
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing, pages 6040–6053
November 4-9, 2025 ©2025 Association for Computational Linguistics

JOLT-SQL: Joint Loss Tuning of Text-to-SQL with Confusion-aware Noisy
Schema Sampling

Jinwang Song1, Hongying Zan1*, Kunli Zhang1, Lingling Mu1, Yingjie Han1,
Haobo Hua2, Min Peng3,

1Zhengzhou University, 2Zhengzhou University of Aeronautics, 3Wuhan University,
jwsong@gs.zzu.edu.cn, iehyzan@zzu.edu.cn

Abstract

Text-to-SQL, which maps natural language
to SQL queries, has benefited greatly from
recent advances in Large Language Models
(LLMs). While LLMs offer various paradigms
for this task, including prompting and su-
pervised fine-tuning (SFT), SFT approaches
still face challenges such as complex multi-
stage pipelines and poor robustness to noisy
schema information. To address these limi-
tations, we present JOLT-SQL, a streamlined
single-stage SFT framework that jointly opti-
mizes schema linking and SQL generation via
a unified loss. JOLT-SQL employs discrimina-
tive schema linking, enhanced by local bidirec-
tional attention, alongside a confusion-aware
noisy schema sampling strategy with selective
attention to improve robustness under noisy
schema conditions. Experiments on the Spider
and BIRD benchmarks demonstrate that JOLT-
SQL achieves state-of-the-art execution accu-
racy among comparable-size open-source mod-
els, while significantly improving both training
and inference efficiency. Our code is available
at https://github.com/Songjw133/JOLT-SQL.

1 Introduction

Text-to-SQL technology, which transforms natural
language questions into executable SQL queries
(Deng et al., 2022), aims to break down the tech-
nical barriers for users interacting with complex
databases, enabling non-professionals to conve-
niently access desired data. With the widespread
adoption of data-driven applications across vari-
ous domains, the research value and application
prospects of Text-to-SQL have become increas-
ingly significant. In recent years, the rise of Large
Language Models (LLMs) has injected new vitality
into this field, and LLM-based Text-to-SQL meth-
ods have made remarkable progress (Hong et al.,
2024; Shi et al., 2025).

*Corresponding author.

Currently, LLM-based Text-to-SQL methods can
be broadly categorized into two main paradigms:
Prompting approaches, including methods like In-
Context Learning (ICL) and Chain-of-Thought
(CoT) (Wei et al., 2022; Dong et al., 2024); and Su-
pervised Fine-Tuning (SFT). Prompting methods
have garnered considerable attention due to their
impressive performance in zero-shot or few-shot
scenarios. However, they often rely on powerful,
proprietary commercial models, and their effective-
ness is typically difficult to replicate with smaller-
parameter open-source models.

In contrast, SFT offers a more controllable path
to enhance open-source models. Task-specific SFT
significantly improves SQL generation capabilities
and provides practical advantages such as lower
deployment costs, offline operation, and support
for local data processing.

Schema linking is a crucial component in main-
stream Text-to-SQL methods (Yang et al., 2024c).
Its purpose is to select the necessary database ta-
bles/columns and filter out database schema ele-
ments irrelevant to the user’s question, thereby re-
ducing interference and improving SQL genera-
tion performance. CHESS (Talaei et al., 2024) em-
ploys a dedicated agent to prune irrelevant schema
elements. E-SQL (Caferoğlu and Ulusoy, 2024)
optimizes the schema linking phase through ques-
tion enrichment and candidate predicate expansion.
DIN-SQL (Pourreza and Rafiei, 2023) enhances
the model’s schema linking capabilities using de-
composed ICL.

In existing approaches, schema linking is often
treated as a separate step from SQL generation.
In SFT-based methods, schema linking and SQL
generation tasks are typically trained separately
(Pourreza and Rafiei, 2024), leading to increased
task costs. In contrast, ROUTE (Qin et al., 2024)
utilizes multi-task learning to incorporate schema
linking, SQL generation, and other sub-tasks into a
single SFT process. However, this approach also

6040

https://github.com/Songjw133/Joint-Loss-Tuning-of-Text-to-SQL

means that the total volume of training data in-
creases linearly with the number of tasks, introduc-
ing additional training overhead.

In this work, we propose a novel method: JOint
Loss Tuning of Text-to-SQL with Confusion-aware
Noisy Schema Sampling (JOLT-SQL). Our objec-
tive is to address two primary issues: (1) Conven-
tional pipeline fine-tuning strategies or multi-task
learning approaches often require fine-tuning multi-
ple distinct models or incur increased training time
due to the expanded multi-task dataset, leading to
higher temporal and hardware costs. (2) During
actual inference, the schema information provided
by the schema linking module is often imperfect,
potentially containing irrelevant items or omitting
necessary ones. Existing SQL generation models,
when fine-tuned solely on ground truth schema or
with random sampled noisy schema, struggle to
adapt to such imperfect inputs during inference,
thereby affecting SQL generation accuracy.

JOLT-SQL addresses these challenges through
an innovative joint loss tuning strategy. Specifically,
by adjusting attention masks, JOLT-SQL stands as
the first LLM SFT method to fuse the optimization
objectives of schema linking and SQL generation
tasks within a single backward pass. Concurrently,
the method dynamically samples noisy schema
based on probability during training, enhancing its
ability to handle imperfect schema linking results
during inference.

Our contributions are as follows:
• We propose a discriminative schema linking

fine-tuning method that incorporates local bidirec-
tional attention. Experiments demonstrate that this
method achieves state-of-the-art performance in
schema linking on the Spider and BIRD datasets,
along with faster inference speeds.
• Unlike typical pipeline fine-tuning strategies,

we train schema linking and SQL generation using
joint loss, thereby avoiding the additional overhead
associated with multi-stage fine-tuning.
• We further introduce Confusion-aware Noisy

Schema Sampling, enhancing model robustness
against redundant schema linking results. This
technique strategically guides the SQL genera-
tion task’s attention by incorporating noisy schema
items selected based on the model’s points of pre-
dictive confusion. Experimental results show that
JOLT-SQL, using the Qwen2.5-Coder-14B model,
achieves 88.4%/88.9% execution accuracy on the
Spider Dev/Test set and 64.9% on the BIRD Dev
set.

2 Related Work

Large Language Models (LLMs) have shown sig-
nificant promise in Text-to-SQL, with research
largely following two paths: Prompting and Su-
pervised Fine-Tuning (SFT).

2.1 Prompting for Text-to-SQL

These methods guide LLMs with specific instruc-
tions. DIN-SQL (Pourreza and Rafiei, 2023) used
decomposed in-context learning and a multi-stage
pipeline. DAIL-SQL (Gao et al., 2024a) focused
on example selection for complex scenarios. Other
works refined prompting and schema understand-
ing: C3 (Dong et al., 2023) improved schema
representation and used a multi-module pipeline,
while MAC-SQL (Wang et al., 2025) employed
multi-agent collaboration. To handle increased
complexity, CHESS (Talaei et al., 2024) utilized
agent-based schema pruning and multi-turn dia-
logue; E-SQL (Caferoğlu and Ulusoy, 2024) op-
timized schema linking via question enrichment
and candidate predicate expansion; and RSL-SQL
(Cao et al., 2024) applied bi-directional pruning
methods to improve schema linking recall. The
effectiveness of these approaches remains highly
dependent on prompt design and the LLM’s inher-
ent understanding capabilities.

2.2 Supervised Fine-tuning based
Text-to-SQL

SFT aims to more deeply integrate task-specific
knowledge into open-source LLMs. While early
methods involved direct language model fine-
tuning, later strategies became more specialized.
DTS-SQL and DB-Explore (Pourreza and Rafiei,
2024; Ma et al., 2025) treated schema linking as a
separate fine-tuning stage, whereas ROUTE (Qin
et al., 2024) used multi-task learning for schema
linking and SQL generation among other sub-
objectives. ExSL (Glass et al., 2025) proposed
an efficient extractive schema linking method for
decoder-only LLMs. Other approaches include
SENSE (Yang et al., 2024b), which introduced re-
inforcement learning, and SQL-PaLM (Sun et al.,
2023) and CodeS (Li et al., 2024), which en-
hanced models via secondary pre-training on large
SQL corpora. BASE-SQL (Sheng et al., 2025)
also adopted a multi-stage fine-tuning framework.
These SFT methods have proven to be effective
pathways for improving Text-to-SQL performance
on open-source models.

