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Abstract

In this work, we propose FoRA-UA, a novel
method that, using only 1–5% of the stan-
dard LoRA’s parameters, achieves state-of-
the-art performance across a wide range of
tasks. Specifically, we explore scenarios with
extremely limited parameter budgets and de-
rive two key insights: (1) fix-sized sparse fre-
quency representations approximate small ma-
trices more accurately; and (2) with a fixed
number of trainable parameters, introducing a
smaller intermediate representation to approxi-
mate larger matrices results in lower construc-
tion error. These findings form the founda-
tion of our FoRA-UA method. By inserting
a small intermediate parameter set, we achieve
greater model compression without sacrificing
performance. We evaluate FoRA-UA across
diverse tasks, including natural language under-
standing (NLU), natural language generation
(NLG), instruction tuning, and image classifica-
tion, demonstrating strong generalisation and
robustness under extreme compression.1

1 Introduction

Ever since the success demonstrated by prior
Parameter-Efficient Fine-Tuning (PEFT) work
(Houlsby et al., 2019; Hu et al., 2022, inter alia), it
has become standard practice to apply some form
of PEFT technique when fine-tuning large language
models (LLMs).

These techniques, including Adapters (Houlsby
et al., 2019), Low-Rank Adaption (LoRA; Hu et al.,
2022) and Prefix-Tuning (Li and Liang, 2021), al-
low us to update only a fraction of the original
model’s weights while achieving comparable do-
main or task adaptation to full-model fine-tuning.
This leads to substantial savings in memory and
computational resources. PEFT approaches are
thus crucial for the rapid development of new

1Code is available at https://github.com/zhaojinm/
FoRA-UA.
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Figure 1: Illustration of the FoRA-UA Architecture.
Compared to traditional LoRA approaches, FoRA-UA
incorporates a number of smaller matrices for future
parameter comparison without sacrificing performance.

LLMs and LLM-based methods, playing a key role
in democratising the field of Artificial Intelligence
(AI) and Natural Language Processing (NLP).

Nevertheless, the speed at which LLMs are scal-
ing up is unprecedented and unanticipated. It is
now commonplace for a “standard” model to com-
prise hundreds of billions of parameters. For exam-
ple, the LLaMA 3.1 (Grattafiori et al., 2024) model
contains 405B active parameters, and the flagship
Qwen 3 model has 235B (Yang et al., 2025a). Iron-
ically, versions with only a few billion parameters
are now referred to as “small language models,”
even though BERT (Devlin et al., 2019) and GPT-2
(Radford et al., 2019) were originally considered
“large language models.” Therefore, the current rate
of compression in traditional LoRA approaches is
not sufficient. Existing models are already reaching
record-breaking sizes, and there are very few signs
that the trend of scaling is slowing down. There is
also a recent push towards mobile computing (Xue
et al., 2024; Chen and Li, 2024) which prerequisites
memory-efficient LLM inference. Furthermore, ef-
fective PEFT methods are key to democratising
NLP research, enabling members of the research
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community with limited computational resources
to participate in cutting-edge work.

Recent trends in parameter-efficient fine-tuning
have pushed the limits of efficiency, with some
methods (Kopiczko et al., 2024; Gao et al., 2024;
Wu et al., 2024b) using even fewer trainable param-
eters than the lower bound of LoRA with rank=1.
This raises a fundamental question: how should
we allocate a fixed amount of trainable parameters
under extremely limited budgets? To explore this,
we begin with FourierFT (Gao et al., 2024) as our
baseline, and conduct a series of experiments to in-
vestigate how different structural choices affect ap-
proximation quality and downstream performance.
These experiments lead to three key observations
that motivate our method design:

Finding 1: Allocating the fixed amount of
trainable parameters in smaller matrices leads
to more efficient approximation.

Finding 2: Approximating via a smaller, inter-
mediate representation reduces reconstruction
error compared to direct approximation.

Finding 3: Performing IFT on multiple small
matrices and combining them leads to equal ef-
fectiveness theoretically; and, surprisingly, bet-
ter downstream task performance in practice.

Therefore, instead of using one large matrix to
approximate the entire process, why not use multi-
ple smaller ones? The two aforementioned findings
form the foundation of our novel method sparse
Fourier low Rank with Universal shared Adaptor
(FoRA-UA) method. We employ multiple smaller
matrices in parallel to approximate the full matrix.
Moreover, many of the weights in the smaller ma-
trices do not need to be initialised and can be left
empty.

As a result, FoRA-UA achieve the state-of-the-
art space compression without any sacrifice in per-
formance. With only 1–5% of original LoRA’s
number of parameters, we still reproduce the state-
of-the-art performance across a wide range of
downstream tasks spanning natural language un-
derstanding (NLU), natural language generation
(NLG), instruction tuning, and image classifica-
tion, demonstrating its strong generalization and
robustness under extreme compression.

Contribution We make three key contributions.
1. We explore scenarios of LoRA-based PEFT with

an extremely limited memory budget (§3). We

demonstrate two key findings empirically and
theoretically that establish the foundation of
FoRA-UA. These novel insights have important
implications for the broader PEFT community.

2. We introduce FoRA-UA (§4), a novel PEFT
method that uses the fewest parameters while
still achieving state-of-the-art performance. To
date, FoRA-UA achieves the best trade-off be-
tween performance and trainable parameters.

3. We thoroughly evaluate FoRA-UA across a wide
range of downstream NLP tasks (§5), and even
explore multimodal use cases of LLMs. This
comprehensive evaluation demonstrates the ef-
fectiveness and robustness of our method, show-
ing that it can bring significant performance
gains with only a tiny budget.

2 Related Work

Parameter Efficient Fine-Tuning A founda-
tional PEFT method is Adapter Tuning (Houlsby
et al., 2019), which inserts small layers into the
model while keeping the pre-trained weights frozen.
This enables efficient task adaptation with minimal
parameter updates. BitFit (Ben Zaken et al., 2022)
takes a more extreme approach by only fine-tuning
bias terms, demonstrating that even such minimal
modifications can yield competitive results.

