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Abstract

Multilingual large language models (LLMs)
possess impressive multilingual understanding
and generation capabilities. However, their
performance and cross-lingual alignment of-
ten lag for non-dominant languages. A com-
mon solution is to fine-tune LLMs on large-
scale and more balanced multilingual cor-
pora, but such approaches often lead to im-
precise alignment and suboptimal knowledge
transfer, struggling with limited improvements
across languages. In this paper, we propose
AlignX to bridge the multilingual performance
gap, which is a two-stage representation-
level framework for enhancing multilingual
performance of pre-trained LLMs. In the
first stage, we align multilingual represen-
tations with multilingual semantic alignment
and language feature integration. In the sec-
ond stage, we stimulate the multilingual ca-
pability of LLMs via multilingual instruction
fine-tuning. Experimental results on several
pre-trained LLMs demonstrate that our ap-
proach enhances LLMs’ multilingual general
and cross-lingual generation capability. Fur-
ther analysis indicates that AlignX brings the
multilingual representations closer and im-
proves the cross-lingual alignment.1

1 Introduction

Multilingual large language models (LLMs),
trained on extensive multilingual corpora, demon-
strate impressive capabilities across a wide range
of NLP tasks (Brown et al., 2020; Touvron et al.,
2023a; Üstün et al., 2024). However, they still ex-
hibit a strong language bias towards high-resource
languages, predominantly English, resulting in in-
ferior performance and cross-lingual alignment for
other languages (Qi et al., 2023; Chen et al., 2023;
Zhu et al., 2024c; Chua et al., 2024).

†Corresponding author: Yang Feng.
1The code is available at https://github.com/ictnlp/

AlignX.

To alleviate this problem, current mainstream
methods implicitly inject cross-lingual alignment
information at data level, such as continual pre-
training on large-scale multilingual corpora (Cui
et al., 2023; Yang et al., 2023; Xu et al., 2024),
multilingual general instruction fine-tuning (Li
et al., 2023; Zhang et al., 2024c), and cross-lingual
instruction fine-tuning on translation pairs (Zhang
et al., 2023; Zhu et al., 2023). Such data-level
methods adjust multilingual semantic representa-
tions by implicitly injecting alignment information
through translation pairs or large-scale multilin-
gual corpora. However, the impact of such meth-
ods on the semantic space is uncontrollable and
inefficient, often resulting in imprecise alignment
and suboptimal knowledge transfer.

A classic assumption in multilingual NLP is
that more consistent multilingual representations
facilitate easier knowledge transfer (Pan et al.,
2021; Tang et al., 2022). Wendler et al. (2024)
provide evidence by showing that English-centric
LLMs internally pivot through English during pro-
cessing. To investigate this further, we explore
how LLMs process multilingual data across lay-
ers, and reveal an align-then-diverge pattern (Fig-
ure 2). From the lower to intermediate layers, the
model aligns multilingual representations to en-
able knowledge sharing, while from the interme-
diate to upper layers, it gradually diverges these
representations to produce language-specific out-
puts. Building on this assumption and finding, an
intuitive approach to enhancing multilingual capa-
bilities is to align multilingual semantic spaces at
the intermediate layer for better knowledge shar-
ing, while preserving language-specific features in
higher layers for accurate generation.

To achieve this, we propose AlignX, a two-stage
and representation-level framework for enhanc-
ing the multilingual performance of pre-trained
LLMs. In the first phase, we efficiently align
multilingual representations during continual pre-
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Figure 1: The framework of our AlignX, which consists of two stages. The first stage, multilingual continual pre-
training, aligns multilingual representations within LLMs. The second stage, multilingual instruction fine-tuning,
stimulates the multilingual capabilities of LLMs and maintains pre-established multilingual alignment.

training. Specifically, we perform multilingual se-
mantic alignment at the intermediate layer using
the instruction contrastive learning task to pro-
mote knowledge sharing, and integrate language-
specific features at the output layer via the lan-
guage matching task to ensure accurate target lan-
guage generation. In addition, we provide overall
constraints through the standard language model-
ing task. In the second stage, we fine-tune the
model with multilingual instruction data, compris-
ing both translation and multilingual general in-
struction data, to stimulate the general capability
while preserving the multilingual alignment infor-
mation established in the first stage.