6041

Example of JOLT-SQL input format
User:
Please generate SQLite query based on the following question and
schema.
Question:
Show the stadium name and the number of concerts in each stadium.
Schema:
<schema>
CREATE TABLE stadium (

Stadium_ID INTEGER, Example: [1, 2]<marker>
Location TEXT, Example: ['Raith Rovers', 'Ayr United']<marker>
Name TEXT, Example: [\"Stark's Park\", 'Somerset Park']<marker>
Capacity INTEGER, Example: [10104, 11998]<marker>
Highest INTEGER, Example: [4812, 2363]<marker>
Lowest INTEGER, Example: [1294, 1057]<marker>
Average INTEGER, Example: [2106, 1477]<marker>
PRIMARY KEY (Stadium_ID)
);

CREATE TABLE concert (
......
......
</schema>
Assistant:
SELECT T2.name , count(*) FROM concert AS T1 JOIN stadium AS T2 ON
T1.stadium_id = T2.stadium_id GROUP BY T1.stadium_id

⟨Prefix⟩

⟨Query⟩

⟨Schema⟩

Figure 1: An input example of JOLT-SQL.

3 Approach

In this section, we detail our proposed JOLT-SQL
method. We begin by describing its unique schema
formatting, followed by an exploration of the joint
loss design for schema linking and SQL generation
tasks.

3.1 Schema Representation Standardization

We first standardize the schema representation to
ensure a uniform input format for subsequent pro-
cessing stages.

In JOLT-SQL, we divide the input sequence dur-
ing the training phase into three distinct parts based
on content: ⟨Prefix⟩, ⟨Schema⟩, and ⟨Query⟩, as
illustrated in Figure 1. Specifically:
• ⟨Prefix⟩: Contains essential task instructions

and the user’s question.
• ⟨Schema⟩: The schema section, describing the

complete table structure and column definitions.
• ⟨Query⟩: The ground truth SQL query state-

ment part of each input sequence, used for super-
vised training.

We employ a Data Definition Language (DDL)-
style representation for the schema (Gao et al.,
2024b). For each table in the database, we spec-
ify the name and data type of every column, along
with its primary and foreign key information. Ad-
ditionally, for each column, we select at most two
value examples from the database to include in its
definition.

After each column definition within ⟨Schema⟩,
we insert a special marker token, denoted as
⟨marker⟩. We simply select the model’s padding
token (e.g., "<|endoftext|>" from the Qwen2 to-
kenizer) as our marker token. As a special token, it
acts as an isolated token that avoids combining with

other characters into subwords, thereby simplify-
ing subsequent processing, and is also semantically
neutral.

3.2 Discriminative Schema Linking with
Local Bidirectional Attention

Unlike typical schema linking methods based on
generative LLMs, and inspired by LS-LLaMA (Li
et al., 2023b), our approach relies on directly dis-
criminating the hidden states of marker tokens.

Specifically, given a complete input se-
quence X = ⟨Prefix, Schema, Query⟩ =
[x1, x2, . . . , xn], after it passes through the LLM
decoder layers, we obtain its hidden states H ∈
Rn×d. For the hidden state hi corresponding to
the i-th token, we pass it through a linear layer
W ∈ R1×d and a sigmoid function to convert it
into a probability:

ŷi = σ(Whi) (1)

Concurrently, for each input sequence X , we
create a binary mask M = [m1,m2, . . . ,mn]. An
element mi is set to 1 if the i-th token is a marker
token located within the ⟨Schema⟩, and 0 otherwise.
The loss is defined as:

LSL = − 1∑n
i=1 mi

n∑

i=1

mi · BCE(ŷi, yi) (2)

Here, BCE means binary cross-entropy loss,
yi ∈ {0, 1} is the ground truth label for the schema
linking task.

Furthermore, decoder-only LLM architectures
employ a causal attention mask, which prevents
tokens within ⟨Schema⟩ from accessing global
schema information. As an improvement, we en-
able tokens within the ⟨Schema⟩ part to additionally
have local bidirectional attention, on top of the de-
fault causal attention. Let A(xi) denote the set of
indices of other tokens that xi can attend to, and I
denote the set of indices for token positions in the
sequence, A(xi) is defined as:

∀i ∈I⟨Schema⟩, A(xi) ={
(I⟨Prefix⟩ ∪ I⟨Schema⟩) \ I⟨marker⟩, i /∈ I⟨marker⟩
I⟨Prefix⟩ ∪ I⟨Schema⟩, i ∈ I⟨marker⟩

(3)

It should be noted that we introduce a further
adjustment rule for marker tokens: marker tokens
are invisible to all non-marker tokens. This modi-
fication allows us to remove marker tokens during
the SQL generation stage.

6042

3.3 SQL Supervised Tuning with Schema
Selective Attention

For the SQL query generation task, we enhance
the model performance by applying supervised tun-
ing to the ⟨Query⟩ part. A challenge here is that
during training, the input sequence contains the
full ⟨Schema⟩. For pipeline SFT methods, the SQL
generation model is often fine-tuned on the ground
truth schema subset, which helps to maintain con-
sistency with the input conditions expected during
inference (Pourreza and Rafiei, 2024).

We address this issue by similarly adjusting
the attention mask. Specifically, tokens in the
⟨Query⟩ part selectively attend only to tokens
within the ground truth schema subset (referred
to as ⟨GT_Schema⟩), rather than the full ⟨Schema⟩.
In practice, ⟨GT_Schema⟩ includes not only the rel-
evant column definitions but also the table structure
to which each column definition belongs (such as
table names, primary key, and foreign key defini-
tions).

In addition to ⟨GT_Schema⟩, to make the model
more robust to imperfect schema linking results,
we select some noisy schema items (referred to as
⟨Noisy_Schema⟩) for the ⟨Query⟩ tokens to attend
to. This attention mechanism can be represented
as:

∀i ∈ I⟨Query⟩, A(xi) =(
I⟨Prefix⟩ ∪ I⟨GT_Schema⟩ ∪ I⟨Noisy_Schema⟩ ∪
{j|j ∈ I⟨Query⟩, j ≤ i}

)
\ I⟨marker⟩

(4)

Combined with the schema Local Bidirectional
Attention described in Section 3.2, the final atten-
tion mask form is shown in Figure 2.

Consistent with typical LLM SFT, we then cal-
culate the Next Token Prediction (NTP) loss for the
SQL query. For a ⟨Query⟩ = [xn−m+1, . . . , xn],
the loss is:

LNTP = − 1

m

n∑

i=n−m+1

logPA(xi)

(
xi

∣∣⟨Prefix, Schema, xn−m+1:i−1⟩
)

(5)

where PA(·)(·|·) denotes the conditional proba-
bility given the application of the attention A(·).

3.4 Joint Loss Tuning with Confusion-aware
Noisy Schema Sampling

In the preceding sections, we have introduced the
respective losses for the schema linking task LSL
and the SQL generation task LNTP. In JOLT-SQL,
we train the model using a joint loss:

pr
ef

ix
pr

ef
ix

pr
ef

ix
<s

ch
em

a>
ite

m
1

<m
ar

ke
r>

ite
m

2
<m

ar
ke

r>
ite

m
3

<m
ar

ke
r>

</
sc

he
m

a>
qu

er
y

qu
er

y
qu

er
y

qu
er

y

prefix
prefix
prefix

<schema>
item1

<marker>
item2

<marker>
item3

<marker>
</schema>

query
query
query
query

<marker>
GT/Noisy Schema

Allowed Attention
Masked Attention

Figure 2: Visualize the attention mask of JOLT-SQL
using a sample text. For clarity, the text has been sim-
plified and does not reflect the actual tokenization.

def train_step(model, input_ids, attn_mask, gt_schema_idx):
#args:
##model: LLM for training.
##input_ids: Token ids of input sequence.
##attn_mask: Vanilla causal attention mask.
##gt_schema_idx: Ground truth schema idx from input_ids.
 with torch.inference_mode():
 attn_mask = apply_schema_bidirectional_attn(input_ids, attn_mask)
 outputs = model.forward(input_ids, attn_mask) #extra forward pass
 sampling_weights = torch.sigmoid(outputs.logits_sl)
 noisy_schema_idx = noisy_schema_sampling(input_ids, sampling_weights)
 selected_schema_idx = set(noisy_schema_idx) | set(gt_schema_idx)

 attn_mask = apply_schema_selective_attn(selected_schema_idx, attn_mask)
 outputs = model.forward(input_ids, attn_mask)
 loss_sl = compute_sl_loss(outputs)
 loss_ntp = compute_ntp_loss(outputs)
 loss = loss_sl + loss_ntp
 loss.backward()

Pseudo-code

Figure 3: Pseudo-code for the JOLT-SQL training pro-
cess. In the actual experiments, the extra forward
pass is performed only during the first training epoch,
and the sampling_weights are cached.

