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Abstract

Counter-arguments (CAs) are a good means to
improve the critical-thinking skills of learners,
especially given that one has to thoroughly con-
sider the logic of initial arguments (IA) when
composing their CA. Although several tasks
have been created for identifying the logical
structure of CAs, no prior work has focused
on capturing multiple interpretations of logi-
cal structures due to their complexity. In this
work, we create CALSA+, a dataset consisting
of 134 CAs annotated with 13 logical predicate
questions. CALSA+ contains 1,742 instances
annotated by 3 expert annotators (5,226 total an-
notations) with good agreement (Krippendorff
α=0.46). Using CALSA+, we train a model
with Reinforcement Learning with Verifiable
Rewards (RLVR) to identify multiple logical
interpretations and show that models trained
with RLVR can perform on par with much big-
ger proprietary models. Our work is the first
to attempt to annotate all the interpretations of
logical structure on top of CAs. We publicly
release our dataset to facilitate research in CA
logical structure identification.

1 Introduction

Counter-arguments (CAs) serve as an effective tool
for enhancing learners’ critical thinking skills (Liu
and Stapleton, 2014), especially given that one has
to thoroughly consider the logic of initial argu-
ments (IA) when composing a CA. In order to max-
imize learning efficiency, tailored feedback from
teachers is extremely valuable (Hattie and Timper-
ley, 2007). However, it is difficult to provide every
learner tailored feedback due to limited human re-
sources and heavy workloads (Paris, 2022). There-
fore, developing a system that can automatically
provide feedback to learners’ CAs for improving
their critical-thinking skills would be a beneficial
way of applying artificial intelligence (AI) technol-
ogy to the educational field.

Figure 1: Example of multiple logical interpretations
for a CA. The bold, italic text is a segment with, at
least, two different logical interpretations. The gray
boxes represent possible background knowledge and
implicit reasoning useful for identifying the respective
interpretation.

In general, written texts can be interpretted mul-
tiple ways due to the potential discrepancy between
writers’ intent and readers’ understanding (Iser,
1972; Tierney et al., 1983; Rosenblatt, 1988; Mart
et al., 2019). Moreover, readers can also have differ-
ent interpretations of the same text due to different
background knowledge. In the context of providing
feedback for CAs, this becomes a challenge given
the overall complexity of CA logical structures. To-
wards identifying these logical structures, inspired
by Argumentation Schemes (Walton et al., 2008),
Naito et al. (2024) proposed a typology of patterns
to capture common CA logical structures adher-
ing to the Argument from Consequences scheme,
where each pattern was associated with unique feed-
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back. They framed the identification of logical
structures as the Counter-Argument Logical Struc-
ture Analysis (i.e., CALSA) task. Although their
work is groundbreaking, it only interpreted one log-
ical structure for a given argumentative segment.

Figure 1 shows an example of a written text (CA)
with at least two possible interpretations of the logi-
cal structure, henceforth logical interpretations for
the argumentative segment in bold (Here, we use
logical interpretation to refer to a logical structure
defined in the CLASA typology). One interpreta-
tion is that the CA acknowledges the premise in the
IA’s logic (x promotes y, where x=“death penalty”,
y=“executioner’s suffering), but it claims that the
relation between x and y can be mitigated by a
z=“executioners considering themselves protecting
society” (Interp. 1). The other interpretation can
be that the conclusion of the IA’s logic is attacked,
as the CA claims that x should not be abolished
since it promotes a good thing z=“protecting the
society” (Interp. 2). When creating a system for
providing feedback to learners, it is important that
system accounts for such multiple interpretations
of logical structures within a CA.

We argue that it is crucial to collect and identify
multiple logical interpretations for the following
reasons: 1) correctness: in the educational con-
text, providing feedback that is not aligned with the
intent of a learner’s writing may cause them to be-
come less motivated towards articulating their own
thoughts, and even cause them to become disinter-
ested in writing (Brannon and Knoblauch, 1982;
Treglia, 2008). Therefore, collecting as many in-
terpretations as possible could prevent potential
misalignment caused by only having a single in-
terpretation; 2) informativeness: Showing multiple
possible interpretations of CA logical structures to
writers can potentially facilitate the reflection on
their own writings (i.e., learners can be aware of
additional interpretations and revise accordingly).

To the best of our knowledge, no resource exists
for identifying multiple logical interpretations in
CAs. Towards tackling this issue, we aim to answer
the following research questions: (i): How can we
collect as many multiple logical interpretations in
a CA as possible?, and (ii): To what extent can we
utilize current Large Language Models (LLMs) to
identify multiple logical interpretations in a CA? To
answer these questions, we explore decomposing
the original logical structures defined in Naito et al.
(2024) into several finer-level, logical predicates,
each representing an independent partial structure

of the CA logic. We conduct an annotation study
to create CALSA+, a new dataset of predicates an-
notated on top of a CA to collect as many logical
interpretations as possible. Utilizing CALSA+, we
conduct model experiments using two modeling
methods: Prompt Engineering (PE) and Reinforce-
ment Learning from Verifiable Rewards (RLVR).
Although we discover that the models can solve the
task to some extent, many challenges still remain.

Our contributions can be summarized as follows:

• We create CALSA+, a dataset composed of
multiple logical interpretations. CALSA+ con-
sists of 134 CAs annotated with 13 predicate-
related questions. In total, it contains 1,742
instances annotated by 3 expert annotators
(5,226 total annotations) with good agreement
(Krippendorff α=0.46 1). We publicly release
our dataset 2. Our dataset is the first to include
multiple CA logical interpretations and can be
further studied by the broader community.

• We conduct model experiments with vari-
ous methods and establish a baseline for the
CALSA+ dataset. To the best of our knowl-
edge, our work is the first to explore RLVR
for improving the reasoning abilities for a CA
logic parsing task.

