reduce
performance, especially in complex scenarios with
conflicting data.

To overcome these challenges, we propose the
Target-driven Multi-modal Alignment and Dy-
namic Weighting Model (T-MAD). T-MAD in-
tegrates target-driven multi-modal alignment and
dynamic weighting mechanisms to address these
issues. It extracts embeddings for both text and im-
ages and aligns them in a unified semantic space, fa-
cilitating meaningful cross-modal interactions. The
dynamic weighting mechanism balances modality
contributions, particularly in cases of conflicting
or incomplete information. An iterative multi-step
reasoning chain further refines predictions for ro-
bust performance in complex scenarios.

Our contributions are as follows:

* We introduce T-MAD, a target-driven model
that enhances generalization to unseen targets
by using target-driven alignment and dy-
namic weighting, improving adaptability and
stance detection accuracy in cases of modality
conflict.

* We conduct extensive experiments on the
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MMSD and MultiClimate datasets, showing
that T-MAD outperforms state-of-the-art mod-
els in both in-target and zero-shot settings.
Additionally, we analyze the impact of text
and visual encoder choices, and iterative infer-
ence depths, with RoOBERTa and ViT yielding
the best accuracy, and a depth of 5 optimally
balancing accuracy and efficiency.

Text: Four more years!!! #MAGA

Target: Donald Trump Stance:Favor

Re-elect Trump if
you want to age
the next four like
you have the las
four:Indo

Figure 1: Example of Contradictory Stance: Image
Shows Opposition, Text Shows Support for Trump

2 Related Work

Multimodal Stance Detection Stance detection
has mainly concentrated on textual analysis(Sun
et al., 2018; Zheng et al., 2022; Li and Caragea,
2023; Zhang et al., 2020; Ostendorff et al., 2019),
with a significant focus on the stance expressed in
social media platforms like Twitter(Somasundaran
and Wiebe, 2010; Augenstein et al., 2016; Hasan
and Ng, 2014; Kiiciik and Can, 2020). Yet, a re-
cent trend arose that gradually includes images and
videos in stance detection(Barel et al., 2025; Khia-
bani and Zubiaga, 2024). MLLM-SD leverages the
comprehension capabilities of LLMs to facilitate
a detailed understanding of conversational content
coupled with image information(Niu et al., 2024;
Lee et al., 2024; Liu et al., 2024b). TMPT uses the
target information to prompt the pre-trained mod-
els for learning multi-modal stance features (Liang
et al., 2024).MultiClimate deploys state-of-the-art
vision and language models, as well as multimodal
models for MultiClimate stance detection (Wang
etal., 2024).

Multimodal Stance Detection Datasets
Weinzierl and Harabagiu pioneered the creation
of the first multimodal stance detection dataset

MMVax specifically for COVID-19, comprising
11,300 instances (Weinzierl and Harabagiu, 2023).
Subsequently, Liang et al. expanded existing
text-based stance detection datasets (e.g. TSE2020,
WT-WT) by incorporating image content and
re-annotation to construct the larger MMSD
multimodal stance detection datasets, totaling
17,544 annotated instances (Liang et al., 2024).
MultiClimate dataset consists of 100 CCrelated
YouTube videos in English with 4, 209 frame-
transcript pairs (Wang et al., 2024). Multimodal
multi-turn conversational stance detection dataset
(MmMtCSD) (Niu et al.,, 2024) encompasses
21,340 instances, with 14,083 of these instances, or
66 %, being related to image content, underscoring
the significance of multimodal data inclusion.

3 Methodology

Let the dataset D = {(S;, I;, t;, ;) } Y, consist of
N instances, where each instance (S;, I;, t;, y;) in-
cludes an input text S;, the corresponding image /;,
and a target ¢;. The objective is to determine the
stance label y; for the input S; and I; with respect to
the target ¢;, where y; € {favor, against, neutral}.
The goal of multi-modal stance detection is to pre-
dict the stance label y; for each instance (S;, I;, t;),
inferring the stance of the text .S; and image I; to-
ward the given target ¢;, with possible stance labels
being favor, against, or neutral.

We propose a method that consists of the fol-
lowing four main steps. The method is shown in
figure 2 : 1) Feature Extraction for Multi-modal
Alignment: We extract embeddings of the image,
text, and target using pre-trained encoders, serving
as the foundation for subsequent alignment and rea-
soning processes; 2) Target-driven Multi-modal
Alignment: A multi-head attention mechanism is
employed to align the embeddings of the image
and text with respect to the target, refining the rep-
resentations while capturing global associations
across modalities; 3) Mutual Information-based
Dynamic Weighting: The model assesses the rel-
evance of multimodal information to the target by
estimating mutual information, dynamically assign-
ing adaptive weights to image and text embeddings;
4) Iterative Reasoning: A iterative multi-step rea-
soning process iteratively refines the fused repre-
sentation of the multimodal inputs and the target to
produce the final stance prediction.
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Figure 2: Architecture of the Target-driven Multi-modal Alignment and Dynamic Weighting Model

3.1 Feature Extraction

Given an input image I, text .S, and target ¢, our
goal is to extract embeddings for each modality that
serve as the foundation for subsequent multi-modal
stance detection processes.

First, we use a visual encoder to extract the im-
age embedding E; from the image I:

Er = fimage(I) (D

where fimage captures both global and local visual
features within the image.

For the text S and target ¢, we employ a pre-
trained language model to obtain the respective
embeddings Eg and F:

ES - ftext(S)a Et = ftext(t) (2)

where fix encodes semantic, contextual, and
target-specific information for both the text and
target.
At this stage, the extracted embeddings E;, Fg,
and E; are used directly as inputs to multimodal
alignment mechanisms.

3.2 Target-driven Multi-modal Alignment

We employ a target-driven multi-head cross-modal
attention mechanism to align and refine the image
and text embeddings E; and Eg with respect to
the target embedding ;. This mechanism enables
the model to learn and capture semantic relation-
ships across modalities. The attention heads work
together to refine the embeddings, ensuring a com-
prehensive understanding of the target-image-text
relationship.

The alignment between the target embedding
FE; and the image or text embeddings (F;, Eg) is

achieved using multi-head attention. The attention
computation is as follows:

E; = Concat(heady, ..., head,)Wo  (3)
Eg = Concat(heady, ..., head,)Wo  (4)
where each attention head computes:

(BWE) - (EdWie) T
Vi

head; = softmax < ) . (EIW\Z/) Q)

and similarly for Fg. Here, Wé, W}'(, W{,
Learnable projection matrices for the ¢-th head that
transform the input embeddings into query, key,
and value spaces. Wp: Output projection matrix
that combines the outputs of all heads into a unified
embedding. di: Dimensionality of the query/key
vectors in each head, ensuring scale-invariance. h:
Number of attention heads, typically set to 12, al-
lowing the model to capture diverse semantic re-
lationships across modalities. The index 7 ranges
from 1 to h.

The output embeddings E; and Eg are enriched
with target-aligned semantic features.

3.3 Mutual Information-based Dynamic
Weighting

The Mutual Information-based Dynamic Weight-
ing mechanism is a core component of T-MAD,
designed to intelligently balance the contributions
of the image and text modalities in the final stance
prediction. This is particularly crucial for handling
modality inconsistencies, where the two modalities
convey conflicting or ambiguous signals about the
user’s stance towards the target. Instead of using
fixed or heuristic weighting schemes, our model
dynamically assigns adaptive weights based on a
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principled measure of each modality’s relevance to
the target.

The key insight is that the modality which con-
tains more information about the target should be
given greater importance. To quantify this "rele-
vance," we employ Mutual Information (MI), a
fundamental concept from information theory that
measures the statistical dependence between two
random variables. In our context, MI measures
how much information the aligned image embed-
ding E; (or text embedding Eg) provides about
the target embedding E. A higher MI value indi-
cates a stronger semantic association and suggests
that the modality is more informative for the stance
detection task.

Since MI is intractable to compute directly,
we approximate it using a contrastive learning
objective.  Specifically, we use the InfoNCE
loss (van den Oord et al., 2018), which serves as
a tractable lower bound on the true mutual infor-
mation. This process, often referred to as noise-
contrastive estimation, works by training the model
to distinguish the "positive" target £ from a set of
"negative" target embeddings { F/ ;VZI.

The InfoNCE loss for the image modality is de-
fined as:

exp (sim(El7 Et)/T)
Z;V:l exp (sim(Ej, Eﬂ)/r)

image
InfoNCE = ~ 108

(6)

where E is the target-aligned image embedding
from the previous step, E; is the embedding of the
correct (positive) target, E/ are the embeddings
of N randomly sampled negative targets from the
same batch, sim(+) is a similarity function (we use
cosine similarity), and 7 is a temperature parameter
that controls the concentration of the distribution.
A symmetric loss Lt g is computed for the text
modality using Fg. Similarly, the text modality
uses:

exp (sim(Es, Et)/T)

Z;V:l exp (sim(Es, E{)/T)

LitoncE = — log %)

Minimizing this loss encourages the model to
assign a high similarity score to the positive pair
(Er, Ey) while assigning low scores to the negative
pairs (Ey, F}). This effectively maximizes the es-
timated mutual information between the modality
and the target.

