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Abstract

The development of performant pre-trained
models has driven the advancement of routing-
based expert models tailored to specific tasks.
However, these methods often favor generaliza-
tion over performance on held-in tasks. This
limitation adversely impacts practical applica-
bility, as real-world deployments require ro-
bust performance across both known and novel
tasks. We observe that current token-level rout-
ing mechanisms neglect the global semantic
context of the input task. To address this, we
propose a novel method, Global and Local
Instruction Driven Expert Router (GLIDER)
that proposes a multi-scale routing mechanism,
encompassing a semantic global router and a
learned local router. The global router lever-
ages recent LLMs’ semantic reasoning capa-
bilities to generate task-specific instructions
from the input query, guiding expert selec-
tion across all layers. This global guidance is
complemented by a local router that facilitates
token-level routing decisions within each mod-
ule, enabling finer control and enhanced perfor-
mance on unseen and challenging tasks. Our
experiments using T5-based expert models for
T0 and FLAN tasks demonstrate that GLIDER
achieves substantially improved held-in perfor-
mance while maintaining strong generalization
on held-out tasks. Additionally, we perform
ablations experiments to dive deeper into the
components of GLIDER and plot routing distri-
butions to show that GLIDER can effectively re-
trieve the correct expert for held-in tasks while
also demonstrating compositional capabilities
for held-out tasks. Our experiments highlight
the importance of our multi-scale routing that
leverages LLM-driven semantic reasoning for
MoErging methods.

1 Introduction

The emergence of highly capable large language
models (LLMs) has marked an increased atten-
tion in downstream task specialization. This spe-

cialization often leverages parameter-efficient fine-
tuning (PEFT) techniques, such as LoRA (Hu et al.,
2021), which introduce minimal trainable param-
eters (“adapters") to adapt pre-trained LLMs for
specific tasks. The compact size of these special-
ized PEFT modules enables easy sharing, which
has led to the distribution of an evergrowing num-
ber of adapters on various platforms.

This proliferation of expert models, i.e. special-
ized adapters, has led to the development of meth-
ods for re-using such experts to improve perfor-
mance or generalization (Muqeeth et al., 2024;
Ostapenko et al., 2024; Huang et al., 2024a). Cen-
tral to these approaches are routing mechanisms
that adaptively select relevant experts for a partic-
ular task or query. These routing methods have
been referred to as “Model MoErging” (Yadav
et al., 2024) since they frequently share method-
ologies and ideas with mixture-of-experts (MoE)
models (Shazeer et al., 2017; Fedus et al., 2022;
Du et al., 2022) and model merging (Yadav et al.,
2023b,a; Ilharco et al., 2022). However, MoE meth-
ods train experts jointly from scratch (Gupta et al.,
2022) while MoErging utilizes a decentralized,
community-sourced pool of pre-trained experts.
Furthermore, it departs from traditional model
merging techniques by dynamically and adaptively
combining these experts, optimizing performance
at the query or task level. MoErging methods offer
three key advantages: (1) They support decentral-
ized model development by reusing and routing
among independently trained experts, reducing re-
liance on centralized resources. (2) They facilitate
modular capability expansion and “transparency"
in updates as they either add or modify specialized
expert models. (3) They allow for compositional
generalization by recombining fine-grained skills
from various experts, extending the system’s abili-
ties to new unseen tasks beyond the capabilities of
the individual expert models.

Most MoErging (Chronopoulou et al., 2023;
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Figure 1: Overview of our method. Contributor (left): Each contributor utilizes local data to train several components:
the PEFT module (comprising Ai and Bi), task vectors (vi), and global routing vectors (gi). For the latter, an LLM
is employed to generate semantically-informed instructions based on 3 randomly selected examples, which are then
embedded into gi. Aggregator (right): The aggregator utilizes local and global task vectors to construct local routers
[v̄1; . . . ; v̄N] and a global router [g1; . . . ; gN], respectively. For each query, the global router uses an LLM-generated
instruction embedding to produce the global routing score. This score is then scaled and combined with the local
routing score, enabling fine-grained control over expert selection.

Muqeeth et al., 2024; Zhao et al., 2024b) meth-
ods prioritize either known or unseen tasks, limit-
ing real-world applicability where both are critical.
Real-world queries often span domains and defy
clean categorization into predefined task bound-
aries. For instance, translating and analyzing text
requires collaboration between multiple experts
rather than selecting a single specialized model.
Current approaches struggle in such scenarios.
Phatgoose demonstrates this tradeoff, excelling on
unseen tasks but underperforming on known ones.

We hypothesize that this gap arises from the
model’s token-level routing mechanism. We show
that for the held-in tasks, the independent routing
decisions at each layer, based solely on individual
token embeddings, lack sufficient global context
to retrieve the correct expert for all tokens at every
module. This leads to suboptimal routing, which
may propagate noise through the network, further
hindering accurate expert utilization in deeper lay-
ers. This highlights a critical limitation of token-
level approaches to handling held-in tasks, which
hence falls short of the goal of building a routing
system that seamlessly handles arbitrary queries.
We believe that adding a global routing mecha-
nism based on semantic task information can aid
the token-level router for the correct retrieval of
held-in tasks. Hence, we ask the question.

(Q) Can we leverage LLMs to generate
semantics-aware task instructions to guide
routing mechanism to facilitate both special-
ization and generalization?

This paper addresses the challenges by inves-
tigating the potential of leveraging the inherent

reasoning and generalization capabilities of LLMs
to guide the routing process in an MoE-like model
composed of specialized LoRA modules. We intro-
duce, Global and Local Instruction Driven Expert
Router (GLIDER) that hinges on a multi-scale rout-
ing mechanism that contains both local and global
routers to select top-2 expert models as shown
in Figure 1. The global router leverages LLM-
generated, semantics-aware instructions (see Ap-
pendix B.2) for each input query to score expert
models. This high-level guidance is then comple-
mented by a learned local router, which makes
token-level routing decisions at each module, en-
abling fine-grained control and improving perfor-
mance on the challenging held-out tasks. Through
this framework, we highlight the crucial role of
LLM reasoning in unlocking the compositional
generalization capabilities of MoE models.

To test the effectiveness of our GLIDER method,
we follow Phatgoose (Muqeeth et al., 2024) and
use T5 models (Raffel et al., 2020) to create expert
models for T0 held-in (Sanh et al., 2022) and FLAN
tasks (Longpre et al., 2023) and test performance
on T0 held-in & held-out (Sanh et al., 2022) and
big-bench lite (BIG-bench authors, 2023) & hard
tasks (Suzgun et al., 2022). Our key contributions
and findings are:

• We introduce GLIDER, which employs LLM-
guided multi-scale global and local attention.
Our experiments show that GLIDER outper-
forms previous methods, significantly improv-
ing performance on held-in tasks (e.g. 6.6%
over Phatgoose on T0 held-in) while also en-
hancing zero-shot held-out compositional gen-
eralization (e.g. 0.9% on T0 held-out).
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• We find that without LLM assistance, MoE
models underperform individual specialized
models on held-in tasks by 8.2%. Incorpo-
rating semantic-aware instructions enables
GLIDER to achieve comparable performance,
demonstrating the LLM’s capacity to effec-
tively infer task identity and guide module
selection without explicit task labels.

• GLIDER also maintains strong performance on
held-out tasks, showcasing its adaptability and
generalization capabilities. Our work high-
lights the critical role of LLMs in enhancing
MoE models’ compositional generalization,
advancing the development of more robust
and versatile AI systems capable of handling
both familiar and novel tasks.

2 Related Works

The abundance of specialized expert models has
spurred the development of techniques to leverage
“experts" models for enhanced performance and
generalization. Yadav et al. (2024) called such
techniques as “MoErging" 1 methods which rely
on adaptive routing mechanisms to select relevant
experts for specific tasks or queries. These methods
can be broadly classified into four categories based
on the design of their routing mechanisms.

Embedding-Based Routing: This category en-
compasses methods that derive routing decisions
from learned embeddings of expert training data.
These methods typically compare a query em-
bedding against the learned expert embeddings
to determine the optimal routing path. Exam-
ples include AdapterSoup (Chronopoulou et al.,
2023), Retrieval of Experts (Jang et al., 2023), Lo-
raRetriever (Zhao et al., 2024b), Mo’LoRA (Max-
ine, 2023), the embedding-based approach of
Airoboros (Durbin, 2024), and Dynamic Adapter
Merging (Cheng et al., 2024).

Classifier-Based Routing: This category con-
sists of methods that train a router to function as
a classifier. This router is trained to predict the
optimal routing path based on features extracted
from expert datasets or unseen data. Representative
methods in this category include Zooter (Lu et al.,
2023), Branch-Train-Mix (Sukhbaatar et al., 2024),
Routing with Benchmark Datasets (Shnitzer et al.,
2023), Routoo (Mohammadshahi et al., 2024), and

1See e.g. https://huggingface.co/spaces/
open-llm-leaderboard/open_llm_leaderboard

RouteLLM (Ong et al., 2024). The key distinc-
tion between embedding-based and classifier-based
routing lies in the router’s architecture and training
methodology. While embedding-based routing of-
ten employs a nearest neighbor approach, classifier-
based routing typically relies on logistic regression
or analogous classification techniques.

Task-Specific Routing: This category focuses
on methods tailored to enhance performance on
specific target tasks. These methods learn a task-
specific routing distribution over the target dataset
to optimize performance for the given task. Meth-
ods include LoraHub (Huang et al., 2023), LoRA-
Flow (Wang et al., 2024), AdapterFusion (Pfeif-
fer et al., 2021), π-Tuning (Wu et al., 2023),
Co-LLM (Shen et al., 2024), Weight-Ensembling
MoE (Tang et al., 2024), MoLE (Wu et al., 2024),
MeteoRA (Xu et al., 2024), PEMT (Lin et al.,
2024), MixDA (Diao et al., 2023), and Twin-
Merging (Lu et al., 2024).

Routerless Methods: This final category encom-
passes methods that do not rely on an explicitly
trained router. Instead, these methods often employ
alternative mechanisms, such as heuristics or rule-
based systems, for routing decisions. Examples
include Arrow (Ostapenko et al., 2024), PHAT-
GOOSE (Muqeeth et al., 2024), the “ask an LLM"
routing of Airoboros (Durbin, 2024) and LlamaIn-
dex (Liu, 2024). Phatgoose and Arrow use only
local routers, in contrast, GLIDER uses both local
and global guidance for routing.

