
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing, pages 6434–6459
November 4-9, 2025 ©2025 Association for Computational Linguistics

LyapLock: Bounded Knowledge Preservation in Sequential Large
Language Model Editing

Peng Wang1,2, Biyu Zhou1*, Xuehai Tang1,
Jizhong Han1, Songlin Hu1,2*,

1Institute of Information Engineering, Chinese Academy of Sciences
2School of Cyber Security, University of Chinese Academy of Sciences
Correspondence: {wangpeng2022, zhoubiyu, tangxuehai, hanjizhong, husonglin}@iie.ac.cn

Abstract

Large Language Models often contain fac-
tually incorrect or outdated knowledge, giv-
ing rise to model editing methods for precise
knowledge updates. However, current main-
stream locate-then-edit approaches exhibit a
progressive performance decline during sequen-
tial editing, due to inadequate mechanisms for
long-term knowledge preservation. To tackle
this, we model the sequential editing as a con-
strained stochastic programming. Given the
challenges posed by the cumulative preserva-
tion error constraint and the gradually revealed
editing tasks, LyapLock is proposed. It inte-
grates queuing theory and Lyapunov optimiza-
tion to decompose the long-term constrained
programming into tractable stepwise subprob-
lems for efficient solving. This is the first
model editing framework with rigorous the-
oretical guarantees, achieving asymptotic op-
timal editing performance while meeting the
constraints of long-term knowledge preserva-
tion. Experimental results show that our frame-
work scales sequential editing capacity to over
10,000 edits while stabilizing general capabil-
ities and boosting average editing efficacy by
11.89% over SOTA baselines. Furthermore, it
can be leveraged to enhance the performance
of baseline methods. Our code is released on
https://github.com/caskcsg/LyapLock.

1 Introduction

Large Language Models (LLMs), with their pow-
erful capabilities in knowledge storage and recall,
have become a research hotspot in the field of natu-
ral language processing (Brown et al., 2020; Huang
et al., 2022; Liu et al., 2024). However, studies re-
veal that the knowledge acquired by LLMs during
the pre-training phase may contain incorrect in-
formation or outdated content (Cao et al., 2021;
Mitchell et al., 2022a). This makes the updating
of model knowledge an urgent and critical issue

*Corresponding authors.

to be addressed. Traditional solutions, such as re-
pretraining or full-parameter fine-tuning, can facili-
tate knowledge updates. However, the prohibitive
computational costs severely limit their practical
applications (Gupta et al., 2023; Yao et al., 2023).

Recent years have witnessed growing interest
in low-cost knowledge updating through model
editing techniques (Wang et al., 2025). Among
these, the locate-then-edit paradigm, exemplified
by ROME (Meng et al., 2022) and MEMIT (Meng
et al., 2023), has emerged as the mainstream frame-
work, owing to its demonstrated advantages in edit-
ing efficiency and precision. This paradigm oper-
ates through two key phases: (1) identifying the
critical parameter subset W associated with tar-
get knowledge via causal tracing analysis, and (2)
achieving the update of the target knowledge within
the parameter space by computing and implement-
ing appropriate perturbations ∆.

To prevent unintended degradation of pretrained
knowledge during target knowledge updates, per-
turbation strategies necessitate meticulous design.
The prevailing approach (Meng et al., 2022, 2023)
involves constructing and solving a bi-objective
loss function that integrates preservation loss and
editing loss to achieve optimized knowledge updat-
ing. The former maintains the stability of knowl-
edge representations intended for retention, while
the latter ensures accurate updating of target knowl-
edge. However, as the preservation loss serves
merely as a soft constraint, the model’s capability
to retain knowledge and generate fluent sentences
after editing is prone to instability. Recent studies
attempt to alleviate this issue by imposing supple-
mentary constraints (e.g., regularized weight up-
dating in RECT (Gu et al., 2024) and null space
projection in AlphaEdit (Fang et al., 2025)) during
parameter search processes. Nevertheless, these
approaches remain inherently restricted by their
heuristic nature.

Furthermore, existing methods have largely fo-

6434

mailto:email@domain
https://github.com/caskcsg/LyapLock

Figure 1: Comparison of preservation loss and down-
stream task performance of LLaMA3 (Meta, 2024) dur-
ing sequential editing of 10,000 samples using current
methods and LyapLock (details in Sec.4).

cused on single-edit incremental optimization for
the immediate editing state, lacking a rigorous the-
oretical framework to regulate the long-term cumu-
lative trends of successive edits in practical deploy-
ment scenarios (Hartvigsen et al., 2023; Wang et al.,
2024). As a result, the accumulation of preserva-
tion loss inevitably erodes model stability during
sequential editing operations, ultimately leading to
model forgetting and collapse (Fang et al., 2025;
Gupta et al., 2024). Our experimental results show
that as the edit count increases, model parameters
gradually deviate from the initial values, evidenced
by a monotonic increase in preservation loss (as
in Figure 1(a)). After 10,000 consecutive edits,
the performance of downstream tasks exhibits near-
complete degradation (as in Figure 1(b)).

To address these challenges, this paper refor-
mulates the conventional bi-objective optimization
problem into a constrained long-term optimization
problem for sequential editing. The objective is to
minimize the long-term editing loss under the con-
straint of cumulative preservation loss, as shown
in Figure 2. However, due to the uncertainty of
subsequent editing tasks and the preservation loss
constraint, achieving a global optimum for this
stochastic programming problem poses a signifi-
cant challenge. To this end, we propose LyapLock,
the first framework providing theoretical stability
guarantees for sequential model editing through a
Lyapunov-driven formulation. Through rigorous
theoretical proofs, we have demonstrated that it
achieves asymptotically near-optimal editing per-
formance while satisfying long-term preservation
loss constraints.

To validate effectiveness, extensive experiments
are conducted on representative LLMs, includ-
ing GPT-2 XL(Radford et al., 2019), GPT-J(Wang
and Komatsuzaki, 2021), and LLaMA-3-8B(Meta,
2024). Results demonstrate that after sequen-
tially editing 10,000 samples, our method achieves

Figure 2: A formal comparison between LyapLock and
current methods.

11.89% improvement in editing performance com-
pared to the best baseline (94.41% vs. 82.52%),
while maintaining stable performance across multi-
ple downstream tasks (baseline methods all degrade
by 100%). Notably, our method exhibits excep-
tional scalability — when the editing scale extends
to 20,000, the model still maintains its general ca-
pability. In addition, our method is compatible
with existing knowledge editing methods and can
improve their editing performance by 9.76% and
downstream task performance by 32.63%.

2 Preliminary

2.1 Hidden States of LLMs
LLMs typically consist of an embedding layer, L
decoder layers, and an output layer. A decoder
layer has an attention module (Attn) and a multi-
layer perceptron (MLP) module. Given the struc-
tural diversity of LLMs, low-level variations (e.g.,
residual connections, normalization, and biases)
are omited for brevity in this paper. For a input x,
the hidden state hl at the l-th layer is expressed as:

hl = hl−1 + al +ml, al = Attnl(hl−1),

ml = MLPl(al) = W l
outact(W l

in(a
l + hl−1))

(1)

Here, al and ml are the outputs of Attnl and MLPl.
MLPl contains two linear layers with parameters
W l

in ∈ Rd0×d1 and W l
out ∈ Rd1×d0 , where d0 is the

intermediate dimension and d1 is input/output di-
mension of MLPl. act(·) denotes a specific activa-
tion function, which varies across different LLMs.

2.2 Model Editing in LLMs
2.2.1 Knowledge Storage
According to (Kohonen, 1972; Geva et al., 2021),
any linear operation can be viewed as a form of
key-value pair storage. Consequently, the second-
layer parameters W l

out in the MLP layer can be
interpreted as a linear associative memory module:

ml
︸︷︷︸
v

= W l
out act(W l

in(a
l + hl−1))︸ ︷︷ ︸
k

(2)

6435

Typically, factual knowledge stored in LLMs can
be formalized as a knowledge triple (s, r, o) com-
posed of a subject s, relation r, and object o
(Meng et al., 2022, 2023). For example, the fact
"Beats Music is owned by Apple." is formalized
as s = "Beats Music", r = "is owned by", and
o = "Apple". Here, W l

out associates a key k encod-
ing (s, r) with a value v encoding o. Based on this
perspective, editing factual knowledge in LLMs
can be achieved by modifying the parameters of
W l

out (hereafter denoted as W). Specifically, each
edit operation updates the model parameters by
adding a perturbation ∆ to W , thereby reconstruct-
ing the association between k and v to implement
knowledge updates.

2.2.2 Sequential Editing
In practical applications, sequential knowledge up-
dates to the model are often required (Hartvigsen
et al., 2023; Wang et al., 2024; Fang et al.,
2025). Specifically, given T batches of new knowl-
edge {S1, S2, . . . , ST } to be updated into LLMs,
where each St contains n new facts (i.e., St =
{(s1t , r1t , o1t), (s2t , r2t , o2t), . . . , (snt , rnt , ont)}). As-
sume that each edit occurs at a timestamp that is a
positive integer. Sequential editing involves associ-
ating all corresponding new key-value pairs kit-v

i
t

(i ∈ {1, 2, . . . , n}) in St by adding a perturbation
∆(t) to the updated model parameters from the
previous timestamp W (t − 1) at each timestamp
t ∈ {1, 2, . . . , T}. Through this process, the model
parameters are sequentially updated.

Formally, for the t-th timestamp (i.e., the t-th
edit), we represent the current batch of new knowl-
edge St as key-value matrices:

K1(t) =
[
k1t | k2t | . . . | knt

]
∈ Rd0×n,

V1(t) =
[
v1t | v2t | . . . | vnt

]
∈ Rd1×n

(3)

Let W (0) representing the original parameters.
Correspondingly, the preserved knowledge in W (0)
can be expressed as key-value matrices K0(0) and
V0(0), hereafter denoted as K0 and V0. The main-
stream locate-then-edit methods solve the pertur-
bation ∆(t) by jointly optimizing the following
bi-objective loss function:

min
∆(t)

EL(t) + PL(t). (4)

The above EL(t) and PL(t) are the editing
loss and the preservation loss of the model af-
ter editing at timestamp t, respectively, where
EL(t) = ∥[W (t− 1) + ∆(t)]K1(t)− V1(t)∥2F

and PL(t) = ∥[W (t− 1) + ∆(t)]K0 − V0∥2F .
Here, ∥·∥2F denotes the squared Frobenius norm.
The editing loss ensures accurate updates for tar-
get knowledge, while the preservation loss pre-
serves the integrity of the to-be-reserved knowl-
edge. By applying the normal equations (John-
son et al., 2004), a closed-form solution of the
formula 4 can be derived. After obtaining ∆(t),
the model parameters are updated as:

W (t) = W (t− 1) + ∆(t). (5)

By repeating this process at each timestamp t,
sequential editing is achieved, enabling the model
to progressively incorporate all T batches of new
knowledge.

3 The LyapLock Framework

3.1 Constrained Sequence Editing
Optimization Problem Formulation

As shown in Figure 1, the traditional bi-objective
optimization Problem 4 leads to continuous accu-
mulation of preservation loss with increasing edit
operations, eventually resulting in model collapse.
Therefore, we reformulate Problem 4 as a con-
strained long-term optimization problem that re-
stricts the preservation loss within a certain thresh-
old. The specific formulation is as follows:

min
∆(t)

lim sup
T→∞

1

T

T∑

t=1

EL(t),

s.t. lim sup
T→∞

1

T

T∑

t=1

PL(t) ≤ D.

(6)

Here, D represents the average preservation loss
over the time horizon, i.e., after t consecutive edits,
the average preservation loss over the time interval
[1, t] should be constrained within D.