L = LSL + LNTP (6)

As described in Section 3.3, we introduce atten-
tion to ⟨Noisy_Schema⟩. Instead of simple random
sampling, we employ a probability-weighted sam-
pling to select these noisy schema items. The mo-
tivation here is that selecting noisy schema items
that the model tends to misidentify with high con-
fidence can help the model better adapt to schema
linking results that may contain numerous False
Positives during inference.

We define a func Sample(Sets,Weights, Count),
which performs sampling without replacement
of Count items from the Sets based on their
Weights. Let S denote the set of schema items,
then:

6043

S⟨Noisy_Schema⟩ =Sample(S⟨Schema⟩ \ S⟨GT_Schema⟩, ŷ, ⌊k⌋)
k ∼ U

(
0,
⌊
β · |S⟨Schema⟩|

⌋)

(7)

Here, β is a float in the range (0,1) that controls the
upper bound for the number of samples k. In our
experiments, β is set to 0.2 for the Spider dataset
and 0.1 for the BIRD dataset.

Thanks to our joint loss tuning strategy,
probability-weighted sampling can be efficiently in-
tegrated into the training process. During training,
this probability-weighted sampling is guided by the
model’s own propensity for confusion: its predicted
probabilities ŷ (Equation 1) for marker tokens are
dynamically used as the sampling weights. These
weights are obtained through an extra forward pass
that does not require gradient computation. The
pseudo-code for the training process is shown in
Figure 3.

Notably, these sampling weights are calculated
and cached during the first training epoch and
reused in subsequent epochs. The rationale for
this strategy is our aim to capture the model’s prob-
ability distribution when encountering "new" data,
which more closely reflects its behavior in actual
inference scenarios. In the first epoch, all training
data is unseen by the model. In subsequent epochs,
as the model progressively fits the training data, its
prediction confidence on this seen data increases
rapidly, causing the predicted probabilities to be-
come extreme (approaching 0 or 1). This deviates
from the model’s behavior on unseen data (dev/test
sets).

Furthermore, this caching strategy significantly
improves training efficiency. The additional time
cost incurred by the extra forward pass is minimal.
For a more detailed comparison of time efficiency,
please refer to Appendix A.1.

3.5 Inference

During schema linking inference, we prioritize re-
call by setting the decision threshold for ŷ to 0.05.
This emphasis on high recall is crucial, as miss-
ing necessary schema items is more detrimental to
subsequent SQL generation than including some
redundant ones, which models can often partially
handle.

Following schema linking, we prune all marker
tokens and irrelevant column definitions identified
by the linking results. We then generate the SQL
query using a vanilla causal attention mask. This

ensures compatibility with frameworks such as
HuggingFace Transformers’ model.generate(),
which do not support custom attention masks in
autoregressive decoding.

4 Experiments

4.1 Setup

Datasets To evaluate the JOLT-SQL method,
we conducted experiments on two widely used
datasets: Spider (Yu et al., 2018) and BIRD (Li
et al., 2023a). Spider comprises 200 databases
with multiple tables, and its Training/Dev/Test sets
contain 7,000/1,034/2,147 question-SQL pairs, re-
spectively. BIRD contains 12,751 unique question-
SQL pairs, 95 large databases with a total size of
33.4 GB, and its Training/Dev/Test sets include
9,428/1,534/1,789 pairs, respectively. For these
two benchmarks, our models are fine-tuned exclu-
sively on their respective Training sets and evalu-
ated on the corresponding Dev and Test sets.

Evaluation Metrics The quality of SQL gener-
ation is evaluated by Execution Accuracy (EX),
which measures whether the execution results of
the generated SQL on the database exactly match
the ground truth answers. This directly reflects the
model’s practical ability to generate correct SQL.

For schema linking, we use Recall and Precision
for evaluation. To more comprehensively evaluate
the model’s overall discriminative ability across
different decision thresholds, we also introduce PR-
AUC (Area Under the Precision-Recall Curve) and
ROC-AUC (Area Under the Receiver Operating
Characteristic Curve).

Model We selected the popular open-source
Qwen2.5-Coder (Yang et al., 2024a; Hui et al.,
2024) series for our experiments, including
Qwen2.5-Coder-7B-Instruct and Qwen2.5-Coder-
14B-Instruct.

Implementation Details We employ LoRA (Hu
et al., 2022) to reduce VRAM requirements. More
details can be found in the Appendix B.2.

Baselines In our experiments, we compare re-
cent LLM-based Text-to-SQL baselines in two cat-
egories. The Prompting methods include DIN-SQL
(Pourreza and Rafiei, 2023), DAIL-SQL (Gao et al.,
2024a), CHESS (Talaei et al., 2024), E-SQL (Cafer-
oğlu and Ulusoy, 2024), MCS-SQL (Lee et al.,
2025), RSL-SQL (Cao et al., 2024) and MAC-SQL

6044

Methods Type Spider Dev
EX

Spider Test
EX

BIRD Dev
EX

DIN-SQL + GPT-4(Pourreza and Rafiei, 2023) Prompting 82.8 85.3 50.7
DAIL-SQL + GPT-4(Gao et al., 2024a) Prompting 83.5 86.6 54.8
CHESS + Gemini1.5-Pro(Talaei et al., 2024) Prompting - 87.2 68.3
E-SQL + GPT-4o-mini(Caferoğlu and Ulusoy, 2024) Prompting - 74.8 61.6
MAC-SQL + GPT-4(Wang et al., 2025) Prompting 86.8 82.8 59.4
RSL-SQL + GPT-4o(Cao et al., 2024) Prompting - 87.9 67.2
MCS-SQL + GPT-4(Lee et al., 2025) Prompting 89.5 89.6 63.4
CodeS-7B(Li et al., 2024) SFT 85.4 83.5 57.2
CodeS-15B(Li et al., 2024) SFT 84.9 85.0 58.5
SENSE-7B(Yang et al., 2024b) SFT 83.2 83.5 51.8
SENSE-13B(Yang et al., 2024b) SFT 84.1 86.6 55.5
DTS-SQL + Deepseek-7B(Pourreza and Rafiei, 2024) SFT 85.5 84.4 55.8
ExSL + Deepseek-Coder-6.7B(Glass et al., 2025) SFT 82.4 83.0 63.2
ROUTE + Qwen2.5-7B(Qin et al., 2024) SFT 83.6 83.7 55.9
ROUTE + Qwen2.5-14B(Qin et al., 2024) SFT 87.3 87.1 60.9
DB-Explore + Qwen2.5-Coder-7B(Ma et al., 2025) SFT 84.0 - 52.1
BASE-SQL + Qwen2.5-Coder-14B(Sheng et al., 2025) SFT 86.8 87.9 63.8
JOLT-SQL(Ours) + Qwen2.5-Coder-7B SFT 87.0 86.8 60.4
JOLT-SQL(Ours) + Qwen2.5-Coder-14B SFT 88.4 88.9 64.9

Table 1: Main experimental results. The best results among SFT-based methods are shown in bold, and the
second-best are underlined.

Methods Spider Dev Spider Test BIRD Dev
P R ROC PR P R ROC PR P R ROC PR

ExSL + Deepseek-Coder-6.7B(Glass et al., 2025) - - 99.76 98.44 - - 99.70 98.40 - - 99.38 93.67
JOLT-SQL(Ours) + Qwen2.5-Coder-7B 88.09 98.12 99.86 98.70 90.28 98.65 99.87 99.10 76.14 94.83 99.46 94.31
JOLT-SQL(Ours) + Qwen2.5-Coder-14B 91.07 99.03 99.91 99.29 93.74 98.58 99.89 99.26 75.12 96.68 99.54 95.42

Table 2: Schema linking results. P and R represent column Precision and column Recall, respectively, at a decision
threshold of 0.05. ROC stands for ROC AUC, and PR stands for PR AUC. The best results are shown in bold.

