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Abstract

Multilingual large language models (LLMs)
possess impressive multilingual understanding
and generation capabilities. However, their
performance and cross-lingual alignment of-
ten lag for non-dominant languages. A com-
mon solution is to fine-tune LLMs on large-
scale and more balanced multilingual cor-
pora, but such approaches often lead to im-
precise alignment and suboptimal knowledge
transfer, struggling with limited improvements
across languages. In this paper, we propose
AlignX to bridge the multilingual performance
gap, which is a two-stage representation-
level framework for enhancing multilingual
performance of pre-trained LLMs. In the
first stage, we align multilingual represen-
tations with multilingual semantic alignment
and language feature integration. In the sec-
ond stage, we stimulate the multilingual ca-
pability of LLMs via multilingual instruction
fine-tuning. Experimental results on several
pre-trained LLMs demonstrate that our ap-
proach enhances LLMs’ multilingual general
and cross-lingual generation capability. Fur-
ther analysis indicates that AlignX brings the
multilingual representations closer and im-
proves the cross-lingual alignment.!

1 Introduction

Multilingual large language models (LLMs),
trained on extensive multilingual corpora, demon-
strate impressive capabilities across a wide range
of NLP tasks (Brown et al., 2020; Touvron et al.,
2023a; Ustiin et al., 2024). However, they still ex-
hibit a strong language bias towards high-resource
languages, predominantly English, resulting in in-
ferior performance and cross-lingual alignment for
other languages (Qi et al., 2023; Chen et al., 2023;
Zhu et al., 2024c; Chua et al., 2024).
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AlignX.

To alleviate this problem, current mainstream
methods implicitly inject cross-lingual alignment
information at data level, such as continual pre-
training on large-scale multilingual corpora (Cui
et al., 2023; Yang et al., 2023; Xu et al., 2024),
multilingual general instruction fine-tuning (Li
etal., 2023; Zhang et al., 2024c), and cross-lingual
instruction fine-tuning on translation pairs (Zhang
et al., 2023; Zhu et al., 2023). Such data-level
methods adjust multilingual semantic representa-
tions by implicitly injecting alignment information
through translation pairs or large-scale multilin-
gual corpora. However, the impact of such meth-
ods on the semantic space is uncontrollable and
inefficient, often resulting in imprecise alignment
and suboptimal knowledge transfer.

A classic assumption in multilingual NLP is
that more consistent multilingual representations
facilitate easier knowledge transfer (Pan et al.,
2021; Tang et al., 2022). Wendler et al. (2024)
provide evidence by showing that English-centric
LLMs internally pivot through English during pro-
cessing. To investigate this further, we explore
how LLMs process multilingual data across lay-
ers, and reveal an align-then-diverge pattern (Fig-
ure 2). From the lower to intermediate layers, the
model aligns multilingual representations to en-
able knowledge sharing, while from the interme-
diate to upper layers, it gradually diverges these
representations to produce language-specific out-
puts. Building on this assumption and finding, an
intuitive approach to enhancing multilingual capa-
bilities is to align multilingual semantic spaces at
the intermediate layer for better knowledge shar-
ing, while preserving language-specific features in
higher layers for accurate generation.

To achieve this, we propose AlignX, a two-stage
and representation-level framework for enhanc-
ing the multilingual performance of pre-trained
LLMs. In the first phase, we efficiently align
multilingual representations during continual pre-
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Figure 1: The framework of our AlignX, which consists of two stages. The first stage, multilingual continual pre-
training, aligns multilingual representations within LLMs. The second stage, multilingual instruction fine-tuning,
stimulates the multilingual capabilities of LLMs and maintains pre-established multilingual alignment.

training. Specifically, we perform multilingual se-
mantic alignment at the intermediate layer using
the instruction contrastive learning task to pro-
mote knowledge sharing, and integrate language-
specific features at the output layer via the lan-
guage matching task to ensure accurate target lan-
guage generation. In addition, we provide overall
constraints through the standard language model-
ing task. In the second stage, we fine-tune the
model with multilingual instruction data, compris-
ing both translation and multilingual general in-
struction data, to stimulate the general capability
while preserving the multilingual alignment infor-
mation established in the first stage.

We experiment on five pre-trained LLMs and
evaluate performance across five widely used mul-
tilingual general and generation benchmarks. The
results indicate that AlignX effectively enhances
multilingual general and cross-lingual generation
capabilities. Extending AlignX to 51 languages
further improves performance, highlighting the
benefits of increasing the number of aligned lan-
guages in enhancing knowledge sharing.

2 Related Work

Data-level Cross-lingual Alignment in Multilin-
gual LLMs Many works aim to enhance LLMs’
multilingual capabilities through data-level ap-
proaches. Since translation pairs inherently con-
tain language alignment information, researchers
often use translation corpora to boost language
proficiency (Zhang et al., 2023; Alves et al., 2024;
Zhu et al., 2024b). Xu et al. (2024) first uti-
lize massive monolingual data to enhance lan-
guage generation and then leverage a small but

high-quality translation dataset to inject alignment
information. Zhu et al. (2023) leverage both
multilingual translation instruction data and gen-
eral task instruction data to build semantic align-
ment across languages. Zhang et al. (2024c)
propose a self-distillation method that transfers
high-resource language capabilities to enhance
multilingual performance using translation and
code-switched pairs. Compared to these ap-
proaches, our representation-level AlignX aligns
cross-lingual representations more efficiently.

Representation-level Cross-lingual Alignment
in Multilingual LLMs Representation engi-
neering provides a powerful lens for analyzing
internal representations of LLMs (Zhang et al.,
2024a; Yu et al., 2024). Following this, many re-
cent works investigate internal cross-lingual capa-
bility of LLMs (Zhong et al., 2024; Zhao et al.,
2025). Wendler et al. (2024) suggest that English-
centric LLMs use English as an internal pivot lan-
guage. Given the existence of an internal pivot lan-
guage, it is intuitive that aligning multilingual rep-
resentations facilitates more efficient knowledge
transfer. Li et al. (2024a) bridge the multilin-
gual representation gap through multilingual con-
trastive learning and cross-lingual instruction tun-
ing. Li et al. (2024b) establish word-level multi-
lingual alignment before pre-training and then pre-
train on code-switched text. AlignX differs by per-
forming multilingual semantic alignment at the in-
termediate layer and language feature integration
at the output layer. This integration is crucial for
preserving language-specific features and enhanc-
ing accurate language generation.
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Figure 2: Preliminary visualization of multilingual representations from some representative LLaMA3 layers after
dimension reduction. We leverage the FLORES-101 dev set, which is multi-way parallel, and use average-pooled
hidden states for dimension reduction. Appendix A presents detailed visualization process and results.

3 Preliminary Analysis

We visualize the multilingual representations
across different layers of LLaMA3 after dimen-
sion reduction. Specifically, we use the FLORES-
101 dev set, perform mean-pooling on hidden
states of different layers, and reduce dimension to
2-dim using t-SNE (Van der Maaten and Hinton,
2008). Figure 2 presents the results of some rep-
resentative layers, revealing a clear pattern: from
the lower to intermediate layers, the LLM pro-
gressively aligns multilingual representations, fa-
cilitating knowledge transfer. After the intermedi-
ate layers, multilingual representations gradually
diverge into distinct language-specific subspaces,
ultimately leading to different language outputs.
This reveals a pattern in how LLMs handle mul-
tilingual data: the LLM exhibits a natural ten-
dency to process multilingual representations in an
align-then-diverge manner, though the alignment
remains suboptimal. Following this, we propose
AlignX to strengthen this pattern.

4 Method

To enhance this align-then-diverge pattern of
LLMs, we propose AlignX, a two-stage and
representation-level framework for enhancing the
multilingual performance of pre-trained LLMs.
AlignX contains two stages: 1) multilingual con-
tinual pre-training, which explicitly aligns multi-
lingual representations via multilingual semantic
alignment and language feature integration; and 2)
multilingual instruction fine-tuning, which com-
bines multilingual general instruction data with
multilingual translation instruction data to stimu-
late general capabilities while preserving the pre-
established alignment. Figure 1 illustrates the
framework of AlignX.

4.1 Multilingual Continual Pre-training

In the first stage, we conduct multilingual con-
tinual pre-training and efficiently align multi-
lingual representations through multilingual se-
mantic alignment and language feature integra-
tion, guided by multilingual instruction contrastive
learning Lorr and language matching learning
L1 a0, respectively. This stage leverages English-
centric translation instruction data.

Multilingual Semantic Alignment Our prelim-
inary visualization reveals that LLMs tend to align
multilingual representations during processing. To
enhance this trend, we explicitly introduce a con-
trastive learning task at the intermediate layer, en-
couraging the model to produce similar represen-
tations for translation pairs.

Formally, given the dataset D and a translation
instruction data I* = {x*,y*}, we compute its [-th
layer hidden states in model f(#) as follows:

JI) = A, (T} )]

We extract the hidden states of x’ and y* based
on their respective token index ranges and get Ij(i
and I;i, and subsequently apply mean pooling to

obtain the sentence representation hx" and hY':

P = g )), WY = g(fi(T)) @

where g(+) denotes mean pooling operation.

We take (x!,y?) as the positive example and
randomly select y’ to form the negative example
(x',y7). Then, the objective of multilingual in-
struction contrastive learning is:

esim(hxi ,hyi)/T

Doy esim(hx" 7 /7
y

Lorr=— E log 3)

xt,yteD

where sim(-) calculates the similarity of differ-
ent sentences, and we use cosine similarity in our
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work. 7 is a temperature hyper-parameter. To sim-
plify the implementation, we sample negative ex-
amples within every training batch.

Language Feature Integration Intuitively, af-
ter aligning the multilingual semantic space in
the intermediate layer, it becomes more difficult
for the model to distinguish between output lan-
guages. To bridge this gap, we leverage a lan-
guage matching task to inject language features.
Specifically, we train a language matching classi-
fier that predicts whether a given sentence pair is
in the same language (matched) or different lan-
guages (unmatched). The classifier takes the hid-
den states from the model’s final layer as input and
is optimized using a binary classification task.

Formally, given mean-pooled sentence repre-
sentations A* and hY, we concatenate and feed
them into the matching classifier to get a logit. The
ground truth is whether x and y belong to the same
language, denoted as y. The language matching
task is optimized with the cross-entropy loss:

Lramy =— E logM([R*;hY],y) (4)

x,y€D

where M (0) denotes the language matching clas-
sifier, a 2-layer MLP in our work. To simplify the
implementation, we sample sentence pairs within
every training batch.

Final Loss Finally, we optimize the represen-
tation alignment objectives Lorr and Lrpans
with the standard next token prediction loss of
LLMs, using multilingual translation instruction
data. The next token prediction loss £Ly7p is:

Lyrp = —I_Epzlog P(LIIL) ()
= -

The final loss of multilingual continual pre-
training stage is:

L=Lnrp+o1Lorr+Liay  (6)

where a1 and ap are hyper-parameters to balance
the losses.