3.2 Problem Transformation Using Lyapunov
Optimization Theory

The key challenge in solving problem 6 lies in min-
imizing long-term editing loss while maintaining
the preservation loss below threshold D, given the
highly stochastic and unpredictable (K1(t),V1(t))
pair across timesteps t. To this end, we introduce
virtual queues to transform the constrained satis-
faction into a well-studied queue stability problem.
Building on this, by applying Lyapunov optimiza-
tion from control theory (Neely, 2010) (The inno-
vative discussion can be found in Appendix B),

6436

we further decompose the long-term optimization
into per-timestamp subproblems that can be solved
at each timestamp t. This ensures queue stability
during online decision-making without requiring
future information or statistical knowledge of un-
certainties. Next, we will elaborate on the details of
this transformation. We first design a virtual queue
Z(t), initialized as Z(1) = Zinit, with its update
rule at each timestamp t given by Equation (7):

Z(t+ 1) = max [Z(t) + a(PL(t)−D) + b, Zmax] ,
(7)

where Zmax ≥ 0, b ≥ 0, a > 0. Intuitively, the
value of Z(t) reflects the deviation between the
actual average preservation loss and D over the
historical time interval [0, t − 1]. An increase in
Z(t) corresponds to persistent violation of the con-
straint. It can be theoretically proven that if the
virtual queue satisfies the strong stability condition
limT→∞

Z(T)
T = 0, the constraint in problem 6

holds (detailed proof is provided in Appendix C.1).
To analyze the stability of the queue, we con-

struct a quadratic Lyapunov function:

L(Z(t)) =
1

2
Z(t)2, (8)

where L(Z(t)) represents the congestion level of
the virtual queue. For example, a smaller value
indicates lower queue backlog and stronger stabil-
ity. To continuously drive L(Z(t)) toward lower
congestion and ensure strong queue stability, we de-
fine the one-step conditional Lyapunov drift (Neely,
2010):

∆(Z(t)) = {L(Z(t+ 1))− L(Z(t)) | Z(t)} .
(9)

Within the Lyapunov optimization framework,
seeking the optimal solution of problem 6 is equiv-
alent to minimizing the following expression 10 at
each timestamp t:

min
∆(t)

V · EL(t) + ∆(Z(t)). (10)

Here, the control parameter V ≥ 0 balances
editing performance and queue stability: increas-
ing V approaches the theoretical optimal editing
performance but reduces queue stability, while de-
creasing V enhances constraint satisfaction at the
cost of editing performance. Since ∆(Z(t)) con-
tains max[·], direct optimization of problem 10 is
challenging. Therefore, we can optimize by min-
imizing the upper bound of equation 10 (for the

derivation of the upper bound, see Appendix C.3),
that is:

min
∆(t)

V · EL(t) + aZ(t)PL(t). (11)

Now the original long-term optimization prob-
lem 6 is decomposed into stepwise subproblems at
each timestamp t.

3.3 Stepwise Editing with Long-term
Guarantees

After transforming Problem 6 into per-timestamp
subproblems, we are now seeking to solve for the
optimal disturbance. Prior to this, we further re-
fine this formal expression following the previous
work (Fang et al., 2025). It has been revealed that,
to ensure that the model does not forget the knowl-
edge that has been edited before, the key value
matrix of the knowledge edited before timestamp
t, denoted by Kp(t) and Vp(t), should be incorpo-
rated into the optimization objective, where Kp(t)
and Vp(t) are matrices composed of [K1(1) | . . . |
K1(t − 1)] and [V1(1) | . . . | V1(t − 1)], respec-
tively. That is:

min
∆(t)

V (EL(t) +BL(t)) + aZ(t)PL(t), (12)

where BL(t) denotes the edit loss of the model
with respect to all the knowledge that has been
edited prior to time t. It is feasible to directly
derive the closed-form solution of problem 12 as:

∆(t) =

[
V
(
V1(t)−W (t− 1)K1(t)

)
K1(t)

T

+ V
(
Vp(t)−W (t− 1)Kp(t)

)
Kp(t)

T

+ aZ(t)
(
V0 −W (t− 1)K0

)
KT

0

]
C(t)−1

(13)

Here, C(t) is defined as V K1(t)K1(t)
T +

V Kp(t)Kp(t)
T + aZ(t)K0K

T
0 . As can be seen

from Equation 13, once K0, V0, K1(t), and V1(t)
are obtained, the perturbation ∆(t) can be calcu-
lated. For details on computing these components,
refer to Appendix A.

Now we are able to compute the perturbation
term expression 13 and update the virtual queue
according to expression 7 step by step until com-
pleting T sequential editing operations. The de-
tailed optimization procedure is summarized in Al-
gorithm 1.

6437

Regarding the setting of hyperparameters, we
have the following three considerations: (1) To set
a more appropriate threshold D for different LLMs,
we collect the model’s preservation loss after one
edit as the baseline Dbase, and adjust D through
different α values, i.e., D = αDbase, indicating the
threshold is set to α times the baseline. (2) Since
parameters a and b in the virtual queue update for-
mula 7 control the mapping relationship between
preservation loss and queue value Z(t), with aZ(t)
governing the weight of preservation loss in for-
mulation 12, we achieve the following by setting
a = 1√

D
and b = 0: when the model’s preser-

vation loss exceeds the threshold D by one fold
after an edit, the weight of preservation loss in 12
doubles. (3) Simultaneously, we set zinit =

√
D,

zmax =
√
D, and V = 1 to ensure that when the

constraints in equation 7 are not violated, the preser-
vation loss and editing loss in formulation 12 are
calculated with a 1:1 weight ratio.

Algorithm 1 Stepwise Editing with Long-term
Guarantees
Initialization: Given hyperparameter α, base
model W (0) = W . Compute K0, V0, Dbase. Set
D = α · Dbase, a = 1√

D
, b = 0, zinit =

√
D,

zmax =
√
D, V = 1.

for t = 1 to T do
1) Real-time Optimization:

• Obtain Z(t), W (t− 1), K1(t), V1(t).
• Compute ∆(t) via Eq.13.
• Update model: W (t) = W (t− 1) + ∆(t)

2) Queue Update:
• Update Z(t+ 1) via Eq.7.

end

4 Experiment

4.1 Setting

Base LLMs. We selected three representative
LLMs commonly used in the field of knowledge
editing: GPT2-XL (1.5B)(Radford et al., 2019),
GPT-J (6B)(Wang and Komatsuzaki, 2021), and
LLaMA3 (8B)(Meta, 2024).

Baseline Methods. To compare with our method,
we chose the representative model editing meth-
ods in the locate-then-edit approach, namely
ROME(Meng et al., 2022) and MEMIT(Meng
et al., 2023), as well as methods focusing on ad-
dressing the challenges faced by such approaches

in sequential editing scenarios, namely RECT(Gu
et al., 2024), PRUNE(Ma et al., 2025), and Al-
phaEdit(Fang et al., 2025), and the fine-tuning
method FT. For detailed introductions to these
methods, see Appendix D.1.

Datasets. We adopted two representative bench-
marks in the field of model editing: Counter-
fact(Meng et al., 2022) and ZsRE(Levy et al.,
2017). For introductions to these datasets, see Ap-
pendix D.2.

Metrics. Following prior works(Meng et al.,
2022, 2023; Fang et al., 2025), we adopt the
metrics for evaluating knowledge updating abil-
ity: Efficacy (efficiency success) and Generaliza-
tion (paraphrase success); for assessing knowledge
preservation ability: Specificity (neighborhood suc-
cess); and for evaluating generation quality: Flu-
ency (generation entropy) and Consistency (refer-
ence score). The specific calculation formulas are
provided in Appendix D.3.

For more detailed experimental settings and time
cost, see Appendix D.4 and Appendix D.5

4.2 Editing Performance Results
We randomly select 10,000 samples for evaluation
under the batch sequential editing scenario, with
100 edits per batch. Table 1 compares editing per-
formance across various LLMs, datasets, and base-
line methods. Results demonstrate LyapLock’s
comprehensive superiority in cross-model and
cross-dataset scenarios across three dimensions:
(1) Knowledge Updating: On Efficacy and Gener-
alization, LyapLock outperforms the second-best
method AlphaEdit by average margins of 11.88%
and 12.69%, with gaps expanding to 22.01% and
19.71% on LLaMA3-Counterfact and 29.63% and
27.59% on GPT2-XL-ZsRE scenarios, respectively.
(2) Knowledge Preservation: For Specificity,
LyapLock outperforms the second-best baseline Al-
phaEdit by an average margin of 6.72%. LyapLock
is the closest to the pre-edited performance, espe-
cially on the ZsRE dataset, where it only drops by
an average of 1.4%, validating its effective preser-
vation of original knowledge. (3) Generation
Quality: In Fluency and Consistency, LyapLock
significantly outperforms baselines. Specifically,
the Fluency of LyapLock can reach an average
of 604.14, which is only a 4% drop compared
to the pre-edited models, while its Consistency is
improved by an average of 6.97 compared to the
pre-edited models. These advantages stem from

6438

Table 1: Performance results of sequential editing task (10,000 Samples). Here, the abbreviations Eff. (Efficacy), Gen.
(Generalization), Spe. (Specificity), Flu. (Fluency), and Consis. (Consistency) are employed to denote respective evaluation
metrics. Top-performing results are emphasized using bold formatting, with secondary superior results distinguished through
underlined notation.

Method Model Counterfact ZsRE

Eff.↑ Gen.↑ Spe.↑ Flu.↑ Consis.↑ Eff.↑ Gen.↑ Spe.↑
Pre-edited

L
L

aM
A

3

7.02±0.26 9.44±0.25 89.73±0.18 635.47±0.11 24.24±0.09 35.67±0.30 34.81±0.30 31.83±0.22

FT 94.04±0.24 84.13±0.31 38.15±0.36 401.45±0.69 21.35±0.12 17.79±0.22 17.36±0.22 6.30±0.11

ROME 68.45±0.46 61.13±0.38 48.30±0.28 505.00±0.14 3.88±0.02 1.14±0.06 1.05±0.06 0.15±0.02

MEMIT 49.42±0.50 48.78±0.46 51.47±0.44 499.28±0.08 1.98±0.01 0.00±0.00 0.00±0.00 0.04±0.01

PRUNE 50.12±0.50 49.20±0.45 51.18±0.43 509.27±0.08 1.81±0.01 0.00±0.00 0.00±0.00 0.04±0.01

RECT 54.58±0.50 52.01±0.44 49.41±0.39 176.30±0.25 3.07±0.03 0.00±0.00 0.00±0.00 0.00±0.00

AlphaEdit 72.60±0.45 61.97±0.41 52.98±0.33 420.84±0.54 6.24±0.07 91.79±0.17 87.16±0.23 30.39±0.22

LyapLock 94.61±0.23 81.68±0.34 69.01±0.30 617.04±0.24 30.70±0.12 94.34±0.13 90.20±0.20 30.74±0.22

Pre-edited

G
PT

-J

15.22±0.36 17.65±0.33 83.50±0.25 622.01±0.14 29.61±0.10 26.45±0.28 25.74±0.28 27.04±0.26

FT 94.56±0.23 77.04±0.36 40.71±0.37 327.71±0.86 11.11±0.13 61.82±0.35 59.24±0.36 13.53±0.19

ROME 48.71±0.50 49.70±0.40 52.49±0.30 614.77±0.08 2.85±0.01 17.99±0.31 16.50±0.30 0.82±0.04

MEMIT 51.62±0.50 51.05±0.41 51.78±0.35 553.31±0.17 0.64±0.02 0.04±0.01 0.03±0.01 0.03±0.01

PRUNE 51.27±0.50 50.54±0.40 52.60±0.33 535.22±0.14 1.36±0.03 0.03±0.01 0.02±0.01 0.05±0.01

RECT 50.42±0.50 49.23±0.45 54.82±0.40 455.05±0.60 2.57±0.05 41.89±0.39 39.29±0.38 20.17±0.23

AlphaEdit 89.90±0.30 75.41±0.35 58.79±0.27 347.89±0.52 1.71±0.03 93.10±0.19 85.09±0.28 22.88±0.24

LyapLock 99.00±0.10 88.80±0.27 68.21±0.28 618.33±0.18 40.93±0.12 98.77±0.08 93.82±0.19 25.51±0.25

Pre-edited

G
PT

2-
X

L

21.82±0.41 24.16±0.37 78.32±0.28 626.69±0.12 31.34±0.10 22.17±0.26 21.28±0.26 24.20±0.24

FT 72.79±0.45 55.90±0.43 49.23±0.37 607.94±0.22 13.05±0.05 15.28±0.32 13.64±0.32 1.24±0.06

ROME 50.03±0.50 49.42±0.41 51.49±0.33 571.45±0.17 1.17±0.01 20.51±0.35 18.08±0.33 1.63±0.07

MEMIT 67.73±0.47 60.92±0.41 56.00±0.33 518.00±0.84 7.13±0.10 1.78±0.19 1.62±0.08 1.30±0.05

PRUNE 60.82±0.49 56.47±0.41 52.70±0.35 602.01±0.15 11.53±0.07 0.09±0.01 0.11±0.02 0.47±0.03

RECT 84.93±0.36 66.45±0.39 56.42±0.33 542.92±0.75 12.23±0.13 31.73±0.36 28.22±0.34 11.82±0.17

AlphaEdit 92.42±0.26 76.83±0.33 56.86±0.29 583.27±0.29 31.83±0.13 55.33±0.42 46.90±0.41 14.63±0.19

LyapLock 94.76±0.22 80.51±0.33 60.74±0.29 577.06±0.42 34.29±0.13 84.96±0.28 74.49±0.35 22.63±0.24

LyapLock’s unique preservation loss control mech-
anism, which optimally balances knowledge updat-
ing and preservation during sequential editing. The
case studies in Appendix E.3 illustrate the specific
output performance of the various editing meth-
ods. Appendix E.1 also provides the editing per-
formance results for sequential editing of 2,000
samples and 5,000 samples. To further validate
the effectiveness of our approach, we broaden the
experimental datasets to a wider scope, employing
the MQuAKE-CF dataset for multi-hop evaluations
and the QAEdit dataset for real-world testing. Ad-
ditional details are provided in Appendix E.2.