LoRA (Hu et al., 2022) further improves effi-
ciency by introducing trainable low-rank matrices
to modify model weights. Prompt Tuning (Lester
et al., 2021; Liu et al., 2022; Jin et al., 2024) and
Prefix-Tuning (Li and Liang, 2021) shift the focus
from weight updates to learnable input prompts,
allowing models to adapt without modifying their
core parameters. Zhong et al. (2025) add a nonlin-
ear layer between the original weight and updated
weight. Other efficient methods are commenly
used such as LLM embedding/steering (Deng et al.,
2025a; Cheng et al., 2025; Gan et al., 2025), distil-
lation (Dong et al., 2024b,c,a), KV cache during in-
ference (Li et al., 2025a), knowledge editing (Deng
et al., 2025b), token pruning (Yang et al., 2025c;
Liu et al., 2025; Hu et al., 2025), finetune partial
layers (Fan et al., 2025a) and chunk-wise gradient
pruning(Li et al., 2025b).

LoRA and its Variations After their initial suc-
cess, several extensions of LoRA (Hu et al., 2022)
have been proposed. One notable extension is
AdaLoRA (Zhang et al., 2023b) which updates
the rank dynamically during fine-tuning based on

6316



the importance of the parameters. Another variant,
DyLoRA (Valipour et al., 2023), extends LoRA by
introducing dynamic matrix updates. Dynamic up-
dating has also been integrated into some work (Liu
et al., 2024c; Wang et al., 2024; Ding et al., 2023).
LoRA+ (Hayou et al., 2024) proved that to achieve
optimal, the learning rates for A and B should
be different, with A’s learning rate being much
smaller than B’s. LoRA-FA (Zhang et al., 2023a)
freeze A and only fine-tune B. However, unlike
our method, LoRA-FA does not share the low-rank
adaptation matrices across different linear layers
and results in a higher memory cost. Some recent
work has integrated Mixture of Experts (MoE) with
LoRA (Luo et al., 2024; Dou et al., 2024; Qing
et al., 2024), enabling more efficient use of model
capacity by activating different subsets of param-
eters depending on the input. Additionally, some
methods (Shen et al., 2024; Ren et al., 2024; Mao
et al., 2024; Tian et al., 2024) decompose the adap-
tation matrix into smaller blocks. There are also
other LoRA-based methods (Renduchintala et al.,
2024; Liu et al., 2024a; Shi et al., 2024; Zhong and
Zhou, 2024; Zhang et al., 2025, inter alia) that we
do not elaborate on here for brevity, but we refer
interested readers to explore them further.

Fourier Transformation in PEFT Fourier trans-
formations (FTs) have recently been explored in
PEFT to enhance model generalization and effi-
ciency. Borse et al. (2024) introduces low-rank
adaptation in the frequency domain, improving gen-
eralization by reducing redundancy and enabling
adaptive rank selection. Zeng et al. (2024) lever-
ages Fourier transforms in visual prompt tuning,
enhancing robustness across datasets with varying
disparities. Unlike LoRA decomposes weights into
two low-rank matrices, Gao et al. (2024) directly
approximates ∆W using an Inverse Fourier Trans-
formation (IFT).

3 LoRA under Extremely Limited Budget

LoRA (Hu et al., 2022) is a SOTA PEFT method de-
signed to adapt large-scale pre-trained models for
downstream tasks while reducing memory and com-
putational overhead. Instead of updating all model
parameters, LoRA introduces trainable low-rank
matrices to approximate weight updates, effectively
reducing the number of learnable parameters.

Formally, given a pre-trained weight matrix
W ∈ Rd×k, LoRA models its update as a low-rank
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Figure 2: Reconstruction error across different matrix
sizes under fixed sparsity.

decomposition,

∆W = BA, (1)

where B ∈ Rd×r and A ∈ Rr×k, with r ≪
min(d, k) to ensure that the rank of the update re-
mains significantly lower than the original weight
matrix. We use underline to denote the trainable
matrices. The adapted model parameters W ′ are
then represented as:

W ′ = W +∆W = W +BA. (2)

During training, only A and B are updated, while
W remains frozen (see the right panel of Figure 1).

Sparse matrices (Ding et al., 2023; Wang et al.,
2024) have also been employed in PEFT to fur-
ther compress the trainable parameter space. Gao
et al. (2024) is one of them that uses sparse inverse
Fourier transformations to approximate ∆W as:

∆W = IFT(B) (3)

where B ∈ Rd×k is a sparse matrix typically with
less than 2000 non-zero entries, and IFT stands for
the two-dimensional inverse Fourier transforma-
tion

To better understand how to allocate extremely
limited parameter budgets, we designed a series
of controlled experiments that reveal several key
observations.

3.1 Small Matrices or Large Marices?

Finding 1: A fixed-size sparse frequency repre-
sentation (i.e., B ∈ Rd×k, with n nonzero entries
for, e.g., n = 1000, 2000) provides more accurate
approximations for smaller matrices.
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Figure 3: Reconstruction error.

To verify the approximation accuracy of sparse
Fourier-domain representations under a fixed bud-
get of non-zero entries, we generated random tar-
get matrices B̃ ∈ R1024×r with increasing width
r ∈ {16, 32, . . . , 1024}, where each entry is sam-
pled from a Gaussian distribution N (0; 0.012).

For each B̃, we initialized a sparse frequency
matrix B with exactly n ∈ {1000, 2000, 3000}
randomly selected non-zero entries as learn-
able/trainable parameters. This matrix B is to
approximate the Fourier-space representation of
the target B̃. Its entries are complex numbers that
can be considered as the Fourier coefficients of
B̃. The training is performed in the frequency do-
main directly: the optimal values of the complex
coefficient entries are found via gradient descent to
minimize the mean squared error (MSE) between
Re(ifft(B)) and the target matrix B̃.