2 Related Work

Various works have focused on subjectivities em-
bedded in NLP tasks. Pavlick and Kwiatkowski
(2019) argues that the disagreements in NLI tasks
are not noise, but instead, useful information and
models trained to do NLI tasks should produce the
distribution of human ratings instead of a single
aggregated label. Some works focus on utilizing
the opinions of different annotators for the down-
stream tasks, e.g., creating an annotator embedding
or predicting the ratings of individual annotators
(Fleisig et al., 2023; Deng et al., 2023). Ferracane
et al. (2021) studies the subjective judgments on
conversational acts and intents of response in con-
gressional hearing settings. Many other works also
build on the idea that a single ground truth label
cannot reflect the true nature of the target task (Das

1Although we obtain a good IAA, our annotation does
not expect all annotators to agree with each other. The dis-
agreement in our annotations is an important signal indicating
the different background knowledge and implicit reasoning
annotators use for interpreting CAs (Section 3.4)

2https://github.com/cl-tohoku/ca-multi-ptn

6419



et al., 2017; Poesio et al., 2019; Nie et al., 2020;
Jiang and de Marneffe, 2022; Plepi et al., 2022;
Heinisch et al., 2023; Jiang et al., 2023).

There have been many works that focus on
CAs in the field of computational argumenta-
tion. Several focus on automatically creating
CAs through retrieval, generation, or combining
both (Wachsmuth et al., 2018; Hua et al., 2019; Al-
shomary and Wachsmuth, 2023; Alshomary et al.,
2021; Lin et al., 2023; Yeginbergen et al., 2025).
In comparison, the main focus of this paper is on
the automatic identification of logical structures of
CAs. Furthermore, some of the previous works
focus on creating datasets of CAs, and annotat-
ing CAs with structural information (Reisert et al.,
2019; Mim et al., 2022; Naito et al., 2024). Among
them, the most relevant work is Naito et al. (2024)
due to their typology created for counter-arguments.
While they focus on annotating one logical struc-
ture per CA segment, we focus on collecting multi-
ple interpretations of logical structures in CAs.

3 CALSA+ Creation

We briefly introduce an existing task and dataset
for CA logical structure identification and describe
the details regarding the construction of CALSA+.

3.1 CALSA Task and Dataset

CALSA is a task that focuses on analyzing the log-
ical structure of a CA in relation to an IA (Naito
et al., 2024). Inspired by Reisert et al. (2018), they
utilize a template-based approach where a CA logi-
cal structure is considered to be a combination of
a logic template and slot-fillers. For the task, a
dataset was created which consisted of more than
700 CAs written in English, each of which was
annotated with sentence-level logic templates. The
templates were selected from a pre-defined set of
10 templates created based on the Argument from
Consequences scheme in Walton et al. (2008). If a
template had a placeholder for a slot-filler, the anno-
tators were instructed to extract a suitable slot-filler.
For a CA, which consists of multiple mutually ex-
clusive segments {Si}ni=1, where each segment Si

contains multiple consecutive sentences {ej}k+m
j=k ,

their annotation protocol allowed for one logical
structure label per sentence ej . As a result, the
CALSA dataset contains a single logical structure
label for each segment Si (taking the label of its
constituent sentences). They conducted several
baseline experiments to exhibit that it is challeng-

Figure 2: Example of decomposing one CA logical
structure into its constituent predicates. We show the
mapping between predicates and all logical structures
in Appendix B.

ing for the current LLMs to identify the underlying
logical structure embedded in the CA, but their
experiments were limited to training LLMs to di-
rectly generate the target label of the logical struc-
ture. Furthermore, while they claim that multiple
logical structures may exist in a single segment Si

due to multiple possible interpretations of the CA
segment, their annotation restricted their dataset to
one CA logical structure, which also hinders the
reliability of evaluating LLMs’ abilities in solving
the task.

As discussed in Section 1, we opt for utilizing
the CALSA dataset since it is the only dataset that
has labels of deep logical structure of argumen-
tative texts (CAs), which can ultimately be used
for constructive feedback. Furthermore, given the
high coverage reported in Naito et al. (2024), the
CALSA dataset is capable of covering common CA
logical structures, which renders it suitable for our
purpose. For carrying out our annotation, we utilize
a portion of IA-CA pairs in the CALSA dataset.

3.2 Extending CALSA with multiple logical
intepretations

In order to provide correct and informative feed-
back, we aim to create a dataset with as many CA
logical interpretations as possible. We formalize
collecting as many logical interpretations of a CA
as possible as a feasible problem, in which the
number of interpretations is bounded to the total
number of the unique logical structures defined in
CALSA (Naito et al., 2024) (i.e., 10). We discuss
our annotation in detail as follows.
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Predicate P Example

ACK(IA) acknowledge that death penalty promotes misjudgment
DENY(IA) death penalty does not promote misjudgment
REVERSE(IA) death penalty suppresses misjudgment
MITI(Z,IA) "death penalty promotes misjudgment" can be mitigated by a thing Z.
ANO(Z,Y) there is a thing Z other than death penalty that also promotes misjudgment
NO-EVI(IA) IA doesn’t mention any evidence to support that death penalty promotes misjudgment
NO-NEED-ADDRESS(Y) misjudgment is not important or is not a problem that requires any action to be taken
SUP(Y,Z) misjudgment suppresses a bad thing Z
PRO(Y,Z) misjudgment promotes a good thing Z
PRO(X,Z) death penalty promotes a good thing Z.
SUP(X,Z) death penalty suppresses a bad thing Z
TRANS1(X,Z,Y) death penalty suppresses a thing Z that promotes misjudgment
TRANS2(X,Z,Y) death penalty promotes a thing Z that suppresses misjudgment

Table 1: Example of one set of decomposed predicates for an IA. Given the IA logic IA (e.g., IA=death penalty
promotes misjudgment which is bad), X and Y refer to slot-fillers taken from IA (e.g., X=“death penalty” and
Y =“misjudgment”). Z refers to a slot-filler that satisfies the respective predicate logic and should be extracted from
the CA. Each IA has its own set of predicates. Predicates across IAs have the same logical structure but slightly
different wordings depending on the actual IA logic.