Based on the estimated MI, we define a rele-
vance score for each modality. These scores are

derived from the exponentiated MI to create a posi-
tive, non-linear scaling:

rr = exp (MI(EI, Et)> )

rs = exp (MI(Es, Ey)) ©

In practice, the MI value is approximated by the
negative of the corresponding InfoNCE loss (up to
a constant).

Finally, the dynamic weighting mechanism com-
putes the final fused multimodal representation
Fuseq as a weighted average of the aligned image
and text embeddings, with the relevance scores ry
and rg serving as the weights:

TI'EIJr?”S'ES
T+ T8

Efysed = + )\Et (10)
The term AE; (where ) is a balancing factor) explic-
itly incorporates the target embedding into the final
fusion, ensuring that the target’s semantic informa-
tion remains central. This formulation ensures that
the more informative modality (the one with higher
MI and thus a higher relevance score) dominates
the fused representation, allowing T-MAD to make
robust predictions even in the face of conflicting
multimodal inputs.

3.4 [Iterative Reasoning

In this step, we refine the multi-modal fused repre-
sentation Fgygeq, Obtained from the previous steps,
through an iterative reasoning process. This pro-
cess iteratively updates the representation by focus-
ing on progressively finer semantic details, guided
by the target embedding F;. The goal is to en-
hance the representation’s ability to capture nu-
anced cross-modal relationships, ultimately leading
to a more accurate stance prediction.

Initialization The iterative reasoning process be-
gins with the fused representation:

E© = Fryea (11)

where Fgyeq combines information from image,
text, and target modalities, as computed in the pre-
vious step.

Iterative Refinement At each reasoning step &,
multi-head attention is applied to refine the repre-
sentation. The target embedding E; serves as the
query @, while the current representation £(+~1)
is used as both the keys K and values V':

E(k) _ MHA(Q = E, K = E(k—1)7v — E(k—l)) (12)
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Here, E(*~1) is the representation from the previ-
ous step, encoding the progressively refined multi-
modal information. E; ensures that each reasoning
step remains target-guided, reinforcing the focus
on target-related semantics.

Convergence Criteria The reasoning process
proceeds iteratively, refining specific aspects of the
representation at each step. The process stops when
either of the following conditions is met: A fixed
number of steps K is reached, or the representation
converges, such that the change between E(¥) and
E*=1) fa]ls below a predefined threshold:

|E®) — B < ¢ (13)

where € is a small positive constant.
The final refined representation is denoted as:

Ereﬁned — E(K) (14)

where K is the number of reasoning steps.

Final Prediction The refined representation
Erefined g then passed through a fully connected
layer to produce the final stance prediction:

Yfinal = FC(Eened) (15)

By incorporating iterative reasoning, the model
progressively enriches the multi-modal representa-
tion Fyeeq With finer semantic details, while ensur-
ing alignment with the target embedding E;. This
process enhances the model’s ability to handle in-
complete or ambiguous information and to make
robust stance predictions across diverse inputs.

4 Experiments

4.1 Datasets

We evaluate our proposed method on two multi-
modal stance detection datasets: MMSD and Mul-
tiClimate. Detailed statistics for both datasets can
be found in the appendices A.

The MMSD dataset (Liang et al., 2024) includes
five multimodal stance detection tasks across vari-
ous domains: MTSE, MCCQ, MWTWT, MRUC,
and MTWQ. Each instance consists of text S;, an
image I;, a target ¢;, and a stance label y;. Stance
labels include Favor, Against, Neutral, and Unre-
lated. The dataset is split into training, validation,
and test sets for both in-target and zero-shot set-
tings, as detailed in Table 8.

The MultiClimate dataset (Wang et al., 2024)
focuses on climate change content, with 100 En-
glish YouTube videos and 4,209 frame-transcript

pairs. Each pair is annotated with one of three
stance labels: Support, Neutral, or Oppose. The
dataset is split into 80% training, 10% validation,
and 10% testing, as summarized in Table 9.

4.2 Evaluation Metrics

For the MMSD dataset, we use the Macro F1-
score to measure the model performance. Macro
F1-score provides an equal weight to each class,
making it suitable for evaluating performance
across the various stance categories in MMSD.For
the MultiClimate dataset, we use the both accu-
racy and weighted F1-score as the evaluation met-
ric, given the imbalanced distribution of the Sup-
port, Neutral, and Oppose labels in this dataset.
The experimental results are averaged over 5 runs
to ensure that the final reported results are statisti-
cally stable and not influenced by random initial-
ization.

4.3 Baseline Models

Text-only Models. We use several text-based mod-
els: (1) BERT (Devlin et al., 2019), (2) RoBERTa
(Liu et al., 2019), (3) KEBERT (Kawintiranon
and Singh, 2022), (4) LLaMAZ2 (Touvron et al.,
2023), and (5) GPT4. For MultiClimate, we also
evaluate (6) Llama3 (Dubey et al., 2024) and (7)
Gemma2-9B (Team et al., 2024).

Image-only Models. The image-based base-
lines include (1) ResNet (He et al., 2016), (2) ViT
(Dosovitskiy et al., 2021), and (3) SwinT (Liu et al.,
2021b).

Multimodal Models. For MMSD, we use (1)
ViLT (Kim et al., 2021), (2) CLIP (Radford et al.,
2021), (3) BERT+ViT, (4) Qwen-VL (Bai et al.,
2023), (5) GPT4-Vision, (6) TMPT (Liang et al.,
2024), (7) TMPT+CoT (Liang et al., 2024) and
(8)MLLM-SD (Niu et al., 2024). For MultiCli-
mate, we combine BERT with ViT or ResNet50
embeddings, and also use CLIP (Radford et al.,
2021), BLIP (Li et al., 2022), IDEFICS (Alayrac
et al., 2022), and MLLM-SD (Niu et al., 2024)
for stance classification. The baseline models are
detailed in the appendixB.

4.4 Experiment Settings

We introduce the T-MAD+CWYVF model, a vari-
ant of our Target-driven Multi-modal Alignment
and Dynamic Weighting Model (T-MAD). In this
model, we integrate a Confidence-weighted Vot-
ing Fusion (CWVF) mechanism to combine stance

584



Modality Method MTSE MCCQ MWTWT MRUC MTWQ
DT JB CQ CA CE AC AH DF RUS UKR MOC TOC
BERT 48.25 52.04 66.57 75.62 60.85 63.05 59.24 81.53 41.25 46.80 57.77 45.91
RoBERTa 58.39 60.79 66.57 69.56 65.03 69.74 67.99 79.21 39.52 57.66 55.22 48.88
Textual KEBERT 64.50 69.81 66.84 71.67 67.56 69.29 69.74 80.57 41.5559.01 58.15 47.75
LLaMA2 5323 52.67 4740 34.89 4195 49.09 4432 30.21 38.84 38.54 55.31 46.51
GPT4 68.74 66.39 65.84 63.14 65.12 69.93 71.62 52.69 41.64 53.76 58.05 49.81
ResNet 37.89 38.59 47.16 39.89 4220 43.52 37.05 50.34 35.10 40.00 42.02 33.94
Visual ViT 4048 4042 46.64 46.63 50.00 40.16 46.32 50.86 33.31 39.87 38.63 35.53
SwinT 39.89 4043 48.80 4630 46.99 41.02 47.39 51.32 35.01 40.89 35.03 35.47
BERT+ViT 41.86 4582 6132 63.20 44.71 56.45 46.85 73.71 39.28 48.41 47.47 40.86
ViLT 3532 4824 47.85 6220 56.44 58.06 60.22 73.66 34.62 42.41 44.43 39.51
CLIP 5322 65.83 63.65 7093 67.17 67.43 70.86 79.06 44.99 59.86 55.29 40.98
Qwen-VL 4331 45.13 50.51 43.06 45.49 49.79 46.04 27.73 36.50 40.78 42.14 39.34
GPT4-Vision 7046 72.82 61.63 4459 57.47 57.49 5747 59.37 44.83 56.40 66.72 56.90
TMPT 5541 61.61 67.67 76.60 63.19 67.25 62.92 81.19 43.56 59.24 55.68 46.82
TMPT+CoT 66.61 68.75 71.79 74.40 69.96 68.43 63.00 82.71 45.04 60.52 68.95 59.87
MLLM-SD 68.4 70.10 7250 78.20 70.00 71.40 74.60 84.10 47.30 63.80 70.90 61.20
Multi-modal ~ BERT+ViT+CWVF 43.20 47.10 62.50 64.80 46.10 57.80 48.20 74.90 40.50 49.60 48.70 42.10
VILT+CWVF 36.80 49.50 49.10 63.50 57.80 59.40 61.50 74.80 35.90 43.70 45.80 40.80
CLIP+CWVF 54.60 67.10 64.80 72.10 68.50 68.70 72.10 80.20 46.20 61.10 56.50 42.30
Qwen-VL+CWVF 4470 46.50 51.80 44.60 46.80 51.10 47.40 29.10 37.80 41.90 43.40 40.70
GPT4-V+CWVF 7180 74.10 62.90 46.10 58.80 58.90 58.80 60.70 46.10 57.80 68.10 58.30
TMPT+CWVF 56.90 63.10 6890 78.10 64.50 68.60 64.20 82.40 44.90 60.40 56.90 48.20
TMPT+CoT+CWVF 68.20 70.40 73.10 75.80 71.30 70.10 64.50 83.90 46.30 61.80 70.20 61.40
T-MAD 71.12 73.31% 75.05*% 80.45* 71.90 73.31 76.10* 86.20 49.25 65.70 72.80* 63.50
T-MAD+CWVF  75.00*% 77.50* 76.20* 81.30* 73.50* 74.80 77.10* 87.30* 50.20 66.90 73.50 64.30