As shown in Figure 2, the reconstruction error
increases with the size of the target matrix (i.e.,
r). This confirms the intuition: larger matrices
have higher entry densities, so their Fourier trans-
forms cover wider spectra of frequencies; smaller
matrices are the opposite. That is why B better
represents smaller B̃ when n is fixed.

3.2 Direct or Indirect Approximation?

Finding 2: When the number of trainable pa-
rameters is fixed, approximating a large matrix
via a smaller intermediate representation (e.g.,
Re(ifft2(B)) ·A) leads to lower reconstruction er-
ror than directly approximating the full matrix.

We consider the task of reconstructing a struc-
tured matrix W ∈ R768×768 under a strict parame-
ter budget: only 1000 trainable entries are allowed.
In Method 1, we directly approximate W using
Equation (3) with 1000 sparse entries in B. In
Method 2, we instead learn a sparse frequency-
domain matrix B ∈ C768×r with the same parame-

ter constraint, and compute W ≈ Re(ifft2(B)) ·A,
where A ∈ Rr×768 is a fixed random projection.

As shown in Figure 3, Method 2 outperforms
Method 1 when the intermediate dimension r is
small (e.g., r = 16, 32, 64). As r increases, the
error of Method 2 gradually rises and eventually
surpasses the direct method. This supports the
hypothesis that, under a fixed parameter budget,
it is more effective to allocate capacity toward a
compact latent representation than to directly target
a large matrix. This trade-off reflects an implicit
inductive bias toward low-rank, low-frequency, or
compressible structures.

3.3 Split Down Projection

Theorem 3.1. For any M ∈ Ra×b, there exist
M1 ∈ Ra×b1 , M2 ∈ Ra×b2 such that b1 + b2 = b
and the IFT of M satisfies

IFT(M) = [IFT(M1), IFT(M2)] , (4)

where [..., ...] represents the horizontal concate-
nation. Similarly, there also exist M ′

1 ∈ Ra1×b,
M ′

2 ∈ Ra2×b such that a1 + a2 = a and

IFT(M) =
[
IFT(M ′

1); IFT(M ′
2)
]
, (5)

where [...; ...] represents the vertical concatenation.

Proof. See Appendix G.

The above theorem shows that further splitting a
matrix is theoretically lossless, we also empirically
observe in Section 5.7 that such decomposition
improve the performance

4 FoRA-UA: Tiny Budget, Big Gains

4.1 Method

Based on the previous findings, our proposed
method become:

∆W =
[
IFT(B1); ...; IFT(BM )

]
A, (6)

Here, A ∈ Rr×k is a frozen matrix. B ∈ Rd×r is
a trainable matrix in the frequency domain. This
Fourier transformation can improve the training
efficiency of our algorithm by allowing it to directly
tune the “spectrum” encoded in B. We also let the
matrix B be sparse – during training processes,
only the nonzero entries of B need to be updated.

We highlight benefits of our split-down project
method:
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Computation efficiency: Suppose ∆T is the av-
erage timescale to complete an arithmetic opera-
tion. Performing the two-dimensional IFT of ma-
trix B ∈ Rk×b via a typical fast Fourier transform
(FFT) algorithm requires a timescale

Tfull = [kb log(kb)]∆T, (7)

while the total time to transform all the Bm’s is

Tsplit =[kb1 log(kb1)+ (8)

...+ kbN log(kbM )]∆T.

One can see that Tsplit ≤ [kb log(kbmax)]∆T ,
where bmax = max(b1, ..., bM ). Hence, Tsplit is
shorter than Tfull because bmax is smaller b.

Flexibility: The method provides the flexibility
to optimize each part independently.

4.2 Implementation
The left panel of Figure 1 illustrates the overview
of our approach.

We begin by constructing the matrix A ∈ Rr×k

with its entries randomly drawn from the normal
distribution N (0, σ2). This matrix is frozen during
the training steps, meaning the values of its entries
remain fixed at all times.

We then initialize a preliminary frequency matrix
B ∈ Rd×r with entries Bi,j set to

Bi,j =

{
N (0, σ2) if (i, j) ∈ S

0 otherwise
, (9)

where S contains n randomly selected integer pairs
(i, j) representing the indices of B. The smaller
spectral matrices Bm ∈ R

d
M

×n are obtained by
equally splitting B into M pieces.

At each training step, we calculate the IFT of
Bm matrices using the (inverse) fast Fourier trans-
form algorithm, and obtain the weight ∆W via
Equation 6. We then update the non-zero entries of
Bm matrices and optimize ∆W .

4.3 Parameter Counting
Let L denote the number of layers, and d the di-
mension of internal hidden vectors. For LoRA, the
number of trainable parameters for a single target
module (e.g. key, value) is L × r × d × 2, where
r is the rank of the low-rank matrices. For our
approach, let n represent the number of nonzero
entries in the matrices Bi, the number of trainable
parameters for a single target module for FoRA-
UA is n × L. Empirically, n is typically chosen
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Figure 4: RoBERTa result visualize.

to be less than 2000. Taking RoBERTa-Large as
an example, Table 1 shows the parameters required
for fine-tuning. We observe that the number of
trainable parameters selected by FoRA-UA is sig-
nificantly smaller than that of LoRA.

Model LoRA FoRA-UA
r #para n #para

Rob_large 1 98.3K 200 9.6k
8 786.4K 500 24k

Table 1: Trainable parameter counting.

5 Results

5.1 Experimental Setup

Benchmark Selection We evaluate our method
on a diverse set of tasks spanning multiple do-
mains, including natural language understanding
with GLUE (Wang et al., 2018), natural lan-
guage generation with E2E (Novikova et al., 2017),
mathematical reasoning with GSM8k (Cobbe
et al., 2021), SingleEq (Koncel-Kedziorski et al.,
2015), MultiArith (Roy and Roth, 2015), and
SVAMP (Patel et al., 2021), and vision classifi-
cation with CIFAR100 (Krizhevsky et al., 2009),
Food-101 (Bossard et al., 2014), Flowers-102 (Nils-
back and Zisserman, 2008) and RESISC45 (Cheng
et al., 2017).