(Wang et al., 2025). The SFT-based methods com-
prise CodeS (Li et al., 2024), SENSE (Yang et al.,
2024b), DTS-SQL (Pourreza and Rafiei, 2024),
ExSL (Glass et al., 2025), ROUTE (Qin et al.,
2024), DB-Explore (Ma et al., 2025), and BASE-
SQL (Sheng et al., 2025). These baselines cover a
range of prompting and fine-tuning strategies for
Text-to-SQL.

4.2 Main Results

Table 1 presents our main experimental results and
a comparison with baselines. JOLT-SQL demon-
strates excellent performance on both the Spider
and BIRD benchmarks. Specifically, JOLT-SQL us-
ing the Qwen2.5-Coder-14B model achieves execu-
tion accuracies of 88.4%, 88.9%, and 64.9% on the
Spider Dev set, Test set, and BIRD Dev Set, respec-
tively. This performance is state-of-the-art among
open-source models of comparable size based on
SFT. Notably, JOLT-SQL with Qwen2.5-Coder-7B
even surpasses larger models like CodeS-15B and

SENSE-13B in results.
Unlike the two-stage fine-tuning strategy of

DTS-SQL or the complex multi-stage pipeline
of BASE-SQL, JOLT-SQL achieves superior per-
formance and significantly simplifies the train-
ing process through its novel single-stage joint
loss tuning. Meanwhile, compared to the multi-
task learning approach adopted by ROUTE, JOLT-
SQL achieves better results while keeping the total
amount of training data unchanged. Furthermore,
even when compared to prompting methods that
often rely on powerful closed-source models like
GPT-4 (Achiam et al., 2023; Hurst et al., 2024)
or Gemini1.5-Pro (Team et al., 2024), JOLT-SQL
demonstrates strong competitiveness, with its per-
formance matching or exceeding some of these top
approaches.

4.3 Schema Linking Results

Table 2 displays the schema linking task metrics
of our JOLT-SQL method on the Spider Dev/Test

6045

0.01 0.05 0.1 0.2 0.3 0.4 0.5
Threshold

82.5

85.0

87.5

90.0

92.5

95.0

97.5

100.0

 V
al

ue
 (%

)

86.7 87.0 86.8 86.4 86.4
85.8 86.1

EX vs. Schema Linking Decision Threshold

Recall
Precision
SQL EX

(a) Spider Dev

0.01 0.05 0.1 0.2 0.3 0.4 0.5
Threshold

60

65

70

75

80

85

90

95

100

 V
al

ue
 (%

)

58.6
60.4 60.3 59.7 59.1 59.5 59.0

EX vs. Schema Linking Decision Threshold

Recall
Precision
SQL EX

(b) BIRD Dev

Figure 4: Comparison of the model’s final EX under
different schema linking decision thresholds.

and BIRD Dev sets. We compare it with ExSL
(Glass et al., 2025) as a baseline. ExSL employs an
extractive method to fine-tune decoder-only LLMs
and relies on repeating column definitions to al-
leviate the issue of incomplete schema informa-
tion caused by causal masks. In contrast, JOLT-
SQL, by introducing a local bidirectional attention
mechanism, avoids the need to redundantly dupli-
cate column definitions, which would otherwise in-
crease sequence length. The results show that when
using the Qwen2.5-Coder-14B model, JOLT-SQL
achieves ROC and PR scores as high as 99.91% and
99.29%, respectively, on the Spider Dev set, and
also attains SOTA performance of 99.54% ROC
and 95.42% PR on the BIRD Dev set.

We further investigated the impact of the schema
linking threshold on the specific performance met-
rics of JOLT-SQL (based on the Qwen2.5-Coder-
7B). In Figure 4, we present the changes in column
recall, column precision, and the final SQL EX as
the decision threshold decreases from 0.5 to 0.01.
On the Spider Dev set, it can be observed that as
the decision threshold starts to decrease from 0.5,
the EX shows an overall upward trend, reaching its
peak EX at a threshold of 0.05. Opting for an even
lower threshold of 0.01 results in only a slight im-
provement in recall, accompanied by a significant
sacrifice in precision. This leads to the introduction
of excessive False Positive schema items during
inference, causing the EX to decline.

BIRD exhibits a similar overall trend with re-
spect to different thresholds, reaching its peak EX
around 0.05. Notably, compared to the Spider
dataset, an increase in column recall on the BIRD
dataset is typically accompanied by a more rapid
decline in precision. This might reflect the model’s
higher uncertainty when dealing with a more com-
plex dataset like BIRD.

4.4 Ablation Study
In the ablation study, we analyzed the impact
of three core components on overall perfor-
mance: schema Local Bidirectional Attention
LBA, Confusion-aware Noisy Schema Sampling
(Confusion-aware NSS) and schema Selective
Attention SA. In the context of these ablations,
SA defaults to the ⟨Query⟩ attending only to the
⟨GT_Schema⟩ part of the overall schema infor-
mation (thus excluding ⟨Noisy_Schema⟩, which
would be introduced by the NSS), with NSS treated
as an additional component.

The results of the ablation study, detailed in Ta-
ble 3, confirm that all three core components con-
tribute to JOLT-SQL’s performance. LBA was vital
for capturing complex schema relationships, and
its absence markedly impacted results. NSS proved
key for improving robustness against noisy schema
during inference by promoting adaptation in train-
ing, while SA helped align training with inference
conditions by focusing ⟨Query⟩ attention on rel-
evant schema subsets instead of the full schema.
The individual or combined removal of these mech-
anisms consistently reduced performance. Ulti-
mately, disabling all three components substantially
degraded overall performance.

The results of the ablation study demonstrate
that within our joint loss tuning strategy, the clever
integration of these attention adjustment and noise
injection mechanisms plays an indispensable role
in achieving superior model performance.

Method Spider
Dev EX

BIRD
Dev EX

JOLT-SQL + Qwen2.5-Coder-7B 87.0 60.4
w/o LBA 84.8 58.3
w/o Confusion-aware NSS 86.1 58.6
w/o SA & Confusion-aware NSS 85.9 59.2
w/o LBA & SA & Confusion-aware NSS 84.5 57.7

Table 3: Ablation study results.

4.5 Further Analysis
Impact of Schema LBA The ablation study has
already shown that removing LBA leads to a signif-
icant decline in model performance. Table 4 further
reveals its critical role in schema linking: the ab-
sence of LBA causes a deterioration in both recall
and precision, posing a dual challenge for SQL
generation due to increased noise and omission of
relevant columns.

For instance, on the Spider Dev/BIRD Dev sets,
after removing LBA, even with a low decision

6046

Methods Spider Dev BIRD Dev
P R ROC PR P R ROC PR

JOLT-SQL + Qwen2.5-Coder-7B 88.09 98.12 99.86 98.70 76.14 94.83 99.46 94.31
w/o LBA 79.83 95.04 99.34 95.41 66.01 92.73 98.86 88.02

Table 4: Ablation results for schema LBA.

No. Training with(⟨Query⟩ attends to) Inference with Spider
Dev EX

BIRD
Dev EX

#1 Full ⟨Schema⟩ Full ⟨Schema⟩ 82.8 52.9
#2 Full ⟨Schema⟩ ⟨GT_Schema⟩ 89.6 68.5
#3 ⟨GT_Schema⟩ ⟨GT_Schema⟩ 90.5 72.2
#4 Full ⟨Schema⟩ ŷ > 0.05 Schema 85.9 59.2
#5 ⟨GT_Schema⟩ ŷ > 0.05 Schema 86.1 58.6
#6 ⟨GT_Schema⟩ & Random NSS ŷ > 0.05 Schema 86.4 59.6
#7 ⟨GT_Schema⟩ & Confusion-aware NSS ŷ > 0.05 Schema 87.0 60.4

Table 5: SQL generation performance under different
training attention strategies and inference-stage schema
input combinations (based on Qwen2.5-Coder-7B, with
LBA enabled). ŷ > 0.05 Schema refers to the results
predicted by schema linking. #1, #2, and #3 are used for
baseline or ideal condition comparisons, with #3 con-
sidered as a performance upper bound. #4 to #7 focus
on the model’s performance under realistic predicted
schema conditions, where #7 represents the complete
strategy adopted by JOLT-SQL.

threshold of 0.05, recall dropped to 95.04% and
92.73%, respectively, while precision significantly
decreased to 79.83% and 66.01%. The PR also cor-
respondingly decreased from 98.70%/94.31% to
95.41%/88.02%, confirming the weakened ability
of the model to identify relevant columns. This is
primarily because, under the constraints of the stan-
dard causal mask, most marker tokens can only per-
ceive local preceding information and cannot make
judgments by synthesizing complete schema infor-
mation, thus highlighting the necessity of LBA.