CALSA+ Predicate Inventory We explore de-
composing the 10 CA logical structures from the
CALSA dataset into finer-level predicates. At a
high level, we consider that there are three parts
where a CA logic can interact with the correspond-
ing IA: the conclusion of the IA, the causal relation
between variables (concept slot-fillers X and Y in
the IA), and the variables themselves (X or Y).
Each CA logical structure interacts with one or
more parts in the IA. We consider such interaction
as a partial logic and decompose the 10 CALSA
logical structures into a set of partial logics. We
refer to each unique partial logic as a predicate.
However, since a valid CA must deny IA’s con-
clusion, the interaction with the conclusion is not
informative for distinguishing different CA logical
structures. Thus, for our task, we only consider
the predicates that represent an interaction with the
causal relation or with variables. Examples of the
decomposition procedure are shown in Appendix H.
As a result, we decompose the 10 CALSA logical
structures into 13 finer-level predicates, where each
predicate P represents an independent partial logi-
cal structure of a CA.

Each predicate, along with an instantiated exam-
ple, is shown in Table 1. The original labels for
CALSA logical structures can thus be obtained by
aggregating the labels for all predicates (a logical
structure exists if all of its constituent predicates ex-
ist). An example is shown in Figure 2. The reason
for the our decomposition is three-fold: 1) Given
the complexity of annotating deep logical struc-
tures, we anticipate that decomposing the complex
logical structures into small predicates and anno-

tating them individually would ease the annotation
procedure and consequently improve the quality of
the final results; 2) Given that the CALSA logical
structures can be considered as a combination of
multiple finer-level logics, it is possible for anno-
tators to be biased towards one part and overlook
another. By explicitly considering each finer-level
predicate, we could alleviate such bias and improve
the quality of annotations; 3) While there are unlim-
ited approaches for decomposition, our approach
ensures that there is unique feedback associated
with each predicate, which can be derived from the
original feedback provided in the CALSA dataset.

Annotation Procedure We convert each predi-
cate P to a binary question (e.g., “Does the CA
acknowledge that death penalty promotes misjudg-
ment?” for ACK(IA) in Table 1). Given an IA logic
(e.g., “death penalty promotes executioner’s suf-
fering”) and CA pair, annotators are also given 13
total binary questions. For each question, the an-
swer is YES if the given predicate exists (the partial
logical structure exists) in the CA; otherwise, NO.
If the predicate P has a slot-filler Z, annotators
are also required to extract a slot-filler from the
CA; otherwise, the annotators are required to select
sentences from the CA as evidence when answer-
ing YES to a given binary question. Annotators are
allowed to provide optional reasoning to support
their annotation. We create a custom annotation
interface for achieving the annotation process as
shown in Appendix A. Given that our purpose is to
create a high-quality dataset, opposed to utilizing
crowdsourcing, we chose to perform the annotation
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Predicate 3 YES 2 YES 1 YES All NO

ACK(IA) 37 29 18 50
ANO(Z,Y) 20 20 27 67
DENY(IA) 12 25 26 71
MITI(Z,IA) 8 14 28 84
NO-EVI(IA) 0 1 2 131
NO-NEED-ADDRESS(Y) 14 18 33 69
REVERSE(IA) 5 11 29 89
TRANS1(X,Z,Y) 1 7 22 104
TRANS2(X,Z,Y) 10 17 31 76
PRO(X,Z) 42 41 18 33
SUP(X,Z) 25 37 30 42
PRO(Y,Z) 11 6 19 98
SUP(Y,Z) 1 7 17 109
Total 186 233 300 1023

Table 2: Distribution of answers per predicate P in our
dataset. Each P in our dataset is comprised of 134
answers corresponding to 134 CAs respectively.

with expert annotators. Following previous works
that utilize expert annotators (Wachsmuth et al.,
2017; Robbani et al., 2024), we employ three ex-
pert annotators, one native, and two fluent English
speakers, all experts in the field of argumentation.

3.3 Results

For determining the final labels 3, we want to col-
lect as many logical interpretations as possible,
even the less obvious ones. Therefore, we want
to utilize as many YES labels at the predicate level
as possible as it allows us to aggregate more logi-
cal interpretations. To examine the quality of the
answer YES and analyze the results, we sample 50
predicate-level instances that do not have full agree-
ment. Annotators discussed the sampled results and
provided reasoning for their answers. As a result,
we found that the answer YES is considered reason-
able for 49/50 sampled instances. The slot-fillers
associated with YES labels were also considered
reasonable. Therefore, we decided to use YES as
the final label for a predicate if any of the anno-
tators selected YES, otherwise, the final label was
NO. For slot-fillers, we consider all of the selected
slot-fillers for a YES answer as the label. The distri-
bution of predicate-level labels of answers is shown
in Table 2. We aggregated the results of predicate-
level annotations to obtain all labels of logical struc-
tures for a CA to create CALSA+ dataset. We show
basic statistics of CALSA+ dataset in Table 3.

For all predicates that are labeled as YES and
have a slot-filler, we report the results of collected
slot-fillers. In total, annotators select 745 unique

3We achieve Krippendorff α=0.46 for the overall annota-
tions.

# CAs 134
# Predicate level annotations 1742
# Logic structures per CA on average 3.63

Table 3: The basic statistics of the CALSA+ dataset.

slot-fillers4, with 11 slot-fillers agreed between all
annotators (i.e., the three annotators select the lexi-
cally identical slot-fillers for 11 instances), 77 slot-
fillers agreed by two annotators, and the remain-
ing 657 slot-fillers selected once by one annotator.
Additionally, we calculate the similarity between
slot-fillers using ROUGE scores (Lin, 2004). For
each predicate that has two or more YES, we cal-
culate it between every pair of slot-fillers for all
combinations of the selected slot-fillers. In total,
we obtain 503 slot-filler pairs. The distribution
of ROUGE-1 scores above a certain threshold is
shown in Figure 3. Out of the 503 pairs, although
we did not expect annotators to select the same slot-
fillers, more than half have a score above 0.5 which
indicates that annotators tend to focus on the same
slot-fillers for certain predicates. We also compare
the similarity between the selected evidence. The
results are shown in Appendix C.