Statistics of all benchmarks are listed in Ap-
pendix F.

Model Selection We apply our method to a wide
variety of model architectures:

1. Encoder-based models such as RoBERTa-
base and RoBERTa-large (Liu et al., 2020).

6319



Model Method # Trainable
Parameters

SST-2
(Acc.)

MRPC
(Acc.)

CoLA
(MCC)

QNLI
(Acc.)

RTE
(Acc.)

STS-B
(PCC) Avg.

R
oB

E
R

Ta
-b

as
e

FF 125M 94.8 90.2 63.6 92.8 78.7 91.2 85.2
AdptD 0.3M 94.2±0.1 88.5±1.1 60.8±0.4 93.1±0.1 71.5±2.7 89.7±0.3 83.0
AdptD 0.9M 94.7±0.3 88.4±0.7 62.6±0.6 93.0±0.2 75.9±2.2 90.3±0.4 84.2
LoRA 0.3M 95.1±0.2 89.7±0.7 63.4±1.2 93.3±0.3 78.4±0.8 91.5±0.2 85.2
AdaLoRA 0.3M 94.5±0.2 88.7±0.6 62.0±0.4 93.1±0.2 81.0±0.6 90.5±0.2 85.0
VeRA 0.048M 94.6±0.1 89.5±0.5 65.6±0.8 91.8±0.2 78.7±0.7 90.7±0.2 85.2
FourierFT 0.024M 94.2±0.3 90.0±0.8 63.8±1.6 92.2±0.2 79.1±0.5 90.8±0.2 85.0
RED 0.02M 93.9±0.3 89.2±1.0 61.0±3.0 90.7±0.4 78.0±2.1 90.4±0.3 83.9
FoRA-UA 0.018M 94.7±0.2 90.8±0.8 66.2±1.5 91.7±0.4 79.0±1.2 91.6±0.1 85.7

R
oB

E
R

Ta
-l

ar
ge

FF 356M 96.4 90.9 68.0 94.7 86.6 92.4 88.2
AdptP 3M 96.1±0.3 90.2±0.7 68.3±1.0 94.8±0.2 83.8±2.9 92.1±0.7 87.6
AdptP 0.8M 96.6±0.2 89.7±1.2 67.8±2.5 94.8±0.3 80.1±2.9 91.9±0.4 86.8
AdptH 6M 96.2±0.3 88.7±2.9 66.5±4.4 94.7±0.2 83.4±1.1 91.0±1.7 86.8
AdptH 0.8M 96.3±0.5 87.7±1.7 66.3±2.0 94.7±0.2 72.9±2.9 91.5±0.5 84.9
LoRA 0.8M 96.2±0.5 90.2±1.0 68.2±1.9 94.8±0.3 85.2±1.1 92.3±0.5 87.8
VeRA 0.061M 96.1±0.1 90.9±0.7 68.0±0.8 94.4±0.2 85.9±0.7 91.7±0.58 87.8
FourierFT 0.048M 96.0±0.2 90.9±0.9 67.1±1.4 94.4±0.4 87.4±1.6 91.9±0.4 88.0
RED 0.05M 96.0±0.5 90.3±1.4 68.1±1.7 93.5±0.3 86.2±1.4 91.3±0.2 87.6
FoRA-UA 0.024M 96.6±0.3 91.2±0.6 69.0±1.6 93.9±0.2 86.9±1.6 91.9±0.2 88.3

Table 2: Performance comparison of different PEFT methods on the GLUE benchmark. Matthew’s correlation
coefficient is reported for CoLA, Pearson correlation coefficient for STS-B, and accuracy for all other tasks. Results
for FF, LoRA, Adapters, AdaLoRA and FourierFT are taken from the Gao et al. (2024), while those for VeRA and
Red are sourced from their respective papers (Kopiczko et al., 2024; Wu et al., 2024b).

2. Decoder-based models, including GPT-
2 (Radford et al., 2019) and LLaMA 3 (Tou-
vron et al, 2023).

3. Vision Transformers (ViT) (Dosovitskiy et al.,
2021).

Baseline Selection We compare our proposed
method with the following PEFT baselines: Full
fine-tuning (FF), Adapter Tuning (Houlsby et al.,
2019; Pfeiffer et al., 2021; Rücklé et al., 2021),
LoRA (Hu et al., 2022), AdaLoRA (Zhang et al.,
2023b), VeRA (Kopiczko et al., 2024), Fouri-
erFT (Gao et al., 2024), and Red (Wu et al., 2024b).
DoRA (Liu et al., 2024a) LoRA+ (Hayou et al.,
2024)2

5.2 Natural Language Understanding

The GLUE (Wang et al., 2018) benchmark is a col-
lection of eight diverse datasets designed to eval-
uate a model’s ability to understand and process
natural language (Kou et al., 2024b). It includes
tasks such as sentiment analysis (SST-2), natural
language inference (MNLI, RTE, QNLI), sentence
similarity (MRPC, STS-B, QQP), and linguistic
acceptability (CoLA).

Implementation We conduct experiments on
both RoBERTa-base and RoBERTa-large models.

2A more details summarisation about these methods are in
Appendix A.

For RoBERTa-base, we set n = 750, and for
RoBERTa-large, we set n = 500. Our exper-
imental setup follows LoRA (Hu et al., 2022),
applying weight updates to the query and value
matrices, while fully training the classification
head. To ensure consistency with prior work like
VeRA (Kopiczko et al., 2024) and FourierFT (Gao
et al., 2024), we used separate learning rates for
the classification head and the adapted layers. We
tuned the learning rate, number of epochs, and rank,
with the specific hyperparameter choices detailed
in Appendix B.