3 Problem Statement

In our work, we aim to build a routing mecha-
nism capable of performing well on diverse queries
from various tasks, including both seen and un-
seen tasks. For each query/token and module, this
routing mechanism dynamically selects a model
from a large pool of specialized expert models to
achieve high performance. To facilitate modular
development, we adopt a contributor-aggregator
framework (Yadav et al., 2024) where individual
contributors create specialized expert models from
a generalist model for their respective tasks and
distribute these models to others for public usage.
The aggregator builds a routing mechanism over
the expert models that shared by the contributor to
direct queries to the most relevant experts. Follow-
ing recent works (Muqeeth et al., 2024; Ostapenko
et al., 2024), we use parameter-efficient finetuning

6242

https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard


Held-In Held-Out
Figure 2: We present routing heatmaps for GLIDER and Phatgoose on two held-in and two held-out tasks. For
held-in tasks, oracle experts are marked with red dashed lines. GLIDER selects oracle experts more frequently than
Phatgoose for held-in tasks, leading to improvements of 3.3% on CommonGen and 6.5% on PAWS. For held-out
tasks, GLIDER also tends to select the most relevant experts across most LoRA modules, resulting in improvements
of 2.2% on COPA and 5.8% on StoryCloze.

(PEFT) (Liu et al., 2022; Sung et al., 2022; Poth
et al., 2023) methods like LoRA (Hu et al., 2022)
to train the expert models. Since PEFT typically
has lower computational and communication costs
than full-model finetuning (Hu et al., 2022; Liu
et al., 2022), the use of PEFT makes it easier to
participate and contribute. PEFT methods intro-
duce modules throughout the model – for example,
LoRA (Hu et al., 2022) introduces a low-rank up-
date at every linear layer in the model. We refer to
each of these updates as a module. Subsequently,
the trained expert models and additional informa-
tion are shared with the aggregators. The aggrega-
tor’s job is to collect these expert models and the
additional information and design the post-hoc rout-
ing mechanism. This mechanism will effectively
direct incoming queries to the most appropriate ex-
pert model for each token and at each module to
ensure optimal performance on both seen and un-
seen tasks. This approach allows for the seamless
integration of new capabilities by adding expert
models to the existing pool. Next, we formally
define our contributor-aggregator framework.

Let us assume that there are N contributors,
{c1, c2, . . . , cN}, and each contributor ci has access
to a task-specific datasets Di. Each contributor,
ci, follows the predefined training protocol T pro-
vided by the aggregator. The training protocol (T )
takes in a base model (θbase) and a dataset (Di).
It returns the expert model parameters (ϕi) along
with any additional information (Ψi) that needs to
be shared with the aggregators, for example, the
gate vectors described in Section 4.1. Specifically,
{ϕi, Ψi} ← T (θbase,Di). All contributors share

this information with the aggregator, which creates
a pool of models containing {(ϕi,Ψi)}Ni=1. The
aggregators (A) then uses these expert models and
the auxiliary information to create a routing mech-
anismR(.) that takes the user query q as the input
and return routing path describing how the infor-
mation is routed through the given set of expert
models. Formally,R(.)← A({(ϕi,Ψi)}Ni=1). The
functionR(.) describe the full path of input query
by making various choices about 1) expert input
granularity, choosing to route per-token, per-query,
or per-task, 2) expert depth granularity, opting for
either per-module or model-level routing, and 3)
selecting between sparse or dense routing. Finally,
the aggregator uses the routing mechanism to an-
swer incoming queries.

4 Methodology

To recap, our goal is to build a MoErging method
that dynamically routes queries to a diverse pool
of specialized expert models, addressing the chal-
lenge of effectively handling queries from various
tasks and ensuring both held-in and held-out perfor-
mance. Our proposed method, Global and Local
Instruction Driven Expert Router (GLIDER), lever-
ages a combination of local and global routing vec-
tors to achieve this goal. Specifically, contributors
train task-specific routing vectors, while an LLM
generates global semantic task instructions, which
are then converted to global instruction routing
vectors. During inference, these local and global
routing vectors are combined to perform top-k dis-
crete routing, directing queries to the most suitable
expert model. This process is visualized in Figure 1
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and described in detail below.

4.1 Expert Training Protocol
Our expert training protocol T takes as input the
base model parameters, θbase, and a dataset d and
performs three steps to obtain the required output.
First, we train the LoRA experts (ϕ) and then the
local routing vectors (l) while keeping the LoRA
experts fixed. Finally, we train the global routing
vector (g) by using an LLM and an embedding
model. Formally, in our case, ϕ, Ψ = {l, g} ←
T (θbase, d) which are then shared with the aggrega-
tors to create the routing mechanism. We described
these steps in detail below.

PEFT Training of Expert Model. GLIDER

is compatible with expert models trained us-
ing parameter-efficient finetuning methods (e.g.
LoRA (Hu et al., 2022), Adapters (Houlsby et al.,
2019)) that introduce small trainable modules
throughout the model. We focus on PEFT ex-
perts because they typically have lower compu-
tational and communication costs than full-model
finetuning (Yadav et al., 2023a), making it eas-
ier to train and share expert models. Following
Phatgoose (Muqeeth et al., 2024), this work specif-
ically focuses on LoRA (Hu et al., 2022) due to
its widespread use. LoRA introduces a module
comprising the trainable matrices B ∈ Rd×r and
A ∈ Rr×n in parallel to each linear layer with
parameters W ∈ Rd×n. Given the ith input to-
ken activation ui, LoRA modifies the output of
the linear layer from Wui to Wui +

α
r
· BAui where

α is a constant and usually is set to 1. During
training, the matrices A and B are trainable, while
the original linear layer W is kept frozen. We
denote the final trained expert parameters with
ϕ = {(A1, B1), . . . , (Am, Bm)}, where m is the num-
ber of modules in the model.

Training Local Routing Vectors. Following
Phatgoose (Muqeeth et al., 2024), after training
the PEFT modules on their dataset, a local router is
introduced before each PEFT module. This router,
employing a shared vector across all queries and
tokens, dynamically determines the utilization of
the PEFT module based on the input token acti-
vations. The router is trained for a small number
of steps using the same dataset and objective as
the PEFT module while keeping the expert PEFT
parameters fixed. This process effectively learns
to associate the token activation patterns with the
learned expert model. For LoRA, the local router,

represented by a trainable vector v ∈ Rd, controls
the contribution of the PEFT module to the final
output. This results in a modified linear layer of
the form Wui +

α
r
· BAui · sigmoid(vTui), where

α, W, B, and A are frozen, and the local router v
is learned. We denote the final local routing vec-
tors as l = {v1, . . . , vm} where m is the number of
modules in the model.

Creating LLM-Aided Global Routing Vector.
The local routing vectors capture the intricate re-
lationships between token activations and expert
models, enabling efficient query routing in cases
where no dedicated expert is available. Conversely,
for queries corresponding to held-in tasks, direct
retrieval of the relevant expert model is preferred
to process the full query. For this purpose, we cre-
ate a global routing vector that utilizes an LLM
to generate a semantically-informed instruction,
termed as task description, which effectively cap-
tures the essence of the kind of queries the expert
can handle. We prompt an LLM with three ran-
domly selected in-context examples to generate this
task description. We used the gpt-4-turbo model
along with the prompt provided in Appendix B.
The resulting task description is then embedded us-
ing an off-the-shelf embedding model, specifically
the nomic-embed-text-v1.5 model, to produce a
global routing vector for the task. We denote the
global routing vector as g ∈ Rdg .

4.2 GLIDER: Inference Expert Aggregation

Following training, all contributors share their ex-
pert models along with the auxiliary information
comprising of the local and global routing vec-
tors, {ϕt, lt, gt}Nt=1, where t indexes the input
tokens with the aggregators. The GLIDER method
subsequently leverages this information to perform
inference on arbitrary queries.

Local Router. Before each input module m, a
separate local router weight Lm ∈ RN×d is inserted
to make local per-token, per-module routing deci-
sions. For a given module m and expert model c,
we have v̄cm =

vcm−µ(vcm)
σ(vcm)

, where µ(·) and σ(·) denote
the mean and standard deviation respectively. Next,
we obtain the local router for module m by stacking
these standardised local routing vectors as Lm =
[v̄1m; . . . ; v̄

N
m] ∈ RN×d. Next, for each token i with

activation ui coming into module m, we standardise
it to obtain ūi = ui−µ(ui)

σ(ui)
. We then compute the

local affinity scores, slocm ∈ RN between the local
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router Lm and ui as slocm = cos-sim(Lm, ui).

Global Router. The global router aims to cap-
ture task semantics to retrieve relevant experts for
any given input query. We create the global router
weight G ∈ RN×dg by stacking the global rout-
ing vectors from all the expert models as G =
[g1; . . . ; gN]. This router is not a part of the base
model and is added before the model to indepen-
dently process the full query. Given an input query
u along with three few-shot input-output pairs of
similar queries, we prompt an LLM (gpt-4-turbo)
using the template provided in Appendix B to ob-
tain a task description for the query. We then em-
bed this task description using the same embed-
ding model (nomic-embed-text-v1.5) to obtain
the vector qu ∈ Rdg . We then compute the global
affinity score, sglob ∈ RN, by computing the cosine
similarity as sglob = cos-sim(G, qu).

Combining Global and Local Router. At each
module m, we have the global and local affinity
scores sglob and slocm respectively. Following Phat-
goose (Muqeeth et al., 2024), we scale the lo-
cal scores with a factor of 1/

√
N. However, the

global router’s main goal is to retrieve the cor-
rect expert for the held-in tasks. Therefore, we
first check if the expert with the highest global
affinity score (max(sglob)) is above a threshold
(p). If such experts exist, then we set a high α
to enforce retrieval and vice versa. Hence, we
propose to scale the global scores with α, where
α = γ · I{max(sglob)−p>0} + β, where p is the co-
sine similarity threshold, and γ and β are scal-
ing hyperparameters. Using our ablation experi-
ments in Section 5.4, we set p = 0.8, γ = 100
and β = 3. We then obtain the final affinity
score s ∈ RN = α · sglob + slocm /

√
N. Then

GLIDER selects the top-k experts after perform-
ing softmax over the final affinity score s as Etop
= top-k(softmax(s)). Finally, the output of the
module for token activation ui is computed as
Wui +

∑
k∈Etop sk · BkAkui.