Impact of Schema SA The experimental results
in Table 5 reveal the role of Schema SA during the
training phase. Comparing #3 (using ⟨GT_Schema⟩
for both training and inference) with #1 (using
Full ⟨Schema⟩ for both), the former, serving as
an ideal performance upper bound, significantly
outperforms the latter, indicating the necessity of
schema linking. #2 (training with Full ⟨Schema⟩ at-
tention, inference with ⟨GT_Schema⟩ input) shows
significant improvement over #1, but still falls short
of the ideal upper bound of #3. This highlights the
importance of consistency in input distribution be-
tween the training and inference phases. Schema
SA achieves this input alignment between train-
ing and inference phases by cleverly defining the
attention scope.

Impact of NSS In more realistic inference sce-
narios, the model must effectively handle poten-
tially imperfect schema subsets obtained from the
schema linking phase. Experiments #4 to #7 in
Table 5 explore this aspect. The EX of #4 (which
corresponds to the "w/o SA & Confusion-aware
NSS" setting in Table 3) can be considered a base-
line performance. Subsequently, the EX of #5
(also the "w/o Confusion-aware NSS" setting in
Table 3) slightly increased to 86.1% on Spider
but dropped to 58.6% on BIRD. This result in-
dicates that although focusing the model on the
ideal ⟨GT_Schema⟩ via SA during training is ben-
eficial, a lack of adaptive training for noise still
leaves the model insufficiently robust when facing
imperfectly predicted schema.

To enhance the model’s ability to handle such
noise, we introduced the NSS strategy. Exper-
iment #6 (training with ⟨GT_Schema⟩ + random
NSS), compared to #5, introduced randomly se-
lected noisy schema items during training, boost-
ing EX on Spider and BIRD to 86.4% and 59.6%,
respectively. This preliminarily demonstrates the
importance of exposing the model to and training
it to handle noise.

Building on this, #7, which is the strategy
adopted by JOLT-SQL, achieved the best results.
#7 follows the same training procedure as #6—both
attend to ⟨GT_Schema⟩ while introducing noisy
items—but the key difference lies in the selection
method for these noisy items: #6 uses simple ran-
dom sampling, whereas the confusion-aware ap-
proach in #7 is reflected in its weighted sampling
based on the model’s predicted probabilities in the
training phase. This sampling mechanism tends to
prioritize items that the model erroneously assigns
a high relevance probability to (potential False Pos-
itives). Considering that we intentionally use a low
decision threshold during inference to boost recall
(which introduces more False Positives), this sam-
pling strategy, focused on learning to handle "con-
fusing" items, is particularly well-suited. By specif-
ically training on schema items prone to model mis-
judgment, JOLT-SQL can more effectively learn to
discern and ignore the most disruptive redundant

6047

information. A case study on NSS is provided in
Appendix C.

More Comparison & Efficiency Analysis Be-
yond improving execution accuracy, JOLT-SQL
also demonstrates superior training and inference
efficiency compared to pipeline SFT methods. See
Appendix A.1 for details.

5 Conclusion

In this paper, we introduced JOLT-SQL, an in-
novative SFT framework for Text-to-SQL. JOLT-
SQL features a novel joint loss tuning method and
incorporates confusion-aware noisy schema sam-
pling to enhance model robustness. Experimental
results compellingly demonstrate that JOLT-SQL
achieves excellent SQL execution accuracy and ex-
hibits clear advantages in efficiency. We believe
this work offers new perspectives for developing
more efficient and robust Text-to-SQL systems.

Limitations

Despite the promising results, this work has sev-
eral limitations. Firstly, our method was vali-
dated on relatively small-scale LLMs (7B and 14B
parameters). Due to constraints in hardware re-
sources and time, we were unable to conduct exper-
iments to verify its effectiveness on larger models
(e.g., Qwen2.5-Coder-32B). Secondly, while our
experiments demonstrate JOLT-SQL’s excellent ef-
ficiency during both training and inference, the
method involves sophisticated adjustments to at-
tention masks and custom logic integrated into the
training iterations, particularly for dynamic atten-
tion mask generation and the noisy schema sam-
pling process. This can introduce a degree of com-
plexity at the code implementation level.

Acknowledgments

This work is supported by the Key Program of
Natural Science Foundation of China (Grant No.
U23A20316).

References
Josh Achiam, Steven Adler, Sandhini Agarwal, Lama

Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman,
Shyamal Anadkat, and 1 others. 2023. Gpt-4 techni-
cal report. arXiv preprint arXiv:2303.08774.

Hasan Alp Caferoğlu and Özgür Ulusoy. 2024. E-sql:
Direct schema linking via question enrichment in
text-to-sql. arXiv preprint arXiv:2409.16751.

Zhenbiao Cao, Yuanlei Zheng, Zhihao Fan, Xiaojin
Zhang, Wei Chen, and Xiang Bai. 2024. Rsl-sql: Ro-
bust schema linking in text-to-sql generation. arXiv
preprint arXiv:2411.00073.

Naihao Deng, Yulong Chen, and Yue Zhang. 2022. Re-
cent advances in text-to-SQL: A survey of what we
have and what we expect. In Proceedings of the
29th International Conference on Computational Lin-
guistics, pages 2166–2187, Gyeongju, Republic of
Korea. International Committee on Computational
Linguistics.

Xiang Deng, Ahmed Hassan Awadallah, Christopher
Meek, Oleksandr Polozov, Huan Sun, and Matthew
Richardson. 2021. Structure-grounded pretraining
for text-to-SQL. In Proceedings of the 2021 Con-
ference of the North American Chapter of the Asso-
ciation for Computational Linguistics: Human Lan-
guage Technologies, pages 1337–1350, Online. As-
sociation for Computational Linguistics.

Tim Dettmers, Mike Lewis, Sam Shleifer, and Luke
Zettlemoyer. 2022. 8-bit optimizers via block-wise
quantization. 9th International Conference on Learn-
ing Representations, ICLR.

Qingxiu Dong, Lei Li, Damai Dai, Ce Zheng, Jingyuan
Ma, Rui Li, Heming Xia, Jingjing Xu, Zhiyong Wu,
Baobao Chang, Xu Sun, Lei Li, and Zhifang Sui.
2024. A survey on in-context learning. In Proceed-
ings of the 2024 Conference on Empirical Methods
in Natural Language Processing, pages 1107–1128,
Miami, Florida, USA. Association for Computational
Linguistics.

Xuemei Dong, Chao Zhang, Yuhang Ge, Yuren Mao,
Yunjun Gao, Jinshu Lin, Dongfang Lou, and 1 others.
2023. C3: Zero-shot text-to-sql with chatgpt. arXiv
preprint arXiv:2307.07306.

Yujian Gan, Xinyun Chen, Qiuping Huang, Matthew
Purver, John R. Woodward, Jinxia Xie, and Peng-
sheng Huang. 2021a. Towards robustness of text-
to-SQL models against synonym substitution. In
Proceedings of the 59th Annual Meeting of the Asso-
ciation for Computational Linguistics and the 11th
International Joint Conference on Natural Language
Processing (Volume 1: Long Papers), pages 2505–
2515, Online. Association for Computational Lin-
guistics.

Yujian Gan, Xinyun Chen, and Matthew Purver. 2021b.
Exploring underexplored limitations of cross-domain
text-to-SQL generalization. In Proceedings of the
2021 Conference on Empirical Methods in Natural
Language Processing, pages 8926–8931, Online and
Punta Cana, Dominican Republic. Association for
Computational Linguistics.

Dawei Gao, Haibin Wang, Yaliang Li, Xiuyu Sun,
Yichen Qian, Bolin Ding, and Jingren Zhou. 2024a.
Text-to-sql empowered by large language models: A
benchmark evaluation. Proceedings of the VLDB
Endowment, 17(5):1132–1145.