Table 1: Experimental results (%) of in-target multi-modal stance detection.Results with * denote the significance
tests of our T-MAD over the baseline models at p-value < 0.05.

labels generated by both T-MAD and MLLM,
based on their respective confidence scores.

For MLLM’s output, we use a repeated gener-
ation method to estimate confidence. Each input
instance (5;, I;,t;) is prompted 5 times, and the
confidence score is calculated by the frequency of
label appearances. For T-MAD’s output, the confi-
dence score is derived from the softmax probability
associated with its predicted label. The CWVF
mechanism selects the final label based on the high-
est confidence score, with preferences given to T-
MAD’s output in case of ties.

We utilize several pretrained large language mod-
els (MLLMs) in our experiments, such as Qwen2-
VL-7B-Instruct (Bai et al., 2023), InternVL2_5-1B
(Chen et al., 2024), Llama-3.2-11B-Vision-Instruct,
and deepseek-vI2 (Wu et al., 2024). For text and
target embeddings, we use the uncased BERT-base
model (Devlin et al., 2019), and for image embed-
dings, we use the ViT-base model (Dosovitskiy
etal., 2021).

For the multi-modal alignment module, we set
the dimensionality of the hidden vectors to dj, =
768, with 12 attention heads and a dropout rate of
0.1. The maximum reasoning depth K is set to 5 for
iterative refinement. The mutual information-based

dynamic weighting module uses a temperature pa-
rameter of 7 = (.07 and 256 negative samples.
The balancing factor A for the fused representation
is set to 0.5. Details of experimental configurations
are provided in the appendix (C).

5 Results and Discussion

The following section addresses the three research
questions (RQs) that this study seeks to answer:

RQ1: How does the performance of T-MAD
compare to state-of-the-art models on the MMSD
and MultiClimate datasets?

RQ2: Is each component of the T-MAD effec-
tive and contributory to overall performance?

RQ3: How do different text and visual encoder
combinations and iterative inference depths affect
T-MAD’s performance?

Performance Comparison with State-of-the-Art
Models To rigorously evaluate the performance
of our proposed T-MAD model, we conducted
extensive experiments on the MMSD and Multi-
Climate datasets, comparing against a comprehen-
sive suite of state-of-the-art baselines. The results,
presented in Tables 1, 2, and 3, demonstrate T-
MAD’s superior performance across both in-target

585



Modality =~ Method MTSE MWTWT MRUC MTWQ
DT JB CE AC AH RUS UKR MOC TOC
BERT 3252 2997 6355 6130 59.18 52.89 22.01 1545 28.04 9.57
RoBERTa 26.60 32.41 5922 64.86 57.46 57.17 27.10 19.98 30.62 15.84
Textual KEBERT 26.17 31.81 59.79 60.74 59.25 55.53 28.29 17.19 29.97 18.89
LLaMA2 33.57 3392 3247 3837 48.06 36.31 36.13 38.16 51.46 44.10
GPT4 70.78 68.83 57.19 60.56 65.63 69.01 40.32 38.49 62.10 52.12
ResNet 25.52 2970 23.01 2411 2521 25.27 22.57 20.19 27.59 24.88
Visual ViT 28.63 29.70 2459 3148 34.06 3329 25.81 29.37 23.51 29.42
SwinT 28.54 30.85 28.53 35.87 4332 3739 24.54 27.99 19.69 19.69
BERT+ViT 26.70 31.57 59.21 5930 50.04 59.22 23.33 15.21 24.76 11.70
VIiLT 28.08 29.74 3836 46.00 51.01 48.55 21.99 23.96 23.54 19.18
CLIP 2821 2899 5546 61.08 5546 59.96 27.21 25.46 21.55 15.60
Qwen-VL 47.62 46.14 38.57 4336 47.82 41.01 3597 41.51 4432 44.08
GPT4-Vision 72.68 7128 4223 4592 5459 53.19 42.09 47.00 65.00 52.36
TMPT 31.69 32.65 6636 6630 6639 64.87 23.87 2471 32.18 26.48
MLLM-SD 5530 59.70 69.80 68.50 67.30 66.80 50.40 53.10 47.50 44.80
TMPT+CoT 5430 5846 67.28 63.73 64.87 54.26 48.99 51.75 45.32 43.70
Multi-modal BERT+ViT+CWVF 2850 3340 61.70 61.90 5230 61.50 25.10 17.30 26.90 13.80
VILT+CWVF 2990 31.50 40.80 48.50 53.50 51.20 24.30 26.20 25.80 21.40
CLIP+CWVF 30.10 30.80 57.90 63.50 57.90 6230 29.50 27.60 23.80 17.70
Qwen-VL+CWVF 49.80 4850 40.80 4590 50.30 43.50 37.80 43.70 46.90 46.30
GPT4-VisiontCWVF 74.10 73.50 44.80 48.50 57.30 5590 44.20 49.30 67.50 54.80
TMPT+CWVF 33.80 3490 6890 6880 6890 67.50 25.90 26.80 34.50 28.70
TMPT+CoT+CWVF  56.80 6090 69.50 6620 67.50 56.90 51.20 53.90 47.80 45.90
T-MAD 58.10 62.80 71.50* 70.40* 69.90* 69.00* 52.20 55.60 49.80 47.20
T-MAD+CWVF 77.20% 75.60*% 72.40* 71.80* 70.80* 70.20 53.50 56.40 69.30% 56.60

Table 2: Experimental results (%) of zero-shot multi-modal stance detection. Best scores of each group are in bold.
Results with * denote the significance tests of our T-MAD over the baseline models at p-value < 0.05.

and zero-shot settings.

On the MMSD dataset under the in-target set-
ting (Table 1), T-MAD+CWYVF establishes a new
state-of-the-art, achieving the highest Macro F1
scores across all five sub-tasks. Its performance is
particularly dominant in the MTSE task, where
it attains 75.00% and 77.50% Macro F1, re-
spectively. This represents a significant improve-
ment over strong multimodal baselines like GPT4-
Vision (70.46% on MTSE-DT) and TMPT+CoT
(68.75% on MTSE-JB). Notably, even when other
models are enhanced with the same Confidence-
weighted Voting Fusion (CWVF) mechanism, T-
MAD-+CW VF still outperforms them. For instance,
GPT4-Vision+CWVF scores 71.80% on MTSE-
DT, while TMPT+CoT+CWVF scores 68.20%,
both falling short of T-MAD+CWVF’s 75.00%.
This indicates that the performance gain is not
merely a byproduct of the fusion mechanism but
is fundamentally driven by the high quality of T-
MAD’s base predictions.

In the more challenging zero-shot setting (Ta-
ble 2), -MAD+CWVF’s ability to generalize to
unseen targets is further highlighted. It achieves
the best results on the majority of sub-tasks, show-
casing its robustness. For example, it sets a new

high mark of 77.20% on MTSE-DT, significantly
surpassing the previous best of 74.10% by GPT4-
Vision+CWVE. Similarly, on the MWTWT and
MRUC tasks, T-MAD+CWVF demonstrates su-
perior generalization. The consistent outperfor-
mance across diverse domains (e.g., elections, cor-
porate mergers, geopolitical conflicts) underscores
the model’s effectiveness in adapting to new and
unpredictable targets.

The evaluation on the domain-specific Mul-
tiClimate dataset (Table 3) further validates T-
MAD’s broad applicability. In this zero-shot
setting, T-MAD+CWVF achieves a remarkable
78.0% accuracy and 80.8% F1 score, outperform-
ing all other multimodal models, including fine-
tuned variants like IDEFICS. Even the enhanced
baseline BERT+ViT+CWVF is surpassed by T-
MAD+CW VE. This result is particularly significant
as it demonstrates that T-MAD’s architecture is not
only effective for social media content but also ex-
cels in specialized domains like climate change
discourse analysis.