4.2 Multilingual Instruction Fine-tuning

After multilingual representation alignment, we
leverage multilingual instruction fine-tuning to
effectively stimulate general capabilities while
maintaining the alignment established in the first
stage. We mix multilingual translation instruction

data, which implicitly provides alignment infor-
mation (Zhu et al., 2023), and multilingual general
instruction data, which efficiently stimulates mul-
tilingual general capabilities (Chen et al., 2024).
To ensure diversity and multilingual balance, we
sample English-centric translation pairs uniformly
across languages, pairing each with a randomly se-
lected translation instruction. General instruction
data are also sampled uniformly across languages.
Empirically, we maintain a 1:3 ratio of translation
data to general instruction data and a 1:5 ratio of
second-stage data to first-stage data. In this stage,
we optimize the model with the next token predic-
tion loss in Equation (5).

S Experiment

5.1 Experiment Setup

Base LLMs We leverage LLaMA-7B (Touvron
et al.,, 2023a), LLaMA2-7B (Touvron et al.,
2023b), LLaMA3-8B-Instruct (Dubey et al.,
2024), Gemma-2B (Team et al., 2024) and
Mistral-7B-v0.3 (Jiang et al., 2023) as base LLMs.

Language Setup In the main experiment, we fo-
cus on ten languages: Arabic (Ar), Czech (Cs),
German (De), Greek (El), English (En), Hindi
(Hi), Russian (Ru), Turkish (Tr), Vietnamese (Vi)
and Chinese (Zh), spanning diverse families and
resource levels, and refer to this setup as AlignX.
To validate scalability, we extend to 51 languages
using LLaMA3-8B-Instruct, denoting this config-
uration as AlignX (51langs) to distinguish it from
the original 10-language setup.

Baselines We compare with these baselines: (1)
CPT-then-SFT follows the same two-stage mul-
tilingual instruction tuning as AlignX but with-
out Lorr and L1 an; (2) ParroT-7B (Jiao et al.,
2023) leverages chat data to improve translation
ability; (3) BayLing1-7B (Zhang et al., 2023) and
BayLing2-8B (Zhang et al., 2024b) use multi-turn
interactive translation instruction data for cross-
lingual alignment; (4) BigTrans-13B (Yang et al.,
2023) applies continual pre-training on a large-
scale multilingual corpus; (5) Tower-7B (Alves
et al., 2024) first trains on multilingual data then
fine-tunes on translation instruction data.

Training Dataset We construct the multilin-
gual translation instruction data from OPUS-
100 (Zhang et al., 2020) and extract multilingual
general instruction data from Bactrian-X (Li et al.,
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Figure 3: Overall performance on multilingual general benchmarks. All the benchmarks are evaluated using
Accuracy metric. For comparison purposes, models with the same base LLM have the same color scheme, with
the lightest being the base LLM and the darkest being AlignX.

2023). Appendix B.1 and B.2 present details about
data processing and data statistics, respectively.

Evaluation Benchmarks We evaluate multilin-
gual general and cross-lingual generation capa-
bilities on five benchmarks: multilingual Hel-
laSwag (Zellers et al., 2019), multilingual Truth-
fulQA (Lin et al., 2022), XNLI (Conneau et al.,
2018), XStoryCloze (Lin et al., 2021b), evaluated
with Accuracy metric; and FLORES-101 (Costa-
jussaetal., 2022), evaluated with BLEU (Papineni
et al., 2002) and COMET (Rei et al., 2020) met-
rics. See Appendix B.3 for details.

Configuration In AlignX, the language match-
ing classifier is a 2-layer MLP with an intermedi-
ate dimension of 128 and an output dimension of

2. For training, we optimize using AdamW op-
timizer with a learning rate of 2e-6, training for
2 epochs per stage with a batch size of 128. We
empirically set a; = 0.3, g = 0.4, and 7 =
0.1. For evaluation, we use the MMT-LLM frame-
work (Zhu et al., 2024¢) for FLORES-101 and
the Im-evaluation-harness framework (Gao et al.,
2024b) for other general benchmarks. All tasks
are evaluated in a 1-shot setup.

5.2 Main Results

AlignX improves multilingual general capabil-
ity. Figure 3 shows the results on multilingual
TruthfulQA, multilingual Hellaswag, XNLI, and
XStoryCloze, with detailed results in Appendix
C.1. While these benchmarks are out of our train-
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Methods X-En X-Ar X-Cs X-De X-El X-Hi X-Ru X-Tr X-Vi X-Zh Avg
Gemma-2B Based
Gemma-2B 3046  3.77 6.39 8.53 4.67 341 4.84 4.11 8.22 7.19 8.16
CPT-then-SFT 31.62 17.36 794 1340 8.99 7.16 11.05 724 14.01 1055 11.93
AlignX 31.68 694 875 13.84 8.83 7.40 1063 794 1587 11.02 12.29
Mistral-7B-v0.3 Based
Mistral-7B-v0.3 3096 3.89 1429 17.88 2.26 3.49 1568 5.78 9.71 1050 11.44
CPT-then-SFT 3429 813 1505 1735 6.84 6.17 16.88 994 1386 1256 14.11
AlignX 3385 8.00 1458 1654 6.77 6.74 16.59 1034 14.18 12.78 14.04
LLaMA-7B Based
LLaMA-7B 20.81 0.74 5.70 9.05 0.80 0.97 6.60 1.22 1.10 1.60 4.86
ParroT-7B 1791  0.22 3.28 4.65 0.45 0.26 1.86 1.59 1.67 1.81 3.37
BayLingl-7B 21.64  0.59 5.09 5.67 0.78 0.54 3.83 1.78 1.87 3.62 4.54
BigTrans-13B 2130 2.10 5.27 5.31 1.38 4.03 4.66 3.80 2.54 4.95 5.53
CPT-then-SFT 27.02 321 938 1190 3.34 266 1048 4.79 6.26 5.64 8.47
AlignX 2546  3.85 9.01 11.39 4.51 3.36 9.96 5.60 7.84 5.30 8.63
LLaMAZ2-7B Based
LLaMA2-7B 2574 137 8.99 12.28 1.27 1.62 8.68 2.41 9.69 5.48 7.76
Tower-7B 30.48 1.51 774 1275 1.33 1.79 10.15  2.26 8.56 9.26 8.58
CPT-then-SFT 31.61 346 13,50 17.73 274 2.71 1439 537 13.53  10.52 11.55
AlignX 3199 506 1344 17.62 4.22 417 1519 630 1555 11.64 12.52
LLaMA3-8B-Instruct Based
LLaMA3-8B-Instruct 34.52 14.16 19.40 2299 1645 1642 21.18 1637 24.65 17.04 20.32
BayLing2-8B 3521 13.83 1509 1833 1426 16.02 18.14 14.09 2241 1594 1833
CPT-then-SFT 36.50 14.82 19.68 2398 17.82 16.09 21.52 1526 24.65 19.08 20.94
AlignX 3736 1498 19.66 23,58 17.73 1626 21.31 1472 2351 1840 20.75
AlignX (51langs) 38.70 16.12 20.71 24.58 17.63 17.77 22.00 1690 2588 19.08 21.94

Table 1: The overall performance on the FLORES-101 benchmark. In each model group, we fine-tune the base
LLM (first row) to obtain CPT-then-SFT and AlignX. We report averaged BLEU scores for each target language.
"X" denotes all other nine languages except the target language. "Avg." denotes average scores on all translation

directions. We bold the highest scores.

ing distribution, AlignX achieves improvements
on all five base LLMs, demonstrating the general-
izability of AlignX. In contrast, data-level meth-
ods exhibit varying degrees of forgetting across
languages, indicating that cross-lingual alignment
achieved solely from continual pre-training on
large parallel datasets struggles to generalize be-
yond translation tasks. These findings demon-
strate the importance of multilingual representa-
tion alignment for enhancing multilingual capabil-
ity and generalizability.

AlignX significantly enhances cross-lingual
generation capability. Table 1 presents results
on the FLORES-101 benchmark, with statistical
significance test, COMET scores, and additional
details in Appendix C and a case study in Ap-
pendix D. The results show that AlignX achieves
the highest scores on all base LLMs, with aver-
age +4.13, +2.6, +3.77, +4.76, and +0.43 BLEU
scores on Gemma-2B, Mistral-7B-v0.3, LLaMA-
7B, LLaMA2-7B, and LLaMA3-8B-Instruct, re-
spectively. This demonstrates AlignX’s versa-
tility, as it improves across LLMs with vary-
ing multilingual capabilities. Notably, BigTrans-
13B uses a larger base LLM, 300M translation

pairs, and some non-English translation directions
(e.g., Hi-Zh). In contrast, AlignX relies solely on
less than 1M English-centric translation pairs yet
still achieves higher translation scores, indicating
that representation alignment effectively enhances
LLMs’ cross-lingual capability.

Scaling AlignX to 51 languages further im-
proves multilingual general and cross-lingual
generation capabilities. To further validate the
effectiveness of AlignX across a broader range of
languages, we scale AlignX to 51 languages, listed
in Appendix B.4. Figure 4 presents the results on
multilingual general and translation benchmarks,
with detailed results in Appendix C. These results
indicate that AlignX performs effectively under
the 51-language setup, enhancing both multilin-
gual general and cross-lingual generation capabil-
ities. To illustrate the impact of language scaling,
we compare AlignX (51-langs) and AlignX (10-
langs) under the 10-language setup, as shown in
Figure 3 and Table 1. Surprisingly, increasing the
number of languages from 10 to 51 leads to fur-
ther gains in multilingual general and generation
tasks, without exhibiting the "curse of multilin-
guality" (Zhu et al., 2024a). This highlights the
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Figure 4: Performance comparison of LLaMA3-8B-Instruct (blue) and AlignX (red) under the 51-language setup.
(a): Accuracy metric results on multilingual general benchmarks. (b): BLEU differences on FLORES-101 bench-
mark, with red showing better AlignX performance and blue showing better LLaMA3-8B-Instruct performance.

IWSLT2017
Methods TruthfulQA  HellaSwag XNLI X-En En-X Nonm-Em OTR
LLaMA-7B 24.77 41.79 3570 3120 16.08 10.90 30.92
w/o LcTr 31.34 44.03 36.07 36.13 28.68 20.01 4.39
w/o L1 am 32.22 43.99 36.27 36.81 29.39 18.59 12.59
AlignX 32.12 44.11 36.00 3625 29.88 21.21 4.16

Table 2: Averaged results of variant models on LLaMA for multilingual general and IWSLT2017 benchmarks.
"w/o Lorr" and "w/o L1 4" remove the instruction contrastive learning and language matching in the first
stage, respectively. "Non-En" indicates translation between four non-English languages. "OTR" (off-target ratio)
represents the proportion of outputs in incorrect target languages, thus the lower the better. We bold the best results.

efficacy of multilingual representation alignment
across a large number of languages.

6 Analysis

In this section, we provide an in-depth analysis of
AlignX, examining the following aspects: the role
of two auxiliary objectives, improvements in mul-
tilingual representation alignment, enhancements
in cross-lingual generation and knowledge trans-
fer, the impact of corpus size, and gains in cross-
lingual alignment. Appendix E provides detailed
comparisons with representation-level AFP, along
with efficiency analysis. Additional evaluation
benchmarks are reported in Appendix B.3.

Instruction contrastive learning facilitates
knowledge sharing, and language matching
promotes more accurate cross-lingual gen-
eration. We conduct experiments on several
variant models to investigate the effectiveness of
training objectives. We experiment with German,

English, Italian, Dutch, and Romanian. These five
languages belong to the Indo-European language
family, which are relatively similar. We extract
the training and test sets from the IWSLT2017
dataset, follow the same data construction pro-
cess as the main experiment, and experiment
on LLaMA-7B. Table 2 presents the results,
highlighting the effectiveness of multilingual
representation alignment. Specifically, instruction
contrastive learning facilitates knowledge shar-
ing, primarily benefiting relatively low-resource
languages, but increases incorrect linguistic
output in cross-lingual generation. To mitigate
this off-target issue, language matching serves
as a regularizer for output languages, enhancing
LLMs’ ability to distinguish output languages.