6048

https://aclanthology.org/2022.coling-1.190/
https://aclanthology.org/2022.coling-1.190/
https://aclanthology.org/2022.coling-1.190/
https://doi.org/10.18653/v1/2021.naacl-main.105
https://doi.org/10.18653/v1/2021.naacl-main.105
https://doi.org/10.18653/v1/2024.emnlp-main.64
https://doi.org/10.18653/v1/2021.acl-long.195
https://doi.org/10.18653/v1/2021.acl-long.195
https://doi.org/10.18653/v1/2021.emnlp-main.702
https://doi.org/10.18653/v1/2021.emnlp-main.702

Yingqi Gao, Yifu Liu, Xiaoxia Li, Xiaorong Shi, Yin
Zhu, Yiming Wang, Shiqi Li, Wei Li, Yuntao Hong,
Zhiling Luo, and 1 others. 2024b. Xiyan-sql: A
multi-generator ensemble framework for text-to-sql.
arXiv preprint arXiv:2411.08599.

Michael Glass, Mustafa Eyceoz, Dharmashankar Sub-
ramanian, Gaetano Rossiello, Long Vu, and Alfio
Gliozzo. 2025. Extractive schema linking for text-to-
sql. arXiv preprint arXiv:2501.17174.

Zijin Hong, Zheng Yuan, Qinggang Zhang, Hao Chen,
Junnan Dong, Feiran Huang, and Xiao Huang. 2024.
Next-generation database interfaces: A survey of llm-
based text-to-sql. arXiv e-prints, pages arXiv–2406.

Pin-Lun Hsu, Yun Dai, Vignesh Kothapalli, Qingquan
Song, Shao Tang, Siyu Zhu, Steven Shimizu, Shivam
Sahni, Haowen Ning, and Yanning Chen. 2024. Liger
kernel: Efficient triton kernels for llm training. arXiv
preprint arXiv:2410.10989.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and
Weizhu Chen. 2022. LoRA: Low-rank adaptation of
large language models. In International Conference
on Learning Representations.

Binyuan Hui, Jian Yang, Zeyu Cui, Jiaxi Yang,
Dayiheng Liu, Lei Zhang, Tianyu Liu, Jiajun
Zhang, Bowen Yu, Keming Lu, and 1 others. 2024.
Qwen2. 5-coder technical report. arXiv preprint
arXiv:2409.12186.

Aaron Hurst, Adam Lerer, Adam P Goucher, Adam
Perelman, Aditya Ramesh, Aidan Clark, AJ Ostrow,
Akila Welihinda, Alan Hayes, Alec Radford, and 1
others. 2024. Gpt-4o system card. arXiv preprint
arXiv:2410.21276.

Chia-Hsuan Lee, Oleksandr Polozov, and Matthew
Richardson. 2021. KaggleDBQA: Realistic evalu-
ation of text-to-SQL parsers. In Proceedings of the
59th Annual Meeting of the Association for Compu-
tational Linguistics and the 11th International Joint
Conference on Natural Language Processing (Vol-
ume 1: Long Papers), pages 2261–2273, Online. As-
sociation for Computational Linguistics.

Dongjun Lee, Choongwon Park, Jaehyuk Kim, and
Heesoo Park. 2025. Mcs-sql: Leveraging multiple
prompts and multiple-choice selection for text-to-sql
generation. In Proceedings of the 31st International
Conference on Computational Linguistics, pages 337–
353.

Haoyang Li, Jing Zhang, Hanbing Liu, Ju Fan, Xi-
aokang Zhang, Jun Zhu, Renjie Wei, Hongyan Pan,
Cuiping Li, and Hong Chen. 2024. Codes: Towards
building open-source language models for text-to-sql.
Proceedings of the ACM on Management of Data,
2(3):1–28.

Jinyang Li, Binyuan Hui, Ge Qu, Jiaxi Yang, Binhua Li,
Bowen Li, Bailin Wang, Bowen Qin, Ruiying Geng,
Nan Huo, and 1 others. 2023a. Can llm already serve

as a database interface? a big bench for large-scale
database grounded text-to-sqls. Advances in Neural
Information Processing Systems, 36:42330–42357.

Zongxi Li, Xianming Li, Yuzhang Liu, Haoran Xie, Jing
Li, Fu-lee Wang, Qing Li, and Xiaoqin Zhong. 2023b.
Label supervised llama finetuning. arXiv preprint
arXiv:2310.01208.

Haoyuan Ma, Yongliang Shen, Hengwei Liu, Wenqi
Zhang, Haolei Xu, Qiuying Peng, Jun Wang, and
Weiming Lu. 2025. Db-explore: Automated database
exploration and instruction synthesis for text-to-sql.
arXiv preprint arXiv:2503.04959.

Mohammadreza Pourreza and Davood Rafiei. 2023.
Din-sql: Decomposed in-context learning of text-
to-sql with self-correction. Advances in Neural Infor-
mation Processing Systems, 36:36339–36348.

Mohammadreza Pourreza and Davood Rafiei. 2024.
DTS-SQL: Decomposed text-to-SQL with small
large language models. In Findings of the Associ-
ation for Computational Linguistics: EMNLP 2024,
pages 8212–8220, Miami, Florida, USA. Association
for Computational Linguistics.

Yang Qin, Chao Chen, Zhihang Fu, Ze Chen, Dezhong
Peng, Peng Hu, and Jieping Ye. 2024. Route: Ro-
bust multitask tuning and collaboration for text-to-sql.
arXiv preprint arXiv:2412.10138.

Lei Sheng, Shuai-Shuai Xu, and Wei Xie. 2025. Base-
sql: A powerful open source text-to-sql baseline ap-
proach. arXiv preprint arXiv:2502.10739.

Liang Shi, Zhengju Tang, Nan Zhang, Xiaotong Zhang,
and Zhi Yang. 2025. A survey on employing large
language models for text-to-sql tasks. ACM Comput.
Surv., 58(2).

Ruoxi Sun, Sercan Ö Arik, Alex Muzio, Lesly Miculi-
cich, Satya Gundabathula, Pengcheng Yin, Hanjun
Dai, Hootan Nakhost, Rajarishi Sinha, Zifeng Wang,
and 1 others. 2023. Sql-palm: Improved large lan-
guage model adaptation for text-to-sql (extended).
arXiv preprint arXiv:2306.00739.

Shayan Talaei, Mohammadreza Pourreza, Yu-Chen
Chang, Azalia Mirhoseini, and Amin Saberi. 2024.
Chess: Contextual harnessing for efficient sql synthe-
sis. arXiv preprint arXiv:2405.16755.

Gemini Team, Petko Georgiev, Ving Ian Lei, Ryan
Burnell, Libin Bai, Anmol Gulati, Garrett Tanzer,
Damien Vincent, Zhufeng Pan, Shibo Wang, and 1
others. 2024. Gemini 1.5: Unlocking multimodal
understanding across millions of tokens of context.
arXiv preprint arXiv:2403.05530.

Bing Wang, Changyu Ren, Jian Yang, Xinnian Liang, Ji-
aqi Bai, LinZheng Chai, Zhao Yan, Qian-Wen Zhang,
Di Yin, Xing Sun, and Zhoujun Li. 2025. MAC-
SQL: A multi-agent collaborative framework for text-
to-SQL. In Proceedings of the 31st International

6049

https://openreview.net/forum?id=nZeVKeeFYf9
https://openreview.net/forum?id=nZeVKeeFYf9
https://doi.org/10.18653/v1/2021.acl-long.176
https://doi.org/10.18653/v1/2021.acl-long.176
https://doi.org/10.18653/v1/2024.findings-emnlp.481
https://doi.org/10.18653/v1/2024.findings-emnlp.481
https://doi.org/10.1145/3737873
https://doi.org/10.1145/3737873
https://aclanthology.org/2025.coling-main.36/
https://aclanthology.org/2025.coling-main.36/
https://aclanthology.org/2025.coling-main.36/

Conference on Computational Linguistics, pages 540–
557, Abu Dhabi, UAE. Association for Computa-
tional Linguistics.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou,
and 1 others. 2022. Chain-of-thought prompting elic-
its reasoning in large language models. Advances
in neural information processing systems, 35:24824–
24837.