5 Experiments

5.1 Setting

Dataset. Our experiments utilize the multitask
prompted training setup (T0-HI) introduced by
Sanh et al. (2021), which has become a standard
benchmark for evaluating held-in performance as
well as generalization to unseen tasks (Chung et al.,
2022; Longpre et al., 2023; Jang et al., 2023; Zhou

et al., 2022). Phatgoose (Muqeeth et al., 2024)
shows how local routing can be used for general-
ization to unseen domain, hence, following them,
we employ LM-adapted T5.1.1 XL (Lester et al.,
2021) as our base model which is a 3B parameter
variant of T5 (Raffel et al., 2020) further trained
on the C4 dataset using a standard language model-
ing objective. For held-out evaluations, we fol-
low Phatgoose (Muqeeth et al., 2024) and use
three held-out benchmark collections. We use the
T0 held-out (T0-HO) datasets used in Sanh et al.
(2021) and the two subsets of BIG-bench (BIG-
bench authors, 2023). Specifically, we use BIG-
bench Hard (BBH) (Suzgun et al., 2022), consist-
ing of 23 challenging datasets, and BIG-bench Lite
(BBL) (BIG-bench authors, 2023), a lightweight
24-dataset proxy for the full benchmark. Similar
to Muqeeth et al. (2024), we exclude certain BIG-
bench datasets due to tokenization incompatibility
with the T5 tokenizer.

Expert Creation. To create the pool of expert
module for routing, we follow Muqeeth et al.
(2024) and use two distinct dataset collections:
❶ T0 Held-In (Sanh et al., 2021) consisting of
the 36 held-in prompted datasets for tasks from
the T0 training procedure. ❷ The “FLAN Col-
lection" (Longpre et al., 2023) which signifi-
cantly expands the T0 tasks by incorporating
prompted datasets from SuperGLUE (Wang et al.,
2019a), Super Natural Instructions (Wang et al.,
2022b), dialogue datasets, and Chain-of-Thought
datasets (Wei et al., 2022b). Following Muqeeth
et al. (2024), we create 166 specialized models
from the FLAN Collection. For each dataset in
these collections, we train Low-Rank Adapters (Lo-
RAs) (Hu et al., 2021) modules resulting in pools
of 36 and 166 expert models for T0 Held-In and
FLAN, respectively. Similar to Phatgoose, we use
a rank of r = 16 and train for 1000 steps using the
AdamW optimizer (Loshchilov and Hutter, 2017)
with a learning rate of 5×10−3 and a warmup ratio
of 0.06. After training the LoRA module, we freeze
it and train the local routing vectors for an addi-
tional 100 steps with the same hyperparameters.
Finally, following prior work (Shazeer et al., 2016;
Du et al., 2022; Lepikhin et al., 2020), GLIDER
performs top-k routing with k = 2.

5.2 Baselines

Expert Merging. Model Merging (Yadav et al.,
2023b; Choshen et al., 2022) involves averaging
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Table 1: Performance evaluated on the T0 set and FLAN
set. We present the performance on both held-in tasks
(i.e. T0-HI) and held-out tasks (i.e. T0-HO, BBH, and
BBL). We compare the following methods: (1) perfor-
mance upper bound, i.e. Oracle Expert; (2) zero-shot
baselines, i.e. Multi-Task Fine-Tuning, Expert Merg-
ing, Arrow, and Phatgoose; (3) few-shot baselines, i.e.
LoRA Hub and GLIDER. We mark the best performance
besides the upper bound (i.e., Oracle Expert) in bold.

Method
T0 FLAN

T0-HI T0-HO BBH BBL BBH BBL

Oracle Expert 69.60 51.60 34.90 36.60 38.90 45.40

Multi-Task Fine-Tuning 55.90 51.60 34.90 36.60 38.90 45.40
Expert Merging 30.73 45.40 35.30 36.00 34.60 34.00
Arrow 39.84 55.10 33.60 34.50 30.60 29.60
Phatgoose 61.42 56.90 34.90 37.30 35.60 35.20

LoRA Hub 31.90 46.85 31.35 31.18 34.50 30.54
GLIDER 68.04 57.78 35.29 37.46 35.07 35.52

the parameters of multiple models or modules to
create a single aggregate model. We merge by
multiplying the LoRA matrices and then taking
an unweighted average of all the experts within
the pool. It is important to note that this merging
strategy requires homogeneous expert module ar-
chitectures; in contrast, GLIDER can accommodate
heterogeneous expert modules.

Arrow. Following Ostapenko et al. (2024), we
employ a routing mechanism where gating vectors
are derived from LoRA expert modules. Specifi-
cally, the first right singular vector of the outer prod-
uct of each module’s LoRA update (BA) serves as
its gating vector. Input routing is determined by a
probability distribution based on the absolute dot
product between the input representation and each
gating vector. We utilize top-k routing with k = 2.

Phatgoose. Phatgoose (Muqeeth et al., 2024)
first learn the LoRA modules for each, followed by
learning a sigmoid gating vector similar to our local
router. During inference, they make routing deci-
sions for each token independently for all modules.
Specifically, they first standardize the input token
activations and gating vectors from all experts and
then perform similarity-based top-2 routing.

LoRA Hub. LoraHub (Huang et al., 2023)
method performs gradient-free optimization us-
ing few-shot task samples to learn mixing coef-
ficients for different expert models while keeping
them fixed. Once the coefficients are learned, they
merge the experts with the learned weight and route
through the merged expert.

Multi-task Fine-Tuning. Multitask training is a
proven method for enhancing zero-shot generaliza-
tion (Sanh et al., 2021; Wei et al., 2022a) but is in-
feasible given our problem setting and data access

T0-HI T0-HO BigBench

Figure 3: Global routing scores for tasks in the T0 set.
The red horizontal line indicates our design threshold
of 0.8. Each column represents an evaluated task from
T0-HI, T0-HO, BigBench using T0 held-in experts. All
global routing scores for each task are plotted, corre-
sponding to the 35 experts in total.

limitations. We include it as a baseline using pub-
licly available models. Specifically, we utilize the
T0-3B model (Sanh et al., 2021) for the T0 Held-In
datasets, given its training on a matching dataset
collection. For FLAN, a directly comparable pub-
licly available model is unavailable; therefore, we
report FLAN-T5 XL results trained on a different,
undisclosed dataset mixture, while acknowledging
the limitations of this indirect comparison.

Oracle. Following (Jang et al., 2023) and
(Muqeeth et al., 2024), we employ an Oracle rout-
ing scheme as a performance upper bound. This
scheme selects the expert exhibiting optimal per-
formance on a given evaluation dataset, thus repre-
senting a non-zero-shot approach.

5.3 Main Results
Table 1 presents the comparison results among our
GLIDER and six baselines on both held-in and held-
out settings. We report the average performance
across all tasks for each setting, please see Ap-
pendix D for each tasks metric. To further illustrate
the performance, we also include the results of
Oracle Expert, which has extra access to the task
identities of expert modules and evaluated datasets
and can be regarded as an upper bound.

T0 Setting. In the T0 task set, the following ob-
servations can be drawn: ❶ For the held-in tasks,
i.e. T0-HI, GLIDER significantly outperforms other
baselines and almost matches the performance of
Oracle Expert upper bound. ❷ For T0-HO and
BBL tasks, GLIDER achieves the best performance
among all the methods, including Oracle Expert up-
per bound. ❸ GLIDER has negligible lower perfor-
mance, i.e. 0.01%, compared to the Expert Merg-
ing baseline in BBH but outperforms it by around
12% on T0-HO and 1.5% on BBL. Besides Expert
Merging, GLIDER outperforms all other methods
on BBH, including the Oracle Expert upper bound.
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Table 2: Ablation on the instruction coefficient α. We
mark the best performance in bold and the performance
corresponding to the selected α by GLIDER in blue .

α
T0

T0-HI T0-HO BBH BBL

0 61.42 56.90 34.90 37.30
1 62.20 57.04 35.05 37.79

3 63.40 57.78 35.29 37.46
10 65.52 57.98 34.80 37.04

100 68.04 53.22 31.73 34.97
1000 66.88 52.91 30.71 34.31
3000 66.69 52.37 30.03 33.24

The key insight is that held-in tasks benefit from
explicit task identification (via global router) while
held-out tasks require compositional reasoning (via
local router). Our multi-scale approach allows both
modes to coexist.

5.4 Ablation Study and Further Investigation
Ablation on the global routing scale α. To il-
lustrate how the specialization and generalization
abilities change as we scale the coefficient α of
the global routing score, we conduct the ablation
study of α ranging {1, 3, 10, 100, 1000, 3000}. As
shown in Table 2, we present experimental results
of the T0 task set on both held-in and held-out tasks.
For held-in tasks, i.e. T0-HI, GLIDER can select the
optimal α to scale the global routing score. For
held-out tasks, i.e. {T0-HO, BBH, BBL}, GLIDER
produce either the optimal α (for BBH) or the sub-
optimal α with slightly lower performance to the
optimal ones (for T0-HO and BBL). Lastly, note
that Phatgoose correspond to the setting where
there is no global semantics used, i.e., α = 0.

Ablation on the routing strategy. There exists
a trade-off between performance and efficiency
when using different top-k routing strategies (Ra-
machandran and Le, 2019). To investigate the
impact of routing strategy in GLIDER, we evalu-
ate top-k routing of k in {1, 2, 3}. Moreover, we
further evaluate the top-p routing (Huang et al.,
2024c; Zeng et al., 2024) of p in {25%, 50%, 75%},
where each token selects experts with higher rout-
ing probabilities until the cumulative probability
exceeds threshold p. As shown in Table 3, we
can draw the following conclusions: (1) For top-k
routing, k = 2 shows comparable or better per-
formance than k = 3, particularly for T0-HO and
BBH, while offering improved efficiency. (2) For
top-p routing, higher p values consistently yield
better performance at the cost of efficiency. There-
fore, we use top-2 routing in GLIDER by default.

Table 3: Ablation on the routing strategy. GLIDER em-
ploys top-2 routing. We mark the best performance
among top-k and top-p routing in bold, respectively.