4.3 General Capability Tests

Now we assess the model’s general capabilities
using six subtasks from the General Language Un-
derstanding Evaluation (GLUE) benchmark (Wang
et al., 2019) (see Appendix D.6 for details) in
line with (Fang et al., 2025). During the experi-
ment, we conducted a test after every sequential
editing of 1,000 samples. The GLUE performance
results of the LLaMA3 model after completing the
sequential editing task on the Counterfact dataset

are shown in Figure 3. We found that: (1) The
limitations of baseline methods: Most baseline
methods experience a significant drop in general ca-
pabilities after sequential editing of 2,000 samples,
with performance on almost all tasks approaching
zero. Baseline methods focused on addressing the
challenges of sequential editing, such as RECT and
AlphaEdit, are able to maintain a certain level of
performance with more sequential edits, but when
the number of sequential edits reaches 10,000 sam-
ples, the performance of all baseline methods drops
to almost zero. This is consistent with our previous
findings that these methods cannot suppress the
cumulative effect of parameter shifts, ultimately
leading to model performance collapse as the num-
ber of sequential edits increases. (2) The stabil-
ity of LyapLock: The LyapLock method is able
to maintain good general performance across all
tasks, even after sequential editing of 10,000 sam-
ples. Moreover, to further explore the potential of
the LyapLock method, we increased the number
of tests to 20,000 samples and observed that the
method still maintained excellent overall perfor-
mance across all tasks. This further indicates that

6439

Figure 3: The F1 scores of the LLaMA3 (8B) model on the GLUE benchmark after sequentially editing 10,000
samples on the CounterFact dataset.

Figure 4: The preservation loss changes after sequentially editing 10,000 samples on different datasets by different
LLMs.

constraining the preservation loss can effectively
prevent model collapse.

4.4 Preservation Loss Control Analysis

As stated in Section 1, previous solutions dedicated
to addressing the challenges of the locate-then-edit
method in sequential editing scenarios, such as
RECT, PRUNE, and AlphaEdit, has all failed to ef-
fectively suppress the accumulation of preservation
loss. With the increasing number of edits, these
methods will eventually lead to a significant de-
cline or even collapse of model performance. In
light of this, this study further explores whether the
LyapLock method can effectively control preser-
vation loss within a certain threshold range during
sequential editing. Figure 4 clearly shows the trend
of preservation loss varying with the number of

edits under different editing methods. The results
indicate that our method can maintain preserva-
tion loss stably within the threshold. In contrast,
other methods, although to some extent slowing
down the increase in preservation loss after each
edit, cannot fundamentally prevent the continuous
accumulation of preservation loss. For a more de-
tailed discussion on the trend of the preservation
loss of the LyapLock method, please refer to Ap-
pendix E.4.

4.5 Compatibility

The method proposed in this study is an improve-
ment upon the traditional single-edit bi-objective
optimization approaches within the locate-and-edit
paradigm. Therefore, it should exhibit good com-
patibility with most works that adhere to the locate-

6440

Figure 5: The improvement in editing performance and downstream task performance of other editing methods after
incorporating LyapLock, following the sequential editing of 10,000 samples on the CounterFact dataset using the
LLaMA3 model.

and-edit paradigm, and can be combined with them
to enhance performance. To thoroughly validate
this, we selected LLaMA3 as the base model for
our experiments and combined LyapLock with the
MEMIT, PRUNE, and RECT methods to conduct
experiments on sequential editing of 10,000 sam-
ples. The experimental results are shown in Fig-
ure 5. Specifically, Figure 5(a) showcases the im-
provement in editing performance for each method
after integrating LyapLock, while Figure 5(b) il-
lustrates the enhancement in downstream task per-
formance on the GLUE benchmark. It can be ob-
served that the average improvement in editing per-
formance is 9.76%, and the average improvement
in downstream task performance is 41.11%. This
fully demonstrates the wide applicability of our
method: it can effectively be integrated with other
models based on the locate-and-edit paradigm,
significantly enhancing their editing performance
while also bolstering their ability to maintain gen-
eral capabilities. For more compatibility results
on additional base models, please refer to Ap-
pendix E.5.

4.6 Parameter Sensitivity Analysis
To investigate the performance changes of our
method under different hyperparameters, we ad-
justed the hyperparameter α to change the thresh-
old D in Problem 6 and analyzed its impact
on editing performance. Since Dbase is model-
adaptive—it is automatically determined from the
model’s characteristics without human interven-
tion—only α must be set manually. The exper-
imental results are shown in Table 2. As α in-
creases, that is, as the threshold D becomes larger
and the constraints are gradually relaxed, we ob-
served the following trends: On the CounterFact
dataset, the Efficacy and Generalization metrics,
which are related to knowledge updating evalua-

tion, both improved, indicating a enhancement in
the model’s performance in knowledge updating.
However, the Specificity metric, which is related
to knowledge preservation evaluation, decreased.
This is likely because the relaxation of constraints
caused the model to focus more on editing loss.
Additionally, on the ZsRE dataset, although the
overall trend was similar to that on the CounterFact
dataset, there were some fluctuations in the related
metrics, which may be attributed to the characteris-
tics of the dataset itself or the model’s adaptability
to different datasets. Therefore, there is a balance
point in the design of the threshold D to achieve a
balance between the model’s editing performance
and general capabilities.

As described in Section 3.3, we have set default
values for the parameters V , a, and b and provided
detailed reasons for these settings (based on theo-
retical considerations such as balancing editing loss
and constraint satisfaction, mapping relationships,
and weight ratios). This setting aims to minimize
human intervention and make the parameter α the
only hyperparameter that needs to be adjusted in
practical applications. To further analyze the sensi-
tivity of V , a, and b, we conduct experiments using
the LLaMA3 model on the ZsRE dataset as an ex-
ample, and the results are shown in Table 3. The
results shows that the proposed default parameter
set achieves near-optimal results in the metrics of
Eff., Gen., and Spe.. Variations in V or a have min-
imal impact on performance, which confirms the
robustness of the framework to these parameters.
In contrast, introducing b > 0 leads to a significant
decrease in Eff./Gen., while Spe. increases slightly.
This validates our design choice of b = 0 to priori-
tize core editing performance. Collectively, these
results indicate that the default parameters provide
stable and high-performance operation while re-

6441

Table 2: The editing performance with different hyperparameters α. Here, the abbreviations Eff. (Efficacy), Gen. (Generaliza-
tion), Spe. (Specificity), Flu. (Fluency), and Consis. (Consistency) are employed to denote respective evaluation metrics.

Model α
Counterfact ZsRE

Eff.↑ Gen.↑ Spe.↑ Flu.↑ Consis.↑ Eff.↑ Gen.↑ Spe.↑

L
L

aM
A

3 20 84.60±0.36 67.16±0.42 72.54±0.28 622.65±0.19 28.31±0.11 92.27±0.17 88.12±0.22 31.85±0.22

40 91.90±0.27 77.22±0.37 70.02±0.29 620.08±0.23 29.79±0.11 94.05±0.14 89.62±0.21 31.21±0.22

60 94.61±0.23 81.68±0.34 69.01±0.30 617.04±0.24 30.70±0.12 94.34±0.13 90.20±0.20 30.74±0.22

80 96.11±0.19 84.30±0.31 67.70±0.30 615.52±0.23 31.67±0.12 94.02±0.14 89.18±0.21 30.27±0.22

100 96.81±0.18 86.40±0.30 67.41±0.30 611.89±0.26 32.15±0.12 93.80±0.14 88.87±0.21 30.05±0.22

G
PT

-J

20 94.67±0.22 77.74±0.36 71.36±0.28 621.41±0.15 38.91±0.12 98.53±0.08 93.22±0.20 26.91±0.26

40 98.02±0.14 85.12±0.30 69.50±0.28 619.50±0.17 40.26±0.12 99.14±0.06 94.68±0.18 26.08±0.25

60 99.00±0.10 88.80±0.27 68.21±0.28 618.33±0.18 40.93±0.12 98.77±0.08 93.82±0.19 25.51±0.25

80 99.34±0.08 90.70±0.24 67.77±0.28 615.96±0.21 41.05±0.12 98.56±0.08 93.28±0.20 25.48±0.25

100 99.37±0.08 91.70±0.23 66.88±0.28 614.21±0.22 41.13±0.12 98.40±0.09 93.65±0.19 25.44±0.25

G
PT

2-
X

L 20 87.39±0.33 72.91±0.38 63.83±0.29 581.78±0.43 32.93±0.12 83.92±0.29 74.23±0.35 25.06±0.25

40 93.00±0.26 78.53±0.35 61.91±0.29 580.30±0.43 34.03±0.13 85.09±0.28 75.35±0.34 23.64±0.25

60 94.76±0.22 80.51±0.33 60.74±0.29 577.06±0.42 34.29±0.13 84.96±0.28 74.49±0.35 22.63±0.24

80 95.07±0.22 81.20±0.32 60.50±0.30 576.67±0.40 34.60±0.13 83.41±0.30 73.44±0.35 22.45±0.24

100 95.18±0.21 81.14±0.32 59.75±0.29 580.22±0.39 35.14±0.13 84.40±0.29 74.63±0.35 22.89±0.24

Table 3: Sensitivity results for more hyperparameters using
the LLaMA3 model on the ZsRE dataset. The bold parameter
set (V, a, b) = (1, 1√

D
, 0)) is the default value set in Sec-

tion 3.3.

Method Eff.↑ Gen.↑ Spe.↑
(1, 1√

D
, 0) 94.34±0.13 90.20±0.20 30.74±0.22

(0.5, 1√
D
, 0) 94.56±0.13 90.28±0.20 31.11±0.22

(2, 1√
D
, 0) 94.25±0.13 90.27±0.20 31.09±0.22

(1, 0.5√
D
, 0) 94.14±0.14 90.04±0.20 30.21±0.22

(1, 2√
D
, 0) 94.55±0.13 90.27±0.20 31.09±0.22

(1, 1√
D
, 1) 87.12±0.23 82.40±0.27 32.44±0.22

(1, 1√
D
, 2) 77.75±0.30 73.12±0.32 32.77±0.22

ducing the workload of parameter tuning, thereby
supporting the settings in Section 3.3.

5 Related Works

Parameter-Preserving Model Editing.
Parameter-preserving model editing methods are
primarily divided into two categories. The first
category involves updating knowledge using ad-
ditional modules. For example, SERAC(Mitchell
et al., 2022b) employs an external explicit memory
and a small auxiliary model, CALINET(Dong
et al., 2022) and T-Patcher(Huang et al., 2023)
utilize neurons, GRACE(Hartvigsen et al., 2023)
adopts codebooks, MELO(Yu et al., 2024) lever-
ages LoRA modules, and WISE(Wang et al., 2024)
uses a side memory module. The second category
employs contextual prompts to guide model
knowledge updates, such as MemPrompt(Madaan
et al., 2022) and IKE(Zheng et al., 2023).

Parameter-Modifying Model Editing.
Parameter-modifying model editing meth-
ods mainly fall into two classes. The first class
adopts meta-learning to predict parameter updates
via a trained hypernetwork, including KE(Cao
et al., 2021), MEND(Mitchell et al., 2022a), MAL-
MEN(Tan et al., 2024) and InstructEdit(Zhang
et al., 2024). The second class focuses on
locate-then-edit strategies, where activation values
or parameter subsets associated with target knowl-
edge are precisely identified using gradient-based
or causal tracing methods, followed by targeted
editing. Examples include KN(Dai et al., 2022),
ROME(Meng et al., 2022), MEMIT(Meng et al.,
2023). Additionally, some studies optimize against
model collapse in sequential editing scenarios:
RECT(Gu et al., 2024) employs regularized
weight updates, PRUNE(Ma et al., 2025) controls
condition numbers, and AlphaEdit(Fang et al.,
2025) applies null-space projection.

6 Conclusion

In this work, we propose LyapLock, which refor-
mulates the traditional bi-objective optimization as
a constrained long-term optimization problem for
sequential editing to address the issue of long-term
accumulation of preservation loss in existing meth-
ods as the number of edits increases. Using Lya-
punov optimization, we convert the long-term prob-
lem into online solvable subproblems, achieving
asymptotically near-optimal editing performance
while satisfying preservation loss constraints. Ex-
periments on multiple LLMs show that LyapLock
significantly outperforms existing methods.