An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui,
Bo Zheng, Bowen Yu, Chengyuan Li, Dayiheng Liu,
Fei Huang, Haoran Wei, and 1 others. 2024a. Qwen2.
5 technical report. arXiv preprint arXiv:2412.15115.

Jiaxi Yang, Binyuan Hui, Min Yang, Jian Yang, Junyang
Lin, and Chang Zhou. 2024b. Synthesizing text-to-
sql data from weak and strong llms. In Proceedings
of the 62nd Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 7864–7875.

Sun Yang, Qiong Su, Zhishuai Li, Ziyue Li, Hangyu
Mao, Chenxi Liu, and Rui Zhao. 2024c. Sql-to-
schema enhances schema linking in text-to-sql. In
International Conference on Database and Expert
Systems Applications, pages 139–145. Springer.

Tao Yu, Rui Zhang, Kai Yang, Michihiro Yasunaga,
Dongxu Wang, Zifan Li, James Ma, Irene Li, Qingn-
ing Yao, Shanelle Roman, Zilin Zhang, and Dragomir
Radev. 2018. Spider: A large-scale human-labeled
dataset for complex and cross-domain semantic pars-
ing and text-to-SQL task. In Proceedings of the 2018
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 3911–3921, Brussels, Bel-
gium. Association for Computational Linguistics.

Appendix

A Further Analysis

A.1 Comparison with Pipeline Fine-tuning
Strategies & Efficiency Analysis

To further demonstrate the advantages of JOLT-
SQL, this section compares it with DTS-SQL
(Pourreza and Rafiei, 2024), a typical pipeline fine-
tuning method. DTS-SQL employs a two-stage
pipeline: first, fine-tuning an LLM for generative
schema linking, and then fine-tuning another LLM
for SQL generation based on ground truth schema
input (table-level). We re-evaluated DTS-SQL us-
ing experimental settings consistent with those for
JOLT-SQL. To align with our experimental setup,
the SQL generation fine-tuning phase for DTS-SQL
was based on column-level ground truth schema
input. We compared their training efficiency, in-
ference speed, and task performance, as shown in
Table 6.

In terms of training cost, the results show
that JOLT-SQL requires 5 hours and 5 minutes
to complete 3 epochs of training. This duration
includes an approximate 8.5% overhead from en-
abling Confusion-aware NSS compared to its own
baseline of 4 hours and 41 minutes (JOLT-SQL
without Confusion-aware NSS), a time comparable
to the standard SFT approach. Even so, JOLT-SQL
is significantly more efficient than DTS-SQL. DTS-
SQL, requiring independent fine-tuning for two
stages, has a total training time of 7 hours and 10
minutes, which is 52.9% longer than the JOLT-SQL
baseline (without Confusion-aware NSS), high-
lighting the efficiency of JOLT-SQL’s single-stage
joint optimization. This is because JOLT-SQL
learns both tasks from a single input sequence,
fundamentally halving the total number of for-
ward/backward passes compared to two-stage meth-
ods that process separate data for each task.

In terms of inference speed, JOLT-SQL’s dis-
criminative schema linking shows a significant ad-
vantage, averaging 0.11 seconds, which is much
faster than DTS-SQL’s generative linking at 0.57
seconds—the latter being more than five times
slower. DTS-SQL’s schema linking is more time-
consuming mainly because it requires autoregres-
sively generating relevant table and column names
token by token during inference. In contrast, JOLT-
SQL’s discriminative method requires only a single
full forward pass to determine the relevance of all
schema candidates. Thanks to its efficient schema
linking, JOLT-SQL’s average end-to-end inference
time is only 0.88 seconds, whereas DTS-SQL takes
1.34 seconds (approximately 52.3% slower), with
the difference primarily stemming from the schema
linking stage.

In terms of Execution Accuracy (EX), JOLT-
SQL (87.0%) outperforms DTS-SQL (84.8%) on
Spider Dev. This difference may stem from the
characteristics of their schema linking approaches
and the robustness of their SQL generation stages,
as further elaborated by Table 7.

Table 7 compares the schema linking metrics.
DTS-SQL’s generative linking achieves high pre-
cision 93.67%, with a recall of 94.15%. How-
ever, as discussed in the main text, JOLT-SQL’s
discriminative method can flexibly use a low deci-
sion threshold of 0.05 to prioritize recall, achieving
a recall rate as high as 98.12%. In Text-to-SQL
tasks, high recall is crucial: omitting necessary
items often leads to SQL failure, whereas a few
redundant items have less impact if the SQL model

6050

https://doi.org/10.18653/v1/D18-1425
https://doi.org/10.18653/v1/D18-1425
https://doi.org/10.18653/v1/D18-1425

Methods Total
Training Time↓

Avg. Schema Linking
Inference Time↓

Avg. SQL Generation
Inference Time↓

Avg. End-to-End
Inference Time↓

Spider
Dev EX

Qwen2.5-Coder-7B + SFT 4h38min - 0.94s 0.94s 82.7
DTS-SQL(Pourreza and Rafiei, 2024) + Qwen2.5-Coder-7B 7h10min(+52.9%) 0.57s(+418.2%) 0.77s 1.34s(+54.0%) 84.8
JOLT-SQL(Ours) + Qwen2.5-Coder-7B 5h5min(+8.5%) 0.11s 0.77s 0.88s 87.0
w/o Confusion-aware NSS(Baseline) 4h41min 0.11s 0.76s 0.87s 86.1

Table 6: Comparison results with the two-stage pipeline fine-tuning method DTS-SQL and a standard SFT approach
(Qwen2.5-Coder-7B + SFT) are presented, all evaluated on a single NVIDIA A30 GPU. KV cache was enabled for
all inference processes. We use JOLT-SQL without Confusion-aware NSS as the baseline for comparing training
and inference times on the Spider Dev set. Training time is the total for 3 epochs. Inference time is the average per
instance with Batchsize=1. For context, the cost for a single NVIDIA A30 instance was approximately $0.18 per
hour at the time of the experiments. Additional Notes: • The slightly longer SQL generation inference time for the standard
SFT approach (Qwen2.5-Coder-7B + SFT) is due to its processing of the full schema, which results in longer input sequences.
• It’s worth noting the distinction in forward pass latency between training and inference: our use of LoRA means adapters
introduce some overhead during the training’s forward pass, but for inference, these LoRA weights are merged into the base
model, eliminating this adapter-induced latency.

Methods Spider Dev
P R ROC PR

DTS-SQL(Pourreza and Rafiei, 2024) + Qwen2.5-Coder-7B 93.67 94.15 N/A N/A
JOLT-SQL(Ours) + Qwen2.5-Coder-7B 88.09 98.12 99.86 98.70

Table 7: Comparison of schema linking results between DTS-SQL’s method (i.e., generative schema linking based
on LLM SFT) and JOLT-SQL’s discriminative method. P and R represent column Precision and column Recall,
respectively. Notably, since generative LLMs output discrete schema linking results directly, probability information
is not readily available, making standard ROC AUC and PR AUC metrics inapplicable.

Methods Spider-Syn Spider-Realistic Spider-DK KaggleDBQA
JOLT-SQL + Qwen2.5-Coder-7B 77.2 83.0 75.9 47.0
JOLT-SQL + Qwen2.5-Coder-14B 79.6 84.1 79.1 52.4

Table 8: Execution Accuracy of JOLT-SQL on Spider variants and KaggleDBQA. The models were fine-tuned only
on the original Spider training set.

is robust. The insufficient recall of DTS-SQL’s
schema linking might be one of the core reasons
for its lower EX. Additionally, its SQL generation
model is fine-tuned only on ground-truth relevant
columns, lacking adaptability to imperfect inputs
from actual schema linking.

The results again demonstrate that JOLT-SQL’s
joint loss tuning strategy is significantly superior
to DTS-SQL’s two-stage method in both training
and inference efficiency. Its combination of dis-
criminative schema linking and Confusion-aware
NSS achieves better recall and model robustness,
ultimately improving SQL EX.

A.2 Cross-Dataset Generalization

Table 8 presents JOLT-SQL’s robustness and gen-
eralization capabilities across various challeng-
ing datasets. We evaluated its performance on
Spider-Syn (Gan et al., 2021a), Spider-Realistic
(Deng et al., 2021), Spider-DK (Gan et al., 2021b),
and the cross-domain KaggleDBQA dataset (Lee

et al., 2021). The results indicate that JOLT-SQL
maintains strong performance. Furthermore, it
demonstrates solid generalization to entirely un-
seen databases and query types in KaggleDBQA.