Method
T0

T0-HI T0-HO BBH BBL

Top-1 67.96 56.07 33.91 35.82
Top-2 68.04 57.78 35.39 37.46
Top-3 68.06 57.52 35.08 38.55

Top-25% 67.98 56.53 34.10 36.32
Top-50% 67.95 57.25 35.07 37.49
Top-75% 68.02 57.86 35.38 38.65

Investigation on the threshold design of global
scores. As in Section 4, we compute the scale
α for global scores using the formula α = γ ∗
I{max(sglob)−0.8>0}+β, where we establish a thresh-
old of 0.8 to differentiate evaluated tasks. Fig-
ure 3 presents the global routing scores for each
task in the T0 set to motivate the rationale be-
hind this design. For all held-in tasks (i.e., T0-
HI), at least one expert (typically the oracle expert
trained on the evaluated task) achieves global rout-
ing scores exceeding 0.8. Consequently, GLIDER
applies a higher α = 100, enabling effective iden-
tification of tasks corresponding to a specifically
trained expert and enhancing retrieval of this ora-
cle expert. For nearly all held-out tasks (i.e., T0-
HO and BigBench), no global routing score sur-
passes 0.8, prompting GLIDER to utilize a lower
α = 3. Two exceptions among the held-out tasks
are bbq_lite_json and strange_stories in Big-
Bench, where one score marginally exceeds 0.8 in
each case. For these two, GLIDER employs the
higher α = 100, resulting in performance improve-
ments of 1.3% and 2.9% respectively over α = 3,
thus showing the effectiveness of our design.

6 Conclusion
This paper introduces GLIDER, a novel multi-scale
routing mechanism that incorporates both global se-
mantic and local token-level routers. By leveraging
the semantic reasoning capabilities of LLMs for
global expert selection and refining these choices
with a learned local router, GLIDER addresses the
limitations of existing methods that often perform
poorly on held-in tasks. Our empirical evaluation
on T0 and FLAN benchmarks, using T5-based
experts, demonstrates that GLIDER achieves sub-
stantial improvements in held-in task performance
while maintaining competitive generalization on
held-out tasks. These findings suggest that incor-
porating global semantic task context into routing
mechanisms is crucial for building robust and prac-
tically useful routing-based systems.
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7 Limitation

The main limitation of GLIDER lies in its heavy
dependence on large language models (specifically
GPT-4) for generating semantic task descriptions.
This reliance introduces potential accessibility bar-
riers due to API costs. Furthermore, investigating
the application of GLIDER to other modalities be-
yond language tasks, such as vision or multi-modal
expert models, could unlock new capabilities for
specialized model routing.
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Appendix

A Extended Related Work

Model Merging. Model merging (Yadav et al.,
2023b; Choshen et al., 2022; Wortsman et al., 2022;
Ramé et al., 2022; Matena and Raffel, 2022; Ilharco
et al., 2022; Tam et al., 2023; Jin et al., 2022; Yang
et al., 2023; Zhao et al., 2024a) consolidates mul-
tiple independently trained models with identical
architectures into a unified model that preserves
multi-model capabilities. While simple parameter
averaging suffices for models within a linearly con-
nected low-loss parameter space (McMahan et al.,
2017; Stich, 2018; Frankle et al., 2020; Wortsman
et al., 2021; Li et al., 2023), more sophisticated
techniques are necessary for complex scenarios.
For instance, task vectors facilitate merging expert
models trained on diverse domains (Ilharco et al.,
2022). Additionally, methods like weighted merg-
ing using Fisher Importance Matrices (Matena and
Raffel, 2022; Tam et al., 2023) and TIES-Merging,
which addresses sign disagreements and redun-
dancy (Yadav et al., 2023b) offers improved per-
formance. As a non-adaptive expert aggregation
method, merging serves as a fundamental baseline
for numerous Model Editing with Regularization
(MoErging) techniques.

Multitask Learning (MTL) research offers valu-
able insights for decentralized development. No-
tably, investigations into task-relatedness (Standley
et al., 2020; Bingel and Søgaard, 2017; Achille
et al., 2019; Vu et al., 2020; Zamir et al., 2018;
Mou et al., 2016) provide guidance for design-
ing routing mechanisms, while MTL architectures
addressing the balance between shared and task-
specific knowledge (Misra et al., 2016; Ruder et al.,
2017; Meyerson and Miikkulainen, 2017; Zare-
moodi et al., 2018; Sun et al., 2019b) offer strate-
gies for combining expert contributions in a decen-
tralized manner.

MoE for Multitask Learning. Recent research
has extensively investigated mixture-of-experts
(MoE) models for multitask learning, achieving
promising results in unseen task generalization.
These approaches generally fall into two categories:
(1) Example Routing: Studies like Muqeeth et al.
(2023); Zadouri et al. (2023); Wang et al. (2022a)
train routers to dynamically select experts for each
input, while Caccia et al. (2023) demonstrate the
efficacy of routing at a finer granularity by splitting
expert parameters into blocks. (2) Task Routing:

Ponti et al. (2023) employs a trainable skill ma-
trix to assign tasks to specific parameter-efficient
modules, while Gupta et al. (2022) leverages task-
specific routers selected based on domain knowl-
edge. Ye et al. (2022) proposes a layer-wise expert
selection mechanism informed by task represen-
tations derived from input embeddings. Such ap-
proaches leverage task-specific representation to
allow the router to effectively select the most suit-
able experts for unseen tasks. While these studies
differ from our setting by assuming simultaneous
data access, they offer valuable insights applicable
to our exploration of creating routing mechanisms
over expert models.

B LLM for Task Instruction Generation.

B.1 Prompt Template

We use the following prompt with 3 randomly se-
lected samples for each task to generate its descrip-
tion. The prompt is then fed into the gpt-4-turbo
OpenAI API to get the generated task descriptions.

The following are three pairs of input-output
examples from one task. Generate the task
instruction in one sentence that is most
possibly used to command a language
model to produce them. In the instruction,
remember to point out the skill or knowledge
required for the task to guide the language
model.

- Input:
- Output:

- Input:
- Output:

- Input:
- Output:

B.2 Examples of the Generated Instructions

We provide several examples of LLM-generated
instructions in this section.

WikiBio (Lebret et al., 2016a) (T0 Held-In):

• Create a short biography using the provided
facts, demonstrating knowledge in historical
and biographical writing.

• Write a short biography based on the given
factual bullet points, demonstrating profi-
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ciency in summarizing and transforming struc-
tured data into coherent narrative text.

CommonGen (Lin et al., 2020b) (T0 Held-In):

• Generate a coherent sentence using all the
given abstract concepts, requiring the skill
of concept integration to form a meaningful
sentence.

• Generate a coherent sentence by creatively
combining a given set of abstract concepts.

COPA (Huang et al., 2024b) (T0 Held-Out):

• Identify the most logically consistent sentence
from two given options based on the provided
context, demonstrating reasoning and causal
relationship skills.

• Generate the most likely outcome for a given
scenario by choosing between two provided
options based on contextual clues and causal
reasoning.

Date Understanding (Srivastava et al., 2023)
(BigBench-Hard):

• Calculate the date based on the given informa-
tion and present it in MM/DD/YYYY format,
ensuring that you accurately account for day,
month, and year changes.

Hindu Mythology Trivia (Srivastava et al.,
2023) (BigBench-Lite):

• Generate the correct answer by making use
of your knowledge in Hindu mythology and
culture.

C Demonstrating Compositional
Generation

In addition to significant improvements on held-in
tasks, GLIDER demonstrates strong performance
on held-out tasks, showcasing its generalization
capability. To further examine this ability to handle
unseen tasks by composing experts, we provide
specific task examples illustrating the association
between selected experts and the evaluated task.
As Figure 2 shows, GLIDER primarily selects two
experts for the COPA (T0 held-out) task, corre-
sponding to CosmosQA and QuaRel. The follow-
ing three examples from these tasks demonstrate
their close semantic relationship:

• COPA:

– Question: Everyone in the class turned
to stare at the student. Select the most
plausible cause: - The student’s phone
rang. - The student took notes.

– Answer: The student’s phone rang.

• CosmosQA:

– Question: That idea still weirds me out .
I made a blanket for the baby ’s older sis-
ter before she was born but I completely
spaced that this one was on the way ,
caught up in my own dramas and what-
not . Luckily , I had started a few rows
in white just to learn a stitch ages ago ,
and continuing that stitch will make an
acceptable woobie , I think . Accord-
ing to the above context, choose the best
option to answer the following question.
Question: What did I make for the baby .
Options: A. I made a carseat . B. None
of the above choices . C. I made a crb .
D. I finished a pair of booties .

– Answer: D.

• QuaRel:

– Question: Here’s a short story: A piece
of thread is much thinner than a tree
so it is (A) less strong (B) more strong.
What is the most sensical answer be-
tween "Thread" and "Tree"?

– Answer: Thread.

D Datasets and Metric

The specific details of all the datasets we use in this
work are provided in this section.

D.1 T0 Held-In Datasets

• CommonsenseQA (Talmor et al., 2019b) un-
der MIT License, evaluated by accuracy.

• DREAM (Sun et al., 2019a) under MIT Li-
cense, evaluated by accuracy.

• QUAIL (Rogers et al., 2020) under CC BY-SA
4.0, evaluated by accuracy.

• QuaRTz (Tafjord et al., 2019) under Apache
2.0 License, evaluated by accuracy.

• Social IQA (Sap et al., 2019) under MIT Li-
cense, evaluated by accuracy.
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• WiQA (Tandon et al., 2019) under Apache 2.0
License, evaluated by accuracy.

• Cosmos QA (Huang et al., 2019) under MIT
License, evaluated by accuracy.

• QASC (Khot et al., 2020) under Apache 2.0
License, evaluated by accuracy.

• Quarel (Tafjord et al., 2018) under Apache
2.0 License, evaluated by accuracy.

• SciQ (Johannes Welbl, 2017) under MIT Li-
cense, evaluated by accuracy.

• Wiki Hop (Welbl et al., 2018) under CC BY-
SA 3.0, evaluated by accuracy.

• Adversarial QA (Bartolo et al., 2020) under
Apache 2.0 License, evaluated by F1 score.

• Quoref (Dasigi et al., 2019) under Apache 2.0
License, evaluated by F1 score.

• DuoRC (Saha et al., 2018) under MIT License,
evaluated by F1 score.

• ROPES (Lin et al., 2019b) under Apache 2.0
License, evaluated by F1 score.

• Hotpot QA (Yang et al., 2018) under CC BY-
SA 4.0, evaluated by exact match and F1 score.

• Wiki QA (Yi et al., 2015) under MIT License,
evaluated by mean average precision (MAP)
and mean reciprocal rank (MRR).

• Common Gen (Lin et al., 2020c) under MIT
License, evaluated by BLEU and ROUGE
scores.

• Wiki Bio (Lebret et al., 2016b) under CC BY-
SA 3.0, evaluated by BLEU score.

• Amazon (Blitzer et al., 2007) under Propri-
etary License, evaluated by accuracy.

• App Reviews (Maas et al., 2011a) under Pro-
prietary License, evaluated by accuracy.