6442

Limitations

Despite its excellent editing performance and ef-
fective maintenance of model general capabilities
in sequential editing tasks, the LyapLock method
still has room for improvement. Firstly, the cur-
rent dataset size for evaluating editing performance
is capped at around 20,000. Testing for model
general capabilities has only been conducted af-
ter 20,000 edits, with no signs of model collapse.
Although the method is theoretically proven to
constrain loss in long-term editing, larger-scale
datasets are needed to further validate its practical
effectiveness. Secondly, tests on model general ca-
pabilities mainly focus on language understanding,
while areas like code generation and mathematical
reasoning are under-tested. Future work should
expand the testing scope.

Ethics Considerations

All codes and datasets in this paper are from pub-
licly available resources. The application of such
technologies must follow ethical principles. The
widespread use of large language models brings
convenience but also raises ethical concerns. Ma-
licious users could exploit these models to gener-
ate and spread hate speech, false information, or
harmful content, threatening social harmony and
stability. Thus, it is crucial and urgent to implement
effective safeguards to prevent misuse and mitigate
potential harm. Therefore, we strongly advocate
that researchers implement rigorous validation and
oversight measures to ensure the ethical application
of these technologies.

References
Luisa Bentivogli, Bernardo Magnini, Ido Dagan,

Hoa Trang Dang, and Danilo Giampiccolo. 2009.
The fifth PASCAL recognizing textual entailment
challenge. In TAC. NIST.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu,
Clemens Winter, and 12 others. 2020. Language
models are few-shot learners. In Advances in Neural
Information Processing Systems 33: Annual Confer-
ence on Neural Information Processing Systems 2020,
NeurIPS 2020, December 6-12, 2020, virtual.

Nicola De Cao, Wilker Aziz, and Ivan Titov. 2021.
Editing factual knowledge in language models. In

EMNLP (1), pages 6491–6506. Association for Com-
putational Linguistics.

Damai Dai, Li Dong, Yaru Hao, Zhifang Sui, Baobao
Chang, and Furu Wei. 2022. Knowledge neurons
in pretrained transformers. In Proceedings of the
60th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), ACL
2022, Dublin, Ireland, May 22-27, 2022, pages 8493–
8502. Association for Computational Linguistics.

William B. Dolan and Chris Brockett. 2005. Automati-
cally constructing a corpus of sentential paraphrases.
In IWP@IJCNLP. Asian Federation of Natural Lan-
guage Processing.

Qingxiu Dong, Damai Dai, Yifan Song, Jingjing Xu,
Zhifang Sui, and Lei Li. 2022. Calibrating factual
knowledge in pretrained language models. In Find-
ings of the Association for Computational Linguistics:
EMNLP 2022, Abu Dhabi, United Arab Emirates, De-
cember 7-11, 2022, pages 5937–5947. Association
for Computational Linguistics.

Junfeng Fang, Houcheng Jiang, Kun Wang, Yunshan
Ma, Jie Shi, Xiang Wang, Xiangnan He, and Tat-
Seng Chua. 2025. Alphaedit: Null-space constrained
knowledge editing for language models. In The Thir-
teenth International Conference on Learning Repre-
sentations, ICLR 2025, Singapore, April 24-28, 2025.
OpenReview.net.

Mor Geva, Roei Schuster, Jonathan Berant, and Omer
Levy. 2021. Transformer feed-forward layers are key-
value memories. In Proceedings of the 2021 Confer-
ence on Empirical Methods in Natural Language Pro-
cessing, EMNLP 2021, Virtual Event / Punta Cana,
Dominican Republic, 7-11 November, 2021, pages
5484–5495. Association for Computational Linguis-
tics.

Jia-Chen Gu, Hao-Xiang Xu, Jun-Yu Ma, Pan Lu, Zhen-
Hua Ling, Kai-Wei Chang, and Nanyun Peng. 2024.
Model editing harms general abilities of large lan-
guage models: Regularization to the rescue. In
Proceedings of the 2024 Conference on Empirical
Methods in Natural Language Processing, EMNLP
2024, Miami, FL, USA, November 12-16, 2024, pages
16801–16819. Association for Computational Lin-
guistics.

Akshat Gupta, Sidharth Baskaran, and Gopala Anu-
manchipalli. 2024. Rebuilding rome : Resolving
model collapse during sequential model editing.

Anshita Gupta, Debanjan Mondal, Akshay Krishna She-
shadri, Wenlong Zhao, Xiang Li, Sarah Wiegreffe,
and Niket Tandon. 2023. Editing common sense in
transformers. In Proceedings of the 2023 Conference
on Empirical Methods in Natural Language Process-
ing, EMNLP 2023, Singapore, December 6-10, 2023,
pages 8214–8232. Association for Computational
Linguistics.

Tom Hartvigsen, Swami Sankaranarayanan, Hamid
Palangi, Yoon Kim, and Marzyeh Ghassemi. 2023.

6443

https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://doi.org/10.18653/V1/2022.ACL-LONG.581
https://doi.org/10.18653/V1/2022.ACL-LONG.581
https://doi.org/10.18653/V1/2022.FINDINGS-EMNLP.438
https://doi.org/10.18653/V1/2022.FINDINGS-EMNLP.438
https://openreview.net/forum?id=HvSytvg3Jh
https://openreview.net/forum?id=HvSytvg3Jh
https://doi.org/10.18653/V1/2021.EMNLP-MAIN.446
https://doi.org/10.18653/V1/2021.EMNLP-MAIN.446
https://aclanthology.org/2024.emnlp-main.934
https://aclanthology.org/2024.emnlp-main.934
https://doi.org/10.18653/V1/2023.EMNLP-MAIN.511
https://doi.org/10.18653/V1/2023.EMNLP-MAIN.511

Aging with GRACE: lifelong model editing with dis-
crete key-value adaptors. In Advances in Neural
Information Processing Systems 36: Annual Confer-
ence on Neural Information Processing Systems 2023,
NeurIPS 2023, New Orleans, LA, USA, December 10
- 16, 2023.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou,
Mantas Mazeika, Dawn Song, and Jacob Steinhardt.
2021. Measuring massive multitask language under-
standing. In ICLR. OpenReview.net.

Xiusheng Huang, Hang Yang, Yubo Chen, Jun
Zhao, Kang Liu, Weijian Sun, and Zuyu Zhao.
2022. Document-level relation extraction via pair-
aware and entity-enhanced representation learning.
In Proceedings of the 29th International Confer-
ence on Computational Linguistics, COLING 2022,
Gyeongju, Republic of Korea, October 12-17, 2022,
pages 2418–2428. International Committee on Com-
putational Linguistics.

Zeyu Huang, Yikang Shen, Xiaofeng Zhang, Jie Zhou,
Wenge Rong, and Zhang Xiong. 2023. Transformer-
patcher: One mistake worth one neuron. In The
Eleventh International Conference on Learning Rep-
resentations, ICLR 2023, Kigali, Rwanda, May 1-5,
2023. OpenReview.net.

Lee W Johnson, R. Dean Riess, and Jimmy T Arnold.
2004. Introduction to linear algebra. 2nd ed. Intro-
duction to linear algebra. 2nd ed.

Teuvo Kohonen. 1972. Correlation matrix memories.
IEEE Trans. Computers, 21(4):353–359.

Omer Levy, Minjoon Seo, Eunsol Choi, and Luke Zettle-
moyer. 2017. Zero-shot relation extraction via read-
ing comprehension. In Proceedings of the 21st Con-
ference on Computational Natural Language Learn-
ing (CoNLL 2017), Vancouver, Canada, August 3-4,
2017, pages 333–342. Association for Computational
Linguistics.

Yangyang Li, Xintao Deng, Biao Liu, Jugang Ma,
Fuyuan Yang, and Minggao Ouyang. 2022. En-
ergy management of a parallel hybrid electric ve-
hicle based on lyapunov algorithm. Etransportation,
13:100184.

Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang,
Bochao Wu, Chengda Lu, Chenggang Zhao, Chengqi
Deng, Chenyu Zhang, Chong Ruan, and 1 others.
2024. Deepseek-v3 technical report. arXiv preprint
arXiv:2412.19437.

Lingling Lv, Chan Zheng, Lei Zhang, Chun Shan,
Zhihong Tian, Xiaojiang Du, and Mohsen Guizani.
2021. Contract and lyapunov optimization-based
load scheduling and energy management for UAV
charging stations. IEEE Trans. Green Commun.
Netw., 5(3):1381–1394.

Jun-Yu Ma, Hong Wang, Hao-Xiang Xu, Zhen-
Hua Ling, and Jia-Chen Gu. 2025. Perturbation-
restrained sequential model editing. In The Thir-
teenth International Conference on Learning Repre-
sentations, ICLR 2025, Singapore, April 24-28, 2025.
OpenReview.net.

Aman Madaan, Niket Tandon, Peter Clark, and Yim-
ing Yang. 2022. Memory-assisted prompt editing to
improve GPT-3 after deployment. In Proceedings of
the 2022 Conference on Empirical Methods in Natu-
ral Language Processing, EMNLP 2022, Abu Dhabi,
United Arab Emirates, December 7-11, 2022, pages
2833–2861. Association for Computational Linguis-
tics.

Kevin Meng, David Bau, Alex Andonian, and Yonatan
Belinkov. 2022. Locating and editing factual associ-
ations in gpt. Advances in Neural Information Pro-
cessing Systems, 35:17359–17372.

Kevin Meng, Arnab Sen Sharma, Alex J. Andonian,
Yonatan Belinkov, and David Bau. 2023. Mass-
editing memory in a transformer. In The Eleventh
International Conference on Learning Representa-
tions, ICLR 2023, Kigali, Rwanda, May 1-5, 2023.
OpenReview.net.

Meta. 2024. Llama 3. Large language model release.

Eric Mitchell, Charles Lin, Antoine Bosselut, Chelsea
Finn, and Christopher D. Manning. 2022a. Fast
model editing at scale. In The Tenth International
Conference on Learning Representations, ICLR 2022,
Virtual Event, April 25-29, 2022. OpenReview.net.

Eric Mitchell, Charles Lin, Antoine Bosselut, Christo-
pher D. Manning, and Chelsea Finn. 2022b. Memory-
based model editing at scale. In International Con-
ference on Machine Learning, ICML 2022, 17-23
July 2022, Baltimore, Maryland, USA, volume 162 of
Proceedings of Machine Learning Research, pages
15817–15831. PMLR.

Michael J. Neely. 2010. Stochastic Network Optimiza-
tion with Application to Communication and Queue-
ing Systems. Synthesis Lectures on Communication
Networks. Morgan & Claypool Publishers.

Wu Qi, Li Xintong, and Zhu Lidong. 2025. Dynamic
collaborative data download in heterogeneous satel-
lite networks. China Communications, 22(2):26–46.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, Ilya Sutskever, and 1 others. 2019.
Language models are unsupervised multitask learn-
ers. OpenAI blog, 1(8):9.

Richard Socher, Alex Perelygin, Jean Wu, Jason
Chuang, Christopher D. Manning, Andrew Y. Ng,
and Christopher Potts. 2013. Recursive deep mod-
els for semantic compositionality over a sentiment
treebank. In EMNLP, pages 1631–1642. ACL.

6444

http://papers.nips.cc/paper_files/paper/2023/hash/95b6e2ff961580e03c0a662a63a71812-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/95b6e2ff961580e03c0a662a63a71812-Abstract-Conference.html
https://aclanthology.org/2022.coling-1.213
https://aclanthology.org/2022.coling-1.213
https://openreview.net/forum?id=4oYUGeGBPm
https://openreview.net/forum?id=4oYUGeGBPm
https://doi.org/10.1109/TC.1972.5008975
https://doi.org/10.18653/V1/K17-1034
https://doi.org/10.18653/V1/K17-1034
https://doi.org/10.1109/TGCN.2021.3085561
https://doi.org/10.1109/TGCN.2021.3085561
https://doi.org/10.1109/TGCN.2021.3085561
https://openreview.net/forum?id=bfI8cp8qmk
https://openreview.net/forum?id=bfI8cp8qmk
https://doi.org/10.18653/V1/2022.EMNLP-MAIN.183
https://doi.org/10.18653/V1/2022.EMNLP-MAIN.183
https://openreview.net/forum?id=MkbcAHIYgyS
https://openreview.net/forum?id=MkbcAHIYgyS
https://llama.meta.com/llama3/
https://openreview.net/forum?id=0DcZxeWfOPt
https://openreview.net/forum?id=0DcZxeWfOPt
https://proceedings.mlr.press/v162/mitchell22a.html
https://proceedings.mlr.press/v162/mitchell22a.html
https://doi.org/10.2200/S00271ED1V01Y201006CNT007
https://doi.org/10.2200/S00271ED1V01Y201006CNT007
https://doi.org/10.2200/S00271ED1V01Y201006CNT007

Chenmien Tan, Ge Zhang, and Jie Fu. 2024. Massive
editing for large language models via meta learning.
In The Twelfth International Conference on Learning
Representations, ICLR 2024, Vienna, Austria, May
7-11, 2024. OpenReview.net.