3.4 Analysis

Given the existence of multiple logical interpreta-
tions in CALSA+, we ask the following question:
What are the main sources of the different annota-
tors’ understanding that lead to multiple interpre-
tations? We conduct a manual analysis on 50 of the
disagreed predicate-level instances from CALSA+,
as the predicates are the finer-level constituents of
logic structures. For instances in which the optional
reasoning was not provided in the original annota-
tion, annotators discussed their reasoning together.
Following both the discussion and analysis, we
found that the sources of different logical structures
can be located at the predicate level, namely, the
answers YES and NO can simultaneously be reason-
able for certain instances. Overall, we found three
main sources for the phenomenon (henceforth, am-
biguity source): scalar implicature (SOURCE1), dif-
ferent interpretations of concepts (SOURCE2), and
utilizing different background knowledge to com-
plement implicit information (SOURCE3). Each
source further includes finer categories. We show
representative examples in Table 4.

4We consider lexically identical slot-fillers from different
instances different slot-fillers.
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Example CA and P 2 Agree 1 Agree Disagreement Reason

CA: .. however, . . . every job is not
meant like this where one can keep them-
self updated with the real world or what
is happening in society....

P : SUP(X,Z)
Q: CA argues that “part-time jobs”(X)

suppresses a good thing?

NO, “every . . . ” means
that there are jobs that
promote “keep. . . ”.

YES, “every . . . ” means
that there are jobs that
suppress “keep them self
updated with the real
world...”.

(SOURCE1)
“every” can mean both
sides; scalar implicature

CA: .. homework is a compulsory ex-
ercise that allows students to make de-
cisions about what to do now and what
not to do...

P : TRANS2(X,Z,Y)
Q: CA argues that “homework”(X) pro-
motes a thing that suppresses “being pas-
sive in character”(Y )?

YES, it promotes “make
decisions about what to
do now and...” which is
active learning that sup-
presses Y .

NO, nothing is pro-
moted.

(SOURCE2)
The boundary between
two concepts: whether
“making decisions” is
equivalent active learn-
ing (i.e., not passive).

CA: .. however, I think it’s just as
likely that forcing students to do home-
work makes students rebellious and re-
sistant to authority......

P : REVERSE(IA)
Q: CA argues that “homework”(X) sup-
press “being passive in character”(Y )?

YES, homework makes
students active in
character (“rebellious
and..”), which sup-
presses Y .

NO, “forcing students
to do homework” in-
stead of “homework”
promotes active charac-
ter which suppresses Y .

(SOURCE2)
Different interpretation
of X .

CA: .. homework can establish the
basic foundation of studying because
homework is a good guideline of what
we should review and study. Studying
is based on the accumulation of under-
standing, once we get behind, catching
up classes is difficult....

P : TRANS1(X,Z,Y)
Q: CA argues that “homework”(X) sup-
presses a thing that suppresses “free
time”(Y )?

NO, CA does say “It
would be difficult to
catch up” but it doesn’t
state that that would
take up more free time.

YES, homework sup-
presses “get behind”
which suppresses free
time because if some-
one were to get behind,
they would use more
time to catch up.

(SOURCE3)
The degree to which an-
notators read from con-
text is different.

CA: .. even if some students are cheat-
ing by copying friends’ homework, they
will easily notice such kind of ways to
study are not beneficial.......

P : SUP(Y,Z)
Q: CA argues that “incorrect ways of
studying”(Y ) suppresses a bad thing?

NO, nothing bad is sup-
pressed.

YES, Y promotes “no-
tice such kind of....not
beneficial” which stops
students from doing Y
which is bad.

(SOURCE3)
Implicit circular logic
chain.

CA: .. students also learn that copying
work is counter to actually studying and
learning the material. Abolishing testing
or homework deprives students of the
chance to learn this.

P : PRO(X,Z)
Q: CA argues that “homework”(X) pro-
motes a good thing?

NO, nothing good is pro-
moted.

YES, abolishing home-
work suppresses the
chance to learn this
which means homework
promotes the chance to
learn this.

(SOURCE3)
Reversed reasoning.

Table 4: Examples of P with disagreements. “2 Agree” and “1 Agree” refer to two annotators agreeing and one
annotator agreeing, respectively.
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3.5 Discussion on ambiguity sources

Anjali and Babu (2014) present a study of different
types of ambiguities in NLP (e.g., lexical ambi-
guity, semantic ambiguity, etc.). Our findings of
the sources of different logical interpretations can
be categorized using their typology. Specifically,
the first source, scalar implicature (SOURCE1), can
be seen as scope ambiguity where the usage of
quantifiers causes ambiguity. It has also been stud-
ied as a linguistic phenomenon by language ex-
perts (Geurts, 2009). SOURCE2 and SOURCE3
can be broadly categorized as pragmatic ambigu-
ity, where context causes ambiguity. Recently, Li
et al. (2024) propose a taxonomy for analyzing am-
biguity in the modern NLP context. Although their
taxonomy has more fine-grained types, they are
more related to the semantic meaning of the sen-
tences/words themselves, whereas our SOURCE2
and SOURCE3 are more related to the background
knowledge and level of implicit reasoning of the
readers. Furthermore, previous work has also fo-
cused on addressing specific ambiguity types in the
context of presenting a focused study (Itankar and
Raza, 2020; Abeysiriwardana and Sumanathilaka,
2024; Kamath et al., 2024), creating datasets (Liu
et al., 2023; Yuan et al., 2023; Kamath et al., 2024),
and proposing a new modeling method (Kim et al.,
2023, 2024). However, they only focus on lexical,
syntactic, or semantic ambiguities of the target sen-
tences themselves, whereas, as aforementioned, our
SOURCE2 and SOURCE3 are rooted in the differ-
ences in the implicit reasoning of the background of
the readers. Given the differences between ambigu-
ity sources in our work compared to existing work,
we believe our findings can also facilitate future
studies on ambiguity. Overall, the main sources
are closely relevant to the long-standing challenge
of NLP tasks, knowledge and implicit reasoning,
especially for SOURCE2 and SOURCE3.

4 Addressing CALSA+with LLMs

We conduct experiments on identifying multiple
logical interpretations of CA using our new dataset,
CALSA+. Our experiments aim to answer our afore-
mentioned research question: (ii): To what extent
can we utilize current LLMs to identify multiple
logical interpretations in a CA?