• IMDB (Maas et al., 2011b) under Proprietary
License, evaluated by accuracy.

• Rotten Tomatoes (Zhu et al., 2010) under
Proprietary License, evaluated by accuracy.

• Yelp (Yelp, Inc., 2018) under Apache 2.0 Li-
cense, evaluated by accuracy.

• CNN Daily Mail (Hermann et al., 2015a) un-
der Apache 2.0 License, evaluated by ROUGE
score.

• Gigaword (Graff et al., 2003) under LDC Li-
cense, evaluated by ROUGE score.

• MultiNews (Fabbri et al., 2019) under MIT
License, evaluated by ROUGE score.

• SamSum (Gliwa et al., 2019) under CC BY-
SA 4.0, evaluated by ROUGE score.

• XSum (See et al., 2017a) under Apache 2.0
License, evaluated by ROUGE score.

• AG News (Zhang et al., 2015) under CC BY-
SA 3.0, evaluated by accuracy.

• DBPedia (Auer et al., 2007) under CC BY-SA
3.0, evaluated by accuracy.

• TREC (Voorhees, 2002) under NIST License,
evaluated by accuracy.

• MRPC (Dolan and Brockett, 2005) under
Apache 2.0 License, evaluated by accuracy
and F1 score.

• PAWS (Zhang et al., 2019c) under Apache 2.0
License, evaluated by accuracy and F1 score.

• QQP (Quora, Inc., 2017) under Quora Terms
of Service, evaluated by accuracy and F1
score.

D.2 T0 Held-Out Datasets

Held-out Tasks

• ANLI (Nie et al., 2020) under MIT License,
evaluated by accuracy.

• CB (de Marneffe et al., 2017) under CC-BY-
SA License, evaluated by accuracy.

• RTE (Dagan et al., 2005; Bar-Haim et al.,
2006; Giampiccolo et al., 2007; Bentivogli
et al., 2009) under Apache 2.0 License, evalu-
ated by accuracy.

• WSC (Levesque et al., 2012) under Creative
Commons License, evaluated by accuracy.

• Winogrande (Sakaguchi et al., 2020a) under
Apache License 2.0, evaluated by accuracy.
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• WiC (Pilehvar and Camacho-Collados, 2019)
under CC BY-SA 4.0 License, evaluated by
accuracy.

• COPA (Roemmele et al., 2011a) under BSD-
2-Clause License, evaluated by accuracy.

• HellaSwag (Zellers et al., 2019a) under MIT
License, evaluated by accuracy.

• Story Cloze (Mostafazadeh et al., 2016b) un-
der CC-BY 4.0 License, evaluated by accuracy.

D.3 BigBench-Hard Datasets

• abstract_narrative_understanding (Ghosh
and Srivastava, 2021; Holyoak, 2012; Nippold
et al., 2001; Tan et al., 2015; Wang et al.,
2020b; Mostafazadeh et al., 2016a) under
Apache 2.0 License, evaluated by accuracy

• abstraction_and_reasoning_corpus (Chol-
let, 2019; Brown et al., 2020; Chollet, 2020)
under Apache 2.0 License, evaluated by accu-
racy

• anachronisms (Otterbacher et al., 2002;
Popescu and Strapparava, 2015; Llorens et al.,
2015; Meng et al., 2017; Geva et al., 2021)
under Apache 2.0 License, evaluated by accu-
racy

• analogical_similarity (Plate, 2003, 1994;
Thagard et al., 1990; Gentner et al., 1993)
under Apache 2.0 License, evaluated by accu-
racy

• analytic_entailment (Hume, 1739–1740;
Kant, 1781/1787; Wittgenstein, 1953; Quine,
1951; Grice and Strawson, 1956; Bolukbasi
et al., 2016; Kocurek et al., 2020; Rudolph and
Kocurek, 2020; Kocurek and Jerzak, 2021) un-
der Apache 2.0 License, evaluated by accuracy

• arithmetic (Brown et al., 2020; Saxton et al.,
2019) under Apache 2.0 License, evaluated by
accuracy

• ascii_word_recognition (Child et al., 2019;
Chen et al., 2020) under Apache 2.0 License,
evaluated by accuracy

• authorship_verification (Bischoff et al.,
2020; Koppel and Schler, 2004) under Apache
2.0 License, evaluated by accuracy

• auto_categorization under Apache 2.0 Li-
cense, evaluated by accuracy

• bbq_lite (Crawford, 2017; Khashabi et al.,
2020b; Li et al., 2020a) under Apache 2.0 Li-
cense, evaluated by accuracy

• bias_from_probabilities (Bender et al., 2021;
Abid et al., 2021) under Apache 2.0 License,
evaluated by accuracy

• boolean_expressions (Habernal et al., 2018;
Yu et al., 2020; Dua et al., 2019; Liu et al.,
2020a; Sinha et al., 2019; Wang et al., 2019b;
Steinbach and Kohut, 2002; Saxton et al.,
2019; Payani and Fekri, 2019; Trask et al.,
2018; Selsam et al., 2018; Allamanis et al.,
2016; Evans et al., 2018; Shi et al., 2020) un-
der Apache 2.0 License, evaluated by accuracy

• bridging_anaphora_resolution_barqa (Hou,
2020; Hou et al., 2013; Markert et al., 2012;
Rajpurkar et al., 2016) under Apache 2.0
License, evaluated by accuracy

• causal_judgment (Gordon, 2010; Bosselut
et al., 2019; Halpern, 2016; Knobe, 2003) un-
der Apache 2.0 License, evaluated by accuracy

• cause_and_effect (Gordon, 2010) under
Apache 2.0 License, evaluated by accuracy

• checkmate_in_one (Alexander, 2020; Am-
manabrolu et al., 2019; Dambekodi et al.,
2020; Ammanabrolu et al., 2020) under
Apache 2.0 License, evaluated by accuracy

• chess_state_tracking (Weston et al., 2015;
Côté et al., 2018; Toshniwal et al., 2021;
Alexander, 2020; Chen, 2020; Noever et al.,
2020; Swingle et al., 2021) under Apache 2.0
License, evaluated by accuracy

• chinese_remainder_theorem under Apache
2.0 License, evaluated by accuracy

• cifar10_classification under Apache 2.0 Li-
cense, evaluated by accuracy

• codenames (Kim et al., 2019) under Apache
2.0 License, evaluated by accuracy

• color (Gibson et al., 2017; Zucconi, 6 Jan.
2016) under Apache 2.0 License, evaluated by
accuracy
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• com2sense (Singh et al., 2021) under Apache
2.0 License, evaluated by accuracy

• common_morpheme (Devlin et al., 2018;
Wu et al., 2016; Won et al., 2021; Xu et al.,
2018; Edmiston and Stratos, 2018; El-Kishky
et al., 2019) under Apache 2.0 License, evalu-
ated by accuracy

• context_definition_alignment (Senel and
Schütze, 2021; Reimers and Gurevych, 2019)
under Apache 2.0 License, evaluated by accu-
racy

• convinceme (Lin et al., 2021b; Levy et al.,
2021; Clark et al., 2018; Maynez et al., 2020;
Wang et al., 2020a; Kenton et al., 2021; Xu
et al., 2020a; Tamkin et al., 2021) under
Apache 2.0 License, evaluated by accuracy

• coqa_conversational_question_answering (Reddy
et al., 2019; Radford et al., 2019; Brown et al.,
2020) under Apache 2.0 License, evaluated by
accuracy

• crash_blossom under Apache 2.0 License,
evaluated by accuracy

• crass_ai (Schölkopf et al., 2021; Teney et al.,
2020; Liang et al., 2020b; Pearl, 2000; Shahid
and Zheleva, 2021; Xia et al., 2021; Priol et al.,
2020) under Apache 2.0 License, evaluated by
accuracy

• cryobiology_spanish (Scudellari, 2017;
Soltani Firouz et al., 2021; Toubiana et al.,
2020; Mbogba et al., 2018) under Apache 2.0
License, evaluated by accuracy

• cryptonite (Efrat et al., 2021; Raganato et al.,
2017; Sakaguchi et al., 2020b; Miller and
Gurevych, 2015; Miller et al., 2017; Joshi
et al., 2017; Oprea and Magdy, 2020; Friedlan-
der and Fine, 2018; Lewis et al., 2020c) under
Apache 2.0 License, evaluated by accuracy

• cs_algorithms under Apache 2.0 License,
evaluated by accuracy

• cycled_letters (Brown et al., 2020) under
Apache 2.0 License, evaluated by accuracy

• dark_humor_detection (Weller and Seppi,
2019; Fan et al., 2020; Willinger et al., 2017;
Yang et al., 2015; Mihalcea and Strapparava,
2005) under Apache 2.0 License, evaluated by
accuracy

• date_understanding (Vashishth et al., 2018;
Chambers, 2012; Kotsakos et al., 2014;
Vashishtha et al., 2020, 2019) under Apache
2.0 License, evaluated by accuracy

• disambiguation_qa (Zhao et al., 2018;
Rudinger et al., 2018) under Apache 2.0 Li-
cense, evaluated by accuracy

• discourse_marker_prediction (Malmi et al.,
2018; Nie et al., 2019; Sileo et al., 2019, 2020)
under Apache 2.0 License, evaluated by accu-
racy

• disfl_qa (Gupta et al., 2021; Rajpurkar et al.,
2018) under Apache 2.0 License, evaluated by
accuracy

• diverse_social_bias (Sheng et al., 2019;
Nadeem et al., 2020; Hendrycks et al., 2020;
Sap et al., 2020; Gehman et al., 2020; Boluk-
basi et al., 2016; Caliskan et al., 2017; May
et al., 2019; Liang et al., 2020a; Barocas and
Selbst, 2016; Cho et al., 2019; Blodgett et al.,
2020; Merity et al., 2016; Socher et al., 2013;
Poria et al., 2019) under Apache 2.0 License,
evaluated by accuracy

• dyck_languages (Chomsky and Schützen-
berger, 1959; Suzgun et al., 2019b; Hao et al.,
2018; Hewitt et al., 2020; Hahn, 2020; Suzgun
et al., 2019a; Sennhauser and Berwick, 2018;
Skachkova et al., 2018; Bhattamishra et al.,
2020a; Yu et al., 2019c; Ebrahimi et al., 2020;
Ackerman and Cybenko, 2020; Bhattamishra
et al., 2020b) under Apache 2.0 License, eval-
uated by accuracy