AlignX effectively brings the multilingual
representations closer. To intuitively under-
stand the effectiveness of multilingual repre-
sentation alignment, we visualize multilingual
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Figure 5: Visualization of multilingual representations from the base model, xSFT model, CPT model, and AlignX
model after dimension reduction. The CPT and xSFT models train only the first and second stages of multilingual
instruction fine-tuning, respectively. The visualization process follows the same steps as in Figure 2.

W/T/L Grammar
X-El 173 /174 /103
All 1098 /2901 / 501

Language Fit
192 /138 /120
1223 /2611 /666

Table 3: Automatic evaluation results using GPT-40 on
cross-lingual generation. We compare paired outputs
of AlignX and LLaMA3-8B-Instruct, where “W/T/L”
indicates that AlignX produces better, comparable, or
worse translations, respectively. "X" denotes all other
nine languages except the target language.

representations of LLaMA3, data-level xSFT,
and representation-level CPT, AlignX. Figure 5
presents visualization results, demonstrating the
implicit multilingual alignment of xSFT and ex-
plicit multilingual alignment of AlignX. Com-
paring Figures 5(a) and 5(b), xSFT preliminar-
ily aligns multilingual representations without ex-
plicit auxiliary tasks, although some distant lan-
guages still exist. This alignment capability comes
from translation pairs, which naturally contain
alignment information. The comparison in Fig-
ures 5(b) and 5(d) shows that multilingual repre-
sentation alignment in the first stage is important
in bringing multilingual representations closer.
Appendix A presents detailed results for AlignX.

AlignX achieves better grammatical correct-
ness and more accurate target language ac-
cording to GPT-40 evaluation. To further ex-
amine how AlignX enhances cross-lingual gener-
ation, particularly in low-resource scenarios, we
employ GPT-40 as an automatic evaluator focus-
ing on the grammar and language fit dimensions.
Evaluations are conducted under the 10-language
setup. For each translation direction, we randomly
sample 50 instances and compare the outputs from
LLaMA3-8B-Instruct and AlignX. As shown in
Table 3, detailed in Appendix E.3, AlignX demon-

2.0{ —— AlignX
CPT-then-SFT

0.5 /
0.0 “o—o- o | 3
-05 \\

0 2 4 6 8

Prob Changes (%)

10 12 14 16 18 20 22 24 26 28 30
Layers

Figure 6: Layer-wise probability changes of unem-
bedding the correct English answer token at non-final
layers during non-English translation among German,
Russian, and Chinese (e.g., De-Ru). Probabilities are
averaged across samples.

strates stronger grammatical correctness and more
appropriate target language across languages, es-
pecially low-resource languages (e.g., Greek).

AlignX facilitates knowledge transfer via cross-
lingual concept alignment in intermediate lay-
ers. Following Wendler et al. (2024), we analyze
how AlignX enhances knowledge transfer and in-
fluences cross-lingual representations. Specifi-
cally, we measure the likelihood that non-English
inputs activate English-centric representations in
intermediate layers through German, Russian, and
Chinese translation tasks (e.g., German—Chinese).
For each direction, we compute the probability of
unembedding the correct English token at non-
final layers, averaged across samples, and report
the change relative to LLaMA2 (e.g., AlignX —
LLaMA?2). Figure 6 reveals that in the concept
space (Wendler et al., 2024), approximately layers
16 to 28, associated with language-agnostic pro-
cessing, AlignX exhibits higher probabilities of re-
trieving the English token, whereas CPT-then-SFT
fluctuates around zero. This indicates that AlignX
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Figure 7: Results of the general cross-lingual knowledge alignment evaluation with CLiKA (Gao et al., 2024a).
We present the re-scaled accuracy (RA) scores, where higher values (greater than 0) indicate better performance.
"Seen" and "Unseen" denote whether these languages are included during AlignX training. XCSQA and xGeo
evaluate Basic knowledge and Factual knowledge, respectively.

WMT14 WMT17

Methods . g En-De Zh-En En-Zh
LLaMA-7B Based

LLaMA-7B 2895 1830 1575 10.58

xSFT 2883  19.15 16.16  18.69

AlignX 3145 2225 1837 2486

AlignX' 3216 2479 1943  29.15
LLaMA2-7B Based

LLaMA2-7B 3125 2032 2141  20.97

xSFT 3081 2042 18.88 2451

AlignX 3204 2359 1976  29.13

AlignX' 3394 2670 2200 3218
LLaMA3-8B Based

LLaMA3-8B 33.66 23.70 25.03  31.60

xSFT 3477 2645 2506  35.77

AlignX 3609 2723 2484  36.26

AlignX' 3570 2833 2432  36.46

Table 4: The results for the WMTI14EnDe and

WMTI17EnZh benchmarks. The xSFT model only
trains the second stage of multilingual instruction fine-
tuning. AlignX' is a variant that increases the training
data in the first stage from 50K to 250K examples per
language direction. We bold the highest scores.

better aligns cross-lingual representations with the
English-centric concept space, leveraging English
as an interlingua to improve cross-lingual transfer.

Scaling up the dataset of multilingual repre-
sentation alignment consistently enhances non-
English language generation. We investigate
the impact of scaling the first-stage training dataset
for multilingual representation alignment on lan-
guage generation, using German (De), English
(En), and Chinese (Zh) with LLaMA-7B. Train-
ing and test sets are drawn from WMTI14EnDe
and WMT17EnZh. In Stage 1, we vary the cor-
pus size for each language pair from 50K to 250K,
while Stage 2 training follows the same settings
as in the main experiment. As presented in Ta-

ble 4, AlignX mainly enhances the performance in
the non-English translation directions, consistent
with Table 2. Moreover, extending corpora size in
the first stage further enhances performance, espe-
cially in non-English generation.

AlignX achieves better cross-lingual alignment.
To validate AlignX’s impact on cross-lingual
alignment, we use the CLiKA framework (Gao
et al., 2024a), evaluating Basic and Factual knowl-
edge with the xCSQA and xGeo benchmarks. We
compute re-scaled accuracy scores, which exclude
the interference of random baseline and question
difficulty for better cross-lingual comparison. Re-
sults in Figure 7 show that AlignX improves cross-
lingual alignment across multiple languages, re-
ducing multilingual performance gaps. Remark-
ably, AlignX also generalizes well to unseen lan-
guages, with cross-lingual alignment correlating
strongly with similar languages from training,
suggesting generalization is influenced by lan-
guage family similarities.

7 Conclusion

In this paper, we propose AlignX, an efficient
two-stage representation-level framework for en-
hancing multilingual performance of multilingual
LLMs. Results on several pre-trained LLMs
and multiple widely used benchmarks show that
AlignX effectively enhances multilingual general
capabilities and cross-lingual generation capabil-
ities. The analysis further demonstrates the im-
pact of AlignX on LLMs, including bringing mul-
tilingual representations closer and improving the
cross-lingual alignment of LLMs.
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Limitations

Given LLMs with uneven multilingual capabili-
ties, AlignX enhances both the multilingual gen-
eral capability and cross-lingual generation capa-
bility, and alleviates the imbalance of multilin-
gual capabilities, which matches our motivation.
However, the multilingual performance of the fi-
nal model is the outcome of the combined influ-
ence of the base model and AlignX, meaning that
the imbalance remains unavoidable. This suggests
that we are still far from achieving fully balanced
multilingual capabilities.
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A Detailed Visualization across Layers
on LLaMA3

We use the FLORES-101 dev set, with 997 sen-
tences per language. We directly input the sen-
tence into the LLM to obtain the hidden state se-
quence, perform average pooling to derive the sen-
tence representation, and apply t-SNE (Van der
Maaten and Hinton, 2008) for dimension reduc-
tion to 2-dim. Detailed visualization results for
both the base LLM and the AlignX LLM, based
on LLaMA3-8B, are presented in Figure 8 and 9,
respectively.

B Detailed Information for Training
Dataset

B.1 Data Processing

For multilingual translation instruction data, we
randomly select English-centric translation pairs
from the OPUS-100 (Zhang et al., 2020) corpus
and sample a translation instruction from the trans-
lation instruction set for each pair. For instruc-
tion diversity, we prompt ChatGPT to generate a
set of ten translation instructions, as shown in Ta-
ble 5. For multilingual general instruction data,
we primarily draw from the Bactrian-X (Li et al.,
2023) dataset, a multilingual version of the Al-
paca (Taori et al., 2023) dataset available in 52
languages®. The instructions are translated using
Google Translate, and the responses are generated
with GPT-3.5-Turbo. We filter out off-target re-
sponses using the langid toolkit (Lui and Baldwin,
2012). In the first stage, we sample 50k translation
pairs per translation direction, resulting in 0.9M
translation instruction data in total. In the second
stage, we sample 2.5k translation instruction data
per translation direction and 10k general instruc-
tion data per language, resulting in 145k mixed in-
struction data in total.

B.2 Statistics on Corpora Size and
Languages

Table 6 presents statistics on corpora size for our
approach and some typical data-level systems. Ta-
ble 7 presents information on languages involved
in this work.

2Since Greek (El) is not included in Bactrian-X, we ob-
tain the Greek Alpaca dataset from https://github.com/
NJUNLP/x-LLM.

B.3 Details about Evaluation Benchmarks

We evaluate multilingual general capabilities and
cross-lingual generation capabilities on the fol-
lowing benchmarks:

* Multilingual TruthfulQA (Lin et al., 2022):
This is the multilingual version of the Truth-
fulQA benchmark and evaluates knowledge
and truthfulness capabilities.

* Multilingual HellaSwag (Zellers et al.,
2019): This is the multilingual version of the
HellaSwag benchmark and evaluates com-
monsense reasoning and contextual under-
standing capabilities.

* Cross-lingual Natural Language Inference
(XNLI) (Conneau et al., 2018): This bench-
mark evaluates language transfer and cross-
lingual sentence classification.

* XStoryCloze (Lin et al., 2021b): This is a
multilingual commonsense reasoning bench-
mark for evaluating story understanding,
story generation, and script learning.

* FLORES-101 (Costa-jussa et al., 2022):
This is a multilingual machine translation
benchmark and evaluates the cross-lingual
generation capability.

The multilingual HellaSwag and Truthful QA
benchmarks are obtained from Okapi (Lai et al.,
2023), translated by ChatGPT. We evaluate the
trained languages. In the analysis section, we fur-
ther experiment on the following benchmarks:

» IWSLT2017 (Cettolo et al., 2017), WMT14?
and WMT17*: These benchmarks are classi-
cal multilingual translation benchmarks and
evaluate cross-lingual generation capabilities
of different language subsets.

* xCSQA (Lin et al., 2021a): This is the multi-
lingual version of CSQA and evaluate cross-
lingual commonsense reasoning.

e xGeo (Gao et al., 2024a): This benchmark
evaluates cross-lingual knowledge align-
ment.