Alex Wang, Amanpreet Singh, Julian Michael, Felix
Hill, Omer Levy, and Samuel R. Bowman. 2019.
GLUE: A multi-task benchmark and analysis plat-
form for natural language understanding. In ICLR
(Poster). OpenReview.net.

Ben Wang and Aran Komatsuzaki. 2021. Gpt-j-6b: A 6
billion parameter autoregressive language model.

Peng Wang, Zexi Li, Ningyu Zhang, Ziwen Xu, Yunzhi
Yao, Yong Jiang, Pengjun Xie, Fei Huang, and Hua-
jun Chen. 2024. WISE: rethinking the knowledge
memory for lifelong model editing of large language
models. In Advances in Neural Information Pro-
cessing Systems 38: Annual Conference on Neural
Information Processing Systems 2024, NeurIPS 2024,
Vancouver, BC, Canada, December 10 - 15, 2024.

Song Wang, Yaochen Zhu, Haochen Liu, Zaiyi Zheng,
Chen Chen, and Jundong Li. 2025. Knowledge edit-
ing for large language models: A survey. ACM Com-
put. Surv., 57(3):59:1–59:37.

Alex Warstadt, Amanpreet Singh, and Samuel R. Bow-
man. 2019. Neural network acceptability judgments.
Trans. Assoc. Comput. Linguistics, 7:625–641.

Adina Williams, Nikita Nangia, and Samuel R. Bow-
man. 2018. A broad-coverage challenge corpus
for sentence understanding through inference. In
NAACL-HLT, pages 1112–1122. Association for
Computational Linguistics.

Wanli Yang, Fei Sun, Jiajun Tan, Xinyu Ma, Qi Cao,
Dawei Yin, Huawei Shen, and Xueqi Cheng. 2025.
The mirage of model editing: Revisiting evaluation
in the wild. In Proceedings of the 63rd Annual Meet-
ing of the Association for Computational Linguistics
(Volume 1: Long Papers), ACL 2025, Vienna, Aus-
tria, July 27 - August 1, 2025, pages 15336–15354.
Association for Computational Linguistics.

Yunzhi Yao, Peng Wang, Bozhong Tian, Siyuan Cheng,
Zhoubo Li, Shumin Deng, Huajun Chen, and Ningyu
Zhang. 2023. Editing large language models: Prob-
lems, methods, and opportunities. In Proceedings
of the 2023 Conference on Empirical Methods in
Natural Language Processing, EMNLP 2023, Sin-
gapore, December 6-10, 2023, pages 10222–10240.
Association for Computational Linguistics.

Lang Yu, Qin Chen, Jie Zhou, and Liang He. 2024.
MELO: enhancing model editing with neuron-
indexed dynamic lora. In Thirty-Eighth AAAI Con-
ference on Artificial Intelligence, AAAI 2024, Thirty-
Sixth Conference on Innovative Applications of Ar-
tificial Intelligence, IAAI 2024, Fourteenth Sympo-
sium on Educational Advances in Artificial Intelli-
gence, EAAI 2014, February 20-27, 2024, Vancouver,
Canada, pages 19449–19457. AAAI Press.

Ningyu Zhang, Bozhong Tian, Siyuan Cheng, Xi-
aozhuan Liang, Yi Hu, Kouying Xue, Yanjie Gou,
Xi Chen, and Huajun Chen. 2024. Instructedit:
Instruction-based knowledge editing for large lan-
guage models. In Proceedings of the Thirty-Third
International Joint Conference on Artificial Intelli-
gence, IJCAI 2024, Jeju, South Korea, August 3-9,
2024, pages 6633–6641. ijcai.org.

Ce Zheng, Lei Li, Qingxiu Dong, Yuxuan Fan, Zhiyong
Wu, Jingjing Xu, and Baobao Chang. 2023. Can we
edit factual knowledge by in-context learning? In
Proceedings of the 2023 Conference on Empirical
Methods in Natural Language Processing, EMNLP
2023, Singapore, December 6-10, 2023, pages 4862–
4876. Association for Computational Linguistics.

Zexuan Zhong, Zhengxuan Wu, Christopher D. Man-
ning, Christopher Potts, and Danqi Chen. 2023.
Mquake: Assessing knowledge editing in language
models via multi-hop questions. In Proceedings of
the 2023 Conference on Empirical Methods in Natu-
ral Language Processing, EMNLP 2023, Singapore,
December 6-10, 2023, pages 15686–15702. Associa-
tion for Computational Linguistics.

A Model Editing

The goal of model editing is to efficiently and ac-
curately update factual knowledge. Specifically,
for incorrect or outdated factual knowledge (s, r, o)
in LLMs, model editing methods can replace it
with updated knowledge (s, r, oc). For example,
when the natural language sentence "Beats Mu-
sic is owned by" composed of s = "Beats Music"
and r = "is owned by" is input into the model,
the model’s output, through model editing, will be
modified from the incorrect o = "Google" to the
correct oc = "Apple".

Currently, model editing methods based on
the locate-then-edit paradigm have become main-
stream due to their excellent editing performance,
such as ROME and MEMIT. These methods mainly
consist of two key steps: (1) identifying the crit-
ical parameter subset W associated with the tar-
get knowledge via causal tracing analysis, and (2)
achieving the update of the target knowledge within
the parameter space by computing and implement-
ing appropriate perturbations ∆W .

A.1 Causal Tracing

Causal Tracing is an analytical method designed to
determine the causal influence of the internal hid-
den state activations within LLMs on the prediction
of specific facts. The essence of this method lies in
quantifying and understanding which internal state
variables play a key role when the model processes

6445

https://openreview.net/forum?id=L6L1CJQ2PE
https://openreview.net/forum?id=L6L1CJQ2PE
http://papers.nips.cc/paper_files/paper/2024/hash/60960ad78868fce5c165295fbd895060-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2024/hash/60960ad78868fce5c165295fbd895060-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2024/hash/60960ad78868fce5c165295fbd895060-Abstract-Conference.html
https://doi.org/10.1145/3698590
https://doi.org/10.1145/3698590
https://aclanthology.org/2025.acl-long.745/
https://aclanthology.org/2025.acl-long.745/
https://doi.org/10.18653/V1/2023.EMNLP-MAIN.632
https://doi.org/10.18653/V1/2023.EMNLP-MAIN.632
https://doi.org/10.1609/AAAI.V38I17.29916
https://doi.org/10.1609/AAAI.V38I17.29916
https://www.ijcai.org/proceedings/2024/733
https://www.ijcai.org/proceedings/2024/733
https://www.ijcai.org/proceedings/2024/733
https://doi.org/10.18653/V1/2023.EMNLP-MAIN.296
https://doi.org/10.18653/V1/2023.EMNLP-MAIN.296
https://doi.org/10.18653/V1/2023.EMNLP-MAIN.971
https://doi.org/10.18653/V1/2023.EMNLP-MAIN.971

specific information. The specific steps of causal
tracing are as follows:

(1) Clean Run. Initially, a factual prompt (e.g.,
"Space Needle is located in the city of") is input
into the LLMs, and the state activations of all hid-
den layers are collected as the clean state.

(2) Corrupted Run. In this run, the embedding
vector of the subject (e.g., "Space Needle") is cor-
rupted with noise, and then the model continues to
run. Due to the loss of certain information about
the subject, the model may provide an incorrect
answer.

(3) Corrupted-with-Restoration Run. In this
run, except for restoring the clean state at specific
tokens and layers, other corrupted embedding vec-
tors remain unchanged. This allows for testing the
ability of a single state restoration to predict.

By comparing the results of the above three runs,
the Total Effect (TE) and Indirect Effect (IE) of
each hidden state variable on the correct prediction
of facts are calculated. TE is the difference in the
prediction probability between the Clean Run and
the Corrupted Run, while IE is the difference in
the prediction probability between the Corrupted
Run and the Corrupted-with-Restoration Run. By
analyzing the Average Indirect Effect (AIE), re-
searchers have found that the MLP module plays
a key role in storing and recalling factual associa-
tions. Specifically, the MLP modules in the middle
layers of the model are identified as the primary
storage area for factual knowledge, and they play
an especially critical role when processing the last
token of the subject.

A.2 Computing Perturbations

Based on the results of causal tracing localization,
subsequent modifications will be made to the pa-
rameters of the second layer of the MLP module
in the model’s intermediate layer, W l

out, to achieve
knowledge updating. Specifically, the model edit-
ing updates the knowledge (s, r, o) in LLMs to
(s, r, oc). This process can be understood as remap-
ping the key k that encodes (s, r) from its original
mapping, which is the value v that encodes o, to the
value vc that encodes oc. The formal description is
as follows:

k = act(W l
in(a

l + hl−1)), v = W l
outk. (14)

To achieve this goal, (Meng et al., 2023) opti-
mized a dual-objective loss function (Equation 15)

to compute the perturbation (Equation 16). Once
K0, K1, and V1 are obtained, the specific pertur-
bation values can be calculated. Here, K1 and V1

are matrices composed of the keys k and values vc

of all new knowledge in the current editing batch,
respectively.

min
∆

∥(W +∆)K1 − V1∥2F
+ ∥(W +∆)K0 − V0∥2F .

(15)

∆ = (V1 −WK1)K
T
1

(
K0K

T
0 +K1K

T
1

)−1
.

(16)
Obtaining K0. (Meng et al., 2022, 2023) ran-

domly sampled a large number of articles from
Wikipedia snapshots and input the full text of each
article into the model. During the model’s pro-
cessing, they collected the MLP activation vectors
corresponding to each token. Eventually, they col-
lected 100,000 k vector samples from these articles
to form the K0 matrix. Additionally, V0 = WK0.

Obtaining K1. The K1 matrix is composed of
all k from a single editing batch. Based on the
findings from the localization phase, (Meng et al.,
2023) used the input of the last token of the subject
as the key. The specific calculation method for each
k is as follows: Input the text containing the subject
s into the model, and at the target layer l and the
position of the last token of the subject, extract the
activation values of the second layer of the MLP,
as shown in Equation 17.

k =
1

N

N∑

j=1

k(xj+s),k(x) = act(W l
in(a

l+hl−1)).

(17)
Here, xj is the randomly generated prefix text,

and N is the number of prefix texts. By doing so,
researchers extract activation values from multiple
random contexts and calculate the average to obtain
the key vector k that represents the subject, which
is used to locate subject-related factual information
in the middle layer MLP module of the model.

Obtaining V1. The V1 matrix is composed of all
vc from a single editing batch. For the calculation
of each vc, (Meng et al., 2023) optimized Equa-
tion 18 to solve for the optimal vector vc in order to
achieve precise encoding of the target knowledge
oc. The specific calculation process is as follows:

6446

vc = argmin
z

1

N

N∑

j=1

− logPW l
out(v=z)[o

c | xj + p]

+DKL

(
PW l

out(v=z)[x | p′]∥PW l
out
[x | p′]

)
.

(18)
Here, W l

out(v = z) denotes the intervened model
where the MLP output at the l-th layer and the po-
sition of the last token of the subject is replaced by
the vector z; xj + p represents the input concate-
nated from the randomly generated prefix text xj
and the factual prompt template p. This formula
optimizes to replace the original v with the vc, max-
imizing the probability of the target word oc while
preventing semantic drift through KL divergence.

Additionally, since the matrices K0 and V0 are
particularly large, storing them separately occupies
a significant amount of space. Moreover, they typi-
cally appear in the form of K0K

T
0 and V0K

T
0 in the

computational formulas. Therefore, it is common
practice to store only K0K

T
0 and V0K

T
0 . For more

details, refer to (Meng et al., 2023).

B Innovative Discussion

Lyapunov optimization is a mathematical frame-
work that transforms long-term stochastic optimiza-
tion problems into single-slot decisions, applicable
to resource allocation and stability control in dy-
namic systems. It has been employed in various
fields such as satellite communications(Qi et al.,
2025), edge computing(Lv et al., 2021), and en-
ergy management in intelligent transportation sys-
tems(Li et al., 2022). The innovation of this work
lies in offering a new perspective and method for
continuous editing, as detailed below:

Innovative problem reconstruction: Unlike
other sequential editing methods that focus on
mitigating the increase in preservation loss after
each edit, we shift the perspective and aim to de-
velop a sequential editing method that can keep the
model’s preservation loss within a certain range
over the long term. We reconstruct the traditional
bi-objective optimization into a stochastic program-
ming problem with long-term constraints.