• dynamic_counting (Suzgun et al., 2019a;
Skachkova et al., 2018; Bhattamishra et al.,
2020a; Suzgun et al., 2019b; Yu et al., 2019c;
Ebrahimi et al., 2020; Ackerman and Cy-
benko, 2020; Bhattamishra et al., 2020b;
Sennhauser and Berwick, 2018; Merrill, 2020;
Karpathy, 2015) under Apache 2.0 License,
evaluated by accuracy

• elementary_math_qa (Amini et al., 2019;
Ling et al., 2017; Hendrycks et al., 2021c; Pa-
tel et al., 2021; Zhang et al., 2020a; Hendrycks
et al., 2021b) under Apache 2.0 License, eval-
uated by accuracy
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• emojis_emotion_prediction (Shoeb and
de Melo, 2020; Plutchik, 1980) under Apache
2.0 License, evaluated by accuracy

• empirical_judgments (Kant, 1781/1787,
1783; Spirtes et al., 2000; Pearl, 1988; Gold-
berger, 1972; Rothman and Greenland, 2005;
Roemmele et al., 2011b; Wang et al., 2019b;
Evans et al., 2019) under Apache 2.0 License,
evaluated by accuracy

• english_proverbs (Gyasi Obeng, 1996;
Honeck, 1997; Hrisztova-Gotthardt and
Aleksa Varga, 2015) under Apache 2.0 Li-
cense, evaluated by accuracy

• english_russian_proverbs (Bodrova, 2007;
Gvarjalaże and Mchedlishvili, 1971; Wik) un-
der Apache 2.0 License, evaluated by accuracy

• entailed_polarity (Karttunen, 2012) under
Apache 2.0 License, evaluated by accuracy

• entailed_polarity_hindi (Karttunen, 2012)
under Apache 2.0 License, evaluated by ac-
curacy

• epistemic_reasoning (Ravenscroft, 2019;
Call and Tomasello, 2008; Bugnyar et al.,
2016; Stalnaker, 1978; Sperber and Wilson,
2002; Nematzadeh et al., 2018; Le et al.,
2019; Jiang and de Marneffe, 2019; Ross and
Pavlick, 2019; Bowman et al., 2015; de Marn-
effe et al., 2012; Jeretic et al., 2020) under
Apache 2.0 License, evaluated by accuracy

• evaluating_information_essentiality (Ra-
jpurkar et al., 2018; Hosseini et al., 2014;
Levy et al., 2017; Yin and Pei, 2015; de Marn-
effe et al., 2008; Zhu et al., 2019) under
Apache 2.0 License, evaluated by accuracy

• fact_checker (Thorne et al., 2018; Lee et al.,
2021) under Apache 2.0 License, evaluated by
accuracy

• factuality_of_summary (Eyal et al., 2019;
Wang et al., 2020a; Durmus et al., 2020; Vasi-
lyev et al., 2020; See et al., 2017b; Hermann
et al., 2015b; Narayan et al., 2018; Pagnoni
et al., 2021; Kryscinski et al., 2020) under
Apache 2.0 License, evaluated by accuracy

• fantasy_reasoning (Wang et al., 2019b, 2018;
McCann et al., 2018; Bhagavatula et al., 2019;

Lourie et al., 2021; Liu et al., 2020a; Sax-
ton et al., 2019; Clark et al., 2018; Yu et al.,
2019d; Zhang et al., 2018a; Johnson et al.,
2016) under Apache 2.0 License, evaluated by
accuracy

• few_shot_nlg (Rastogi et al., 2020; Kale and
Rastogi, 2020) under Apache 2.0 License,
evaluated by accuracy

• figure_of_speech_detection (Potamias et al.,
2020) under Apache 2.0 License, evaluated by
accuracy

• forecasting_subquestions under Apache 2.0
License, evaluated by accuracy

• gem (Gehrmann et al., 2021) under Apache
2.0 License, evaluated by accuracy

• gender_inclusive_sentences_german under
Apache 2.0 License, evaluated by accuracy

• gender_sensitivity_chinese (on the Revision
of the National Standard Occupational Clas-
sification, 2015; Household Management Re-
search Center, 2021, 2020, 2019; Qimingtong,
2016; Ministry of the Interior, 2018) under
Apache 2.0 License, evaluated by accuracy

• gender_sensitivity_english (Bordia and Bow-
man, 2019; Marcus et al., 1994; Caliskan et al.,
2017; Bolukbasi et al., 2016; Rudinger et al.,
2018; Lu et al., 2020; Gonen and Goldberg,
2019; Hall Maudslay et al., 2019; Fellbaum,
1998) under Apache 2.0 License, evaluated by
accuracy

• general_knowledge (Shane, 2020; Dhingra
et al., 2017; Rajpurkar et al., 2016, 2018;
Lacker, 2020) under Apache 2.0 License, eval-
uated by accuracy

• geometric_shapes (Bostock et al., 2011; Mar-
riott et al., 2021; Boillot, 2019) under Apache
2.0 License, evaluated by accuracy

• goal_step_wikihow (Zhang et al., 2020d) un-
der Apache 2.0 License, evaluated by accuracy

• gre_reading_comprehension (Lai et al.,
2017) under Apache 2.0 License, evaluated
by accuracy

• hhh_alignment under Apache 2.0 License,
evaluated by accuracy
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• high_low_game under Apache 2.0 License,
evaluated by accuracy

• hindi_question_answering (Brown et al.,
2020; Radford et al., 2019; Jain et al., 2020;
Lewis et al., 2020a; Artetxe et al., 2020; Ra-
jpurkar et al., 2016) under Apache 2.0 License,
evaluated by accuracy

• hinglish_toxicity under Apache 2.0 License,
evaluated by accuracy

• human_organs_senses under Apache 2.0 Li-
cense, evaluated by accuracy

• hyperbaton (Forsyth, 2014) under Apache
2.0 License, evaluated by accuracy

• identify_math_theorems (Gao et al., 2021;
Black et al., 2022; Brown et al., 2020; Radford
et al., 2019; Wang and Komatsuzaki, 2021) un-
der Apache 2.0 License, evaluated by accuracy

• identify_odd_metaphor (Lakoff and John-
son, 2008; Gao et al., 2018) under Apache 2.0
License, evaluated by accuracy

• implicatures (Davis, 2019; George and
Mamidi, 2020) under Apache 2.0 License,
evaluated by accuracy

• implicit_relations (Cain and Oakhill, 1999;
Bayat and Çetinkaya, 2020; Srivastava et al.,
2016; Lin et al., 2019a; Massey et al., 2015)
under Apache 2.0 License, evaluated by accu-
racy

• intent_recognition (Brown et al., 2020;
Winata et al., 2021; Madotto et al., 2020;
Coucke et al., 2018; Madotto et al., 2021) un-
der Apache 2.0 License, evaluated by accuracy

• international_phonetic_alphabet_nli (Williams
et al., 2018) under Apache 2.0 License, evalu-
ated by accuracy

• international_phonetic_alphabet_transliterate (Brown
et al., 2020; Liu et al., 2020c; Williams et al.,
2018) under Apache 2.0 License, evaluated by
accuracy

• intersect_geometry (Weston et al., 2015;
Agrawal et al., 2015; Trask et al., 2018; Seo
et al., 2014; Hosseini et al., 2014; Polu and
Sutskever, 2020; Yang and Deng, 2019) under
Apache 2.0 License, evaluated by accuracy

• irony_identification (Zhang et al., 2019b;
Ghanem et al., 2020; Salas-Zárate et al., 2017)
under Apache 2.0 License, evaluated by accu-
racy

• kanji_ascii under Apache 2.0 License, evalu-
ated by accuracy

• kannada (Prentice and Fathman, 1975;
Narasimhachar, 1988; Liu et al., 2021b; Lev
et al., 2004; Lin et al., 2021a) under Apache
2.0 License, evaluated by accuracy

• key_value_maps under Apache 2.0 License,
evaluated by accuracy

• language_games under Apache 2.0 License,
evaluated by accuracy

• linguistic_mappings (McCoy et al., 2018,
2020; Mulligan et al., 2021; Rumelhart et al.,
1986; Kirov and Cotterell, 2018; Berko, 1958;
Baayen et al., 1995) under Apache 2.0 License,
evaluated by accuracy

• list_functions (Rule et al., 2020; Rule, 2020;
Green et al., 1974; Shaw et al., 1975; Bier-
mann, 1978; Green, 1981; Smith, 1984; Feser
et al., 2015; Osera and Zdancewic, 2015; Po-
likarpova et al., 2016; Cropper et al., 2020;
Graves et al., 2014; Reed and de Freitas, 2015;
Joulin and Mikolov, 2015; Balog et al., 2016;
Bošnjak et al., 2017; Gaunt et al., 2016; Chen
et al., 2019b; Kitzelmann, 2010; Flener and
Schmid, 2008; Gulwani et al., 2017a; Devlin
et al., 2017; Ellis et al., 2020; Cropper and
Muggleton, 2016; Piantadosi, 2020) under
Apache 2.0 License, evaluated by accuracy

• logical_args under Apache 2.0 License, eval-
uated by accuracy

• logical_fallacy_detection (Brown et al.,
2020; Hendrycks et al., 2021b; Bender et al.,
2021; Wachsmuth et al., 2017; Yu et al., 2020;
Copi et al., 2018; Oberauer et al., 2005; Ober-
auer and Wilhelm, 2000) under Apache 2.0
License, evaluated by accuracy

• logical_sequence (Saxton et al., 2019; Lin
et al., 2020a; Bowman and Dahl, 2021) under
Apache 2.0 License, evaluated by accuracy

• long_context_integration under Apache 2.0
License, evaluated by accuracy
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• mathematical_induction (Hendrycks et al.,
2021c; Patel et al., 2021) under Apache 2.0
License, evaluated by accuracy

• matrixshapes under Apache 2.0 License, eval-
uated by accuracy

• metaphor_boolean (Lakoff and Johnson,
2008; Bizzoni and Lappin, 2018) under
Apache 2.0 License, evaluated by accuracy

• metaphor_understanding (Paul, 1970; Tong
et al., 2021; Radford et al., 2019; Rai and
Chakraverty, 2020; Shutova, 2010; Stowe
et al., 2020; Mohler et al., 2016; Shutova and
Teufel, 2010; Birke and Sarkar, 2006; Zayed
et al., 2020; Steen et al., 2010; Tong, 2021;
Bizzoni and Lappin, 2018; Tsvetkov et al.,
2014) under Apache 2.0 License, evaluated by
accuracy

• minute_mysteries_qa (Sugawara et al., 2017;
Dunietz et al., 2020; Kočiský et al., 2018;
Mostafazadeh et al., 2016a; Frermann et al.,
2018) under Apache 2.0 License, evaluated by
accuracy