3ht’cps: //huggingface.co/datasets/wmt/wmt14
*https://huggingface.co/datasets/wmt/wnt17
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Figure 8: Preliminary visualization of the multilingual representations across layers in the LLaMA3 after dimen-
sion reduction. We leverage the FLORES-101 dev set, which is multi-way parallel.
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Translation Instruction Set
Translate this text from {src_lang} to {tgt_lang}.

Convert this sentence from {src_lang} to {tgt_lang}.
Change this paragraph from {src_lang} to {tgt_lang}.

Render this message from {src_lang} to {tgt_lang}.

Translate this phrase from {src_lang} to {tgt_lang}.

Turn this text from {src_lang} to {tgt_lang}.
Rewrite this statement from {src_lang} to {tgt_lang}.
Provide a translation from {src_lang} to {tgt_lang} for this text.
Offer a {tgt_lang} translation for this text from {src_lang}.

Give a {tgt_lang} version of this text from {src_lang}.

Table 5: The translation instruction set in this work. "src_lang" denotes the source language, and "tgt_lang" denotes
the target language.

Methods Languages Data per Language Total Data
x-LLaMA (Zhu et al., 2023) 6 736.1K sentences 4.4M sentences
SDRRL (Zhang et al., 2024c) 15 150K sentences* 2.3M sentences*
BayLingl (Zhang et al., 2023) 4 75.5K sentences 302K sentences
BayLing2 (Zhang et al., 2024b) 158 20.3K sentences 3.2M sentences
ParroT (Jiao et al., 2023) 3 67.4K sentences 202.2K sentences
BigTrans (Yang et al., 2023) 102 880.4M tokens + 2.4k sentences ~ 89.8B tokens + 241K sentences
ALMA (Xu et al., 2024) 6 121.7B tokens + 9.8K sentences  703B tokens + 58.7K sentences
~ AlignX (10langs) o 104.5K sentences ~ 1.0M sentences
AlignX (51langs) 51 112.9K sentences 5.8M sentences

Table 6: Statistics on corpus size for our approach and some typical systems. We list the number of fine-tuned
languages, the total corpus size, and the average corpus size per language. “*” indicates that the detailed corpus
size is not given in the paper and we estimate a lower bound.

ISO 639-1 Language ISO 639-1 Language ISO 639-1 Language
Af Akrikaans Hr Croatian Pl Polish
Ar Arabic Id Indonesian Ps Pashto
Az Azerbaijani It Italian Pt Portuguese
Bn Bengali Ja Japanese Ro Romanian
Cs Czech Ka Georgian Ru Russian
De German Kk Kazakh Si Sinhala
El Modern Greek Km Khmer SI Slovenian
En English Ko Korean Sv Swedish
Es Spanish Lt Lithuanian Ta Tamil
Et Estonian Lv Latvian Te Telugu
Fa Persian Mk Macedonian Th Thai
Fi Finnish Ml Malayalam Tr Turkish
Fr French Mn Mongolian Uk Ukrainian
Gl Galician Mr Marathi Ur Urdu
Gu Gujarati My Burmese Vi Vietnamese
He Hebrew Ne Nepali Xh Xhosa
Hi Hindi NI Dutch Zh Chinese

Table 7: The languages and corresponding language codes used in this work.
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B.4 Languages Included in the 51-Language
Setup

To further validate the effectiveness of AlignX
across a broader range of languages, we conduct
experiments involving 51 languages. We select
languages from the intersection of Bactrian-X and
OPUS-100, with the addition of Greek. The lan-
guages are: Akrikaans (Af), Arabic (Ar), Azer-
baijani (Az), Bengali (Bn), Czech (Cs), German
(De), Modern Greek (El), English (En), Span-
ish (Es), Estonian (Et), Persian (Fa), Finnish (F1),
French (Fr), Galician (Gl), Gujarati (Gu), He-
brew (He), Hindi (Hi), Croatian (Hr), Indone-
sian (Id), Italian (It), Japanese (Ja), Georgian
(Ka), Kazakh (Kk), Khmer (Km), Korean (Ko),
Lithuanian (Lt), Latvian (Lv), Macedonian (MKk),
Malayalam (M), Mongolian (Mn), Marathi (Mr),
Burmese (My), Nepali (Ne), Dutch (Nl), Pol-
ish (PI), Pashto (Ps), Portuguese (Pt), Romanian
(Ro), Russian (Ru), Sinhala (Si), Slovenian (SI),
Swedish (Sv), Tamil (Ta), Telugu (Te), Thai (Th),
Turkish (Tr), Ukrainian (Uk), Urdu (Ur), Viet-
namese (Vi), Xhosa (Xh), Chinese (Zh).

C More Evaluation Metrics and Detailed
Results

C.1 Multilingual General Benchmarks

Table 11, 12 and 13 show results on multilingual
Truthful QA, multilingual HellaSwag, and XNLI
benchmark, respectively, and Table 15, 16, 17 and
18 present results on corresponding benchmarks
under 51-language setup.

C.2 Multilingual Translation Benchmark

To better evaluate the quality of multilingual trans-
lation, we report the results for statistical signif-
icance test in Table 19, and COMET (Rei et al.,
2020)° metric in Table 20, respectively. We
present detailed BLEU results for each base LLMs
on the multilingual translation benchmark in Table
21, 23, 24, 25 and 26. We present the averaged
BLEU scores under the 51-language setup in Ta-
ble 27.

D Case Study for Multilingual
Translation

To intuitively understand the superiority of
AlignX translations, we provide some representa-
tive, diverse, and multilingual translation cases of

>https://huggingface.co/Unbabel/wmt22-comet-da

LLaMAZ2-7B and AlignX. We use online Google
Translate to translate non-English text into English
for clear understanding. Figure 10 presents the
cases. While LLaMA?2 fails to provide accurate
translations, AlignX provides accurate and con-
cise translations. While LLaMA?2 fails to provide
accurate translations in these cases, including mis-
translations, omissions, or even the incorrect target
language, AlignX provides accurate and concise
translations.

E Additional Analysis

E.1 Comparison with Representation-level
AFP

We further compare our approach with AFP (Li
et al.,, 2024a), a SOTA representation-level
method. AFP enhances multilingual semantic
alignment through an auxiliary contrastive learn-
ing objective applied to translation pairs and
cross-lingual instruction data. We evaluate AFP
on 10 languages, using cross-lingual instruc-
tions constructed from approximately 1.15M in-
stances—comparable in scale to AlignX (1.14M
instances). Following AFP’s optimal hyperparam-
eters, results in Table 8 demonstrate that AlignX
outperforms AFP in both multilingual understand-
ing and cross-lingual generation.

We attribute AlignX’s superior performance
to two key factors. First, AlignX aligns more
closely with the LLMs’ inherent “align-then-
diverge” pattern by combining contrastive learn-
ing with language matching, thereby mitigating
the performance degradation in generation when
aligning semantic representations alone. Second,
AlignX integrates contrastive learning and lan-
guage matching directly within the instruction for-
mat. This encourages the model to naturally learn
intra-sentence language shifts, leading to more ac-
curate cross-lingual generation compared to AFP’s
cross-lingual instruction tuning.

E.2 Efficiency Analysis

To evaluate the training efficiency, we compare
the training cost between AlignX and CPT-then-
SFT, using the same two-stage dataset but without
the two auxiliary tasks. All experiments are con-
ducted under identical hardware and hyperparam-
eter settings, including 4 < A800-80G GPUs, fixed
training steps, batch size, and micro-batch size. As
shown in Table 9, AlignX incurs only minimal ad-
ditional cost, as the auxiliary tasks are integrated
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Translation
Direction

Source

Reference

LLaMA2 Outputs

AlignX Outputs

Bce xuBoTHBIC,
MePBOHAYANTEHO
Ru-De
TPHIICTENN HIINT
TEUECHHEM.

KOTOpbIEe
TPUOBLTH HA 3TH

0CTpOBa, J00PaTICh CIO/Ia BIUIABb,

HX MpHOHIO

Dennoch sollten Sie den Rat von
Behd&rden befolgen, alle Schilder

De-Ar
Augenmerk auf
Sicherheitswarni

beachten und insbesondere

ungen richten.

Amn6 v dAkn mhevpd, ot
ovvlnkeg Tiyov kot yoviov givar  On the other hand, icy and snowy

EI-En

(QUGLOLOYIKEG GE TOAAEG YDPES,

Alle Tiere, die urspringlich auf den Inseln
eintrafen, kamen entweder durch
Schwimmen, Fliegen oder Anschwemmen
hierher.

(Translation: All the animals that
originally arrived on the islands came
here either by swimming, flying or
washing ashore.)

e el 5 bl e miliail) Galla) o138 oo
L) il ppda T agiil g el L2y
Translation: However, seek advice )
from authorities, obey all signs, and pay
close attention to safety warnings.)

conditions are normal in many countries,

"All the animals that first arrived on these
islands came by swimming, flying or were
washed ashore."

AL S gy s G sSal) Glsgall 2l o oy o sy
AV laade sl e a5 Y1 laadla (sl e alus
Translation: The response should be )
provided to the government institutions
and every screen should be informed and
any security notes should be reported and
any mother notes should be reported.)

From the other side, the patterns of
snowflakes and icicles are found in many

omov 1 kukhogopia cvveyiletar wgand traffic goes on mostly uninterrupted all places, where the cycle continues without
eni 10 mheioTov Yopig drakomég

610 10 YpoVo.

The Internet combines elements o
both mass and interpersonal

En-Zh
communication.

year round.

¢ BERRIEE T AR AFMEERIE

(Translation: The Internet
combines elements of mass and
interpersonal communication.)

interruptions throughout the year.

BEWEE T RANEE AR,
(Translation: The Internet combines the
characteristics of both modes of
communication.)

Alle Tiere, die urspringlich auf diesen Inseln
ankamen, kamen hierher zu Fuf zu Wasser
oder wurden von den Strémungen hierher
getrieben.

(Translation: All the animals that
originally arrived on these islands came
here on foot, by water or were carried here
by the currents.)

san ading s llalull g 58 o o o Al gy
Ly e gl S ol cangy JISEY)
Translation: However, you should follow )
the directions of the authorities and keep
all forms and should focus on safety and
caution priorities.)

From the other side, the conditions of snow
and ice are natural in many countries, where
the circulation continues throughout the year
without interruptions.

BEMIBAREFNNARZRTRES
£—if2, (Translation: The Internet
combines elements of mass communication
and personal communication.)

Figure 10: Multilingual translation cases of LLaMA2-7B and AlignX.

Truthful QA  HellaSwag XNLI

FLORES-101
(COMET)

XStoryCloze

FLORES-101
(OTR)

LLaMA-7B Based

LLaMA-7B
AFP
AlignX

2591
29.00
31.26

35.44
36.18
37.68

35.70
37.30
39.24

58.75
62.64
64.70

48.25
62.17
62.78

48.78
15.37
8.42

LLaMA2-7B Based

LLaMA2-7B
AFP
AlignX

28.35
31.79
32.99

37.79
38.35
38.99

3592
36.31
37.76

60.50
62.66
64.29

54.34
64.11
68.64

43.76
17.68
8.07

Table 8: Comparison between AFP and AlignX. We report averaged Accuracy, COMET, and OTR (off-target ratio)
scores under the 10-language setup. We bold the best results.
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The Template for Automatic GPT-40 Evaluation

You are a multilingual translation quality evaluator. Given a translation task, including translation direction,

source text, and ground truth, compare two translation outputs across multiple evaluation dimensions.