In summary, the experimental results across mul-
tiple datasets and settings consistently show that
T-MAD+CWVF achieves state-of-the-art perfor-
mance. Its success stems from the synergy between
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Modality Method ACC F1
BERT 0.705 0.705

Textual Llama3 (zero-shot) 0.485 0.451
Gemma?2 (zero-shot) 0.461 0.382

Visual ResNetSO 0.424 0.399
ViT 0.460 0.462

BERT + ResNet50 0.717 0.714

BERT + ViT 0.747 0.749

CLIP 0.431 0.298

BLIP 0.462 0.292

IDEFICS (zero-shot) 0.347 0.270

IDEFICS (fine-tuned) 0.600 0.591

MLLM-SD 0.735 0.740

Multi-modal BERT+ResNet50+CWVF  0.725 0.723
BERT+ViT+CWVF 0.751 0.754

CLIP+CWVF 0.450 0.315

BLIP+CWVF 0.480 0.305

IDEFICS (zero-shot)+CWVF 0.365 0.285
IDEFICS (fine-tuned)+CWVF 0.620 0.610

MLLM-SD 0.735 0.740
T-MAD 0.752*% 0.755*
T-MAD+CWVF 0.780* 0.808*
HUMAN 0.826 0.823

Table 3: Text-only, image-only, and multi-modal model
results on the MultiClimate test set. Best scores are in
bold. Results with * denote the significance tests of our
T-MAD over the baseline models at p-value < 0.05.

its core components - the target-driven alignment,
dynamic weighting, and iterative reasoning - which
produce high-fidelity base predictions. This allows
the CWVF mechanism to effectively consolidate
the final decision, leading to robust and accurate
stance detection in both familiar and novel scenar-
ios.

Effectiveness of T-MAD Components The ab-
lation study in Table 4 demonstrates the contri-
bution of each component in the T-MAD model.
The full T"-MAD model achieves the best perfor-
mance across all tasks, with Macro F1 scores of
72.22 for MTSE, 75.05 for MCCQ, and 80.59 for
MWTWT, showing the effectiveness of all model
components working together.

When the Target-driven Multi-modal Alignment
(TMA) module is removed, the model performance
decreases significantly, particularly in MTSE and
MCCQ, with Macro F1 scores dropping to 67.10
and 70.00, respectively. This indicates that the
alignment between text, image, and target is cru-
cial for maintaining high performance in stance
detection tasks.

Removing the Mutual Information-based Dy-
namic Weighting (DW) mechanism also leads to
a noticeable drop in performance, with the Macro

F1 scores for MWTWT and MRUC decreasing
to 74.20 and 72.90, respectively. This highlights
the importance of dynamically adjusting the weight
of each modality to better handle modality incon-
sistencies and improve prediction accuracy. The

Method MTSE MCCQ MWTWT MRUC MTWQ

T-MAD 7222 7505 8059 7848 75.15
w/o TMA 67.10 70.00 7430  72.80 72.10
w/oDW 68.00 7150 7420 7290 71.20
w/oIR  69.00 71.80 7550 73.20 70.30

Table 4: Macro F1-scores of ablation study on T-MAD
across all targets in MMSD dataset on in-target multi-
modal stance detection. Best scores are in bold.

removal of the Iterative Reasoning (IR) mechanism
results in a slight decrease in performance, with
Macro F1 scores of 69.00 and 71.80 for MTSE
and MCCQ. Although the decrease is smaller com-
pared to the removal of other components, it sug-
gests that iterative reasoning does provide addi-
tional refinement to the final predictions, especially
in tasks with more complex modality interactions.

Text MTSE MCCQ MWTWT MRUC MTWQ
BERT 69.22 71.05 7445 76.80 73.25
RoBERTa 72.22 75.05 80.59 78.48 75.15
KE-BERT 69.22 7220 75.02 7645 71.00
LLaMA2 67.95 7040 73.10 7430 74.20
GPT-4 7045 7250  75.10 7690 71.80

Table 5: Macro F1-scores of T-MAD with different text
encoders on MMSD dataset. Best scores are in bold.

Visual MTSE MCCQ MWTWT MRUC MTWQ
ResNet50 69.00 7030  73.00 73.10 72.50
ViT 7222 7505 80.59 78.48 75.15
SwinT 68.50 71.60 7390 74.00 72.60
CLIP 68.80 71.85 7420 7395 71.90
Qwen-VL 67.80 70.85 73.50 73.60 70.10

Table 6: Macro Fl-scores of T-MAD with different
visual encoders on MMSD dataset. Best scores are in
bold.

Impact of Text and Visual Encoder Combina-
tions and Iterative Inference Depths on T-MAD
Performance The performance of T-MAD with
different text and visual encoder combinations,
as well as varying iterative inference depths, is
evaluated across the MMSD and MultiClimate
datasets.The results for the MultiClimate dataset
are provided in the appendix D.
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Depth MTSE MCCQ MWTWT MRUC MTWQ

1 66.50 69.10 72.00 7230 73.10
3 6845 7130 7390 73.80 74.50
5 7222 7505 80.59 7848 75.15
7 68.80 74.60 7410 7420 74.80
9 68.30 73.10 7350 73.70 74.20

Table 7: Macro Fl-scores of T"MAD with different
inference depths on MMSD dataset across sub-tasks.
Best scores are in bold.

Text and Visual Encoder Combinations: As
shown in Table 5, 6, 10 and 11, RoBERTa and ViT
consistently achieve the highest Macro F1 scores
across both datasets. Specifically, RoOBERTa and
ViTreaches a Macro F1 of 75.05 on MCCQ, 75.15
on MTWQ and 0.808 on MultiClimate. These re-
sults suggest that RoBERTa excels at capturing
textual features, enhancing the model’s ability to
understand complex textual information, which is
crucial for multimodal tasks. On the other hand,
ViT shows a stronger capability in capturing fine-
grained visual features, improving the model’s un-
derstanding of visual information. These findings
highlight the importance of selecting powerful mod-
els for both text and visual encodings to achieve
optimal performance in multimodal tasks.

Iterative Inference Depths: As shown in Table
7 and Table 12, the depth of iterative reasoning
significantly influences model performance. For
both datasets, increasing the inference depth up to
5 steps improves Macro F1 scores, with the highest
values achieved at depth 5. Specifically, T-MAD
reaches a Macro F1 of 75.15 on MTWQ and 0.808
on MultiClimate at depth 5, demonstrating that
deeper iterative reasoning contributes to more accu-
rate stance predictions. However, when the depth
is increased to 7 and 9, performance declines, in-
dicating that excessively deep iteration may lead
to overfitting or amplified noise, negatively impact-
ing the model’s generalization ability. Therefore,
depth 5 is considered the optimal configuration for
T-MAD, as it strikes the right balance between high
performance and avoiding unnecessary computa-
tional complexity.

Overall, the combination of the best text encoder
(RoBERTa) and visual encoder (ViT), along with
a iterative reasoning depth of 5, provides the most
robust performance across both datasets.

Case Study To further illustrate the model’s rea-
soning process, we analyze a challenging instance
from the MMSD dataset where modalities conflict.

The input consists of the text “Four more years!!!
#MAGA”, a supportive image caption “Re-elect
Trump if you want to age the next four like you
have the last four: In dog years.”, and the target
“Donald Trump”. While the text is explicitly favor-
able, the image uses sarcasm, which could be mis-
interpreted as opposition. Our model first extracts
features using RoOBERTa and ViT. The target-driven
multi-modal alignment mechanism then refines the
text and image embeddings by aligning them with
the target embedding, ensuring both modalities are
interpreted in the context of “Donald Trump”. Sub-
sequently, the mutual information-based dynamic
weighting module estimates the relevance of each
modality to the target. It assigns a higher weight
to the text embedding due to its direct and unam-
biguous support, while assigning a lower weight
to the image due to its indirect and ironic nature.
Finally, the iterative reasoning process refines the
fused representation over multiple steps, guided
by the target, to emphasize the dominant support-
ive signal. As a result, T-MAD correctly predicts
the stance as Favor, aligning with the ground truth
and demonstrating its ability to resolve modality
conflicts through targeted alignment and dynamic
weighting.