A.3 Performance in Low-Resource Settings

Training data used Spider
Dev EX

BIRD
Dev EX

5% 81.9 54.0
10% 83.8 55.3
25% 85.4 58.5
50% 86.4 59.7
100% 87.0 60.4

Table 9: Ablation results for JOLT-SQL under reduced
data conditions (based on Qwen2.5-Coder-7B).

Table 9 evaluates JOLT-SQL’s performance un-
der low-resource training conditions. We fine-
tuned the Qwen2.5-Coder-7B model using vari-

6051

ous proportions of the Spider and BIRD training
set. The results indicate that the model’s execution
accuracy degrades gracefully as training data de-
creases, without a sharp drop. Even with only 5%
or 10% of the data, JOLT-SQL still achieves ac-
ceptable performance, demonstrating its robustness
and practical applicability in scenarios with limited
annotated data.

B More Details

B.1 Training Data Construction

We use SQLGlot1 to process SQL queries. By
parsing SQL query statements to construct their
Abstract Syntax Trees (ASTs) and leveraging SQL-
Glot’s scope analysis feature, we can accurately
identify each column referenced in the query and
its originating data table, while also resolving table
aliases. This ultimately allows us to extract ground
truth schema linking pairs in the table.column
format.

Figure 5 shows an example of the actual data we
use. The link field contains the extracted ground-
truth schema linking pairs. Based on this, we gener-
ate the final ground truth labels for schema linking
(i.e., the label field).

We use schema_element_token_spans field to
record the positions of all schema elements. This
is a nested dictionary structure that records the
precise token spans for various elements within
the schema. In addition to column definitions, it
includes keys such as fk (foreign key definition
span), header (table header definition span), pk
(primary key definition span), and footer (table
definition end span), which are used to accurately
locate different components of the schema.

B.2 Implementation Details

All our experiments were conducted on NVIDIA
A30 GPUs with 24GB VRAM. The 7B models
were trained on a single A30 GPU, while the 14B
models used 2xA30 GPUs. The frameworks we
used were PyTorch 2.5.1 and HuggingFace Trans-
formers 4.51.3.

We employ LoRA (Hu et al., 2022) as the train-
ing method to reduce VRAM requirements. The
target modules for LoRA are all linear layers in the
LLM decoder. In addition to the LoRA trainable
parameters, the linear layer weight W (Equation 1)
is also part of the trainable parameters.

1https://github.com/tobymao/sqlglot

“instruction”: ‘’’Please generate SQLite query based on the following question and
schema.
Question:
For each fourth-grade classroom, show the classroom number and the total
number of students using it.

Schema:
<schema>
CREATE TABLE list (LastName TEXT, Example: ['AMY', 'AREHART']<|endoftext|>
 FirstName TEXT, Example: [' PATRINA', ' VERTIE']<|endoftext|>
 Grade INTEGER, Example: [2, 6]<|endoftext|>
 Classroom INTEGER, Example: [101, 112]<|endoftext|>
 PRIMARY KEY (LastName, FirstName)
);

CREATE TABLE teachers (LastName TEXT, Example: ['COVIN',
'KAWA']<|endoftext|>
 FirstName TEXT, Example: [' JEROME', ' GORDON']<|endoftext|>
 Classroom INTEGER, Example: [101, 102]<|endoftext|>
 PRIMARY KEY (LastName, FirstName)
);

</schema>‘’’,
"output": "SELECT classroom , count(*) FROM list WHERE grade = \"4\" GROUP
BY classroom",
"db_id": "student_1",
"link": ["list.grade", "list.classroom"],
"label": [0, 0, 1, 1, 0, 0, 0],
"schema_element_token_spans": {
 "tables": {
 "list": {
 "columns": {
 "LastName": [4, 20], "FirstName": [20, 38],
 "Grade": [38, 52], "Classroom": [52, 70]
 },
 "fk": [], "header": [0, 4], "pk": [70, 78], "footer": [78, 80]
 },
 "teachers": {
 "columns": {
 "LastName": [84, 101], "FirstName": [101, 119],
 "Classroom": [119, 137]
 },
 "fk": [], "header": [80, 84], "pk": [137, 146], "footer": [146, 148]
 }
 }
}

Figure 5: An example of actual training data.

Hyperparameters
Epoch 3(Spider),2(BIRD)
Batchsize 1
Gradient Accumulation 6
Learning Rate 1.8e-5
Weight Decay 1e-4
Max Grad Norm 1.0
Truncation Max Length 4096
LoRA Rank 64
LoRA Alpha 512
LoRA Dropout 0.08

Table 10: Hyperparameters used for training.

We consistently used the AdamW8bit optimizer
(Dettmers et al., 2022), a cosine annealing learning
rate scheduler, and enabled gradient checkpointing.
We also utilized the Liger-Kernel (Hsu et al., 2024)
for further training efficiency optimization and en-
abled bfloat16 mixed-precision training. Other
training hyperparameters are provided in Table 10.
For SQL generation during inference, we employed

6052

greedy decoding.

C Case Study of Noisy Schema Sampling

User:
Please generate SQLite query based on the following question and schema.
Question:
Which address holds the most number of students currently? List the address id
and all lines.

Schema:
<schema>
CREATE TABLE Addresses (
 address_id INTEGER, Example: [1, 2]
 line_1 TEXT, Example: ['2294 Grant Square Apt. 235']
 line_2 TEXT, Example: ['Apt. 370', 'Apt. 388']
 line_3 TEXT, Example: None
 PRIMARY KEY (address_id)
);

CREATE TABLE Students (
 current_address_id INTEGER, Example: [10, 12]
 PRIMARY KEY (student_id)
 FOREIGN KEY (permanent_address_id) REFERENCES Addresses(address_id)
 FOREIGN KEY (current_address_id) REFERENCES Addresses(address_id)
);
</schema>

SQL generation with false positive columns

Trained with
Random

 NSS

Assistant:
SELECT T1.address_id, T1.line_1, T1.line_2, T1.line_3
FROM Addresses AS T1
JOIN Students AS T2
ON T1.address_id = T2.current_address_id
GROUP BY T1.address_id
ORDER BY COUNT(*) DESC
LIMIT 1;

True Positive
True Positive

True Positive

True Positive

False Positive

Assistant:
SELECT T1.address_id, T1.line_1, T1.line_2
FROM Addresses AS T1
JOIN Students AS T2
ON T1.address_id = T2.current_address_id
GROUP BY T1.address_id
ORDER BY COUNT(*) DESC
LIMIT 1;

Trained with
Confusion-
aware NSS

Result

Figure 6: A comparative case study of SQL generation
with Random NSS versus Confusion-aware NSS when
handling columns with False Positives. Green indicates
True Positive columns, and red indicates False Positive
columns. The model trained with Confusion-aware NSS
(our method) correctly ignores the False Positive column
line_3, whereas Random NSS incorrectly includes it
in the query.

To more intuitively demonstrate the robustness
differences of various Noisy Schema Sampling
(NSS) strategies in handling False Positive (FP)
columns introduced by schema linking in SQL gen-
eration tasks, we conduct a case study, as illustrated
in Figure 6. In this case, the user’s question is:
"Which address holds the most number of students
currently? List the address id and all lines."

The provided database schema includes an
Addresses table and a Students table. In
the Addresses table, address_id, line_1, and
line_2 are True Positive (TP) columns relevant
to the question, while line_3 is a False Positive

(FP) column. Its example value is None, indicat-
ing it is an empty column with no data, which was
mistakenly identified as relevant during the schema
linking.

We compare the model performance under two
NSS training strategies: (1) Model trained with
Random NSS: The generated SQL query incor-
rectly includes the FP column line_3. This indi-
cates that despite being exposed to random noise
during training, the model failed to adequately
learn to ignore such misleading FP columns, es-
pecially when the column line_3 has some textual
similarity to "all lines" in the question. (2) Model
trained with Confusion-aware NSS: The gener-
ated SQL query correctly ignores the FP column
line_3 and selects only the truly relevant columns.
This demonstrates that Confusion-aware NSS, by
enabling the model to focus on learning its own
’easily confused’ noisy patterns during training, can
more effectively enhance the model’s robustness to
schema linking errors.

6053