"win" stands for outputl is better, "lose" stands for output2 is better, and "tie" stands for two outputs are

similar. Output strictly in the following JSON format and **do not include any explanations or reasoning**.

## Input:

translation_direction: {translation direction}
source: {source}

ground _truth: {ground truth}

outputl: {outputl}

output2: {output2}

## Output Format:

{"grammar": "win/tie/lose", "target language fit": "win/tie/lose"}

Figure 11: Template used for automatic GPT-40 evaluation. We randomly stack the translation outputs from
LLaMA-8B-Instruct and AlignX, treating them as outputl and output2.

Relative Speed Training (Stage 1)
CPT+SFT 1.00%
AlignX 0.95x

Table 9: Training efficiency comparison. AlignX intro-
duces negligible additional cost compared to the base-
line.

into the same forward pass during Stage 1. Stage
2 and inference incur no further overhead, as no
extra parameters or computations are involved be-
yond CPT-then-SFT.

E.3 Detailed GPT-40 Evaluation Results

We present the GPT-40 evaluation template in Fig-
ure 11 and provide detailed results in Table 10,
grouped by target language. For high-resource
languages (e.g., English and German), GPT-40
predominantly produces neutral judgments. In
contrast, for low-resource languages (e.g., Arabic,
Greek, and Czech), GPT-4o0 shows a clear pref-
erence for AlignX outputs. These findings high-
light the effectiveness of the language-matching
task, which proves particularly beneficial in low-
resource scenarios.

W/T/L Grammar Language Fit
X-En 52/394/4 80/359/11
X-Ar 185/191/74 191/165/94
X-Cs 127 /264 /59 1357248/ 67
x-De 103/325/22 102 /309 /39
X-El 173 /174 /103 192/138/120
X-Hi 149 /203 /98 1447179/ 127
X-Ru 81/333/36 93/320/37
X-Tr 108/277/65 123 /238 /89
X-Vi 53/380/17 80/339/31
X-Zh 67/360/23 83/316/51

All 1098 /2901 /501 1223/2611 /666

Table 10: Detailed automatic evaluation results us-
ing GPT-40 on cross-lingual generation. We compare
paired outputs of AlignX and LLaMA3-8B-Instruct,
where “W/T/L” indicates that AlignX produces better,
comparable, or worse translations, respectively. "X"
denotes all other nine languages except the target lan-
guage.

6478



Methods Ar De En Hi Ru Vi Zh Avg.
Gemma-2B Based

Gemma-2B 2794 2640 2301 26.52 2678 2752 26.65 26.40
CPT-then-SFT 31.18 2944 27.54 2626 3046 29.68 2944 29.14
AlignX 32.08 29.19 2693 2549 30.58 30.06 2881 29.02

Mistral-7B-v0.3 Based
Mistral-7B-v0.3 30.79 31.22 29.01 27.30 3122 30.19 29.31 29.86

CPT-then-SFT 36.22 37.82 36.60 2924 3845 3541 35.03 35.54
AlignX 36.87 3693 3831 29.62 3947 36.69 33.38 35.89
LLaMA-7B Based
LLaMA-7B 2898 2449 23.10 2833 2475 2624 2551 2591
BayLing1-7B 30.27 28.17 32.07 29.88 30.20 27.39 2995 29.70
ParroT-7B 31.57 2881 27.17 2794 2944 2777 26.65 28.48
BigTrans-13B 27.17 2589 27.05 2626 3020 20.64 2538 26.08
CPT-then-SFT 3286 31.73 33.66 27.04 31.85 30.19 3135 31.24
AlignX 3092 30.84 33.66 2730 3338 31.85 30.84 31.26
LLaMA2-7B Based
LLaMA2-7B 30.53 28.68 26.19 28.07 29.44 29.68 25.89 28.35
Tower-7B 290.62 27.03 2521 2743 27.66 2726 2437 26.94
CPT-then-SFT 3195 33.63 3341 2833 3553 3478 31.22 32.69
AlignX 33,51 32.87 3390 2846 3579 3529 31.09 3299

LLaMA3-8B-Instruct Based
LLaMA3-8B-Instruct 34.67 34.01 3574 30.53 3629 32.74 3553 3422

BayLing2-8B 29.50 2627 2497 2626 30.08 29.17 28.81 27.87
CPT-then-SFT 34.15 3338 3525 29.11 3515 3796 3541 3434
AlignX 3545 34.14 3856 30.14 3629 3898 3845 36.00

AlignX (51langs) 3558 35.66 38.80 30.66 39.85 40.89 37.44 36.98

Table 11: Detailed results on multilingual Truthful QA benchmark. "Avg." denotes average scores on all languages.
We bold the highest scores.

Methods Ar De En Hi Ru Vi Zh Avg.
Gemma-2B Based
Gemma-2B 32.12 3694 5260 29.74 3639 3560 35.82 37.03
CPT-then-SFT 32.14 37.50 5301 29.85 36.65 3593 3637 37.35
AlignX 32.74 37.83 5322 30.10 37.17 36.32 36.68 37.72

Mistral-7B-v0.3 Based
Mistral-7B-v0.3 3273 4396 61.80 2942 4324 3573 4099 41.12

CPT-then-SFT 3521 4383 61.82 30.77 43.01 3758 4047 41.81
AlignX 3583 45.16 63.71 31.44 43.85 38.05 4191 42385
LLaMA-7B Based
LLaMA-7B 28.03 39.04 56.84 26.83 37.00 28.04 3227 3544
BayLingl-7B 2777 3938 57.61 26.85 3636 28.11 36.53 36.09
ParroT-7B 2722 3793 59.58 2658 3575 27.83 3220 35.30
BigTrans-13B 2674 41.12 5899 2699 3534 2721 37.23 36.23
CPT-then-SFT 30.69 3922 5749 28.08 37.23 3154 3377 36.86
AlignX 31.10 40.14 5897 28.69 38.14 32.55 34.17 37.68
LLaMA2-7B Based
LLaMA2-7B 2930 3996 57.60 28.04 3795 3543 3626 37.79
Tower-7B 20.06 43.70 57.30 28.46 41.82 3483 3569 38.69
CPT-then-SFT 3042 41.65 58.75 28.78 39.15 36.08 3693 38.82
AlignX 31.05 41.51 58.67 2897 39.17 3633 37.25 38.99

LLaMA3-8B-Instruct Based
LLaMA3-8B-Instruct 36.51 4420 57.61 33.63 4241 39.53 41.36 42.18

BayLing2-8B 36.29 4288 56.58 3390 4122 39.81 42.61 41.90
CPT-then-SFT 36.80 45.00 59.14 3258 4347 4152 4148 42.86
AlignX 37.63 4561 5997 32.66 4384 42.10 4197 4340

AlignX (51langs) 37.59 4573 59.66 33.52 4398 4220 42.05 4353

Table 12: Detailed results on multilingual HellaSwag benchmark. "Avg." denotes average scores on all languages.
We bold the highest scores.
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Methods Ar De El En Hi Ru Tr Vi Zh Avg.
Gemma-2B Based
Gemma-2B 3329 4129 3349 4486 36.79 38.19 3643 3639 3582 37.39
CPT-then-SFT 33.86 4233 3361 4345 37.19 39.68 37.75 3839 36.02 38.03
AlignX 3349 4245 3434 4538 38.19 4020 3932 39.24 36.99 38.84
Mistral-7B-v0.3 Based
Mistral-7B-v0.3 3390 4333 3386 43.69 36.55 38.63 3627 36.71 37.79 37.86
CPT-then-SFT 3466 4345 3434 4345 3944 41.04 3791 3896 3839 39.07
AlignX 3538 42.09 34.78 4635 4040 4474 39.64 39.72 38.63 40.19
LLaMA-7B Based
LLaMA-7B 3390 39.04 3386 4277 33.69 35.62 34.02 3390 3454 35.70
BayLingl-7B 33.69 4096 3398 4386 3458 41.73 34.13 34.02 36.67 37.07
ParroT-7B 3337 3892 3361 46.02 3534 40.72 33.69 3398 36.63 36.92
BigTrans-13B 34.02 40.64 3438 41.89 3506 39.60 3546 3454 3538 36.77
CPT-then-SFT 3458 4157 3422 4695 37.63 40.08 36.10 3747 37.51 38.46
AlignX 3538 4325 34.66 48.39 3731 3932 36.67 3940 38.80 39.24
LLaMAZ2-7B Based
LLaMA2-7B 3394 39.00 33.86 41.69 3494 3586 3422 3470 35.06 35.92
Tower-7B 33.57 41.16 33.61 40.64 3502 3699 3373 34.18 3538 36.03
CPT-then-SFT 34.14 40.76 33.82 4233 38.03 39.56 36.02 3743 37.67 37.75
AlignX 3434 4096 3434 4229 36.67 39.88 36.31 36.87 38.19 37.76
LLaMA3-8B-Instruct Based
LLaMA3-8B-Instruct 3490 45.18 37.11 4474 3996 4197 40.68 38.63 4040 4040
BayLing2-8B 3434  39.12 34.14 4145 3574 3631 3847 3490 37.35 36.87
CPT-then-SFT 35.14 4538 3474 4755 40.80 41.77 4153 4221 4052 41.07
AlignX 3546 4438 3526 46.75 40.12 41.61 4036 41.73 40.68 40.71
AlignX (51langs) 36.59 46.10 36.18 45.86 4221 41.16 4333 41.61 40.84 41.54
Table 13: Detailed results on XNLI benchmark. "Avg." denotes average scores on all languages. We bold the

highest scores.

Methods Ar En Hi Ru Zh Avg.
Gemma-2B Based
Gemma-2B 53.61 75.65 5771 61.35 58.70 61.40
CPT-then-SFT 55.66 7823 5943 6327 61.61 63.64
AlignX 5586 7842 60.29 63.86 61.15 63.92
Mistral-7B-v0.3 Based
Mistral-7B-v0.3 51.36 80.15 54.86 65.32 63.34 63.00
CPT-then-SFT 5943 82.66 57.71 69.29 6658 67.13
AlignX 59.36 83.92 60.03 70.95 67.84 68.42
LLaMA-7B Based
LLaMA-7B 48.11 7743 51.89 62.14 5420 58.75
BayLing1-7B 4871 80.01 51.42 65.19 62.54 61.57
ParroT-7B 48.51 83.59 5235 6320 53.74 60.28
BigTrans-13B 48.84 80.28 48.18 61.35 61.75 60.08
CPT-then-SFT 5526 8147 5440 66.05 5758 6295
AlignX 5718 82.53 5711 67.44 5923 64.70
LLaMA2-7B Based
LLaMA2-7B 50.50 77.83 52.61 62.14 59.43 60.50
Tower-7B 4924 78.23 5347 66.58 5884 6127
CPT-then-SFT 5427 80.87 54.86 65.78 63.73 63.90
AlignX 55.06 80.94 56.06 66.05 6334 64.29
LLaMA3-8B-Instruct Based
LLaMA3-8B-Instruct 61.75 80.61 65.25 71.01 6790 69.30
BayLing2-8B 5943 76.51 6281 67.11 65.65 66.30
CPT-then-SFT 6320 81.73 63.53 71.08 68.89 69.69
AlignX 62.14 8233 6353 72.60 69.36 69.99
AlignX (51langs) 63.47 8134 6439 7247 6923 70.18

Table 14: Detailed results on XStoryCloze benchmark. "Avg." denotes average scores on all languages. We bold

the highest scores.
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Truthful QA Ar Bn De En Es Fr Gu Hi Hr
LLaMA3-8B-Instruct 34.54 29.71 34.01 3574 36.76 35.83 27.63 30.53 33.55
AlignX (51langs) 3558 30.86 35.66 3880 3790 39.01 28.32 30.66 34.59
Id It Ml Mr Ne NI Pt Ro Ru
LLaMA3-8B-Instruct 34.32 35.89 28.53 2853 29.33 3720 37.44 3504 36.29
AlignX (51langs) 37.66 38.06 28.82 3233 29.72 3847 39.09 36.97 39.85
Sv Ta Te Uk Vi Zh Avg.
LLaMA3-8B-Instruct 37.60 2746 2624 3584 3541 3553 33.29
AlignX (51langs) 36.05 27.73 26.67 36.49 40.89 3744 34.90

Table 15: Detailed results on multilingual TruthfulQA benchmark under the 51-language setup. We bold the
highest scores.