• misconceptions (Irving et al., 2018;
Atanasova et al., 2020; Boller and George,
1989) under Apache 2.0 License, evaluated by
accuracy

• mnist_ascii under Apache 2.0 License, evalu-
ated by accuracy

• modified_arithmetic (Brown et al., 2020) un-
der Apache 2.0 License, evaluated by accuracy

• moral_permissibility (Hendrycks et al.,
2020; Lourie et al., 2020; Thomson, 1976)
under Apache 2.0 License, evaluated by accu-
racy

• movie_dialog_same_or_different (Park
et al., 2021) under Apache 2.0 License,
evaluated by accuracy

• movie_recommendation (Sileo et al., 2022;
Thorat et al., 2015; Barkan and Koenig-
stein, 2016; Harper and Konstan, 2015) under
Apache 2.0 License, evaluated by accuracy

• mult_data_wrangling (Bender et al., 2021;
Tamkin et al., 2021; Singh and Gulwani, 2015;
Cropper et al., 2016; Wu et al., 2012; Gul-
wani et al., 2015; Contreras-Ochando et al.,

2018, 2020; Petrova-Antonova and Tancheva,
2020; Huynh and Mazzocchi, 2012; Kandel
et al., 2011; Bhupatiraju et al., 2017; Ellis
and Gulwani, 2017; Gulwani et al., 2012; Gul-
wani, 2011; Singh and Gulwani, 2016) under
Apache 2.0 License, evaluated by accuracy

• multiemo (Kocoń et al., 2021) under Apache
2.0 License, evaluated by accuracy

• multistep_arithmetic (Flanagan and Dixon,
2014) under Apache 2.0 License, evaluated by
accuracy

• muslim_violence_bias (Abid et al., 2021;
Bender et al., 2021) under Apache 2.0 License,
evaluated by accuracy

• natural_instructions (Mishra et al., 2021) un-
der Apache 2.0 License, evaluated by accuracy

• navigate (Graves et al., 2016; Henaff et al.,
2016; Geva et al., 2020b; Chen et al., 2019a;
Kryscinski et al., 2020; Côté et al., 2018;
Luketina et al., 2019; Thawani et al., 2021;
Lake and Baroni, 2017) under Apache 2.0 Li-
cense, evaluated by accuracy

• nonsense_words_grammar under Apache
2.0 License, evaluated by accuracy

• object_counting (Rugani et al., 2015; Wang
et al., 2019c; Zhang et al., 2018b; Brown et al.,
2020) under Apache 2.0 License, evaluated by
accuracy

• odd_one_out (Resnik, 1995, 1999; Jiang and
Conrath, 1997; Li et al., 2003; Banerjee and
Pedersen, 2003; Jarmasz, 2012; Hughes and
Ramage, 2007; Tsatsaronis et al., 2010, 2009;
Morris and Hirst, 1991; Strube and Ponzetto,
2006; Ponzetto and Strube, 2007; Gabrilovich
and Markovitch, 2007; Milne and Witten,
2008; Yeh et al., 2009; Radinsky et al., 2011;
Cilibrasi and Vitanyi, 2007; Deerwester et al.,
1990; Reisinger and Mooney, 2010; El-Yaniv
and Yanay, 2013) under Apache 2.0 License,
evaluated by accuracy

• paragraph_segmentation under Apache 2.0
License, evaluated by accuracy

• parsinlu_qa (Khashabi et al., 2020a) under
Apache 2.0 License, evaluated by accuracy
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• penguins_in_a_table (Herzig et al., 2020) un-
der Apache 2.0 License, evaluated by accuracy

• periodic_elements under Apache 2.0 License,
evaluated by accuracy

• persian_idioms under Apache 2.0 License,
evaluated by accuracy

• phrase_relatedness (Asaadi et al., 2019;
Levy et al., 2015; Ein Dor et al., 2018) under
Apache 2.0 License, evaluated by accuracy

• physical_intuition under Apache 2.0 License,
evaluated by accuracy

• physics under Apache 2.0 License, evaluated
by accuracy

• physics_questions (Ling et al., 2017; Amini
et al., 2019) under Apache 2.0 License, evalu-
ated by accuracy

• polish_sequence_labeling (Nguyen and Guo,
2007; Rei, 2017; Gu et al., 2018) under
Apache 2.0 License, evaluated by accuracy

• presuppositions_as_nli (Heim, 1983;
de Marneffe et al., 2019; White et al., 2018;
Jeretic et al., 2020) under Apache 2.0 License,
evaluated by accuracy

• program_synthesis (Gulwani et al., 2017b)
under Apache 2.0 License, evaluated by accu-
racy

• protein_interacting_sites (Dhole et al., 2014;
Singh et al., 2014; Li et al., 2020b; Murakami
and Mizuguchi, 2010) under Apache 2.0 Li-
cense, evaluated by accuracy

• python_programming_challenge (Allama-
nis et al., 2018; Alon et al., 2020; Hendrycks
et al., 2021a) under Apache 2.0 License, eval-
uated by accuracy

• qa_wikidata (Radford et al., 2019;
Kwiatkowski et al., 2019; Weber and
Jaimes, 2011) under Apache 2.0 License,
evaluated by accuracy

• question_answer_creation under Apache 2.0
License, evaluated by accuracy

• question_selection (Rajpurkar et al., 2016)
under Apache 2.0 License, evaluated by accu-
racy

• real_or_fake_text (Dugan et al., 2020; Ip-
polito et al., 2020; Solaiman et al., 2019;
Zellers et al., 2019b; Brown et al., 2020;
Bakhtin et al., 2019; Sandhaus, 2008; Fan
et al., 2018; Marín et al., 2021) under Apache
2.0 License, evaluated by accuracy

• reasoning_about_colored_objects (Hen-
dricks et al., 2018; Hosseini et al., 2014;
Winograd, 1972; Wang et al., 2016; Jayan-
navar et al., 2020; Suhr et al., 2019; Thomason
et al., 2015; Mitchell et al., 2010; Viethen and
Dale, 2008; Gatt et al., 2009; Mitchell et al.,
2013; Liang et al., 2018) under Apache 2.0
License, evaluated by accuracy

• rephrase under Apache 2.0 License, evaluated
by accuracy

• riddle_sense (Lin et al., 2021a; Talmor et al.,
2019b) under Apache 2.0 License, evaluated
by accuracy

• roots_optimization_and_games (Lample
and Charton, 2019; Polu and Sutskever, 2020;
Amos and Kolter, 2017; Agrawal et al., 2020)
under Apache 2.0 License, evaluated by
accuracy

• ruin_names (Attardo, 2017; Ren and Yang,
2017; Amin and Burghardt, 2020; An-
namoradnejad and Zoghi, 2020; Blinov et al.,
2019; Yan and Pedersen, 2017; Frolovs, 2019)
under Apache 2.0 License, evaluated by accu-
racy

• salient_translation_error_detection under
Apache 2.0 License, evaluated by accuracy

• scientific_press_release under Apache 2.0 Li-
cense, evaluated by accuracy

• self_awareness (Yudkowsky, 2008; Chella
et al., 2020; Schick et al., 2021; Kounev et al.,
2017; Huttunen et al., 2017; Wallace et al.,
2020; Clark and Jackson, 1994; Horowitz,
2017; Branwen, 2020; Chu et al., 2017) under
Apache 2.0 License, evaluated by accuracy

• self_evaluation_courtroom (Hildebrandt,
2018; Daley, 2021; King and Cook, 2020)
under Apache 2.0 License, evaluated by
accuracy

6292



• self_evaluation_tutoring (Zhang et al.,
2019a; Irving et al., 2018) under Apache 2.0
License, evaluated by accuracy

• semantic_parsing_in_context_sparc (Yu
et al., 2019b, 2018, 2019a) under Apache 2.0
License, evaluated by accuracy

• semantic_parsing_spider (Yu et al., 2018,
2019b,a) under Apache 2.0 License, evaluated
by accuracy

• sentence_ambiguity under Apache 2.0 Li-
cense, evaluated by accuracy

• similarities_abstraction (Nasreddine et al.,
2005; Wechsler, 2008) under Apache 2.0 Li-
cense, evaluated by accuracy

• simp_turing_concept (Böhm, 1964; Sun
et al., 2020; Devlin et al., 2018; Radford et al.,
2019; Brown et al., 2020; Vaswani et al., 2017;
Hendrycks et al., 2021b; Xu et al., 2020b;
Izacard and Grave, 2020; Zhu, 2015; Cak-
mak and Thomaz, 2014; Goodman and Frank,
2016; Degen et al., 2020; Khan et al., 2011;
Basu and Christensen, 2013; Yang and Shafto,
2017; Melo et al., 2018; Telle et al., 2019;
Chater and Vitányi, 2003; Hupkes et al., 2020;
Lakretz et al., 2019; Toshniwal et al., 2021;
Bender and Koller, 2020; Kühl et al., 2020;
Marcus and Davis, 2020; Sinha et al., 2019;
McClelland et al., 2019) under Apache 2.0
License, evaluated by accuracy

• simple_ethical_questions (Hendrycks et al.,
2020; Lourie et al., 2020) under Apache 2.0
License, evaluated by accuracy

• simple_text_editing (Branwen, 2020; Malmi
et al., 2019; Faltings et al., 2020) under
Apache 2.0 License, evaluated by accuracy

• snarks (Brown et al., 2020; Devlin et al.,
2018; Lan et al., 2019; Liu et al., 2019; Rad-
ford et al., 2019; Annamoradnejad and Zoghi,
2020; Chen and Soo, 2018; Mao and Liu,
2019; Weller and Seppi, 2019; Khodak et al.,
2017; Ghosh et al., 2020; González-Ibáñez
et al., 2011; Joshi et al., 2015; McCoy et al.,
2019; Kaushik et al., 2019; Gardner et al.,
2020; Sennrich, 2016; Burlot et al., 2018;
Naik et al., 2018; Zhang et al., 2016; Felbo
et al., 2017; Pant and Dadu, 2020; Pelser

and Murrell, 2019) under Apache 2.0 License,
evaluated by accuracy

• social_support (Wang and Jurgens, 2018) un-
der Apache 2.0 License, evaluated by accuracy

• social_iqa (Sap et al., 2019; Bisk et al., 2020;
Talmor et al., 2019b; Zellers et al., 2018) un-
der Apache 2.0 License, evaluated by accuracy