4.1 General Design

We conduct our experiments at the predicate level,
consistent with the annotation procedure. We
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Figure 3: Number of pairs of slot-fillers whose ROUGE-
1 score is above a certain threshold.

consider the task a binary Question-Answering
task (QA). Given an IA, a CA, and a question
for a predicate P , models are expected to output
an answer YES or NO, generate a slot-filler Z
if applicable, and generate the reasoning. We
set the expected format of the models’ output
to be: <think>{reason}</think><answer>
{answer}</answer><slot>{slot-filler}
</slot>. We focus on predicate-level experiments
for the following reasons: 1) We anticipate that
identifying predicates would be easier than directly
identifying all the logical structures simultaneously
since the predicates are the decomposition of
the complex logical structures. 2) Identifying
predicates would provide finer-level insights
as to which part of the logic models identify
both correctly and incorrectly, which facilitates
finer-level analysis. Through aggregation of
the results from our experiment on predicate
identification, we can obtain the results for
multiple logical interpretations identification.
All the experiments are conducted with 3-fold
cross-validation. The basic statistics for a fold are
shown in Table 6. We conduct our experiments
with Reinforcement Learning from Verifiable
Rewards (RLVR), Supervised Fine-Tuning (SFT)
and Prompt Engineering (PE), respectively.

4.2 Modeling methods

We explore fine-tuning models with RLVR (Lam-
bert et al., 2024) since the RL approach is reported
to significantly enhance the general reasoning abil-
ities of pre-trained LLMs, especially in solving
math and coding problems (Lambert et al., 2024;
Guo et al., 2025; Wei et al., 2025). Given that the
implicit reasoning ability is the key part to iden-
tifying a logical structure, we want to examine to
what extent the RL approach is effective in our
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Methods Models Ptn.Acc Predicate.F1 Slot.ROUGE-1.All Slot.BertScore.All Slot.ROUGE-1.R Slot. BertScore.R

RLVR
Qwen2.5-7B-Instruct .545 (.05) .783 (.02) .791 (.03) .964 (.00) .415 (.08) .683 (.04)
Mistral-7B-Instruct-v0.3 .560 (.10) .761 (.05) .760 (.02) .959 (.00) .377 (.04) .686 (.03)
Falcon3-7B-Instruct .544 (.02) .752 (.02) .752 (.01) .959 (.00) .381 (.03) .678 (.03)

SFT
Qwen2.5-7B-Instruct .559 (.01) .747 (.03) .749 (.04) .960 (.01) .353 (.02) .697 (.07)
Mistral-7B-Instruct-v0.3 .449 (.05) .673 (.03) .545 (.07) .930 (.00) .264 (.17) .780 (.13)
Falcon3-7B-Instruct .525 (.05) .756 (.01) .747 (.01) .959 (.00) .326 (.01) .644 (.00)

Zero-shot

Qwen2.5-7B-Instruct .342 (.00) .659 (.02) .696 (.03) .943 (.01) .248 (.01) .561 (.03)
Mistral-7B-Instruct-v0.3 .202 (.07) .534 (.03) .426 (.01) .872 (.01) .244 (.02) .830 (.01)
Falcon3-7B-Instruct .358 (.04) .607 (.04) .535 (.02) .907 (.01) .223 (.01) .667 (.03)
gpt-4.1-2025-04-14 .483 (.02) .748 (.01) .766 (.02) .960 (.00) .452 (.06) .726 (.01)
o4-mini-2025-04-16 .462 (.02) .665 (.01) .659 (.01) .942 (.00) .498 (.05) .821 (.01)

Table 5: Averaged 3-fold experiment results. The standard deviation is shown in parentheses. Ptn.Acc: the
multi-label accuracy of multiple logical structure identification; Predicate.F1: the macro F1 score for predicate
identification; Slot.{target}.All: the average target score of slot-fillers calculated for all instances at the predicate
level; Slot.{target}.R: the average target score of slot-filler calculated for instances where that label has a slot-filler.
The results are rounded up to the respective decimal position. All scores range from 0 to 1. The higher the better.

Split #CAs #Predicate-level instances

train 84 1092
val 25 325
test 25 325

Table 6: The basic statistics of a fold. All three folds
contain the same number of instances.

task. We utilize the Group Relative Policy Opti-
mization (GRPO) algorithm (Shao et al., 2024) for
training our models. Following their work, our
reward function is also designed to contain two
parts: the format and the correctness of the content.
We also conduct zero-shot and STF experiments as
baselines. We show more details in Appendix D.

4.3 Results

We evaluate the models’ performance through var-
ious metrics. For logical structure identification,
we use multi-label accuracy, for predicate iden-
tification, we use macro-F1 score to account for
both YES and NO labels. For slot-fillers, we con-
sider the ROUGE score and BertScore for evaluat-
ing both surface-level similarity and semantic-level
similarity respectively. We consider the predicted
slot-filler correct if it matches any of the selected
slot-fillers by annotators. Specifically, for each CA,
we consider the highest score as the score for that
instance and then average the scores for all CAs
for both ROUGE and BertScore. We also consider
two scenarios: 1) since not all predicates have slot-
fillers, when the target predicate does not have a
slot-filler, we do not want models to generate one.
Thus, we evaluate for all instances, denoted as All
(i.e., if the label does not contain a slot-filler, mod-
els should not generate one, otherwise it will be
penalized). 2) We observed that 245 out of 325

test instances do not contain a slot-filler (i.e., mod-
els are not supposed to generate a slot-filler for
those instances), thus, it makes us wonder about
the quality of the actually generated slot-fillers. We
thus calculate both ROUGE score and BertScore
for instances that have a slot-filler (80/325), de-
noted as Recall. The results are shown in Table 5.
Overall, the high Predicate.F1 scores show that the
models tested here are capable of identifying the
logical structure to some extent. For slot-fillers, the
promising results for type All show that models
generally do not predict a slot-filler when the la-
bel does not have one. However, the comparably
low scores for type R show that the actual gener-
ated slot-fillers differ from the annotated ones to
a certain extent. Furthermore, though trained on
a comparably small dataset, models trained with
RLVR constantly display better performances than
their zero-shot and SFT counterparts. The perfor-
mances are also consistent with OpenAI’s larger
models under zero-shot settings. This verifies the
effectiveness of RLVR in solving tasks other than
math or coding. Our RLVR modeling results per
predicate are shown in Appendix I.