6 Conclusion

In this work, we proposed T-MAD, a novel model
for multimodal stance detection that effectively
handles target generalization and modality incon-
sistency. Our approach consists of four key steps:
feature extraction, target-driven multi-modal align-
ment, mutual information-based dynamic weight-
ing, and iterative reasoning. Experimental results
on the MMSD and MultiClimate datasets show
that T-MAD outperforms state-of-the-art models,
with optimal results achieved using RoBERTa,
ViT, and an iterative depth of 5. Ablation stud-
ies further confirm the importance of multi-modal
alignment and dynamic weighting in enhancing
model effectiveness. Despite its strong perfor-
mance, T-MAD has some limitations, including
the computational complexity introduced by the
iterative reasoning process, particularly for large
datasets or real-time applications. Future work will
focus on optimizing the efficiency of the inference
process and improving the model’s handling of
modality conflicts and generalization to new, un-
seen data.
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Limitations

One limitation of T-MAD is its partial reliance on
labeled training data, which can hinder its ability
to generalize to completely unseen targets. While
the model incorporates mechanisms to enhance
zero-shot performance, it may still struggle with
topics or stances that lack sufficient annotated ex-
amples, as it has been trained to rely on prior ex-
posure to similar data. Additionally, T-MAD’s
use of iterative reasoning chains to gain deeper
insights results in significant computational com-
plexity, which limits its applicability for real-time
or resource-constrained environments. Despite the
dynamic weighting mechanism, extreme modality
inconsistencies—where text and image convey en-
tirely contradictory stances—remain a challenge,
potentially leading to inaccurate predictions in cer-
tain cases. Furthermore, T-MAD’s interpretability
is constrained by its complex, multi-step reasoning
process, making it difficult to fully understand the
rationale behind its predictions in sensitive applica-
tions.

Ethical Considerations

The T-MAD approach to multimodal stance de-
tection must be applied with careful attention to
its ethical implications. Given its reliance on di-
verse data sources, there is a risk that unvetted or
biased external data may propagate misinformation
or reinforce existing biases within the model. Fur-
thermore, as an automated stance detection system,
T-MAD has the potential to influence public opin-
ion and impact social or political dynamics through
large-scale analysis. To mitigate these risks, it is es-
sential to ensure transparency in the stance predic-
tion process and implement mechanisms to identify
and correct errors. Addressing privacy concerns is
also critical, particularly when the model is used to
analyze personal or sensitive content from social
media. Adherence to data protection regulation is
necessary to maintain user trust and uphold ethical
standards in multimodal stance detection.

Acknowledgments

This research was supported by funding from the
National Natural Science Foundation of China
under Grant No.62441229 for the project "High-
quality Dataset Construction". This valuable re-
source significantly enhanced the reliability and
robustness of our experimental results. We would

like to extend our sincere gratitude to all those who
contributed to this work.

References

Jean-Baptiste Alayrac, Jeff Donahue, Pauline Luc,
Antoine Miech, lain Barr, Yana Hasson, Karel
Lenc, Arthur Mensch, Katherine Millican, Malcolm
Reynolds, Roman Ring, Eliza Rutherford, Serkan
Cabi, Tengda Han, Zhitao Gong, Sina Samangooei,
Marianne Monteiro, Jacob L Menick, Sebastian
Borgeaud, Andy Brock, Aida Nematzadeh, Sahand
Sharifzadeh, Mikot aj Birikkowski, Ricardo Barreira,
Oriol Vinyals, Andrew Zisserman, and Karén Si-
monyan. 2022. Flamingo: a visual language model
for few-shot learning. In Advances in Neural Infor-
mation Processing Systems, volume 35, pages 23716~
23736. Curran Associates, Inc.

Isabelle Augenstein, Tim Rocktéschel, Andreas Vla-
chos, and Kalina Bontcheva. 2016. Stance detection
with bidirectional conditional encoding. In Proceed-
ings of the 2016 Conference on Empirical Methods
in Natural Language Processing, pages 876—885,
Austin, Texas. Association for Computational Lin-
guistics.

Jinze Bai, Shuai Bai, Shusheng Yang, Shijie Wang,
Sinan Tan, Peng Wang, Junyang Lin, Chang Zhou,
and Jingren Zhou. 2023. Qwen-vl: A versatile vision-
language model for understanding, localization, text
reading, and beyond. Preprint, arXiv:2308.12966.

Guy Barel, Oren Tsur, and Dan Vilenchik. 2025. Ac-
quired TASTE: Multimodal stance detection with
textual and structural embeddings. In Proceedings of
the 31st International Conference on Computational
Linguistics, pages 6492—-6504, Abu Dhabi, UAE. As-
sociation for Computational Linguistics.

Miriam Louise Carnot, Lorenz Heinemann, Jan Braker,
Tobias Schreieder, Johannes Kiesel, Maik Frobe,
Martin Potthast, and Benno Stein. 2023. On stance
detection in image retrieval for argumentation. In
Proceedings of the 46th International ACM SIGIR
Conference on Research and Development in Infor-
mation Retrieval, SIGIR °23, page 2562-2571, New
York, NY, USA. Association for Computing Machin-
ery.

Zhe Chen, Jiannan Wu, Wenhai Wang, Weijie Su, Guo
Chen, Sen Xing, Muyan Zhong, Qinglong Zhang,
Xizhou Zhu, Lewei Lu, Bin Li, Ping Luo, Tong Lu,
Yu Qiao, and Jifeng Dai. 2024. Intern vl: Scaling
up vision foundation models and aligning for generic
visual-linguistic tasks. In 2024 IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition
(CVPR), pages 24185-24198.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for

589


https://proceedings.neurips.cc/paper_files/paper/2022/file/960a172bc7fbf0177ccccbb411a7d800-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/960a172bc7fbf0177ccccbb411a7d800-Paper-Conference.pdf
https://doi.org/10.18653/v1/D16-1084
https://doi.org/10.18653/v1/D16-1084
https://arxiv.org/abs/2308.12966
https://arxiv.org/abs/2308.12966
https://arxiv.org/abs/2308.12966
https://aclanthology.org/2025.coling-main.433/
https://aclanthology.org/2025.coling-main.433/
https://aclanthology.org/2025.coling-main.433/
https://doi.org/10.1145/3539618.3591917
https://doi.org/10.1145/3539618.3591917
https://doi.org/10.1109/CVPR52733.2024.02283
https://doi.org/10.1109/CVPR52733.2024.02283
https://doi.org/10.1109/CVPR52733.2024.02283
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423

Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
41714186, Minneapolis, Minnesota. Association for
Computational Linguistics.

Alexey Dosovitskiy, Lucas Beyer, Alexander
Kolesnikov, Dirk Weissenborn, Xiaohua Zhai,
Thomas Unterthiner, Mostafa Dehghani, Matthias
Minderer, Georg Heigold, Sylvain Gelly, Jakob
Uszkoreit, and Neil Houlsby. 2021. An image
is worth 16x16 words: Transformers for image
recognition at scale. In International Conference on
Learning Representations.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey,
Abhishek Kadian, Ahmad Al-Dahle, Aiesha Let-
man, Akhil Mathur, Alan Schelten, Amy Yang, An-
gela Fan, Anirudh Goyal, Anthony Hartshorn, Aobo
Yang, Archi Mitra, Archie Sravankumar, Artem Ko-
renev, Arthur Hinsvark, Arun Rao, Aston Zhang, Au-
relien Rodriguez, Austen Gregerson, Ava Spataru,
et al. 2024. The llama 3 herd of models. Preprint,
arXiv:2407.21783.

Xinyu Feng, Yuming Lin, Lihua He, You Li, Liang
Chang, and Ya Zhou. 2024. Knowledge-guided dy-
namic modality attention fusion framework for multi-
modal sentiment analysis. In Findings of the Associ-
ation for Computational Linguistics: EMNLP 2024,
pages 14755-14766, Miami, Florida, USA. Associa-
tion for Computational Linguistics.

Kazi Saidul Hasan and Vincent Ng. 2014. Why are
you taking this stance? identifying and classifying
reasons in ideological debates. In Proceedings of
the 2014 Conference on Empirical Methods in Natu-
ral Language Processing (EMNLP), pages 751-762,
Doha, Qatar. Association for Computational Linguis-
tics.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. 2016. Deep residual learning for image recogni-
tion. In 2016 IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), pages 770-778.

Guimin Hu, Yi Xin, Weimin Lyu, Haojian Huang,
Chang Sun, Zhihong Zhu, Lin Gui, and Ruichu Cai.
2024. Recent trends of multimodal affective com-
puting: A survey from NLP perspective. CoRR,
abs/2409.07388.

Kornraphop Kawintiranon and Lisa Singh. 2022. PoliB-
ERTweet: A pre-trained language model for analyz-
ing political content on Twitter. In Proceedings of
the Thirteenth Language Resources and Evaluation
Conference, pages 7360-7367, Marseille, France. Eu-
ropean Language Resources Association.

Parisa Jamadi Khiabani and Arkaitz Zubiaga. 2024.
Few-shot learning for cross-target stance detection by
aggregating multimodal embeddings. IEEE Transac-
tions on Computational Social Systems, 11(2):2081—
2090.