HellaSwag Ar Bn De En Es Fr Gu Hi Hr
LLaMA3-8B-Instruct  36.54 29.08 4424 57.61 4797 4678 28.06 33.63 37.73
AlignX (51langs) 37.59 29.61 45.73 59.66 49.79 48.13 2831 3352 39.78
Id It Ml Mr Ne NI Pt Ro Ru
LLaMA3-8B-Instruct 41.73 4534 2643 27.86 27.86 4479 46.05 4145 4276
AlignX (51langs) 43.27 46.25 26.61 2824 28.66 45.87 48.01 42.62 43.98
Sv Ta Te Uk Vi Zh Avg.
LLaMA3-8B-Instruct 43.83 26.02 2693 3936 40.22 4131 3848
AlignX (51langs) 44.89 2597 27.10 40.72 4220 42.05 39.52

Table 16: Detailed results on multilingual HellaSwag benchmark under the 51-language setup. We bold the highest
scores.

XNLI Ar De El En Es Fr Hi Ru Sw
LLaMA3-8B-Instruct 34.86 45.18 37.11 44.66 41.69 4229 39.80 42.05 34.94
AlignX (51langs) 36.59 46.10 36.18 4586 44.86 44.54 4221 41.16 34.66

Th Tr Ur Vi Zh Avg,
LLaMA3-8B-Instruct 39.28 40.72 37.51 38.55 40.52 39.94
AlignX (51langs) 41.73 4333 3598 41.61 40.84 41.12

Table 17: Detailed results on XNLI benchmark under the 51-language setup. We bold the highest scores.

XStoryCloze Ar En Es Hi Id My
LLaMA3-8B-Instruct 61.75 80.61 72.60 65.25 67.31 50.10
AlignX (51langs) 63.47 81.34 73.13 6439 68.56 49.04
Ru Te Zh Avg.
LLaMA3-8B-Instruct 71.01 61.02 6790 66.40
AlignX (51langs) 7247 61.09 69.23 66.97

Table 18: Detailed results on XStoryCloze benchmark under the 51-language setup. We bold the highest scores.

System Comparison Statistical Significance
Gemma-2B v.s. AlignX 84 /90
Mistral-7B-v0.3 v.s. AlignX 70775
LLaMA-7B v.s. AlignX 81/86
LLaMA2-7B v.s. AlignX 90/90
LLaMA3-8B-Instruct v.s. AlignX 41/55
LLaMA3-8B-Instruct v.s. AlignX (51langs) 791787

Table 19: Statistical significance tests for multilingual translations. We present the results in the a / b format,
indicating that AlignX outperforms corresponding base LLMs in b translation directions, where the improvements
in a translation directions are significant (p_value < 0.05).
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Methods X-En X-Ar X-Cs X-De X-El X-Hi X-Ru X-Tr X-Vi X-Zh Avg.
Gemma-2B Based

Gemma-2B 84.55 58.84 6520 6551 61.16 47.02 58.03 59.54 6623 6894 63.50
CPT-then-SFT 8539 66.02 7124 6844 7527 71.04 7317 7444 7229 5328 71.06
AlignX 8529 6731 7218 7344 7088 5334 71.07 67.10 76.59 75.71 71.29

Mistral-7B-v0.3 Based
Mistral-7B-v0.3 8448 55.65 7534 5599 7430 4851 75.88 6437 7544 39.13 64091

CPT-then-SFT 86.12 67.44 78.00 67.01 7879 62.68 77.28 7297 8213 4518 71.76
AlignX 85.89 69.75 7736 68.06 7842 6436 7421 7396 80.72 47.93 72.07
LLaMA-7B Based
LLaMA-7B 75.00 40.37 54.13 5923 4190 31.76 54.66 39.34 39.68 46.44 4825
ParroT-7B 7326 41.27 50.66 52.59 4457 3755 42.05 4877 51.12 4896 49.08
BayLingl-7B 7542 4547 55.07 5591 4480 3846 4874 4624 49.15 5585 51.51
BigTrans-13B 74.06 47.67 5528 5475 4181 43.11 50.54 51.01 46.16 5795 5223
CPT-then-SFT 81.97 5274 69.79 5393 6440 5298 68.70 57.34 7123 3758 61.07
AlignX 80.87 5797 6928 6798 57.80 4133 70.23 5632 6220 63.79 62.78
LLaMA2-7B Based
LLaMA2-7B 7749 43,00 61.16 64.16 4035 3473 57770 4595 6193 5693 54.34
Tower-7B 8220 4946 6254 4512 65.12 4522 6740 6223 61.20 3698 57.75
CPT-then-SFT 8470 5594 7596 5552 7411 50.75 77.10 71.81 77.67 4227 66.58
AlignX 85.08 60.82 7592 77.14 56.04 4180 79.61 57.69 7523 77.05 68.64

LLaMA3-8B-Instruct Based
LLaMA3-8B-Instruct 86.62 75.12 8398 8197 7877 6349 8451 7850 8326 82.10 79.83

Bayling2-8B 86.41 75.09 7840 7646 7841 77.82 76.66 81.51 8155 6492 77.72
CPT-then-SFT 80.23 71.73 7522 7208 7680 7431 7210 7638 7732 57.85 73.40
AlignX 86.85 78.78 84.07 81.65 81.24 63.67 85.18 7851 8331 82.70 80.60

AlignX (51langs) 87.61 79.81 84.70 8249 7825 6398 8573 7920 84.60 83.46 80.98

Table 20: The averaged COMET (Rei et al., 2020) scores on FLORES-101. "X" denotes all other training lan-
guages except the target language. "Avg." denotes average scores on all translation directions. We bold the highest
scores.
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Gemma-2B En Ar Cs De El Hi Ru Tr Vi Zh Avg.
En - 13.18 2098 2693 1348 1634 2270 1471 29.78 18.80 | 19.66
Ar 29.79 - 4.28 6.26 3.19 1.43 1.89 1.57 6.01 4.69 6.57
Cs 34.67 5.08 - 10.62  3.99 0.39 7.37 3.23 2.86 7.35 8.40
De 40.67  5.55 6.71 - 5.94 542 4.21 4.37 8.65 10.00 | 10.17
El 29.11 1.16 3.37 5.85 - 0.73 0.91 1.18 4.51 3.11 5.55
Hi 2736  0.60 2.70 4.00 1.01 - 1.00 2.55 297 4.72 5.21
Ru 31.54 4.08 9.18 10.39 697 2.69 - 3.18 6.69 8.07 9.20
Tr 2548 1.19 1.96 2.73 0.91 0.78 0.61 - 2.19 1.58 4.16
Vi 29.69 1.87 297 3.20 2.25 2.19 1.72 2.82 - 6.41 5.90
Zh 25.79 1.23 5.40 6.78 4.26 0.69 3.13 334 1031 - 6.77

Avg. 3046 377 6.39 8.53 4.67 341 4.84 4.11 8.22 7.19 8.16
CPT-then-SFT En Ar Cs De El Hi Ru Tr Vi Zh Avg.
En - 14.09 2122 2778 1528 16.77 23.02 16.17 30.21 20.10 | 20.52
Ar 30.41 - 6.05 11.50 8.67 4.97 491 411 11.68 6.19 9.83
Cs 35.66 792 - 1586 9.71 577 1792 643 944  10.50 | 13.25
De 4112 9.13  11.57 - 11.09 948 1640 10.29 1939 14.03 | 15.83
El 30.81 5.53 4.08 11.71 - 3.80 8.76 3.82 9.59 7.72 9.54
Hi 2847 4.61 3.05 8.22 5.27 - 3.93 3.67 5.18 4.95 7.48
Ru 3320 792 543 1434 1056  8.62 - 752  17.19 12.52 | 13.03
Tr 26.69 4.82 3.32 8.29 5.15 2.44 5.05 - 6.96 7.23 7.77
Vi 31.75 579 8.01 1031 7.50 5.70 8.98 6.74 - 11.75 | 10.73
Zh 26.51 6.40 8.77 1255 7.70 6.86 1049 6.44 16.49 - 11.36
Avg. 31.62 736 7.94 1340 899 7.16  11.05 724 1401 10.55 | 11.93
AlignX En Ar Cs De El Hi Ru Tr Vi Zh Avg.
En - 1447 2149 27.83 1538 16.87 23.13 16.02 29.83 19.81 | 20.54
Ar 30.27 - 720 1272 831 5.70 6.20 545 1638 858 | 11.20
Cs 3573 742 - 15.86  9.59 5.60 18.18 7.78 1231 11.15 | 13.74
De 41.47  8.63 9.96 - 1097 833 1482 1040 1889 13.04 | 15.17
El 31.14 458 5.71 12.21 - 4.72 8.35 520 1556 825 | 10.64
Hi 27.77 393 3.38 8.49 5.32 - 2.08 5.08 8.90 6.42 7.93
Ru 33,55 7.88 1054 1580 10.11 897 - 731 1746 12.78 | 13.82
Tr 26.68  3.60 3.90 8.72 5.13 3.12 4.56 - 7.46 7.23 7.82
Vi 31.65 5.70 7.62 1034 7.13 5.83 9.56 7.22 - 11.91 | 10.77
Zh 26.82 6.24 896 1255 754 7.42 8.82 7.04 16.03 - 11.27
Avg. 31.68 694 875 13.84 8.83 740 10.63 794 1587 11.02 | 12.29

Table 21: Detailed BLEU scores of the FLORES-101 benchmark on Gemma-2B.
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Mistral-7B-v0.3 En Ar Cs De El Hi Ru Tr Vi Zh Avg,
En - 6.81 2730 3295 424 6.50 2821 1144 17.66 1792 | 17.00
Ar 27.37 - 9.83 13.82 154 2.06 9.39 2.71 7.27 6.00 8.89
Cs 3936 444 - 24.67 294 3.60 2331 581 9.89  12.60 | 14.07
De 43.69 488 2201 - 2.88 417 2323 758 1235 13.55 | 1493
El 2620 3.08 1098 14.53 - 204 1224 3.67 7.65 6.55 9.66
Hi 21.61 194 5.76 8.91 1.04 - 5.69 3.73 5.04 5.73 6.61
Ru 3588 4.80 2029 2252 311 3.97 - 6.53 11.75 12.59 | 1349
Tr 26.89  2.68 840 12.69 1.51 375 1230 - 7.00 9.11 9.37
Vi 3029 376  11.15 1548 1.73 256 1523 540 - 10.44 | 10.67
Zh 2733 259 1285 1539 1.38 276 1155 5.11 8.81 - 9.75