Innovative mechanism design: Virtual queue
design within the Lyapunov framework is key to
stability, yet its design is challenging, lacking fixed
formulas and requiring tailoring to the specific
problem. Here the virtual queue value Z(t) acts

as a weight parameter in the loss function, auto-
matically adjusting the extent to which the model
should focus on preservation loss (see Eq. 12). In
this paper, we innovatively introduce parameters
a, b, and zmax, that is, Eq. 7, to flexibly adjust the
mapping relationship between the preservation loss
PL(t) and the weight parameter Z(t+ 1). Mean-
while, zmax > 0 is also to ensure that Z(t+ 1) is
not zero, thus avoiding the loss of attention to the
preservation loss PL(t).

C Proof

C.1 Proof of Sufficient Condition

Here, we prove that the sufficient condition for the
constraint to always hold is the strong stability of
the virtual queue Z(t).

From the update formula of the virtual queue
(Metioned in 7), we have:

Z(t+ 1) ≥ Z(t) + a(PL(t)−D) + b. (19)

Listing the above inequalities for multiple times-
tamps t ∈ {1, . . . , T}:

Z(T + 1) ≥ Z(T) + a(PL(T)−D) + b,

Z(T) ≥ Z(T − 1) + a(PL(T − 1)−D) + b,

Z(T − 1) ≥ Z(T − 2) + a(PL(T − 2)−D) + b,

. . . ,

Z(2) ≥ Z(1) + a(PL(1)−D) + b.
(20)

Summing all the inequalities, we obtain:

Z(T + 1) ≥ Z(1) + a

T∑

t=1

PL(t)− aTD + Tb.

(21)
Dividing both sides by aT and taking the limit

(a > 0, b, Z(1) = Zinit ≥ 0):

lim
T→∞

1

T

T∑

t=1

PL(t)

≤ lim
T→∞

Z(T + 1)

aT
− lim

T→∞
Z(1)

aT
+ lim

T→∞
(D − b

a
)

= lim
T→∞

Z(T + 1)

aT
+D − b

a

≤ lim
T→∞

Z(T + 1)

aT
+D.

(22)
When limT→∞

Z(T+1)
aT = 0, that is,

limT→∞
Z(T)
T = 0 (according to the proof

6447

in Section C.2), we have

lim
T→∞

1

T

T∑

t=1

PL(t) ≤ D.

The above inequality can be equivalently written
as the constraint condition in 6:

lim sup
T→∞

1

T

T∑

t=1

PL(t) ≤ D. (23)

C.2 Proof of Equivalence
Let S = T+1. Then, as T → ∞, we have S → ∞.
Therefore:

lim
T→∞

Z(T + 1)

aT

= lim
S→∞

Z(S)

a(S − 1)

= lim
S→∞

Z(S)

S
· S

a(S − 1)

= 0.

(24)

As S → ∞, S
a(S−1) → 1

a > 0, we obtain:

lim
S→∞

Z(S)

S
= 0. (25)

That is:

lim
T→∞

Z(T)

T
= 0. (26)

C.3 Upper Bound Derivation
It is known that the following inequality holds
(∀a, b, c, Zmax ≥ 0) (the proof of the inequality
can be found in Section C.4):

(max[a+ b− c, Zmax])
2

≤ a2 + b2 + c2 + 2a(b− c) + Z2
max.

(27)

From the virtual queue update formula 7, we can
obtain:

Z(t+ 1)2

= (max[Z(t) + a(PL(t)−D) + b, Zmax])
2

= (max[Z(t) + (aPL(t) + b)− aD,Zmax])
2

≤ Z(t)2 + (aPL(t) + b)2 + (aD)2

+ 2Z(t)(aPL(t) + b− aD) + Z2
max.

(28)
By dividing both sides by 1

2 , we obtain:

1

2
Z(t+ 1)2 − 1

2
Z(t)2

≤ 1

2
(aPL(t) + b)2 +

1

2
(aD)2 +

1

2
Z2
max

+ Z(t)(aPL(t) + b− aD).

(29)

From the one-step conditional Lyapunov drift 9,
we have:

∆(Z(t)) ≤ 1

2
(aPL(t) + b)2 +

1

2
(aD)2 +

1

2
Z2
max

+ {Z(t)(aPL(t) + b− aD) | Z(t)}.
(30)

Assuming that there exists Dmax =
maxt{PL(t)} (It is widely believed that
neural networks are Lipschitz continuous,
meaning that the rate of change of the loss
function between any two points in its entire
domain has a global upper bound), by defining
B

∆
= 1

2((aDmax + b)2 + (aD)2 + Z2
max), the

above inequality can be simplified as:

∆(Z(t))

≤ B + {Z(t)(aPL(t) + b− aD) | Z(t)}. (31)

By adding the editing loss on both sides, we get:

∆(Z(t)) + V · EL(t)

≤ {Z(t)(aPL(t) + b− aD) + V · EL(t) | Z(t)}
+B.

(32)
Since B is a constant, minimizing the upper

bound is equivalent to minimizing the second term
on the right-hand side of the inequality, that is:

min
∆(t)

Z(t)(aPL(t) + b− aD) + V · EL(t).

(33)
By removing the constants that are irrelevant to

the optimization variable ∆(t), we obtain:

min
∆(t)

aZ(t)PL(t) + V · EL(t). (34)

C.4 Proof of the Inequality
(1) When a+ b− c > Zmax (∀a, b, c, Zmax ≥ 0),

max([a+ b− c, Zmax])
2

= (a+ b− c)2

= a2 + b2 + c2 + 2ab− 2ac− 2bc

≤ a2 + b2 + c2 + 2a(b− c)

≤ a2 + b2 + c2 + 2a(b− c) + Z2
max.

(35)

(2) When a+b−c ≤ Zmax (∀a, b, c, Zmax ≥ 0),
it is necessary to prove:

max([a+ b− c, Zmax])
2

= Z2
max

≤ a2 + b2 + c2 + 2a(b− c) + Z2
max.

(36)

6448

That is:

a2 + b2 + c2 + 2a(b− c) ≥ 0. (37)

It is known that:

(a+b−c)2 = a2+b2+c2+2ab−2ac−2bc ≥ 0.
(38)

Therefore, we have:

a2 + b2 + c2 + 2a(b− c) ≥ 2bc ≥ 0. (39)

D Experimental Setup

D.1 Baseline Methods
Here, we will introduce the baseline methods used
in this paper, which are as follows:

FT. FT is a parameter-efficient model adjustment
strategy that selectively updates parameters in spe-
cific layers of the model using a cross-entropy loss
function. This achieves precise local optimization
of the model while keeping the rest of the model
unchanged.

ROME. ROME employs causal tracing analysis
to identify the key middle-layer MLP modules in
the model where factual associations are stored. It
then inserts new key-value pairs into these modules
to update the model’s memory of specific facts.
Specifically, the key is determined by the hidden
state of the subject’s last token, while the value is
obtained by optimizing the prediction probability
of the target object.

MEMIT. MEMIT is an extendable multi-layer
updating algorithm proposed based on ROME. It
efficiently integrates new memories into LLMs by
explicitly computing parameter updates, achieving
large-scale memory editing while maintaining the
integrity of the model.

PRUNE. PRUNE is a framework designed to re-
strict the perturbations to LLMs during sequential
editing, addressing the issue of significant degra-
dation in the models’ general abilities caused by
existing editing methods after multiple edits. The
study’s theoretical analysis, based on matrix per-
turbation theory, reveals that the condition number
of the edited matrix is a crucial factor affecting
general abilities. This condition number increases
with the number of edits, exacerbating the pertur-
bation of original knowledge associations. PRUNE
mitigates this issue by restraining the large singular
values of the edit update matrix, thereby reducing
the condition number and preserving the general
abilities of the edited models.

RECT. RECT is a regularization method that pre-
vents overfitting by limiting the complexity of the
edit update weights. Specifically, RECT identifies
the most important editing information (top-k% of
elements) based on the relative change in weights,
retains their original values, and sets the remain-
ing elements to zero. This approach effectively
mitigates the negative impact on general abilities
caused by sequential edits.

AlphaEdit. The core of AlphaEdit lies in pro-
jecting the parameter perturbation onto the null
space of the preserved knowledge, thereby ensur-
ing that the model’s output on the original knowl-
edge remains unchanged during the editing pro-
cess. Specifically, AlphaEdit first computes the
null space of the preserved knowledge matrix using
Singular Value Decomposition (SVD) and defines
a projection matrix. During editing, it projects the
perturbation into this null space and then applies
the projected perturbation to the model parame-
ters. This method not only effectively avoids in-
terference with the preserved knowledge but also
simplifies the editing objective by removing the
error term related to the preserved knowledge, al-
lowing the model to focus more on updating the
knowledge.

D.2 Datasets
ZsRE Dataset. It is a high-quality question-
answering dataset specifically designed to evaluate
the model editing and zero-shot relation extrac-
tion capabilities of natural language processing
(NLP) models, which contains 193,196 training
samples and 19,086 test samples. It employs back-
translation techniques to generate paraphrased ver-
sions of questions, thereby constructing equivalent
neighborhood samples. Each sample includes a
subject term s and a target object o that needs to
be modified, as well as semantically similar and
dissimilar sentences. These features enable the ef-
fective assessment of a model’s generalization abil-
ity and specificity. As a result, the ZsRE dataset is
widely used to test various model editing methods
and has become one of the important benchmark
datasets in the field of natural language processing.

CounterFact dataset. It focuses on evaluating
the knowledge editing and factual knowledge un-
derstanding capabilities of NLP models and is also
a high-quality dataset, which contains 20,877 sam-
ples. It constructs counterfactual knowledge by re-
placing the subject entity with an approximate sub-

6449

ject entity that shares the same predicate, making
it more challenging compared to the ZsRE dataset.
In addition to covering similar evaluation metrics
as ZsRE, the CounterFact dataset introduces indi-
cators focusing on the fluency and consistency of
generated text quality, further enriching the dimen-
sions for assessing model performance.

D.3 Metrics
Given a language model fθ, an edit instance com-
prising factual prompt (si, ri), target output oi, and
the model’s original prediction oci , we will now
detail the calculation methods for the evaluation
metrics.

D.3.1 Metrics of ZsRE
Following the previous works(Meng et al., 2022,
2023; Fang et al., 2025), this section formalizes the
evaluation criteria for ZsRE metrics under three
dimensions:

• Efficacy: Quantified by averaging the top-1 pre-
diction accuracy across edited samples, this met-
ric verifies successful knowledge integration:

Ei

{
oi = argmax

o
Pfθ(o | (si, ri))

}
. (40)

• Generalization: Assesses the model’s capability
to maintain accuracy when presented with se-
mantically equivalent variations N((si, ri)), cal-
culated through:

Ei

{
oi = argmax

o
Pfθ(o | N((si, ri)))

}
. (41)

• Specificity: Evaluates preservation of original be-
havior on unrelated samples O((si, ri)) by mea-
suring consistency with pre-edit predictions:

Ei

{
oci = argmax

o
Pfθ(o | O((si, ri)))

}
. (42)

D.3.2 Metrics of CounterFact
Following the previous works(Meng et al., 2022,
2023; Fang et al., 2025), this subsection formalizes
the evaluation framework for Counterfact metrics
under five dimensions:

• Efficacy (Editing Success): Measures the suc-
cess rate of integrating new knowledge by com-
paring the probability of the target output oi
against the original prediction oci under the fac-
tual prompt:

Ei [Pfθ(oi | (si, ri)) > Pfθ(o
c
i | (si, ri))] .

(43)

• Generalization (Paraphrase Robustness):
Evaluates robustness to paraphrased variants
N((si, ri)) by comparing output probabilities
across rephrased prompts:

Ei[Pfθ(oi | N((si, ri))) >

Pfθ(o
c
i | N((si, ri)))].

(44)

• Specificity (Neighborhood Preservation): As-
sesses minimal interference on related but dis-
tinct subject prompts O((si, ri)), ensuring origi-
nal predictions remain dominant:

Ei[Pfθ(oi | O((si, ri))) >

Pfθ(o
c
i | O((si, ri)))].

(45)

• Fluency (Repetition Control): Quantifies out-
put repetitiveness via entropy of bi-gram (g2) and
tri-gram (g3) distributions:

−2

3

∑

k

g2(k) log2 g2(k)

+
4

3

∑

k

g3(k) log2 g3(k).

(46)

where gn(·) denotes the normalized frequency of
n-grams.