Tasks like MNLI and QQP contain much larger
number of data compared to the other six tasks in
GLUE. We choose to omit these two, as prior work
has done (Kopiczko et al., 2024; Gao et al., 2024).
For each dataset, we conduct five independent runs,
each using a randomly selected seed (Kou et al.,
2025). For each run, we use the best epoch outcome
and report the median across the five runs (Kou
et al., 2024a).

Results We present the results in Table 2 and
Figure 4, where our method achieves the best
average performance across all tasks. Notably,
our approach requires the fewest trainable parame-
ters among all methods. For RoBERTa-base, our
method uses just 6% of the parameters required by
LoRA, while for RoBERTa-large, it requires only
3% of LoRA’s parameter number.
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Model Method # Trainable
Parameters BLEU NIST METEOR ROUGE-L CIDEr

G
PT

2-
M

ed
iu

m

FF* 354.92M 65.95 8.52 45.95 69.13 2.35
AdptH* 0.9M 64.31 8.29 44.91 67.72 2.28
AdptP* 0.8M 64.41 8.30 44.74 67.53 2.29
LoRA 0.4M 66.86 8.59 45.94 69.27 2.41
FourierFT 0.048M 64.89 8.38 43.94 67.11 2.20
RED 0.050M 64.62 8.33 45.14 67.46 2.25

LoRA 0.098M 64.96 8.40 45.29 68.03 2.32
VeRA 0.098M 64.50 8.33 45.38 68.77 2.34
FourierFT 0.098M 64.46 8.33 45.32 67.80 2.28
FoRA-UA 0.098M 67.01 8.59 46.07 69.43 2.40
FoRA-UA 0.036M 66.15 8.58 45.12 67.70 2.28

G
PT

2-
L

ar
ge

FT* 774.03M 65.56 8.50 45.40 68.38 2.27
AdptH* 1.8M 65.94 8.46 45.78 68.65 2.23
AdptP* 1.5M 65.53 8.41 45.65 68.46 2.33
LoRA 0.77M 68.07 8.74 46.20 69.92 2.43
VeRA 0.18M 66.72 8.56 46.17 69.30 2.40
FourierFT 0.07M 66.38 8.55 45.70 68.66 2.33
RED 0.09M 65.22 8.40 45.59 68.14 2.34
FoRA-UA 0.05M 67.23 8.66 45.81 68.47 2.40
FoRA-UA 0.15M 68.20 8.76 46.24 69.65 2.42

Table 3: Performance of different PEFT methods on E2E test set via GPT2-medium and GPT2-large. Results with ∗

are taken from Wu et al. (2024b)

Model Method # Trainable
Parameters AddSub SingleEq MultiArith SVAMP

LLaMa2-7B LoRA 8.4M 80.5 77.2 93.8 42.9
FoRA-UA 0.1M 75.5 75.6 91.8 42.9

LLaMa3-8B LoRA 8.4M 89.6 96.7 96.3 75.4
DoRA 7.1M 90.3 96.1 96 76.8
LoRA+ 6.9M 89.3 96.7 98 68.3
VeRA 0.4M 88.6 95.7 95.3 71.3
FoRA-UA 0.1M 85.3 97.0 94.7 72.6

Table 4: Accuracy on math reasoning.

5.3 Natural Language Generation

Implementation We fine-tune the E2E dataset
on GPT-2 medium and GPT-2 large models, with
detailed hyperparameters provided in Appendix C.
Each experiment is conducted three times, and we
report the average results. We follow (Li and Liang,
2021) and adopt the script posted by RED (Wu
et al., 2024b) and re-ran other PEFT methods for
comparison. We tune key, query, value (i.e. c_attn)
and select the checkpoint with the lowest evaluation
loss. For each experiment, we run 3 times and
compute the average.

Results Table 3 presents the results on the E2E
test set for both GPT2-medium and GPT2-large,
demonstrating that our method achieves the small-
est parameter size while maintaining competitive
performance. For GPT2-medium, our approach
outperforms both RED and FourierFT. Addition-

ally, it achieves comparable performance with only
37% of the parameters required by Vera and 9% of
those required by Lora. Furthermore, we applied
the same number of trainable parameters across
different PEFT methods. Specifically, we select
0.098M as the number of trainable parameters,
which corresponds to the number of parameters
Lora needed under the rank = 1(smallest) config-
uration. In this setting, our method surpasses the
other three approaches across all five evaluation
metrics.

5.4 Reasoning/Instruct Tuning

Implementation We fine-tuned LLaMA2-7B
and LLaMA3-8B using the LLM-Adaptor (Hu
et al., 2023) framework on the Math-10K dataset.
Detailed hyperparameter configurations are pro-
vided in Appendix D.
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Figure 5: Comparison of FoRA-UA’s effectiveness in
terms of rank and number of submatrices(M).

Results Table 4 presents our results across var-
ious mathematical benchmarks. Our method
achieves performance comparable to LoRA while
utilizing only 2% of the parameters that LoRA re-
quires.

5.5 Image Classification

Implementation We use a ViT model pretrained
on ImageNet-21K and applied LoRA with a rank
of 8 for both ViT-Base and ViT-Large. The only
hyperparameter we tuned for our method was the
learning rate. Each experiment was run three times,
and the results were averaged. For additional hy-
perparameters, please refer to Appendix E.

Results Table 5 shows that our method achieves
performance comparable to full fine-tuning and
LoRA in image classification while reducing pa-
rameter usage. Specifically, ViT-Base requires only
12.2% of the trainable parameters of LoRA, and
ViT-Large utilizes just 6.1% trainable parameters,
demonstrating the efficiency of our approach.

5.6 Ablation Study

In this section, we conduct an ablation study to
analyze how different factors influence the exper-
imental results. All experiments are repeated five
times to ensure statistical reliability. Due to space
limitations, we relegate some other studies to Ap-
pendix H.