Avg. 3096 3.89 1429 17.88 226 349 1568 5.78 9.71 10.50 | 11.44

CPT-then-SFT En Ar Cs De El Hi Ru Tr Vi Zh Avg.
En - 1621 2875 3261 11.61 12.61 2831 1836 2452 20.24 | 2147
Ar 32.65 - 1241 1445 537 3,60 13.14 6.51 11.12 893 | 12.02
Cs 40.75  9.28 - 20.96  7.68 6.31 2198 10.29 1458 14.07 | 16.21
De 4530 9.76  18.86 - 8.64 7.85 21.75 12.04 1698 15.03 | 17.36
El 3375 7.07 15.00 17.68 - 452 16,59 8.08 12.68 10.29 | 13.96
Hi 27.87 4.80 9.68 11.71 434 - 10.75  7.66 8.71 8.93 | 1049
Ru 3733  8.84 2055 2134 783 6.07 - 1039 14.85 13.68 | 15.65
Tr 29.47  5.17 6.16 8.63 5.13 564 11.59 - 8.66 10.09 | 10.06
Vi 3205 642 1092 1407 574 436 1450 7.36 - 11.81 | 11.91
Zh 2940 565 13.13 1470 521 4.57 1327 880 12.68 - 11.93

Avg. 3429 813 1505 17.35 6.84 6.17 1688 994 1386 12.56 | 14.11
AlignX En Ar Cs De El Hi Ru Tr Vi Zh Avg.
En - 1590 28.19 31.06 11.62 13.11 2737 1898 22.05 19.47 | 20.86
Ar 32.52 - 12.67 1444  5.55 426 1400 724 1228 10.33 | 12.59
Cs 39.89 852 - 21.16  7.55 6.80 21.38 1030 15.11 13.89 | 16.07
De 4436 946 1945 - 8.74 837 21.10 11.85 1630 1452 | 17.13
El 33.53  6.96 877 1492 - 518 1525 828 1345 11.15 | 13.05
Hi 28.03 4.64 7.93 8.55 3.89 - 10.25  7.68 9.62 8.53 9.90
Ru 36.74 854 19.64 1923 794 6.55 - 11.02 1572 1390 | 15.48
Tr 2935 533 847 1120 4.93 6.21 11.71 - 9.85 10.74 | 10.87
Vi 3213 6.79 1259 1427 5.5 4.84 14.68 8.36 - 12.49 | 1243
Zh 28.11 5.89 1351 1407 498 5.31 13.57 938 13.23 - 12.01
Avg. 33.85 8.00 1458 16.54 6.77 6.74 1659 1034 14.18 1278 | 14.04

Table 22: Detailed BLEU scores of the FLORES-101 benchmark on Mistral-7B-v0.3.
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LLaMA-7B En Ar Cs De El Hi Ru Tr Vi Zh Avg.
En - 240 19.71 2724 216 271 21.16 385 3.08 5.65 9.77
Ar 13.56 - 0.77 3.00 0.10 0.10 141 0.17 022 0.15 2.16
Cs 3483 1.17 - 1694 1.19 149 1486 155 145 152 8.33
De 40.18 144 11.38 - 145 179 1355 231 197 286 8.55
El 1640 0.14 173 485 - 020 277 028 045 045 3.03
Hi 989 009 059 229 0.11 - 080 025 0.15 0.06 1.58
Ru 3222 1.10 1129 1484 127 140 - 090 099 271 7.41
Tr 10.19 0.15 099 277 031 042 147 - 093 059 1.98
Vi 993 0.10 143 212 036 031 090 0.75 - 0.38 1.81
Zh 20.13  0.09 339 740 023 035 244 096 0.68 - 3.96

Avg. 2081 0.74 570 9.05 080 097 6.60 122 1.10 1.60 | 4.86

ParroT-7B En Ar Cs De El Hi Ru Tr Vi Zh Avg.
En - 0.53 1850 2885 1.15 1.10 13.69 3.19 258 12.62 | 9.13
Ar 7.82 - 057 071 0.18 0.18 022 054 0.60 0.13 1.22
Cs 32.60 0.19 - 271 045 015 058 202 229 0.76 4.64
De 3836 022 239 - 047 0.16 0.62 206 2.18 0.64 5.23
El 995 017 097 1.38 - 0.14 0.35 1.05 125 022 1.72
Hi 567 011 052 054 0.19 - 024 059 071 0.11 0.96
Ru 29.72  0.17 195 225 040 0.13 - 1.53 176 098 4.32
Tr 956 020 1.58 1.92 044 0.15 025 - 202 045 1.84
Vi 778 0.19 153 1.76 046 0.17 032 1.74 - 0.36 1.59
Zh 19.76  0.18 1.55 171 034 0.18 044 1.63  1.68 - 3.05

Avg. 1791 022 328 465 045 026 1.86 1.59 1.67 181 3.37
BayLingl-7B En Ar Cs De El Hi Ru Tr Vi Zh Avg.
En - 234 1997 3054 186 1.89 1723 368 398 19.80 | 11.25
Ar 11.23 - 0.61 078 0.17 0.17 022 059 064 0.26 1.63
Cs 36.89  0.55 - 594 1.16 056 650 221 229 271 6.53
De 4272 0.87 10.99 - 1.34 081 7.86 270 268 571 8.41
El 14.16 022  1.38 1.50 - 0.19 042 092 1.18 0.38 2.26
Hi 871 0.15 0.63 0.80 0.16 - 029 0.63 0.64 0.22 1.36
Ru 33.66 035 592 3.65 0.87 029 - 1.66 1.62 2.04 5.56
Tr 1129 026 1.93 285 057 044 1.04 - 2.14  0.90 2.38
Vi 1125 032 196 257 049 027 0.56 1.96 - 0.58 222
Zh 2481 026 244 242 041 023 0.39 1.67 1.64 - 3.81
Avg. 21.64 059 509 567 0.78 054 3.83 1.78 1.87 3.62 4.54
BigTrans-13B En Ar Cs De El Hi Ru Tr Vi Zh Avg.
En - 501 2523 2550 3.02 948 19.04 1149 6.03 1556 | 13.37
Ar 10.09 - 1.90 128 055 195 176 082 099 1.87 2.36
Cs 36.23  2.84 - 480 155 496 6.08 420 299 793 7.95
De 38.06 236 3.82 - 1.54 457 478 404 284 421 7.36
El 561 015 071 0.77 - 057 070 0.84 0.87 0.9 1.20
Hi 12.81 1.16 097 147  0.74 - 1.09 1.37 097 430 2.76
Ru 30.17 2,61 266 282 170 438 - 310 251 3.80 597
Tr 2054 142 237 301 1.04 250 228 - 223 357 433
Vi 1289 073 1.87 230 079 102 1.03 2.19 - 2.74 2.84
Zh 2526 265 7.86 584 149 6.81 519 6.11 344 - 7.18
Avg. 21.30  2.10 527 531 138 4.03 466 3.80 254 495 5.53

Table 23: Detailed BLEU scores of the FLORES-101 benchmark on LLaMA-7B (part 1).
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CPT-then-SFT En Ar Cs De El Hi Ru Tr Vi Zh Avg.
En - 10.30  24.08 28.80 822 793 2371 1149 15.14 1237 | 15.78
Ar 23.79 - 6.01 770 099 0.66 644  2.06 3.38 2.80 5.98
Cs 36.37 449 - 19.09 4.68 338 1849 582  17.65 7.81 | 11.98
De 41.17 449 1453 - 538 3.68 1639 7.13 8.14 848 | 12.15
El 2494  0.61 2.48 3.98 - 0.15 424 203 350 271 4.96
Hi 1795 049 399 545  0.16 - 4.09 1.82 221 1.54 4.19
Ru 3353 384 1694 1733 445 3.00 - 5.55 692  7.20 | 10.97
Tr 19.88  1.56 3.55 6.63 224 256 6.10 - 4.26 3.72 5.61
Vi 2327 1.64 478 800 197 125 645 3.58 - 4.12 6.12
Zh 2232 149 806 1012 199 134 840 3.6l 5.17 - 6.94

Avg. 27.02 321 938 1190 334 2,66 1048 479 626 5.64 8.47
AlignX En Ar Cs De El Hi Ru Tr Vi Zh Avg.
En - 11.55 2281 26.19 9.79 886 2146 13.14 17.60 12.14 | 1595
Ar 22.59 - 6.35 811 288 135 624 289 494 274 6.45
Cs 3425 453 - 1722 597 377 1734 6.56 894 720 | 11.75
De 3844 502 11.58 - 635 394 1366 752 946 739 | 1148
El 2457 269 4.5 5.48 - 225 795 3.28 6.33 2.95 6.63
Hi 1630 1.09 421 525 1.67 - 400 277 3.26 1.68 4.47
Ru 3175 403 1509 1597 571 3.63 - 6.08 8.63 6.71 | 10.84
Tr 18.18 1.80 396 7.05 292 297 492 - 4.67 3.20 5.52
Vi 2252 2.11 5.23 752 286 182 623 3.90 - 3.71 6.21
Zh 2051 179 7.69 9770 241 1.64 7.83 427 6.72 - 6.95
Avg. 2546  3.85 9.01 11.39 451 336 996 560 784 530 8.63

Table 24: Detailed BLEU scores of the FLORES-101 benchmark on LLaMA-7B (part 2).
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LLaMA2-7B En Ar Cs De El Hi Ru Tr Vi Zh Avg.
En - 376 2328 30.07 3.01 420 2254 6.87 24.64 1465 | 14.78
Ar 16.20 - 193 462 0.14 005 1.08 033 262 039 3.04
Cs 37.30  1.73 - 20.18 1.65 2.16 1604 249 1035 796 | 11.10
De 4171 199 1775 - 198 232 16.12 435 1750 9.61 12.59
El 1696 0.17 2.14 493 - 0.14 158 049  2.65 0.38 3.27
Hi 1131 0.05 1.87 320 0.11 - 1.04  0.71 143 0.27 222
Ru 3369 1.69 1627 1795 179 1.86 - 227 1416 774 | 10.82
Tr 1752 048 285 690 062 133 3.87 - 4.28 2.38 4.47
Vi 3075  1.42 878 13.12 1.09 1.08 10.81 248 - 5.96 8.39
Zh 2623 1.08  6.05 957 1.06 145 5.08 1.74  9.57 - 6.87