4.4 Analysis

To further analyze the results and to understand the
challenges regarding modeling, we perform two
levels of manual investigations on model outputs.
Given that the automatic evaluation results do not
distinguish significantly across different models
and methods, we use the outputs of Qwen2.5-7B-
Instruct as a representative for analysis.

First, we conduct analysis on the finer-level pred-
icate identification task. We manually check 71 test
instances in which the model’s predicted answer
is different than the label (henceforth, non-aligned
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instances). For all 28 non-aligned instances where
that label is NO (i.e., all three annotators agree that
the target predicate does not exist in the given CA)
and model’s prediction is YES, we found that, inter-
estingly, the predicted answers for 19 non-aligned
instances could be considered reasonable, which
indicates that model sometimes identifies implicit
logic that even annotators did not realize during the
annotation. We show an example in Appendix E
(the first one). For the 19 reasonable instances, the
main source behind the non-alignment is consistent
with that found in annotation results (Section 3.4).
However, for the 8 instances where the predicted
answer is not reasonable, we found that the main
reason (5/8) is that the model generates correct rea-
soning, which can semantically induce the correct
label, but the actual generated answer is the op-
posite. Furthermore, for 44 non-aligned instances
where the label is YES whereas model’s predicted
answer is NO, we found that model has difficulty
identifying non-obvious logic, consistent with the
obviousness of our labels (i.e., how many anno-
tators select YES). Specifically, 23 non-aligned
instances have 1-YES labels, 18 non-aligned in-
stances have 2-YES labels, and only 2 non-aligned
instances have 3-YES labels. We also show an in-
stance of a non-obvious logic that the model fails
to identify in Appendix E (the second one).

To assess the quality of the generated slot-fillers,
we conducted an additional annotation study on top
of 40 generated slot-fillers for instances that were
not an exact match with any of the gold slot-fillers
selected by annotators. Specifically, two expert an-
notators labeled whether the generated slot-filler
is correct or incorrect in terms of representing a
slot-filler for the given binary predicate question.
As a result, annotators agreed on 35/40 (87.5%) in-
stances, where 30 instances were agreed to be cor-
rect and five instances were agreed to be incorrect.
After the annotation, the five disagreeing instances
(12.5%) were discussed amongst annotators. Both
agreed that two of the remaining instances could
be considered correct or incorrect depending on
how one interprets the concept Y in the original
question. This is consistent with our findings in
Section 3.4, specifically, the SOURCE2 for different
interpretations. The other three disagreements were
attributed to human error, and after the discussion,
two were agreed to be incorrect and one correct.
The final resulsts indicate that 33/40 instances can
be considered correct and that the generated slot-
fillers can be considered high quality.

We conduct an analysis on the results for iden-
tifying multiple logical interpretations. Given that
logical interpretation labels are obtained through
aggregating the predicate-level labels, the findings
for predicate-level results are closely related to the
results here. We found that since the model strug-
gles to identify non-obvious logic, the average num-
ber of logical structures (2.88) identified is smaller
than the labels (3.56). For identifying different
logical interpretations for certain CAs, the model
must think “differently”. Nevertheless, it usually
provides similar reasonings to predicates of differ-
ent logical interpretations. This also contributes to
failing to identify diverse interpretations of a CA.

Overall, our experiments demonstrate that while
current LLMs show potential in identifying multi-
ple interpretations of a CA, challenges still remain.
Specifically, identification of the non-obvious logic,
which can also be challenging for human annota-
tors, without explicit explanations is still a chal-
lenge. Furthermore, the inconsistencies between
the generated reasoning and the final predicted an-
swer is another challenge that must be addressed.

5 Conclusion and Future Work

In this work, we addressed the task of identifying
multiple logical interpretations of a CA. We cre-
ated CALSA+, a dataset containing 134 CAs with
multiple logical interpretations collected via 13
predicate-related questions. We conduct an analy-
sis on our dataset and find three main sources of dis-
agreement. Using our dataset, we conducted model-
ing experiments and found that models trained with
RLVR show effectiveness in addressing the task.
Meanwhile, challenges, especially the inconsisten-
cies between the generated reasoning and the final
answer, along with identifying the non-obvious
logic, still remain. We hope our dataset and the
experiment results will inspire further research in
identifying multiple logical interpretations in ar-
gumentative texts. Furthermore, while our work
is based on the CALSA dataset, which was origi-
nally created in the context of a debate setting, we
believe our predicates can also be leveraged to ana-
lyze other types of CAs, such as those in the legal
domain (e.g., court cases), general domain (e.g.,
Reddit threads), etc. In our future work, we plan to
utilize our dataset to determine which logical inter-
pretations align with the original writer’s intention
and whether modeling is possible for determining
the most likely plausible interpretations.
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Limitations

Dataset Size The number of overall annotations
for CALSA+ can be considered abundant from
the perspective of total annotations. We collected
1,742 annotations per annotator, resulting in 5,226
total annotations. However, from the perspective
of unique CAs and predicates, our dataset can be
considered small. Each annotator only annotated
134 CAs. For each CA, although 13 total predicates
are annotated, this means that we only collect, at
most, 134 instances for each predicate type.

Number of Annotators Ideally, for each CA,
we would like to collect an abundant amount of
annotations from several annotators with differ-
ent background knowledge through means such
as crowdsourcing. However, given the complexity
of the task and the time to train crowdworkers, our
annotation is limited to only three expert annota-
tors.
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A Annotation Interface

Our annotation interface is shown in Figure 4.

B Mapping between predicates and all
CA logical structures

We show the mapping between the original logical
structures defined in CALSA and the predicates
used in the work in Table 7.

C Similarity between selected evidence

For predicates that do not have a slot-filler, we re-
port the Jaccard similarity (Jaccard(X ,Y )= |X∩Y |

|X∪Y | )
between all pairs of evidence for instances that
have 2 more YES (if 3 annotators selected evidence,
we compare every pair of them). We show the dis-
tribution of the similarity scores in Figure 5. Simi-
lar to slot-fillers, we observed that around 40% of
the pairs have a similarity score above 0.5, which
indicates that annotators tend to focus on similar
segments in a CA as evidence for their answers.
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Figure 4: Our interface used for collecting predicate-level annotations for CAs.