5.6.1 Impact of rank
We conduct these experiments on the CoLA
dataset using RoBERTa-base. All experiments
were configured with n = 2000, and we
vary the rank across the following values:
{16, 32, 64, 128, 256, 350, 512}. The results are
presented in Figure 5a. From the figure, we ob-
serve that performance initially improves as rank

increases, with r = 64 achieving a Matthew’s Cor-
relation of 65.6. However, after r = 64, the per-
formance growth slows, indicating diminishing re-
turns. At r = 256, performance peaks at 65.55,
suggesting an optimal balance between capacity
and efficiency. Beyond this point, increasing r
further does not lead to improvements. This trend
suggests that while higher rank can enhance expres-
siveness, excessively large ranks may introduce
overfitting or optimization instability, leading to
degraded generalization.

5.7 Impact of the Number of Splits

To better understand the impact of our split-down
projection strategy, we conduct an ablation study
on the number of matrix splits used in FoRA-UA
on RoBERTa-base and evaluate its effect on down-
stream performance. As shown in Figure 5b, we
observe three key trends. First, introducing a mod-
erate number of splits (e.g., 2 or 3) consistently
improves performance over the baseline of a single
large matrix. This supports our core motivation that
smaller matrices can be more effectively approxi-
mated under fixed sparsity constraints. Second, we
find that performance degrades sharply when the
number of splits becomes too large (e.g., 4), likely
because each submatrix receives too few trainable
parameters to maintain sufficient representational
capacity. Third, the optimal number of splits ap-
pears to be task-dependent: while CoLA achieves
the highest MCC at 2 splits, MRPC performs best
with 3 splits. Please note that the figure does not
indicate that our method is unstable. The fluctua-
tions along the y-axis are actually very small; what
appears to be a large drop is due to the fact that the
difference between the maximum and minimum
values is only about 3%.

5.8 Computational Efficiency Analysis

To better understand the computational trade-offs,
we compare the FLOPs of different parameter-
efficient fine-tuning methods on a single module
with hidden size 1024, setting LoRA rank = 16,
VeRA rank = 256, and Fora rank = 64. Table 6 sum-
marizes the results. LoRA requires only 16.78M
FLOPs, while VeRA incurs a much higher cost
of 268M FLOPs due to its larger rank configura-
tion. Our method achieves 67.11M FLOPs, which
is higher than LoRA but significantly more effi-
cient than VeRA. This result highlights a favor-
able balance: although our method introduces ad-
ditional structural computation compared to LoRA,
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Model Method # Trainable
Parameters CIFAR100 Food101 Flower102 RESISC45

V
IT

-B FF 85.8M 94.53 83.79 98.90 93.07
LoRA 294.9K 96.21 86.26 100.00 94.81
FoRA-UA 36K 95.76 83.55 100.00 93.02

V
IT

-L FF 303.3M 97.30 88.01 97.06 96.77
LoRA 786K 96.96 85.69 99.02 96.46
FoRA-UA 48K 96.64 84.63 100.00 93.49

Table 5: Performance comparison of different PEFT methods on the Image Classification tasks.

Table 6: FLOPs comparison for a single module (hidden
size = 1024).

Method FLOPs

LoRA 16.8 M
VeRA 268.0 M
Ours 67.1 M

the increase remains relatively modest (67.11M
vs. 16.78M). At the same time, it avoids the steep
overhead of VeRA, which is over four times more
expensive than ours. Therefore, our approach pro-
vides a practical compromise between parameter
efficiency and computational cost, offering stronger
representational capacity than LoRA without incur-
ring the prohibitive FLOPs of VeRA.

6 Conclusion

We have proposed FoRA-UA, an extremely
memory-efficient PEFT method designed to reduce
the number of trainable parameters with minimal
cost to the performance of other methods. Our
experimental results demonstrate that FoRA-UA
excels across multiple tasks, including natural lan-
guage understanding, natural language generation,
and image classification while offering superior ef-
ficiency compared to existing PEFT methods such
as LoRA and VeRA. For instance, with RoBERTa-
base, FoRA-UA requires only 6% of the parameters
of LoRA, outperforming several current methods.

Limitations

We have demonstrated the effectiveness of our pro-
posed method across a variety of NLP tasks and
a representative vision task, we have not yet eval-
uated its applicability to broader domains such as
Code understanding (Wu et al., 2025), VLMs (Yang
et al., 2025b; Fan et al., 2025b), RAG (Liu et al.,
2024b) or multimodal tasks (Wu et al., 2024a; Li,
2024). Furthermore, although FoRA-UA performs

well on standard PEFT benchmarks and model
sizes, its scalability to larger-scale model remains
an open question. Investigating whether the ob-
served efficiency gains persist in high-capacity,
high-throughput settings is an important direction
for future work.
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A Baseline Method

We compare our proposed method with the follow-
ing PEFT baselines:

1. Full fine-tuning involves updating all parame-
ters of a model on a specific dataset to adapt it
for a target task, offering maximum flexibility
but requiring substantial resources.

2. Adapter Tuning insert adapters between
modules such as attention/FNN (Houlsby
et al., 2019) and feed-forward (Pfeiffer et al.,
2021). Rücklé et al. (2021) removes the
adapters that are inactive.

3. LoRA (Hu et al., 2022) is the SOTA of PEFT
that update weight by W = W0 +BA.

4. AdaLoRA (Zhang et al., 2023b) improves
upon standard LoRA by dynamically adjust-
ing the rank allocation for different layers or
weight matrices during fine-tuning, focusing
resources on the most impactful areas.

5. VeRA (Kopiczko et al., 2024) is a LoRA ex-
tended method that freezes low-rank matrices
A and B, and optimizes coefficient vectors b⃗
and d⃗.
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6. FourierFT (Gao et al., 2024) unlike LoRA that
decomposes weight into two matrices, it treats
weight changes as spatial domain matrices and
learns only sparse spectral coefficients.

7. Red (Wu et al., 2024b) directly edits neural
network representations via learnable scaling
and biasing vectors.

B Hyperparameters for GLUE

Table 7 contains the hyperparameters we use for
GLUE.

C Hyperparameters for E2E

Table 8 contains the hyperparameters we use for
GLUE.