Wonjae Kim, Bokyung Son, and Ildoo Kim. 2021. Vilt:
Vision-and-language transformer without convolu-
tion or region supervision. In Proceedings of the
38th International Conference on Machine Learning,
volume 139 of Proceedings of Machine Learning
Research, pages 5583-5594. PMLR.

Dilek Kiigiik and Fazli Can. 2020. Stance detection: A
survey. ACM Comput. Surv., 53(1).

Dilek Kiiciik and Fazli Can. 2021. Stance detection:
Concepts, approaches, resources, and outstanding
issues. In Proceedings of the 44th International ACM
SIGIR Conference on Research and Development in
Information Retrieval, SIGIR *21, page 2673-2676,
New York, NY, USA. Association for Computing
Machinery.

Jaeyoung Lee, Ximing Lu, Jack Hessel, Faeze Brah-
man, Youngjae Yu, Yonatan Bisk, Yejin Choi, and
Saadia Gabriel. 2024. How to train your fact verifier:
Knowledge transfer with multimodal open models.
In Findings of the Association for Computational
Linguistics: EMNLP 2024, pages 1306013077, Mi-
ami, Florida, USA. Association for Computational
Linguistics.

Yuxuan Lei, Dingkang Yang, Mingcheng Li, Shunli
Wang, Jiawei Chen, and Lihua Zhang. 2024. Text-
oriented modality reinforcement network for multi-
modal sentiment analysis from unaligned multimodal
sequences. In Artificial Intelligence: Third CAAI In-
ternational Conference, CICAI 2023, Fuzhou, China,
July 22-23, 2023, Revised Selected Papers, Part 11,
page 189-200, Berlin, Heidelberg. Springer-Verlag.

Junnan Li, Dongxu Li, Caiming Xiong, and Steven
Hoi. 2022. BLIP: Bootstrapping language-image pre-
training for unified vision-language understanding
and generation. In Proceedings of the 39th Interna-
tional Conference on Machine Learning, volume 162
of Proceedings of Machine Learning Research, pages
12888-12900. PMLR.

Yingjie Li and Cornelia Caragea. 2023. Distilling cali-
brated knowledge for stance detection. In Findings of
the Association for Computational Linguistics: ACL
2023, pages 6316-6329, Toronto, Canada. Associa-
tion for Computational Linguistics.

Bin Liang, Ang Li, Jinggian Zhao, Lin Gui, Min Yang,
Yue Yu, Kam-Fai Wong, and Ruifeng Xu. 2024.
Multi-modal stance detection: New datasets and
model. In Findings of the Association for Compu-
tational Linguistics ACL 2024, pages 12373-12387,
Bangkok, Thailand and virtual meeting. Association
for Computational Linguistics.

Bin Liang, Qinglin Zhu, Xiang Li, Min Yang, Lin Gui,
Yulan He, and Ruifeng Xu. 2022. JointCL: A joint
contrastive learning framework for zero-shot stance
detection. In Proceedings of the 60th Annual Meet-
ing of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 81-91, Dublin, Ire-
land. Association for Computational Linguistics.

590


https://openreview.net/forum?id=YicbFdNTTy
https://openreview.net/forum?id=YicbFdNTTy
https://openreview.net/forum?id=YicbFdNTTy
https://arxiv.org/abs/2407.21783
https://doi.org/10.18653/v1/2024.findings-emnlp.865
https://doi.org/10.18653/v1/2024.findings-emnlp.865
https://doi.org/10.18653/v1/2024.findings-emnlp.865
https://doi.org/10.3115/v1/D14-1083
https://doi.org/10.3115/v1/D14-1083
https://doi.org/10.3115/v1/D14-1083
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.48550/ARXIV.2409.07388
https://doi.org/10.48550/ARXIV.2409.07388
https://aclanthology.org/2022.lrec-1.801
https://aclanthology.org/2022.lrec-1.801
https://aclanthology.org/2022.lrec-1.801
https://doi.org/10.1109/TCSS.2023.3264114
https://doi.org/10.1109/TCSS.2023.3264114
https://proceedings.mlr.press/v139/kim21k.html
https://proceedings.mlr.press/v139/kim21k.html
https://proceedings.mlr.press/v139/kim21k.html
https://doi.org/10.1145/3369026
https://doi.org/10.1145/3369026
https://doi.org/10.1145/3404835.3462815
https://doi.org/10.1145/3404835.3462815
https://doi.org/10.1145/3404835.3462815
https://doi.org/10.18653/v1/2024.findings-emnlp.764
https://doi.org/10.18653/v1/2024.findings-emnlp.764
https://doi.org/10.1007/978-981-99-9119-8_18
https://doi.org/10.1007/978-981-99-9119-8_18
https://doi.org/10.1007/978-981-99-9119-8_18
https://doi.org/10.1007/978-981-99-9119-8_18
https://proceedings.mlr.press/v162/li22n.html
https://proceedings.mlr.press/v162/li22n.html
https://proceedings.mlr.press/v162/li22n.html
https://doi.org/10.18653/v1/2023.findings-acl.393
https://doi.org/10.18653/v1/2023.findings-acl.393
https://doi.org/10.18653/v1/2024.findings-acl.736
https://doi.org/10.18653/v1/2024.findings-acl.736
https://doi.org/10.18653/v1/2022.acl-long.7
https://doi.org/10.18653/v1/2022.acl-long.7
https://doi.org/10.18653/v1/2022.acl-long.7

Rui Liu, Zheng Lin, Yutong Tan, and Weiping Wang.
2021a. Enhancing zero-shot and few-shot stance
detection with commonsense knowledge graph. In
Findings of the Association for Computational Lin-
guistics: ACL-IJCNLP 2021, pages 3152-3157, On-
line. Association for Computational Linguistics.

Yaxin Liu, Yan Zhou, Ziming Li, Jinchuan Zhang,
Yu Shang, Chenyang Zhang, and Songlin Hu. 2024a.
RNG: reducing multi-level noise and multi-grained
semantic gap for joint multimodal aspect-sentiment
analysis. CoRR, abs/2405.13059.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqgi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach. Preprint, arXiv:1907.11692.

Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei,
Zheng Zhang, Stephen Lin, and Baining Guo. 2021b.
Swin transformer: Hierarchical vision transformer
using shifted windows. In 2021 IEEE/CVF Interna-
tional Conference on Computer Vision (ICCV), pages
9992-10002.

Zhiwei Liu, Tianlin Zhang, Kailai Yang, Paul Thomp-
son, Zeping Yu, and Sophia Ananiadou. 2024b. Emo-
tion detection for misinformation: A review. Infor-
mation Fusion, 107:102300.

Fuqiang Niu, Zebang Cheng, Xianghua Fu, Xiaojiang
Peng, Genan Dai, Yin Chen, Hu Huang, and Bowen
Zhang. 2024. Multimodal multi-turn conversation
stance detection: A challenge dataset and effective
model. Preprint, arXiv:2409.00597.

M. Ostendorff, P. Bourgonje, M. Berger, J. M. Schnei-
der, G. Rehm, and B. Gipp. 2019. Enriching bert with
knowledge graph embeddings for document classifi-
cation.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya
Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sas-
try, Amanda Askell, Pamela Mishkin, Jack Clark,
Gretchen Krueger, and Ilya Sutskever. 2021. Learn-
ing transferable visual models from natural language
supervision. In Proceedings of the 38th International
Conference on Machine Learning, volume 139 of
Proceedings of Machine Learning Research, pages
8748-8763. PMLR.

Swapna Somasundaran and Janyce Wiebe. 2010. Rec-
ognizing stances in ideological on-line debates. In
Proceedings of the NAACL HLT 2010 Workshop on
Computational Approaches to Analysis and Genera-
tion of Emotion in Text, pages 116—124, Los Angeles,
CA. Association for Computational Linguistics.

Qingying Sun, Zhongqing Wang, Qiaoming Zhu, and
Guodong Zhou. 2018. Stance detection with hierar-
chical attention network. In Proceedings of the 27th
International Conference on Computational Linguis-
tics, pages 2399-2409, Santa Fe, New Mexico, USA.
Association for Computational Linguistics.

Gemma Team, Morgane Riviere, Shreya Pathak,
Pier Giuseppe Sessa, Cassidy Hardin, Surya Bhupati-
raju, Léonard Hussenot, Thomas Mesnard, Bobak
Shahriari, Alexandre Ramé, Johan Ferret, Peter Liu,
Pouya Tafti, Abe Friesen, Michelle Casbon, Sabela
Ramos, Ravin Kumar, Charline Le Lan, Sammy
Jerome, Anton Tsitsulin, et al. 2024. Gemma 2: Im-
proving open language models at a practical size.
Preprint, arXiv:2408.00118.