• Consistency (Reference Alignment): Evaluates
semantic alignment between model-generated
text and reference content by computing the co-
sine similarity of their TF-IDF vectors for subject
s and object o:

simTF-IDF (fθ(s), Ref(o)) . (47)

D.4 Implementation Details
In this work, all experiments are conducted on a sin-
gle A100 (80GB) GPU. The hyperparameter con-
figurations for LLaMA3 are based on AlphaEdit,
while those for GPT2-XL and GPT-J are adapted
from MEMIT. Specifically, for LLaMA3, the edit-
ing layers are set to [4, 5, 6, 7, 8]; for GPT2-XL,
the editing layers are [13, 14, 15, 16, 17]; and for
GPT-J, the editing layers are [3, 4, 5, 6, 7, 8]. For
all models, the hyperparameter α is uniformly set
to 60, meaning that the threshold D is configured
to be 60 times the baseline value Dbase.

D.5 Time Cost
Additionally, we computed the average time re-
quired to edit a single example. The results are

6450

Table 4: Time cost of different methods across various mod-
els.

Model Method CounterFact(/s) ZsRE(/s)

LLaMA3

FT 0.48 0.62
ROME 18.52 24.64
MEMIT 2.50 3.08
PRUNE 2.43 3.13
RECT 2.47 3.15

AlphaEdit 2.34 3.22
LyapLock 2.06 3.01

GPT-J

FT 0.13 0.44
ROME 12.66 9.93
MEMIT 1.67 1.87
PRUNE 1.67 1.87
RECT 1.62 1.54

AlphaEdit 2.12 2.33
LyapLock 1.78 2.14

GPT2-XL

FT 0.13 0.21
ROME 3.52 2.89
MEMIT 0.44 0.62
PRUNE 0.43 0.55
RECT 0.42 0.48

AlphaEdit 0.72 0.82
LyapLock 0.50 0.60

shown in Table 4. From the statistical results, the
FT method has the shortest time-cost among all
the compared methods. However, the main experi-
mental results (as shown in Table 1) reflect that its
editing effect is not good. The ROME method has
the longest time - consuming significantly. The rea-
son is that it does not support batch editing, which
leads to its very low efficiency when editing a sin-
gle example. It is worth noting that compared with
the strong baseline AlphaEdit, which shows the
second-best performance in Table 1, the LyapLock
method shows lower time cost on different mod-
els and different datasets and can achieve better
performance. This result strongly proves that the
LyapLock method has achieved an excellent bal-
ance between computational efficiency and editing
effect.

D.6 Details of GLUE

GLUE is a comprehensive benchmark, and this
paper selects the following six subtasks:

CoLA. (Warstadt et al., 2019) evaluates gram-
matical acceptability through binary classification
of single-sentence judgments.

MMMLU. (Hendrycks et al., 2021) measures
multi-task accuracy across diverse domains, specif-
ically targeting zero-shot and few-shot learning
scenarios in text models.

NLI. (Williams et al., 2018) assesses natural lan-
guage understanding by requiring models to iden-
tify logical relationships (entailment, contradiction,

neutral) between sentence pairs.

MRPC. (Dolan and Brockett, 2005) serves as
a benchmark for semantic equivalence detection,
where models must determine if sentence pairs con-
vey identical meanings.

SST. (Socher et al., 2013) focuses on sentiment
classification of movie review sentences, assigning
binary sentiment labels based on human annota-
tions.

RTE. (Bentivogli et al., 2009) examines textual
entailment by determining whether a premise sen-
tence logically supports a given hypothesis.

E More Experimental Results

E.1 The Editing Performance for Other
Number of Edits

Tables 5 and 6 illustrate the editing performance
of various editing methods when sequential editing
2,000 and 5,000 samples across different LLMs
and datasets. The conclusions drawn are essentially
consistent with those in Section 4.2.

E.2 Results on Additional Datasets
Since our method focuses on solving the problem
of sequential editing, we select the widely-verified
benchmark datasets ZsRE and CounterFact for the
main experiments. To further validate the effec-
tiveness of our approach, we apply LyapLock to
additional types of datasets. Specifically, for multi-
hop scenarios we adopt the MQuAKE-CF dataset
proposed by (Zhong et al., 2023). MQuAKE-CF
is a counterfactual multi-hop question-answering
dataset designed to evaluate how well language
models can update their knowledge when facts
change. For real-world scenarios we adopt the
QAEdit dataset proposed by (Yang et al., 2025).
QAEdit is a fact-consistency editing detection
dataset for question-answering systems. By auto-
matically constructing noisy answers and manually
annotating text spans that require editing, it pro-
vides resources for training and evaluating models’
ability to identify and correct factual errors. We
choose the widely-used LLaMA3 model as the rep-
resentative for experimentation.

On MQuAKE-CF, we perform sequential edit-
ing on all 3,000 samples. The results are shown in
Table 7. The results show that LyapLock has a sig-
nificant advantage in multi-hop knowledge-editing
scenarios, outperforming other sequential editing
baselines. As the table indicates, in Edit-wise and

6451

Table 5: Performance results of sequential editing task (2,000 Samples). Here, the abbreviations Eff. (Efficacy), Gen.
(Generalization), Spe. (Specificity), Flu. (Fluency), and Consis. (Consistency) are employed to denote respective evaluation
metrics. Top-performing results are emphasized using bold formatting, with secondary superior results distinguished through
underlined notation.

Method Model
Counterfact ZsRE

Eff.↑ Gen.↑ Spe.↑ Flu.↑ Consis.↑ Eff.↑ Gen.↑ Spe.↑
Pre-edited

L
L

aM
A

3

7.85±0.27 10.58±0.27 89.48±0.19 635.44±0.11 24.19±0.09 36.99±0.30 36.34±0.30 31.89±0.23

FT 93.35±0.25 84.15±0.32 42.99±0.37 234.65±0.28 10.15±0.07 30.54±0.27 30.29±0.27 15.47±0.18

ROME 81.90±0.39 71.12±0.37 46.98±0.29 606.67±0.17 7.43±0.10 3.29±0.11 3.24±0.11 0.51±0.03

MEMIT 64.20±0.48 63.18±0.44 51.40±0.40 394.10±1.55 5.78±0.11 39.34±0.37 34.77±0.36 20.45±0.21

PRUNE 66.80±0.47 64.70±0.41 50.14±0.37 366.09±1.28 5.47±0.10 0.65±0.04 0.58±0.04 1.98±0.06

RECT 65.45±0.48 62.70±0.44 60.00±0.38 521.56±0.44 19.04±0.10 86.62±0.23 81.87±0.27 31.67±0.22

AlphaEdit 99.15±0.09 93.15±0.21 69.27±0.29 621.77±0.17 31.93±0.12 94.58±0.14 91.07±0.19 32.40±0.22

LyapLock 99.85±0.04 93.60±0.21 81.14±0.23 628.97±0.16 33.27±0.11 95.63±0.12 91.89±0.18 32.29±0.22

Pre-edited

G
PT

-J

15.80±0.36 18.10±0.34 83.44±0.25 621.69±0.14 29.46±0.10 27.79±0.29 27.10±0.29 27.54±0.26

FT 92.15±0.27 72.38±0.38 43.35±0.37 296.91±0.79 6.64±0.11 72.37±0.30 68.91±0.32 19.66±0.23

ROME 54.35±0.50 53.92±0.40 51.35±0.30 565.03±0.08 1.43±0.01 49.97±0.44 48.07±0.43 10.13±0.16

MEMIT 98.50±0.12 95.40±0.17 64.16±0.31 556.11±0.85 35.90±0.15 95.99±0.15 92.92±0.20 30.84±0.27

PRUNE 87.10±0.34 87.72±0.28 52.98±0.35 422.31±0.47 15.42±0.13 33.43±0.33 31.59±0.32 21.49±0.24

RECT 98.50±0.12 86.95±0.28 72.72±0.28 615.06±0.22 40.92±0.12 96.67±0.13 92.74±0.20 29.30±0.27

AlphaEdit 99.75±0.05 96.10±0.15 76.02±0.26 617.70±0.21 41.69±0.13 99.67±0.04 97.16±0.13 28.57±0.26

LyapLock 99.75±0.05 95.70±0.16 76.41±0.26 618.84±0.18 41.95±0.12 99.69±0.04 97.30±0.13 28.37±0.26

Pre-edited

G
PT

2-
X

L

22.10±0.41 24.45±0.37 78.05±0.28 626.61±0.12 31.33±0.10 23.70±0.27 22.82±0.27 24.97±0.24

FT 64.75±0.48 42.90±0.41 54.51±0.33 534.70±0.26 10.35±0.05 31.95±0.37 29.48±0.36 8.86±0.17

ROME 51.25±0.50 48.58±0.40 51.79±0.32 424.30±0.40 0.71±0.01 44.38±0.43 39.86±0.42 11.54±0.17

MEMIT 95.10±0.22 85.60±0.29 60.16±0.32 474.20±0.56 22.04±0.15 80.27±0.32 73.46±0.36 27.04±0.27

PRUNE 80.85±0.39 77.98±0.35 51.06±0.36 536.10±0.42 13.87±0.10 21.37±0.31 19.80±0.30 13.10±0.19

RECT 92.35±0.27 79.85±0.34 65.29±0.32 471.17±0.62 21.25±0.16 83.72±0.29 76.28±0.34 24.52±0.25

AlphaEdit 99.50±0.07 93.62±0.20 66.03±0.29 594.10±0.47 39.11±0.13 91.79±0.21 83.19±0.30 25.91±0.26

LyapLock 99.40±0.08 92.78±0.21 67.33±0.29 599.14±0.40 39.24±0.13 95.36±0.15 87.70±0.26 26.50±0.26

Instance-wise metrics that reflect single-hop edit-
ing ability, LyapLock achieves an average improve-
ment of about 11% over the second-best baseline
AlphaEdit. In the Multi-hop and Multi-hop (CoT)
metrics that directly measure multi-hop reasoning
ability, LyapLock achieves an average improve-
ment of about 3% over AlphaEdit, demonstrating
its effectiveness in handling complex knowledge
dependencies.

On QAEdit, to keep the scale consistent with
the main experiments, we select a subset of
10,000 samples for sequential editing. The re-
sults are shown in Table 8. The results indi-
cate that LyapLock significantly outperforms other
sequential-editing baselines, demonstrating strong
superiority even in the real-world setting. When
other methods fail almost entirely in the real-world

scenario (with metrics approaching or equaling
0.00), LyapLock successfully achieves remarkable
performance improvements. Specifically, under
the evaluation of the syn. and WILD metrics,
LyapLock averages about 10 times and 140 times
higher than the second-best baseline AlphaEdit,
respectively.

E.3 Case Study
We present the output examples of the LLAMA3,
GPT-J, and GPT2-XL models after being processed
by different editing methods, as shown in Table
9, 10, and 11. It is found that after sequential
editing of 10,000 samples, the content generated by
the baseline methods often fails to include the target
knowledge (Edit Target) and tends to produce a
large number of meaningless characters or repeated
words, which leads to poor text fluency. In contrast,

6452

Table 6: Performance results of sequential editing task (5,000 Samples). Here, the abbreviations Eff. (Efficacy), Gen.
(Generalization), Spe. (Specificity), Flu. (Fluency), and Consis. (Consistency) are employed to denote respective evaluation
metrics. Top-performing results are emphasized using bold formatting, with secondary superior results distinguished through
underlined notation.