D Hyperparameters for Instruct Tuning

Table 9 contains the hyperparameters we use for
Instruct Tuning.

E Hyperparameters for Image
Classification

Table 10 contains the hyperparameter we use for
Image Classification benchmarks.

F Statistics of Benchmark

See table 11 for GLUE, Table 12 for E2E, Table 13
for MTBench, Tabel 14 for image datasets.

G Proof of Theorem

G.1 Observations about the Fourier
Transform

The two-dimensional Discrete Fourier Transform
(DFT) of an array xn1,n2 is given by

Xk1,k2 =

N1−1∑

n1=0

(
ωk1n1
N1

N2−1∑

n2=0

(
ωk2n2
N2

xn1,n2

))
,

(10)

where ωN1,2 = exp (−i2π/N1,2).
Let A be a matrix representing xn1,n2 ,

A =




x0,0 x0,1 ... x0,N2−1

x1,0 x1,1 ... x1,N2−1

... ... ... ...
xN1−1,0 xN1−1,1 ... xN1−1,N2−1


 ,

(11)

and let Ã be the DFT of A,

Ã =




X0,0 X0,1 ... X0,N2−1

X1,0 X1,1 ... X1,N2−1

... ... ... ...
XN1−1,0 XN1−1,1 ... XN1−1,N2−1


 .

(12)

Meanwhile, let FN1 and FN2 be two linear trans-
formations

FN1 =




1 1 1 ... 1

1 ωN1 ω2
N1

... ωN1−1
N1

1 ω2
N1

ω4
N1

... ω
2(N1−1)
N1

... ... ... ...

1 ωN1−1
N1

ω
2(N1−1)
N1

... ω
(N1−1)2

N1



,

(13)

and

FN2 =




1 1 1 ... 1

1 ωN2 ω2
N2

... ωN2−1
N2

1 ω2
N2

ω4
N2

... ω
2(N2−1)
N2

... ... ... ...

1 ωN2−1
N2

ω
2(N2−1)
N2

... ω
(N2−1)2

N2



.

(14)

Note that FN1 is N1-by-N1 with entries given by
(FN1)k1,n1

= ωn1k1
N1

, while FN2 is N2-by-N2 with
entries (FN2)k2,n2

= ωk2n2
N2

. It is not hard to see
that

Ã = FN1AFN2 (15)

and

A = (N1N2)
−1 F †

N1
ÃF †

N2
, (16)

where (·)† represents the Hermitian transpose. This
shows that, for any N1-by-N2 matrix A, we have
its Fourier transform

FT(A) = FN1AFN2 (17)

and

IFT(A) = (N1N2)
−1 F †

N1
AF †

N2
, (18)

where the F matrices are defined as above.

G.2 Proof of Theorem 3.1

Without loss of generality, let B be N -by-2M ,
let B1 and B2 be N -by-M . Suppose IFT(B) =
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Model Hyperparameter STS-B RTE MRPC CoLA SST-2 QNLI

Both

Optimizer AdamW
LR Schedule Linear

Warmup Ratio 0.06
Frequency Bias False

Seed {42, 43, 44, 45, 46}

Base

Epochs 80 70 60 80 35 45
Learning Rate (FoRA-UA) 0.02 0.1 0.01 0.03 0.01 0.01

Learning Rate (Head) 0.006 0.01 0.006 0.006 0.006 0.006
Scaling Value 5 1 5 4 5 3

r 256 64 256 256 256 64
Max Seq. Len 512

Batch Size 32
n 2× 375

Large

Epochs 40 60 45 60 15 30
Learning Rate (FoRA-UA) 0.01 0.08 0.05 0.01 0.01 0.06

Learning Rate (Head) 0.01 0.005 0.005 0.01 0.01 0.005
Scaling Value 5 2 4 3 5 2

r 256 64 256 64 256 64
Max Seq. Len 512

Batch Size 32
n 2× 250

Table 7: Hyperparameter setup for the GLUE benchmark.

Model Hyperparameter VeRA FourierFT RED FoRA-UA

Medium

Learning Rate 0.02 0.08 0.06 0.1
Scaling Value - 300 - 15

r 1024 - - 64
n - 2000 - 3× 500

Large

Learning Rate 0.006 0.08 0.02 0.02
Scaling Value - 300 - 15

r 1024 - - 32
n - 2000 - 3× 500

Both

Label Smooth 0.0
Weight Decay 0.0001

Batch Size 8
Optimizer Adam

epoch 5
Warmup Step 500

Learning Rate Schedule Linear
Seed {42,43,44}

Table 8: Hyperparameter setup for the E2E benchmark.

[IFT(B1), IFT(B2)], the matrices should satisfy the relation

1

2
BF †

2M =
[
B1F

†
M , B2F

†
M

]
. (19)
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Hyperparameter LoRA FoRA-UA

LR Schedule Linear
Warmup Ratio 0.06

Batch Size 4
Optimizer Adam

Epoch 1
Rank 64 128

n - 3× 1000
Scaling Value 16 20
Learning Rate 4e-4 3e-2

Table 9: Hyperparameter setup for the Instruct tuning.

Model Hyperparameter CIFAR100 Food101 Flowers102 RESISC45

Base

Learning Rate 0.06 0.06 0.07 0.08
Head Learning Rate 0.002

Scaling Value 15
r 64
n 1× 1500

Large

Learning Rate 0.03 0.02 0.02 0.03
Head Learning Rate 0.004

Scaling Value 15
r 64
n 1× 1000

Both

Weight Decay 0.0
Batch Size 128
Optimizer Adam

epoch 10
Seed {42,43,44}

Table 10: Hyperparameter setup for the Image Classfication benchmark.

Dataset Train Valid Labels

CoLA 8.5K 1K 2
SST-2 67K 872 2
MRPC 3.7K 408 2
STS-B 7K 1.5K -
QQP 364K 40K 2
MNLI 393K 20K 3
QNLI 108K 5.4K 2
RTE 2.5K 278 2
WNLI 634 71 2

Table 11: Statistics of the GLUE benchmark. Task
types: Acceptability (CoLA), Sentiment (SST-2), Para-
phrase (MRPC, QQP), Similarity (STS-B), and Natural
Language Inference (MNLI, QNLI, RTE, WNLI).