Gaurish Thakkar, Sherzod Hakimov, and Marko Tadié.
2024. M2SA: Multimodal and multilingual model
for sentiment analysis of tweets. In Proceedings of
the 2024 Joint International Conference on Compu-
tational Linguistics, Language Resources and Evalu-
ation (LREC-COLING 2024), pages 10833—10845,
Torino, Italia. ELRA and ICCL.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, Dan Bikel, Lukas Blecher, Cristian Canton
Ferrer, Moya Chen, Guillem Cucurull, David Esiobu,
Jude Fernandes, Jeremy Fu, Wenyin Fu, et al. 2023.
Llama 2: Open foundation and fine-tuned chat mod-
els. Preprint, arXiv:2307.09288.

Adron van den Oord, Yazhe Li, and Oriol Vinyals. 2018.
Representation learning with contrastive predictive
coding. CoRR, abs/1807.03748.

Jiawen Wang, Longfei Zuo, Siyao Peng, and Bar-
bara Plank. 2024. Multiclimate: Multimodal stance
detection on climate change videos. Preprint,
arXiv:2409.18346.

Maxwell Weinzierl and Sanda Harabagiu. 2023. Identi-
fication of multimodal stance towards frames of com-
munication. In Proceedings of the 2023 Conference
on Empirical Methods in Natural Language Process-
ing, pages 12597-12609, Singapore. Association for
Computational Linguistics.

Haoyang Wen and Alexander Hauptmann. 2023. Zero-
shot and few-shot stance detection on varied topics
via conditional generation. In Proceedings of the
61st Annual Meeting of the Association for Compu-
tational Linguistics (Volume 2: Short Papers), pages
1491-1499, Toronto, Canada. Association for Com-
putational Linguistics.

Zhiyu Wu, Xiaokang Chen, Zizheng Pan, Xingchao
Liu, Wen Liu, Damai Dai, Huazuo Gao, Yiyang Ma,
Chengyue Wu, Bingxuan Wang, Zhenda Xie, Yu Wu,
Kai Hu, Jiawei Wang, Yaofeng Sun, Yukun Li, Yishi
Piao, Kang Guan, Aixin Liu, Xin Xie, Yuxiang You,
Kai Dong, Xingkai Yu, Haowei Zhang, Liang Zhao,
Yisong Wang, and Chong Ruan. 2024. Deepseek-
vl2: Mixture-of-experts vision-language models
for advanced multimodal understanding. Preprint,
arXiv:2412.10302.

Xiaocui Yang, Shi Feng, Daling Wang, Yifei Zhang,
and Soujanya Poria. 2023. Few-shot multimodal
sentiment analysis based on multimodal probabilistic

591


https://doi.org/10.18653/v1/2021.findings-acl.278
https://doi.org/10.18653/v1/2021.findings-acl.278
https://doi.org/10.48550/ARXIV.2405.13059
https://doi.org/10.48550/ARXIV.2405.13059
https://doi.org/10.48550/ARXIV.2405.13059
https://arxiv.org/abs/1907.11692
https://arxiv.org/abs/1907.11692
https://doi.org/10.1109/ICCV48922.2021.00986
https://doi.org/10.1109/ICCV48922.2021.00986
https://doi.org/10.1016/j.inffus.2024.102300
https://doi.org/10.1016/j.inffus.2024.102300
https://arxiv.org/abs/2409.00597
https://arxiv.org/abs/2409.00597
https://arxiv.org/abs/2409.00597
https://doi.org/10.48550/arxiv.1909.08402
https://doi.org/10.48550/arxiv.1909.08402
https://doi.org/10.48550/arxiv.1909.08402
https://proceedings.mlr.press/v139/radford21a.html
https://proceedings.mlr.press/v139/radford21a.html
https://proceedings.mlr.press/v139/radford21a.html
https://aclanthology.org/W10-0214/
https://aclanthology.org/W10-0214/
https://aclanthology.org/C18-1203/
https://aclanthology.org/C18-1203/
https://arxiv.org/abs/2408.00118
https://arxiv.org/abs/2408.00118
https://aclanthology.org/2024.lrec-main.946/
https://aclanthology.org/2024.lrec-main.946/
https://arxiv.org/abs/2307.09288
https://arxiv.org/abs/2307.09288
https://arxiv.org/abs/1807.03748
https://arxiv.org/abs/1807.03748
https://arxiv.org/abs/2409.18346
https://arxiv.org/abs/2409.18346
https://doi.org/10.18653/v1/2023.emnlp-main.776
https://doi.org/10.18653/v1/2023.emnlp-main.776
https://doi.org/10.18653/v1/2023.emnlp-main.776
https://doi.org/10.18653/v1/2023.acl-short.127
https://doi.org/10.18653/v1/2023.acl-short.127
https://doi.org/10.18653/v1/2023.acl-short.127
https://arxiv.org/abs/2412.10302
https://arxiv.org/abs/2412.10302
https://arxiv.org/abs/2412.10302
https://doi.org/10.1145/3581783.3612181
https://doi.org/10.1145/3581783.3612181

fusion prompts. In Proceedings of the 31st ACM
International Conference on Multimedia, MM ’23,
page 6045-6053, New York, NY, USA. Association
for Computing Machinery.

Bowen Zhang, Min Yang, Xutao Li, Yunming Ye, Xi-
aofei Xu, and Kuai Dai. 2020. Enhancing cross-
target stance detection with transferable semantic-
emotion knowledge. In Proceedings of the 58th An-
nual Meeting of the Association for Computational
Linguistics, pages 3188-3197, Online. Association
for Computational Linguistics.

Kai Zheng, Qingfeng Sun, Yaming Yang, and Fei Xu.
2022. Knowledge stimulated contrastive prompting
for low-resource stance detection. In Findings of the
Association for Computational Linguistics: EMNLP
2022, pages 1168—1178, Abu Dhabi, United Arab
Emirates. Association for Computational Linguistics.

A Datasets

A.1 MMSD Dataset

The MMSD dataset (Liang et al., 2024) comprises
five multimodal stance detection datasets from
different domains, designed to support this task:
Multi-modal Twitter Stance Election 2020 (MTSE),
Multi-modal COVID-CQ (MCCQ), Multi-modal
Will-They-Won’t-They MWTWT), Multi-modal
Russo-Ukrainian Conflict (MRUC), and Multi-
modal Taiwan Question (MTWQ). Each instance
in MMSD includes an input text S;, a correspond-
ing image [;, a target ¢;, and a stance label y;. The
stance labels vary across domains, including cate-
gories such as Favor, Against, Neutral, and Unre-
lated. The dataset is split into training, validation,
and test sets for both in-target and zero-shot scenar-
i0s, as detailed in Table 8.

A.2 MultiClimate Dataset

The MultiClimate dataset (Wang et al., 2024) is
focused on climate change-related content and in-
cludes 100 English YouTube videos, yielding a
total of 4,209 frame-transcript pairs. Each frame-
transcript pair is annotated with one of three stance
labels: Support, Neutral, or Oppose, indicating
the stance towards climate change. The dataset is
divided into 80% for training, 10% for validation,
and 10% for testing, enabling a thorough evaluation
within a domain-specific context. Table 9 provides
a summary of the data distribution in MultiClimate.

B Baseline Models

Text-only Models. We use a variety of text-based
models: (1) BERT(Devlin et al., 2019), the un-

Task Dataset Target Train Valid Test
DT 1150 170 327
MISEC g ss2 128 250

MCCQ CQ~ ~ 934 141 280
777777 CVS_AET 1216 179 352"
CIESRX 628 91 180

Itareet MWTWT ANTM CI 825 114 238
g AET_HUM 674 97 186
DIS_FOXA 2081 306 599

”””” RUS™ ~ 777 1117 222°

MRUC UKR 756 108 217
7777777 MOC =~ 977 140 280

MIWQ  10c 1349 193 386

DT 1114 146 1647

MTSE B 1434 212 1260
777777 CVS_AET 5253 737 1747
CIESRX 5994 841 899

Jero ot MWIWT \NTM CT 5694 804 1177
Ccro-sho AET_HUM 5884 840 957
”””” RUS™ ~ 945 7136 1110

MRUC UKR 971 139 1081
7777777 MOC =~ 1686 242 1397

MIWQ  1oc 1222 175 1928

Table 8: Overview of MMSD statistics.

Videos Support Neutral Oppose Total

Train 1449 1036 887 3372
Dev 204 83 130 417
Test 194 73 153 420
Total 1847 1192 1170 4209

Table 9: Overview of MultiClimate statistics.

cased BERT-base; (2) RoBERTa(Liu et al., 2019),
the RoBERTa-base; (3) KEBERT (Kawintiranon
and Singh, 2022), a BERTweet-base model with
specific knowledge of Twitter political posts; (4)
LLaMAZ2(Touvron et al., 2023), the LLaMA2-70b-
chat; (5) GPT4. For the MultiClimate dataset, we
also use (6) Llama3 (Meta-Llama3-8B) (Dubey
et al., 2024) and (7) Gemma2-9B (gemma-2-
9b)(Team et al., 2024), are evaluated in a zero-shot
setting with a climate-specific prompt on the Ol-
lama platform.