Method Model
Counterfact ZsRE

Eff.↑ Gen.↑ Spe.↑ Flu.↑ Consis.↑ Eff.↑ Gen.↑ Spe.↑
Pre-edited

L
L

aM
A

3

7.02±0.26 9.61±0.25 89.63±0.19 635.25±0.11 24.19±0.09 36.35±0.30 35.73±0.30 31.84±0.23

FT 95.38±0.21 85.79±0.30 39.60±0.36 270.31±0.56 16.80±0.11 21.04±0.24 20.81±0.24 9.64±0.14

ROME 76.04±0.43 67.23±0.38 46.59±0.28 530.79±0.23 4.49±0.05 3.81±0.11 3.65±0.11 0.21±0.02

MEMIT 62.90±0.48 51.92±0.44 51.28±0.37 575.08±0.15 2.02±0.03 0.00±0.00 0.00±0.00 0.00±0.00

PRUNE 67.14±0.47 55.57±0.43 49.42±0.34 559.12±0.12 3.31±0.03 0.02±0.01 0.01±0.01 0.00±0.00

RECT 61.82±0.49 56.03±0.46 50.10±0.41 457.37±0.57 2.38±0.03 0.00±0.00 0.00±0.00 0.00±0.00

AlphaEdit 97.30±0.16 92.29±0.22 61.57±0.31 606.44±0.27 31.90±0.12 93.78±0.15 89.61±0.21 31.96±0.22

LyapLock 99.16±0.09 90.56±0.25 73.82±0.27 621.58±0.21 32.68±0.12 95.20±0.13 91.58±0.19 32.05±0.22

Pre-edited

G
PT

-J

14.78±0.35 17.17±0.33 83.45±0.25 621.80±0.14 29.48±0.10 27.04±0.29 26.25±0.28 27.00±0.26

FT 95.28±0.21 77.45±0.36 42.22±0.37 351.58±0.93 10.53±0.13 68.14±0.32 65.12±0.34 16.27±0.21

ROME 50.48±0.50 51.18±0.40 52.46±0.31 576.99±0.15 1.87±0.01 28.64±0.40 26.29±0.39 1.82±0.39

MEMIT 89.44±0.31 82.47±0.32 56.91±0.34 315.78±0.86 12.12±0.14 72.26±0.36 69.33±0.37 25.80±0.26

PRUNE 74.12±0.44 67.09±0.39 54.32±0.36 397.92±0.70 9.29±0.11 3.93±0.11 3.75±0.11 4.83±0.11

RECT 95.36±0.21 81.14±0.33 65.50±0.31 539.06±0.65 31.39±0.14 87.71±0.25 83.76±0.29 26.19±0.26

AlphaEdit 99.48±0.07 94.70±0.18 68.93±0.28 607.42±0.28 40.66±0.13 98.97±0.07 94.23±0.19 26.18±0.25

LyapLock 99.64±0.06 94.72±0.18 70.66±0.28 617.83±0.18 42.08±0.12 99.56±0.04 95.58±0.17 26.76±0.25

Pre-edited

G
PT

2-
X

L

21.50±0.41 23.88±0.37 78.24±0.28 626.51±0.12 31.27±0.10 22.80±0.27 21.87±0.26 24.32±0.24

FT 67.62±0.47 56.37±0.43 50.40±0.37 582.25±0.52 10.61±0.07 22.79±0.35 19.95±0.33 4.40±0.11

ROME 51.02±0.50 49.43±0.41 51.44±0.32 472.37±0.30 0.78±0.01 34.47±0.42 31.73±0.40 3.82±0.10

MEMIT 69.32±0.46 63.88±0.41 56.96±0.35 575.07±0.56 16.82±0.12 23.96±0.35 20.74±0.32 11.97±0.18

PRUNE 54.86±0.50 52.72±0.42 51.43±0.36 584.86±0.23 14.92±0.07 2.55±0.11 2.50±0.10 2.98±0.08

RECT 90.68±0.29 75.22±0.36 59.27±0.33 494.77±0.71 14.80±0.15 68.58±0.37 62.54±0.38 20.58±0.23

AlphaEdit 98.52±0.12 88.22±0.25 60.99±0.29 571.43±0.47 36.01±0.14 80.83±0.32 72.36±0.36 20.77±0.23

LyapLock 98.40±0.13 88.14±0.26 63.07±0.29 584.82±0.45 36.93±0.13 92.89±0.20 84.06±0.29 24.97±0.25

Table 7: Editing performance of the LLaMA3 model on the
MQuAKE-CF dataset after 3,000 sequential edits.

Method Edit-wise↑ Instance-wise↑ Multi-hop↑ Multi-hop(CoT)↑
MEMIT 9.17 0.27 1.97 3.43
PRUNE 9.96 0.15 4.63 6.75
RECT 24.60 3.07 13.13 14.77

AlphaEdit 68.87 34.27 8.60 25.07
LyapLock 77.72 47.63 12.27 27.33

our method not only achieves the desired editing
effect but also ensures the fluency of the generated
text.

E.4 Analysis of the Trend of LyapLock’s
Preservation Loss

Since, according to Eq. 7, Z(t) is adaptively
updated whenever the preservation loss ex-
ceeds the threshold D during sequential editing,
PL(preservation loss) is kept within a bounded

Table 8: Editing performance of the LLaMA3 model on the
QAEdit dataset after 10,000 sequential edits.

Method Reliability↑ Generalization↑
syn. WILD syn. WILD

MEMIT 4.04 0.00 4.13 0.00
PRUNE 0.26 0.00 4.34 0.00
RECT 1.56 0.00 1.34 0.00

AlphaEdit 3.67 0.01 3.88 0.05
LyapLock 42.62 4.92 41.23 3.59

range. Concretely, LyapLock’s preservation loss
first grows slowly, then decreases, and this cycle
repeats. Taking Figure 4(a) as an example:

• Stage One (0-4000 edits): Z(t) is fixed at
zmax, and the PL rises rapidly (similar to ex-
ponential growth).

• Stage Two (4000-10000 edits): When PL(t)

6453

Table 9: Model Editing Case Study on LLAMA3

Model Editing Case Study on LLAMA3

Editing Prompt The mother tongue of Danielle Darrieux is

Edit Target English

Generation Output

FT

Danielle Darrieux’s mother
tongue is <|begin_of_text|>
://<|eot_id|><|begin_of_text|>://the<|begin_of_text|>
://the<|eot_id|> Moscow<|eot_id|><|eot_id|><|eot_id|>. . .

ROME

Danielle Darrieux’s mother
tongue isistrovstvi istrovstvi azzi
GenerationType.scalablytyped.scalablytyped.BLL—
———-</ addCriterion.scalablytyped erveristrovstvi
Europe.scalablytypedIona. . .

MEMIT

Danielle Darrieux’s mother tongue isitionallyuli-
nAdvisoritionallyAdvisorAdvisorenderitionallyi-
tionAdvisorender Patron Patron PatronAdvisor Ibid
PatronitionallyAdvisor RussianAdvisor Patronen-
deritionally. . .

PRUNE

Danielle Darrieux’s mother tongue isitionallyuli-
nAdvisorAdvisorAdvisorenderAdvisorenderekyl-
lAdvisor CastroAdvisorAdvisorender PatronxAD
Patronitionally Patron PatronAdvisoritionallyAdvi-
sor Russian. . .

RECT
Danielle Darrieux’s mother tongue is: migra-
tionBuilder Nissan Italian Spanish : : : : : : : : :
:. . .

AlphaEdit

Danielle Darrieux’s mother tongue is French
English German French French German Ger-
man Spanish Spanish English Spanish Spanish
English. . .

LyapLock

Danielle Darrieux’s mother tongue is English, as
she was born in the United States of America, but
she grew up speaking Spanish, her mother’s native
language. . .

6454

Table 10: Model Editing Case Study on GPT-J

Model Editing Case Study on GPT-J

Editing Prompt Percy Snow, the

Edit Target goaltender

Generation Output

FT

The expertise of Percy Snow becomes important
when the latter has to decide who can and can’t be-
come a pope. The latter is diplomat to the Russian
cheshir cheshir cheshir cheshare cheshare. . .

ROME

The expertise of Percy Snow becomes important
when spiritual...ISC ulk Jewish R leader R ball H
([...] HBO percent and is lifelongDenver M harmful
R [harmless M (participtr... savings M Italian. . .

MEMIT

The expertise of Percy Snow becomes important
whenawar [...]englishawar [...] Bronxawar [...] Mel-
bourne worldwide [...] Melbourne Bronx Bronxflight
Cuba Mall [...] Melbourne Bronx Bronx Bronx Cuba
Bronx Bronx Bronxflight. . .

PRUNE

The expertise of Percy Snow becomes important
whensong Sloveniaawar [...] Melbourneawar [...]
Bangkok Bronxflight Cubaawar [...] Melbourneenko
[...] Antarctica Lebanonawar. . .

RECT

The expertise of Percy Snow becomes impor-
tant whenCtransS SpanishS CambridgeS Philadel-
phiaS CambridgenC MassachusettsCCCCCCv Cam-
bridgeS Portuguesebr Boston. . .

AlphaEdit

The expertise of Percy Snow becomes important
when it’s time to be the The last one to I don’t when
you Antarctica, Italy, Italy, Italy., and Judaism Ju-
daism Judaism Judaism Judaism Judaism. . .

LyapLock

The expertise of Percy Snow becomes important
when the goalie is injured. The goalie coach has
to know the goaltender’s style, how to get him go-
ing, how to keep him in the game and how to get him
to the point where he’s not injured. . .

6455

Table 11: Model Editing Case Study on GPT2-XL

Model Editing Case Study on GPT2-XL

Editing Prompt Apple A5 was created by

Edit Target Google

Generation Output

FT

Apple A5 is sold by Google and Google, Microsoft
in Melbourne, on NBC the model chart Read on NBC
to Chennai back Greek in Tokyo that on NBC the
model belowmodel with on Microsoft. . .

ROME

Apple A5 is sold by Ferrari 2̆00e Munich Munich
Antarctic AsiaWOR Italy treasurer Judaism watch-
dog North dazz dime Italy AntarcticaWOR Labour-
RAW Melt AntarcticaItaly Antarctica. . .

MEMIT

Apple A5 is sold by Microsoft Microsoft–Google–
Microsoft Apple German Boeing–Microsoft Mi-
crosoftMicrosoft Apple Apple MicrosoftMicrosoft
Amazon Japan Japan. . .

PRUNE
Apple A5 is sold by, Microsoft– Apple Apple N N–
N–ch–N and Lincoln ’,–N that-N-the Nsu ’ (; ’; ’ H,
N̈-y N,y N K N-y S, B ’N. . .

RECT
Apple A5 is sold by Google Google Microsoft Mi-
crosoft Microsoft Microsoft Microsoft Microsoft Mi-
crosoft. . .

AlphaEdit

Apple A5 is sold by Microsoft, but it has been a
little slow at the Windows store for the past year.
The Northern Territory has 6,000 islands Tuesday,
horoscopes restaurant jumbi Un jeung un. . .

LyapLock

Apple A5 is sold by Google in Japan. Apple has
released an Android-based phone in Japan The new
iPhone 7 will also use Android. Android has already
been used in many Apple products, including the
iPhone 6, iPhone 6S, Apple Watch Series 3. . .

6456

exceeds the preset threshold D = 1.832,
a(PL(t) − D) + b becomes positive, caus-
ing the virtual queue Z(t) to increase. This
enhances the weight coefficient aZ(t) of the
PL(t) term in the total loss function of Eq. 12.
prompting the model to place greater empha-
sis on retaining the original knowledge. Dur-
ing this stage, the growth rate of PL slows
down and gradually begins to decrease (for
example, from PL 2.145 at 5000 edits to PL
2.086 at 10000 edits). This change is not a
"plateau" (i.e., completely flat), but rather a
process of slowing growth and adjusting back
to the threshold D.

• Stage Three: As the number of editing steps
continues to increase, if PL(t) is below D,
a(PL(t)−D)+b will become negative, caus-
ing Z(t) to decrease and reducing the weight
of the PL term, thus allowing the model to
relax the preservation loss requirements when
updating knowledge.

Eq. 7, through the dynamic adjustment of Z(t),
theoretically controls the PL to fluctuate around the
threshold D through Stages Two and Three. Over-
all, the observed slowing and subsequent decrease
in PL (i.e., the seemingly flat area) is the effect of
the increased Z(t) and the strengthened knowledge
preservation constraints. Due to the complexity of
the model structure and the inherent difficulty of
controlling the preservation of original knowledge,
the process of loss reduction may appear relatively
slow.

E.5 More compatibility experiment results
We further demonstrate the performance improve-
ment of our method in combination with other base-
line methods across various models and datasets
after editing, as shown in Figure 6, 7, 8, 9, 10.
Overall, our method generally enhances both edit-
ing performance and downstream task performance
when combined with other baselines. However, the
specific degree of improvement varies depending
on the model, editing dataset, and method used.

6457

Figure 6: The improvement in editing performance and downstream task performance of other editing methods
after incorporating LyapLock, following the sequential editing of 10,000 samples on the ZsRE dataset using the
LLAMA3 model.

Figure 7: The improvement in editing performance and downstream task performance of other editing methods after
incorporating LyapLock, following the sequential editing of 10,000 samples on the CounterFact dataset using the
GPT-J model.

Figure 8: The improvement in editing performance and downstream task performance of other editing methods after
incorporating LyapLock, following the sequential editing of 10,000 samples on the ZsRE dataset using the GPT-J
model.

Figure 9: The improvement in editing performance and downstream task performance of other editing methods after
incorporating LyapLock, following the sequential editing of 10,000 samples on the CounterFact dataset using the
GPT2-XL model.

6458

Figure 10: The improvement in editing performance and downstream task performance of other editing methods
after incorporating LyapLock, following the sequential editing of 10,000 samples on the ZsRE dataset using the
GPT2-XL model.

6459