Predicates Patterns of logical structure

ACK(IA), MITI(Z,IA) Mitigation
ACK(IA), ANO(Z,Y) Alternative
NO-EVI(IA) No evidence
DENY(IA), ANO(Z,Y) Another true cause
TRANS1(X,Z,Y) Missing mechanism #1
TRANS2(X,Z,Y) Missing mechanism #2
NO-NEED-ADDRESS(Y) No need to address
PRO(Y,Z) Negative effect due to y
PRO(X,Z) Positive effects of a different perspective from y #1
SUP(Y,Z) Positive effects of a different perspective from y #2

Table 7: The mapping between the original patterns of CA logic structures defined in the CALSA paper (Naito et al.,
2024) and the predicates explored in this paper. We ignore the predicate regarding the attack on the conclusion of
IA in all logical structures, for the reason discussed in Section 3.2.

D Training and evaluation details

We use NVIDIA H200 GPU to train all the models
60 to 90 epochs till the overall rewards for both
training and validation sets converge. We use Hug-
gingface TRL library (von Werra et al., 2020) for
training. We use DeepSpeed ZeRO-2 (Rajbhandari
et al., 2020) strategy to reduce memory usage. For
testing our models, we use the checkpoint which
has the highest overall reward on the validation
set. We use the Huggingface evaluate library for
calculating the ROUGE and BertScore scores.

E Examples of model generation

We show examples of Qwen2.5-7B-Instruct
model’s generation in Table 8.

F The distribution of logic structures in
CALSA+ dataset

The distribution of the patterns of logic structure in
CALSA+ dataset is shown in Figure 6. The x-axis
represents the labels of logical structures and the
y-axis represents the number of CAs.

G Reward function design

Our reward function rewards the format of the out-
put and the generated contents. Specifically, we
design two separate reward functions for rewarding
the answer to the binary question and the slot-filler.
For rewarding the answer to the binary question,
first, if the answer is generated within the answer
tag <answer></answer>, and the answer tag is gen-
erated only once, we give a reward of 0.5 for the
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Input Model generation

IA: homework reduces free time. free time is good. thus
homework should be abolished....

CA: They said that if homework would be abolished,
we could more free time. However, it is not important,
in particular, to students. Because, not all students
spend their free time wisely. It is supposed that most of
students waste time in vain. As government team
speaker said students are very busy because of club
activities ,cram school and so on. Students are very
tired, so they tend to play or something in free time. For
example, net surfing, playing video games, and so on.
As a result, most of students are lack of sleep because of
meaningless things.

Q: Does CA argue that ‘homework’ suppresses a bad
thing? If yes, what is that thing? Please extract that
from the counter-argument. (label: NO)

Reasoning: the counter-argument does not directly
argue that ’homework’ suppresses a bad thing, but rather
it suggests that if homework were abolished, students
might engage in more activities that are harmful or
unproductive in their free time. the phrase that captures
this idea is ’meaningless things’, which could represent
the bad thing that students might do without homework.

Answer: yes

Slot-filler: meaningless things

IA: homework reduces free time. free time is good. thus
homework should be abolished.

CA: They said that homework interferes with sleep
because the student is doing homework at night.
However, the only reason homework interferes with the
student’s sleep schedule is because the student
procrastinates too much. If, as the argument states, the
student doesn’t begin homework until 10 PM, then this
student has put off the important homework task and
has instead filled the after-school hours with other less
important activities. Doing away with homework
because students have a habit of procrastinating just
reinforces a bad habit that will cause problems in school
and beyond. For instance, if a boss assigns some work
to be completed after hours, the employee needs to
make time to do this work or risk getting fired. In this
sense, assigning homework teaches an important life
skill: how to put important tasks first instead of putting
them off until it’s too late.

Q: Does CA argue that ’free time’ promotes a bad
thing? If yes, what is that thing? Please extract that
from the counter-argument. (label: YES)

Reasoning: the counter-argument does not directly
state that ’free time’ promotes a bad thing, but rather
implies that a bad habit (procrastination) is the cause of
the disruption to free time (or sleep, in this case).
therefore, the answer to the question is no.

Answer: no

Table 8: Examples of generation of Qwen2.5-7B-Instruct for the first fold. The generation is formatted for
readability.
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Figure 5: Number of pairs of evidence whose Jaccard
Similarity score is above a certain threshold.

correctness of the format; otherwise, we give no
reward. We then give a reward of 1 if the answer is
correct; otherwise, 0. For rewarding the slot-filler,
similar to the answer, we first reward the format.
If the model generates a slot-filler within the tag
<slot></slot>, and the tag is only generated once,
we give a reward of 0.5; otherwise, 0. Then, for
the content, we use the slot-fillers obtained from
all three annotators as references, and calculate the
ROUGE-1 score between the generated slot-filler
and each reference slot-filler. We then aggregate
the scores and use the final score as a reward. On
top of that, if the current predicate does not have a
slot-filler and the model generates one, we penalize
the model by giving it a reward of -0.5.

H Examples of the procedure for
decomposition

Consider an IA logic: X should be abolished, since
X suppresses a good Y. Below, we show examples
to explain the decomposition using two CA logical
structures that attack this IA logic.

1. Mitigation, an original logic structure, is de-
fined as: while it is not denied that X sup-
presses a positive outcome Y, the causal rela-
tionship can be mitigated through the means
of Z. This logical structure has two inter-
actions with the causal relation in the cor-
responding IA: (1) CA acknowledges IA’s
causal relation (2) while claiming that the
relation can be mitigated by Z. The logical
structure also has one interaction with the con-
clusion of the IA since CA’s claim is that (3)
X should not be abolished. Thus, this logi-
cal structure can be decomposed into three
predicates (partial logics) (1) ACK(IA), (2)
MITI(Z,IA), and (3) DENY(IA_CON). How-

ever, as all CAs must deny IA’s conclusion,
DENY(IA_CON) is not informative to distin-
guish different logical structures since it ex-
ists in every logical structure. Thus, we only
consider ACK(IA) and MITI(Z,IA) as the con-
stituent predicates for the logical structure
Mitigation.