Image-only Models. The image-only base-
lines include (1) ResNet(He et al., 2016), specifi-
cally ResNet-50 v1.5; (2) ViT (Dosovitskiy et al.,
2021), the ViT-base-patch16-224; and (3) Swin
Transformer (SwinT), the Swinv2-base-patch4-
window12-192-22k(Liu et al., 2021b).

Multimodal Models. The multimodal baselines
for MMSD include (1) ViLT(Kim et al., 2021),
the vilt-b32-mlm; (2) CLIP(Radford et al., 2021),
the clip-vit-base-patch32; (3) BERT+ViT, where
BERT serves as the textual encoder and ViT as
the visual encoder, with concatenation of [CLS]
tokens from both modalities for stance detection;
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(4) Qwen-VL(Bai et al., 2023), the Qwen-VL-
Chat7b; (5) GPT4-Vision; (6) TMPT (Liang et al.,
2024), which uses target information to prompt
pre-trained models for multimodal stance feature
learning; and (7) TMPT+CoT (Liang et al., 2024),
a variant of TMPT that utilizes GPT4-Vision to
generate a chain of thought from the text and im-
age, which is then concatenated with the text as
input for TMPT+CoT. For MultiClimate, our mul-
timodal fusion models combine BERT with ViT or
ResNet50 embeddings. Additionally, we employ
CLIP(Radford et al., 2021) and BLIP(Li et al.,
2022) to capture joint image-text information, as
well as IDEFICS (Alayrac et al., 2022), an open-
source multimodal large language model, which we
prompt with the frame and transcript in both zero-
shot and fine-tuned settings to classify the stance
as NEUTRAL, SUPPORT, or OPPOSE.

C Experiment Settings

To leverage the powerful capabilities of large lan-
guage models (MLLMs), we propose a variant of
our Target-driven Multi-modal Alignment and
Dynamic Weighting Model (T-MAD), named
T-MAD+CWVF. In this variant, we employ a
Confidence-weighted Voting Fusion (CWVF)
mechanism to combine the stance labels generated
independently by MLLM and T-MAD, using their
respective confidence scores as the basis for fusion.

For MLLM’s output, we use a repeated gen-
eration method to estimate the confidence score.
Specifically, for each input instance (S;, I;,¢;), the
model is prompted 5 times to generate stance labels.
This process involves repeating the generation of
stance predictions, and for each prompt, MLLM
provides a stance label (either "Favor", "Against",
or "Neutral"). Once all 5 labels are generated,
the confidence score is calculated by dividing the
number of times a specific label appears by the
total number of prompts. Mathematically, if la-
bel ymrrm appears Nyrpw times out of the total 5
prompts, the confidence score Cyr v is computed
as:

NmviLim
5

For T-MAD’s output, the confidence score is
derived directly from the softmax probability asso-
ciated with the predicted label. Specifically, for the
output label y1-maD, the confidence score CtmaAD
is the probability value obtained from the soft-

CMmLim =

max function applied to the logits produced by
the model, which ranges between 0 and 1:

C TMAD = softmax (yT-M AD )

In the Confidence-weighted Voting Fusion
(CWVF) mechanism, the final stance prediction is
determined by comparing the confidence scores of
both models. The mechanism prioritizes the label
with the higher confidence score from either model.
Specifically:

1. If the confidence score of MLLM for label
ymLLMm 18 higher than T-MAD’s confidence score
for y1.maD, the final label ygysion 1S S€t tO YmMrLM-

Cvmiim > CrMAD = Yfusion = YMLLM

2. If T-MAD’s confidence score is higher, the
final label is set to Y- MAD-

Crmap > OMLIM = Yfusion = YT-MAD

3. If both confidence scores are equal, T-MAD’s
output is preferred as the final label.

Cmim = CLMAD = Yfusion = YT-MAD

This confidence-based fusion mechanism en-
sures that the model selects the most reliable stance
label, prioritizing the output with higher certainty.
This approach is consistently applied during both
the training and testing phases, ensuring robust
stance predictions across different multimodal in-
stances.

We utilize several pretrained large language mod-
els (MLLMs) in our experiments, including Qwen2-
VL-7B-Instruct (Bai et al., 2023), InternVL2_5-
1B(Chen et al., 2024), Llama-3.2-11B-Vision-
Instruct and deepseek-vl2 (Wu et al., 2024). These
models are used to generate stance labels for the
text-image-target instances, which are then com-
bined with the T-MAD outputs using the CWVF
mechanism.

For embedding the text and target, we utilize
the pretrained uncased BERT-base model (Devlin
et al., 2019), which embeds each word in the text S
and target ¢ as 768-dimensional embeddings, with
dp = T768.

For image embeddings, we employ the pre-
trained ViT-base model (Dosovitskiy et al., 2021),
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where each image patch is represented as a 768-
dimensional vector, i.e., d; = 768. The resolution
of each visual patch is set to 16 x 16 pixels.

In the target-driven multi-modal alignment mod-
ule, we set the dimensionality of the hidden vectors
to dj, = 768. The number of attention heads is set
to 12, with a multi-head attention dropout rate of
0.1. In the iterative reasoning chain, the maximum
reasoning depth K is set to 5, allowing the model
to refine the stance prediction progressively.

For the mutual information-based dynamic
weighting module, we set the temperature param-
eter 7 = 0.07 in the InfoNCE loss, and use 256
negative samples to estimate mutual information
between image and target, and text and target em-
beddings. The balancing factor A\ for the fused
representation is set to 0.5.

D MultiClimate Dataset Results (RQ3)

The results for the MultiClimate dataset are pro-
vided in the appendix. These results include the per-
formance of T-MAD with different text encoders,
visual encoders, and iterative inference depths. The
three tables presented in the appendix are as fol-
lows:

D.1 Text Encoders on MultiClimate

The results in Table 10 show the performance of T-
MAD with different text encoders on the MultiCli-
mate dataset. ROBERTa outperforms all other text
encoders, achieving the highest accuracy (0.780)
and Macro F1 score (0.808), demonstrating its abil-
ity to effectively capture the nuanced relationships
in text data. BERT also performs well, with an
accuracy of 0.752 and a macro F1 score of 0.750.
In contrast, KE-BERT and LLaMA2 perform rel-
atively poorly, with macro F1 scores below 0.750,
highlighting the superiority of RoOBERTa in this
task. GPT-4 delivers moderate performance with
an accuracy of 0.754 and a macro F1 of 0.752,
showing that it is competitive but does not surpass
RoBERTa.

D.2 Visual Encoders on MultiClimate

The performance of different visual encoders is
presented in Table 11. ViT achieves the highest ac-
curacy (0.780) and Macro F1 score (0.808), demon-
strating its excellent ability to process visual fea-
tures for stance detection. The ResNet50 encoder
also performs well, with an accuracy of 0.741 and
a macro F1 of 0.770. Qwen-VL achieves decent

Text Encoder ACC Macro F1
BERT 0.752 0.750
RoBERTa 0.780 0.808
KE-BERT 0.750 0.748
LLaMA2 0.735 0.732
GPT-4 0.754 0.752

Table 10: Performance of T-MAD with different text
encoders on MultiClimate dataset. Best scores are in
bold.

performance, with a Macro F1 score of 0.773, mak-
ing it competitive with other models. Swin Trans-
former and CLIP perform slightly worse, showing
that ViT is the most effective visual encoder for
this task on the MultiClimate dataset.

Visual Encoder ACC Macro F1
ResNet50 0.741 0.770
ViT 0.780 0.808
SwinT 0.748 0.767
CLIP 0.752 0.750
Qwen-VL 0.765 0.773

Table 11: Performance of T-MAD with different visual
encoders on MultiClimate dataset. Best scores are in
bold.

D.3 Inference Depths on MultiClimate

Depth ACC Macro F1
1 0.728 0.746
3 0.764 0.782
5 0.780 0.808
7 0.767 0.775
9 0.752 0.750

Table 12: Performance of T"-MAD with different infer-
ence depths on MultiClimate dataset. Best scores are in
bold.

Table 12 presents the results for T-MAD with dif-
ferent inference depths on the MultiClimate dataset.
The best performance is achieved at an inference
depth of 5, with the highest accuracy (0.780) and
Macro F1 score (0.808), indicating that this depth
strikes the best balance between model perfor-
mance and computational efficiency. Increasing the
depth to 7 or 9 results in a decline in performance,
especially in terms of accuracy and Macro F1, with
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scores dropping to 0.767 and 0.752, respectively.
This suggests that while deeper inference can help
improve the model’s predictions, it may lead to di-
minishing returns or overfitting, and a depth of 5 is
optimal for the MultiClimate dataset.
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