Dataset Train Valid Test

E2E 42,061 4,672 4,693

Table 12: Statistics of the E2E dataset. The dataset
consists of structured meaning representations paired
with natural language descriptions.

Note that the LHS term 1
2BF †

2M can be split in two
N -by-M matrices. Therefore, we have B1 and B2

as

B1 =

[
1

2
BF †

2M

]

columns 0 to M

FM , (20)

B2 =

[
1

2
BF †

2M

]

columns M + 1 to 2M

FM . (21)

See Figure 6 as an example.
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Category # Questions

Writing 10
Roleplay 10
STEM 10
Humanities 10
Coding 10
Reasoning 10
Mathematics 10
Extraction 10

Total 80

Table 13: Statistics of the MT-Bench dataset. The
dataset consists of 80 multi-turn questions across eight
categories.

Dataset # Classes Train Test

CIFAR-100 100 50K 10K
Food-101 101 75.5K 25.3K
Flowers-102 102 2K 6K
RESISC45 45 31.5K 10.5K

Table 14: Statistics of image classification datasets used
in our experiments. CIFAR-100 consists of 100 ob-
ject categories, Food-101 includes various food items,
Flowers-102 contains 102 flower species, and RE-
SISC45 is a remote sensing dataset with 45 scene
classes.

Figure 6: Example of decomposing IFFT(B) into
[IFFT(B1), IFFT(B2)]. The top row shows B and ma-
trix [B1, B2]. The bottom row, where the colormap
shows the absolute values of the IFFT results, confirms
that IFFT(B) = [IFFT(B1), IFFT(B2)].

Similar proofs also exist for B1 and B2 with
different sizes and in the case of vertical concate-
nations.

H More Ablation Studies

H.0.1 Performance vs. Trainable Parameters
Figure 8 illustrates the relationship between
the number of trainable parameters and model
performance on the CoLA dataset. We
evaluate FoRA-UA and LoRA, both applied
to a RoBERTa-base model. For FoRA-
UA, we fix r = 256 and vary n across
{50, 100, 200, 750, 2000, 5000, 10000}, while for
LoRA, we select rank values {1, 2, 4, 6, 8, 15}.
The x-axis represents the number of trainable pa-
rameters on a log scale, and the y-axis reports the
corresponding performance. The results indicate
that for both FoRA-UA and LoRA, performance
improves as the number of trainable parameters
increases. However, FoRA-UA consistently outper-
forms LoRA across all parameter scales, demon-
strating its superior efficiency. Notably, FoRA-UA
achieves high performance even at relatively small
parameter sizes, whereas LoRA requires a larger
number of parameters to reach competitive results.
This highlights the superior parameter efficiency
of FoRA-UA, allowing it to achieve strong results
without excessive parameter growth.

H.1 The Importance of A

FourierFT (Gao et al., 2024) simply uses IFFT(Σ)
to approximate ∆W . Instead of ours use IFFT(Σ)
to approximate the down projection B and then fol-
low the LoRA tradition to learn ∆W . The intuitive
behind this is that B is a much smaller matrix than
∆W and a smaller matrix is easier to approximate
under the limited trainable parameter condition. To
support our statement empirically, we use E2E on
GPT2-base as an example. We use the formula
∆W = IFT (B)A instead of Equation 6 that we
use in the experimental part. So the only differ-
ence is whether to approximate ∆W directly or
approximate B first.

The result is demonstrated in Figure 7. All hyper-
meter follows Table 8. Note that we pick n = 2000
(which is also the #parameter Gao et al. (2024)
picked in their experimental part) for FourierFT
and n = 1500 for FoRA-UA. We can see FoRA-
UA consistently achieve better performance across
5 metrics by using 75% #parameters, showing the
importance of up projection A.

H.2 Other Transformations

Inverse discrete Fourier transformation of a matrix
Σ can also be regarded as matrix multiplications,
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Figure 7: Performance FourierFT and FoRA-UA on E2E, evaluated using 5 different metrics. The solid blue lines
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Figure 8: Performance vs. Number of Trainable Param-
eters for LoRA and FoRA-UA. The x-axis is in the log
scale.

IFFT(Σ) = F †
1ΣF

†
2 . Hence, ∆W can also be

written as a product of matrices, BΣA, where Σ is
trainable, and A and B can take their correspond-
ing values. Results are listed in table 15. We ran-
domly init A and B and try both sparse and dense
Σ with a similar number of trainable parameters,
ours method archives the best performance and in-
dicates the necessity of the use of inverse Fourier
transformations.

H.3 Freeze B
We run experiments on MRPC and CoLA with
r = 256 and n = 2000, exploring the impact of
freezing different components. As shown in Ta-
ble 16, freezing A outperforms freezing B, achiev-
ing higher scores on both MRPC (91.5) and CoLA

Method MRPC CoLA

Ours 91.5 67.0
B1Σ1A1 85.8 62.0
B2Σ2A2 84.7 60.7

Table 15: Performance comparison of methods on dif-
ferent transformations. The size of B1 is 768× 50 and
A1 is 50× 50. Σ1 is trainable matrix with size 50× 50.
The size of B2 is 768 × 768 and A2 is 256 × 768. Σ2

is trainable sparse matrix with size 768× 256 and only
2500 nonzero entries.

(67.0).

Freeze MRPC CoLA

A 91.5 67.0
B 88.5 63.4

Table 16: Performance comparison of methods on freez-
ing A and B on MRPC and CoLA datasets.

H.4 Training Curve
See Figure 9 for Matthew’s correlation on CoLA
via RoBERTa base. n = 10000 for both methods.
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Figure 9: Matthew’s correlation comparison between
FoRA-UA and FFT.

6333