Avg. 2574 1.37 899 1228 127 1.62 8.68 241 9.69 548 7.76
Tower-7B En Ar Cs De El Hi Ru Tr Vi Zh Avg.
En - 380 2085 3897 294 486 3397 579 21.00 2539 | 1751
Ar 21.32 - 212 413 054 021 094 073 3.69 1.62 3.92
Cs 39.63  1.72 - 2098 159 196 1529 199 6.69 13.60 | 11.49
De 4531 224 1498 - 193 279 2309 344 1320 17.58 | 13.84
El 22.87 025 260  6.38 - 035 236 1.05 472 1.34 4.66
Hi 18.38  0.09 1.35 256 034 - 094 0.73 254  0.55 3.05
Ru 3830 222 13.68 1648 194 238 - 246 1257  9.64 | 11.07
Tr 2147 085 274 672 064 124 536 - 340 4385 5.25
Vi 35.66 131 506 1044 1.13 0.88 533 2.27 - 8.75 7.87
Zh 3139 1.10  6.26 808 092 144 404 1.90 9.22 - 7.15
Avg. 3048  1.51 774 1275 133 1.79 1015 2.26 856  9.26 8.58
CPT-then-SFT En Ar Cs De El Hi Ru Tr Vi Zh Avg.
En - 9.07 2585 3245 652 832 2644 11.77 2620 18.41 | 18.34
Ar 26.07 - 10.17 1274 051 057 1125 267 1043 748 9.10
Cs 39.60 4.25 - 2233 3.80 254 18.13 631 1526 12.85 | 13.90
De 44.03 587 19.76 - 459 438 2001 817 1896 14.65 | 15.60
El 27.86  0.10 949 14.07 - 0.12  9.00 1.55 7.27 3.64 8.12
Hi 2380 022 739 1049 0.08 - 826 267 631 6.09 7.26
Ru 3572 496 19.78 2196 395 3.69 - 6.57 16.62 13.44 | 14.08
Tr 2445 124 562 1140 159 129 7.62 - 7.10 6.74 7.45
Vi 3436 261 11.15 18.09 1.80 131 1557 431 - 11.34 | 11.17
Zh 28.60 280 1226 16.08 1.79 2.17 1320 433 1359 - 10.54
Avg. 3161 346 1350 17.73 274 271 1439 537 13,53 1052 | 11.55
AlignX En Ar Cs De El Hi Ru Tr Vi Zh Avg.
En - 10.48 2576 32.04 7.67 8.65 2637 12.64 2656 1831 | 18.72
Ar 27.55 - 1026 1296 3.00 1.81 11.54 332 1262 7.77 | 10.09
Cs 39.59 6.14 - 2239 5.09 434 2006 7.07 1693 13.66 | 15.03
De 44.07 6.67 18.69 - 542 492 19.67 871 19.17 14.65 | 15.77
El 28.80 234 1151 15.16 - 297 1276 299 1337 747 | 10.82
Hi 2434 159 747  10.62 192 - 8.65 3.83 970  7.03 8.35
Ru 3572 636 2037 2190 538 4091 - 731 17.80 14.03 | 14.86
Tr 2525 2091 4.89 1058 2.63 347 847 - 8.64 8.52 8.37
Vi 3438 495 1015 1740 388 3.16 1576 5.15 - 13.28 | 12.01
Zh 2824 407 11.85 1552 3.02 328 1339 564 1517 - 11.13
Avg. 3199 506 1344 1762 422 417 1519 630 1555 11.64 | 12.52

Table 25: Detailed BLEU scores of the FLORES-101 benchmark on LLaMA2-7B.
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LLaMA3-8B-Instruct En Ar Cs De El Hi Ru Tr Vi Zh Avg.
En - 19.84  29.14 3497 2259 24.18 29.12 24.19 3437 2271 | 26.79
Ar 34.30 - 17.84 2134 1569 1392 20.16 14.14 2371 1493 | 19.56
Cs 39.19 14.84 - 26.63 17.30 16.78 24.19 16.65 2476 16.88 | 21.91
De 42.08 1543 23.80 - 18.67 18.60 24.54 1844 2625 1841 | 2291
El 34.10 13.76 1931 22.65 - 14.38 21.03 15.08 2436 16.07 | 20.08
Hi 33,51 12.02 1559 1943 13.87 - 17.10 1559 2147 14.84 | 18.16
Ru 3468 1457 2157 2366 16.85 1593 - 15.84 2468 17.28 | 20.56
Tr 32.65 1240 1476 19.72 14.68 1559 18.19 - 20.63 15.73 | 18.26
Vi 33.58 1326 17.46 2066 1473 1422 19.81 13.74 - 16.54 | 18.22
Zh 26.57 1135 15.15 17.88 13.69 1422 1652 13.68 21.62 - 16.74

Avg. 3452 1416 1940 2299 1645 1642 21.18 1637 24.65 17.04 | 20.32
BayLing2-8B En Ar Cs De El Hi Ru Tr Vi Zh Avg.
En - 20.71 26.02 3380 20.33 2540 27.74 21.87 3428 2599 | 26.24
Ar 34.86 - 13.58 16.54 13.10 13.14 16.34 12.12 21.00 11.17 | 16.87
Cs 38.11 14.61 - 1544 1473 1556 19.20 1243 2029 16.25 | 18.51
De 43.00 1551 19.83 - 16.57 1813 22.67 1581 2558 18.62 | 21.75
El 34.11 1256 1411 1844 - 13.31 1653 1259 20.76  13.86 | 17.36
Hi 33.67 1236 1285 1746 12.25 - 1531 1483 2099 14.05 | 17.09
Ru 3571 1332 1545 1952 1475 1458 - 13.61 2236 14.76 | 18.23
Tr 33.16 11.77 9.06 11.59 11.18 14.82 13.07 - 15.08 13.16 | 14.77
Vi 3436 13.04 11.14 1635 1224 14.14 17.00 10.61 - 15.64 | 16.06
Zh 29.88 10.60 13.81 15.80 13.16 15.10 15.38 1296 21.39 - 16.45
Avg. 3521 13.83 15.09 1833 1426 16.02 18.14 14.09 2241 1594 | 18.33
CPT-then-SFT En Ar Cs De El Hi Ru Tr Vi Zh Avg.
En - 23.02 3038 36.01 2494 27.11 2983 2474 3522 2535 | 28.51
Ar 37.32 - 18.60 22.10 18.11 12.86 20.37 13.00 24.03 1691 | 20.37
Cs 40.18 15.50 - 26.77 17.68 1560 2425 14.69 2481 19.03 | 22.06
De 42.84 16.09 23.83 - 1942 17.60 24.05 17.24 2634 20.18 | 23.07
El 3575 1335 1813 22.86 - 1276 2131 11.81 22.75 17.84 | 19.62
Hi 3591 1258 1697 20.65 15.51 - 18.35 1493 2131 17.36 | 19.29
Ru 3591 1526 21.78 24.01 20.02 15.51 - 1594 2422 1843 | 21.23
Tr 3498 12.60 14.68 21.68 14.83 14.05 18.19 - 20.29 17.88 | 18.80
Vi 3649 1355 1656 2235 1494 1432 1982 11.02 - 18.78 | 18.65
Zh 29.16 1145 16.18 1938 1494 1500 17.51 14.00 22.88 - 17.83
Avg. 36.50 14.82 19.68 2398 17.82 16.09 21.52 1526 24.65 19.08 | 20.94
AlignX En Ar Cs De El Hi Ru Tr Vi Zh Avg.
En - 2321 29.89 3539 2493 26,57 2953 2351 35.05 2447 | 28.06
Ar 37.62 - 18.80 2227 17.28 13.05 20.05 1290 23.04 15.80 | 20.09
Cs 41.63 16.12 - 2691 1822 1567 2444 1348 2281 18.60 | 21.99
De 44.68 1626 23.09 - 19.08 18.11 2430 1542 2440 19.56 | 22.77
El 3523 1459 1894 23.08 - 1342  20.73 1242 22.65 16.08 | 19.68
Hi 3692 12.63 17.05 2041 15.18 - 17.99 15.08 2038 17.09 | 19.19
Ru 36.88 1520 22.10 2392 1897 1534 - 1510 23.89 18.03 | 21.05
Tr 3640 11.68 13.83 1990 15.19 1551 18.01 - 17.75 17.53 | 18.42
Vi 36.90 14.12 1694 21.83 1590 14.06 19.71 1134 - 18.42 | 18.80
Zh 30.02 11.02 1631 1851 1483 14.62 17.07 1322 21.61 - 17.47
Avg. 37.36 1498 19.66 2358 17.73 1626 21.31 1472 2351 18.40 | 20.75
AlignX (51langs) En Ar Cs De El Hi Ru Tr Vi Zh Avg.
En - 23.64 3043 3644 1937 2791 3036 23.14 36.11 2545 | 28.09
Ar 39.31 - 18.85 22.65 18.05 1472 20.18 1479 2462 16.18 | 21.04
Cs 42.14 16.72 - 27.83 19.15 17.73 2499 16.57 2586 19.19 | 23.35
De 4596 17.50 24.77 - 19.71 19.26 2477 18.85 27.44 20.25 | 24.28
El 38.63 1591 20.76 2391 - 1555 2190 16.09 2521 17.70 | 21.74
Hi 37.27 1373 17.67 20.60 15.72 - 1825 17.15 22.09 17.20 | 19.96
Ru 3836 1571 2237 25.10 19.17 16.31 - 16.56 25.16 18.65 | 21.93
Tr 3690 1393 1631 2203 1586 16.75 19.33 - 2225 1797 | 20.15
Vi 38.34 1521 1847 2270 1593 15.15 2043 1432 - 19.10 | 19.96
Zh 3142 1270 16774 1995 15.69 1655 17.78 14.60 24.22 - 18.85
Avg. 38.70 16.12 20.71 2458 17.63 17.77 22.00 1690 25.88 19.08 | 21.94

Table 26: Detailed BLEU scores of the FLORES-101 benchmark on LLaMA3-8B-Instruct.
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FLORES-101 X-Af X-Ar X-Az X-Bn X-Cs X-De X-El X-En X-Et
LLaMA3-8B-Instruct 16.64 11.71 747 8.10 1621 1948 14.15 3030 10.65
AlignX (51langs) 16.67 13.75 7.18 8.41 1770  21.29 16.02 34.87 12.77
X-Fa  X-Fi X-Fr X-GI X-Gu X-He X-Hi X-Hr X-Id
LLaMA3-8B-Instruct 1430 12.80 26.06  18.12 4.10 1230 1497 1339 19.37
AlignX (51langs) 1492 13.06 28.29 1947 4.48 13.19 16.60 14.70 21.25
X-It X-Ja X-Ka X-Kk X-Km X-Ko X-Lv X-Lt X-Ml
LLaMA3-8B-Instruct  19.11 16.27 2.79 8.00 0.76 12.45 10.64 1035 3.01
AlignX (51langs) 20.36  18.32 2.09 6.38 1.17 13.50 1329 1232 3.14
X-Mr X-Mk X-Mn X-My X-NI X-Ne X-PI X-Pt X-Ps
LLaMA3-8B-Instruct  6.84 16.07 2.68 0.95 17.28 694 14.07 2346 3.24
AlignX (51langs) 7.43 18.41 2.39 0.81 19.20 7.86 14.83 2528 2091
X-Ro X-Ru X-Si X-Sl1 X-Es X-Sv X-Ta X-Te X-Th
LLaMA3-8B-Instruct 1929 1791 1.84 1293 19.02 19.05 3.67 4.09 12.16
AlignX (51langs) 20.18  19.38 1.88 1447 1981 21.29 3.80 392 1230
X-Tr X-Uk X-Ur X-Vi X-Xh X-Zh Avg.
LLaMA3-8B-Instruct  13.68  16.79 8.65 20.63 0.85 1445 12.35
AlignX (51langs) 15.02 15.64 9.09 22.34 2.90 16.66 13.39

Table 27: The averaged BLEU scores on FLORES-101 under the 51-language setup. "X" denotes all other training
languages except the target language. "Avg." denotes average scores on all translation directions. We bold the
highest scores.
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