2. Similarly, Positive effects of a different per-
spective from y #1, another logical structure,
is defined as: since X promotes a positive out-
come Z, which is a different perspective from
Y, X should not be abolished. The pattern has
a total of two interactions with the original IA:
(1) with the conclusion, since it claims that X

should not be abolished, (2) with the variable
X, since it claims that X promotes a positive Z.
However, as aforementioned, interaction with
conclusion is not informative enough for dis-
tinguishing different logical structures, since,
as a valid CA, it must deny IA’s conclusion,
we only consider interaction (2) as the predi-
cate PRO(X,Z) for this logical structure.

I RLVR modeling results per predicate

We show the RLVR modeling results per predi-
cate for all predicates in Table 9. Note that for
predicates that do not have a slot-filler by design,
Slot.<metric>.All scores represent whether the
model succeeds in not generating any slot-filler
for the predicate (e.g., a score of 1.0 indicates that
for all the instances of the current predicate, the
model did not generate any unwanted slot-fillers).
Slot.<metric>.R will be N/A for such predicates
since the label is None.
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Figure 6: The distribution of patterns of logic structure in CALSA+ dataset.

Model Predicate Predicate.F1 Slot.ROUGE-1.All Slot.BertScore.All Slot.ROUGE-1.R Slot. BertScore.R

Qwen2.5-7B-Instruct

ACK(IA) .717 (.04) 1.0 (.00) 1.0 (.00) N/A N/A
DENY(IA) .741 (.03) 1.0 (.00) 1.0 (.00) N/A N/A
REVERSE(IA) .806 (.10) 1.0 (.00) 1.0 (.00) N/A N/A
MITI(Z,IA) .739 (.09) .663 (.06) .941 (.01) .395 (.19) .576 (.19)
ANO(Z,Y) .838 (.04) .629 (.01) .936 (.01) .434 (.13) .764 (.09)
NO-EVI(IA) .486 (.01) 1.0 (.00) 1.0 (.00) N/A N/A
NO-NEED-ADDRESS(Y) .539 (.21) 1.0 (.00) 1.0 (.00) N/A N/A
SUP(Y,Z) .698 (.05) .809 (.16) .971 (.02) .198 (.27) .386 (.11)
PRO(Y,Z) .705 (.07) .722 (.08) .951 (.01) .258 (.13) .412 (.17)
PRO(X,Z) .714 (.06) .591 (.05) .923 (.01) .615 (.07) .834 (.06)
SUP(X,Z) .698 (.05) .469 (.12) .913 (.01) .477 (.18) .837 (.09)
TRANS1(X,Z,Y) .767 (.05) .793 (.03) .967 (.00) .263 (.02) .520 (.15)
TRANS2(X,Z,Y) .772 (.09) .613 (.07) .935 (.01) .266 (.10) .608 (.08)

Mistral-7B-Instruct-v0.3

ACK(IA) .673 (.14) 1.0 (.00) 1.0 (.00) N/A N/A
DENY(IA) .698 (.01) 1.0 (.00) 1.0 (.00) N/A N/A
REVERSE(IA) .796 (.03) 1.0 (.00) 1.0 (.00) N/A N/A
MITI(Z,IA) .684 (.10) .692 (.02) .943 (.00) .362 (.10) .515 (.11)
ANO(Z,Y) .758 (.04) .552 (.08) .927 (.02) .396 (.08) .705 (.11)
NO-EVI(IA) .486 (.01) 1.0 (.00) 1.0 (.00) N/A N/A
NO-NEED-ADDRESS(Y) .567 (.24) 1.0 (.00) 1.0 (.00) N/A N/A
SUP(Y,Z) .613 (.02) .710 (.15) .956 (.02) .153 (.19) .460 (.08)
PRO(Y,Z) .774 (.12) .673 (.14) .945 (.02) .200 (.18) .470 (.13)
PRO(X,Z) .763 (.08) .645 (.08) .934 (.01) .644 (.05) .840 (.02)
SUP(X,Z) .681 (.04) .304 (.02) .884 (.00) .336 (.03) .849 (.07)
TRANS1(X,Z,Y) .762 (.05) .744 (.03) .958 (.00) .290 (.04) .665 (.21)
TRANS2(X,Z,Y) .733 (.06) .558 (.06) .923 (.01) .288 (.14) .634 (.10)

Falcon3-7B-Instruct

ACK(IA) .719 (.06) 1.0 (.00) 1.0 (.00) N/A N/A
DENY(IA) .745 (.06) 1.0 (.00) 1.0 (.00) N/A N/A
REVERSE(IA) .734 (.12) 1.0 (.00) 1.0 (.00) N/A N/A
MITI(Z,IA) .712 (.07) .571 (.05) .925 (.01) .309 (.02) .597 (.02)
ANO(Z,Y) .784 (.09) .599 (.07) .944 (.02) .406 (.12) .704 (.15)
NO-EVI(IA) .597 (.20) 1.0 (.00) 1.0 (.00) N/A N/A
NO-NEED-ADDRESS(Y) .624 (.08) 1.0 (.00) 1.0 (.00) N/A N/A
SUP(Y,Z) .692 (.09) .769 (.08) .961 (.01) .271 (.12) .515 (.07)
PRO(Y,Z) .756 (.03) .676 (.03) .943 (.01) .231 (.07) .551 (.10)
PRO(X,Z) .670 (.08) .559 (.07) .923 (.01) .617 (.06) .852 (.01)
SUP(X,Z) .687 (.10) .435 (.13) .909 (.01) .395 (.08) .786 (.06)
TRANS1(X,Z,Y) .602 (.10) .637 (.05) .943 (.00) .174 (.09) .476 (.32)
TRANS2(X,Z,Y) .671 (.01) .536 (.05) .922 (.01) .299 (.07) .579 (.09)

Table 9: Averaged 3-fold RLVR experiment results per predicate. The standard deviation is shown in parentheses.
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