• spelling_bee (Ginsberg, 2014) under Apache
2.0 License, evaluated by accuracy

• sports_understanding under Apache 2.0 Li-
cense, evaluated by accuracy

• squad_shifts (Miller et al., 2020; Brown et al.,
2020; Rajpurkar et al., 2016; Baumgartner
et al., 2020; McAuley et al., 2015) under
Apache 2.0 License, evaluated by accuracy

• subject_verb_agreement (Lakretz et al.,
2021b, 2019; Linzen et al., 2016; Gulordava
et al., 2018; Marvin and Linzen, 2018; Gold-
berg, 2019; Lakretz et al., 2021a; Wolf, 2019)
under Apache 2.0 License, evaluated by accu-
racy

• sudoku (Wang et al., 2019d; Russell and
Norvig, 2002; Garcez and Lamb, 2020; Huang
et al., 2018; Hendrycks et al., 2021c) under
Apache 2.0 License, evaluated by accuracy

• sufficient_information under Apache 2.0 Li-
cense, evaluated by accuracy

• suicide_risk (Gaur et al., 2019; Mohammadi
et al., 2019; Matero et al., 2019; Shing et al.,
2018) under Apache 2.0 License, evaluated by
accuracy

• swahili_english_proverbs under Apache 2.0
License, evaluated by accuracy

• swedish_to_german_proverbs (Hanzén,
2007; Korhonen, 2009; Meister, 2007;
Mieder, 2019) under Apache 2.0 License,
evaluated by accuracy

• taboo (Joshi et al., 2017) under Apache 2.0
License, evaluated by accuracy

• talkdown (Wang and Potts, 2019; Mendel-
sohn et al., 2020; Fiske, 1993; Nolan
and Mikami, 2013; Breitfeller et al., 2019;
Perez Almendros et al., 2020) under Apache
2.0 License, evaluated by accuracy
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• temporal_sequences (Elazar et al., 2021;
Pustejovsky et al., 2004; Sanampudi and Ku-
mari, 2010; Han et al., 2020; Ma et al., 2021;
Brown et al., 2020; Petroni et al., 2019) under
Apache 2.0 License, evaluated by accuracy

• tense (Logeswaran et al., 2018) under Apache
2.0 License, evaluated by accuracy

• text_navigation_game (Vinyals et al., 2019;
Küttler et al., 2020; Kanagawa and Kaneko,
2019; Noever et al., 2020) under Apache 2.0
License, evaluated by accuracy

• timedial (Qin et al., 2021; Li et al., 2017;
Zhou et al., 2019) under Apache 2.0 License,
evaluated by accuracy

• topical_chat (Gopalakrishnan et al., 2019;
Mehri and Eskenazi, 2020; Gopalakrishnan
et al., 2020; Hedayatnia et al., 2020) under
Apache 2.0 License, evaluated by accuracy

• tracking_shuffled_objects (Liu et al., 2020b;
Dong et al., 2020) under Apache 2.0 License,
evaluated by accuracy

• training_on_test_set under Apache 2.0 Li-
cense, evaluated by accuracy

• truthful_qa (Brown et al., 2020; Sellam et al.,
2020; Amodei et al., 2016; Leike et al., 2018;
Kenton et al., 2021; Clark et al., 2018; Bhak-
thavatsalam et al., 2021; Hendrycks et al.,
2021b; Khashabi et al., 2020b; Kreps et al.,
2020; Maynez et al., 2020; Gabriel et al.,
2020; Wang et al., 2020a; Stiennon et al.,
2020; Lewis et al., 2020b; Krishna et al., 2021;
Gehrmann et al., 2021; Xu et al., 2020a; Di-
nan et al., 2019; Tamkin et al., 2021; Bowman
and Dahl, 2021) under Apache 2.0 License,
evaluated by accuracy

• twenty_questions (Rajpurkar et al., 2016;
Choi et al., 2018; Reddy et al., 2019; Alian-
nejadi et al., 2019; Clark et al., 2019; Zhang
et al., 2019a) under Apache 2.0 License, eval-
uated by accuracy

• understanding_fables (Reimers and
Gurevych, 2019; Salazar et al., 2020; Wolf
et al., 2019) under Apache 2.0 License,
evaluated by accuracy

• undo_permutation (Pham et al., 2020) under
Apache 2.0 License, evaluated by accuracy

• unit_conversion (Hendrycks et al., 2021c;
Geva et al., 2020a) under Apache 2.0 License,
evaluated by accuracy

• unit_interpretation under Apache 2.0 Li-
cense, evaluated by accuracy

• unnatural_in_context_learning (Brown
et al., 2020; Kaplan et al., 2020; Henighan
et al., 2020; Hernandez et al., 2021; Bahri
et al., 2021; Wang et al., 2019b; Hernandez
et al., 2020; Hendrycks et al., 2021c,a; Liu
et al., 2021a; Zhao et al., 2021; Perez et al.,
2021) under Apache 2.0 License, evaluated by
accuracy

• unqover (Li et al., 2020a; Caliskan et al.,
2017; Rudinger et al., 2018; Zhao et al., 2018;
Dev et al., 2020; Stanovsky et al., 2019;
Nadeem et al., 2020; Sheng et al., 2019;
Zhang et al., 2020b) under Apache 2.0 Li-
cense, evaluated by accuracy

• web_of_lies under Apache 2.0 License, evalu-
ated by accuracy

• what_is_the_tao under Apache 2.0 License,
evaluated by accuracy

• which_wiki_edit under Apache 2.0 License,
evaluated by accuracy

• word_problems_on_sets_and_graphs (Bency
et al., 2019; Mnih et al., 2013; Russell and
Norvig, 2002; Besold et al., 2017; Clark et al.,
2020; Wang et al., 2018; Lacker, 2020) under
Apache 2.0 License, evaluated by accuracy

• word_sorting (Grover et al., 2019) under
Apache 2.0 License, evaluated by accuracy

• word_unscrambling (Nishino et al., 2019;
Rozner et al., 2021; Jones et al., 2020; Mays
et al., 1991; Edizel et al., 2019; Sakaguchi
et al., 2016; Kim et al., 2015; Xue et al.,
2021a; Wu et al., 2020; Rust et al., 2020) un-
der Apache 2.0 License, evaluated by accuracy

• yes_no_black_white under Apache 2.0 Li-
cense, evaluated by accuracy

D.4 BigBench-Lite Datasets
• auto_debugging (Zaremba and Sutskever,

2014) under Apache 2.0 License, evaluated
by accuracy
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• bbq_lite_json (Crawford, 2017; Khashabi
et al., 2020b; Li et al., 2020a) under Apache
2.0 License, evaluated by accuracy

• code_line_description (Alon et al., 2018) un-
der Apache 2.0 License, evaluated by accuracy

• conceptual_combinations (Fodor, 1975;
Fodor and Pylyshyn, 1988; Smolensky, 1988;
Lake et al., 2017; Lake and Murphy, 2020;
Marcus, 2020; Henrich et al., 2010; Murphy,
1988) under Apache 2.0 License, evaluated by
accuracy

• conlang_translation (Canfield, 2010; Şahin
et al., 2020; Sennrich and Zhang, 2019) under
Apache 2.0 License, evaluated by accuracy

• emoji_movie (Cruse, 2015; Instagram Engi-
neering, 2015; Chandra Guntuku et al., 2019;
Eisner et al., 2016; Mayne, 2020; Boillot,
2019) under Apache 2.0 License, evaluated
by accuracy

• formal_fallacies_syllogisms_negation (Kass-
ner and Schütze, 2019; Talmor et al., 2019a;
Betz et al., 2020) under Apache 2.0 License,
evaluated by accuracy

• hindu_knowledge under Apache 2.0 License,
evaluated by accuracy

• known_unknowns (Liu et al., 2021c; Xiao
and Wang, 2021; Shuster et al., 2021; Zhou
et al., 2020; Dziri et al., 2021) under Apache
2.0 License, evaluated by accuracy

• language_identification (Brown, 2014) un-
der Apache 2.0 License, evaluated by accuracy

• linguistics_puzzles (Bozhanov and Derzhan-
ski, 2013; Radev et al., 2008; Sennrich and
Zhang, 2019; Clark et al., 2018; Şahin et al.,
2020) under Apache 2.0 License, evaluated by
accuracy

• logic_grid_puzzle under Apache 2.0 License,
evaluated by accuracy

• logical_deduction under Apache 2.0 License,
evaluated by accuracy

• misconceptions_russian (Thorne et al., 2018;
Lee et al., 2020) under Apache 2.0 License,
evaluated by accuracy

• novel_concepts (Santoro et al., 2021) under
Apache 2.0 License, evaluated by accuracy

• operators (Brown et al., 2020; Kassner et al.,
2020; Hendrycks et al., 2021c; Saxton et al.,
2019) under Apache 2.0 License, evaluated by
accuracy

• parsinlu_reading_comprehension (Khashabi
et al., 2020a; Xue et al., 2021b; Rajpurkar
et al., 2016) under Apache 2.0 License,
evaluated by accuracy

• play_dialog_same_or_different (Park et al.,
2021) under Apache 2.0 License, evaluated by
accuracy

• repeat_copy_logic (Graves et al., 2014) under
Apache 2.0 License, evaluated by accuracy

• strange_stories (Happé, 1994; White et al.,
2009) under Apache 2.0 License, evaluated by
accuracy

• strategyqa (Geva et al., 2021) under Apache
2.0 License, evaluated by accuracy

• symbol_interpretation (Brown et al., 2020;
Johnson et al., 2016; Santoro et al., 2017; Hud-
son and Manning, 2019; Sennrich et al., 2015)
under Apache 2.0 License, evaluated by accu-
racy

• vitaminc_fact_verification (Schuster et al.,
2021) under Apache 2.0 License, evaluated by
accuracy

• winowhy (Zhang et al., 2020c; Devlin et al.,
2018; Liu et al., 2019; Kocijan et al., 2019;
Rahman and Ng, 2012; Sakaguchi et al.,
2020b) under Apache 2.0 License, evaluated
by accuracy

E Efficiency Analysis

GLIDER introduces minimal computational over-
head by requiring only two lightweight operations
per LoRA layer: a single cosine similarity calcu-
lation between the query’s task embedding and
global routing vectors and a simple vector addition
to combine this with the local routing score. With
typical values for N (experts) and dg (embedding
dimension) in the hundreds, this amounts to just
(N×dg+dg) FLOPs per layer, which is negligible
compared to the base model’s computation.
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F Detailed Performance

We list detailed performance of all baselines for
each task in Table 4, 6, 5, 7, and 7.
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