We experiment on five pre-trained LLMs and
evaluate performance across five widely used mul-
tilingual general and generation benchmarks. The
results indicate that AlignX effectively enhances
multilingual general and cross-lingual generation
capabilities. Extending AlignX to 51 languages
further improves performance, highlighting the
benefits of increasing the number of aligned lan-
guages in enhancing knowledge sharing.

2 Related Work

Data-level Cross-lingual Alignment in Multilin-
gual LLMs Many works aim to enhance LLMs’
multilingual capabilities through data-level ap-
proaches. Since translation pairs inherently con-
tain language alignment information, researchers
often use translation corpora to boost language
proficiency (Zhang et al., 2023; Alves et al., 2024;
Zhu et al., 2024b). Xu et al. (2024) first uti-
lize massive monolingual data to enhance lan-
guage generation and then leverage a small but

high-quality translation dataset to inject alignment
information. Zhu et al. (2023) leverage both
multilingual translation instruction data and gen-
eral task instruction data to build semantic align-
ment across languages. Zhang et al. (2024c)
propose a self-distillation method that transfers
high-resource language capabilities to enhance
multilingual performance using translation and
code-switched pairs. Compared to these ap-
proaches, our representation-level AlignX aligns
cross-lingual representations more efficiently.

Representation-level Cross-lingual Alignment
in Multilingual LLMs Representation engi-
neering provides a powerful lens for analyzing
internal representations of LLMs (Zhang et al.,
2024a; Yu et al., 2024). Following this, many re-
cent works investigate internal cross-lingual capa-
bility of LLMs (Zhong et al., 2024; Zhao et al.,
2025). Wendler et al. (2024) suggest that English-
centric LLMs use English as an internal pivot lan-
guage. Given the existence of an internal pivot lan-
guage, it is intuitive that aligning multilingual rep-
resentations facilitates more efficient knowledge
transfer. Li et al. (2024a) bridge the multilin-
gual representation gap through multilingual con-
trastive learning and cross-lingual instruction tun-
ing. Li et al. (2024b) establish word-level multi-
lingual alignment before pre-training and then pre-
train on code-switched text. AlignX differs by per-
forming multilingual semantic alignment at the in-
termediate layer and language feature integration
at the output layer. This integration is crucial for
preserving language-specific features and enhanc-
ing accurate language generation.
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Figure 2: Preliminary visualization of multilingual representations from some representative LLaMA3 layers after
dimension reduction. We leverage the FLORES-101 dev set, which is multi-way parallel, and use average-pooled
hidden states for dimension reduction. Appendix A presents detailed visualization process and results.

3 Preliminary Analysis

We visualize the multilingual representations
across different layers of LLaMA3 after dimen-
sion reduction. Specifically, we use the FLORES-
101 dev set, perform mean-pooling on hidden
states of different layers, and reduce dimension to
2-dim using t-SNE (Van der Maaten and Hinton,
2008). Figure 2 presents the results of some rep-
resentative layers, revealing a clear pattern: from
the lower to intermediate layers, the LLM pro-
gressively aligns multilingual representations, fa-
cilitating knowledge transfer. After the intermedi-
ate layers, multilingual representations gradually
diverge into distinct language-specific subspaces,
ultimately leading to different language outputs.
This reveals a pattern in how LLMs handle mul-
tilingual data: the LLM exhibits a natural ten-
dency to process multilingual representations in an
align-then-diverge manner, though the alignment
remains suboptimal. Following this, we propose
AlignX to strengthen this pattern.

4 Method

To enhance this align-then-diverge pattern of
LLMs, we propose AlignX, a two-stage and
representation-level framework for enhancing the
multilingual performance of pre-trained LLMs.
AlignX contains two stages: 1) multilingual con-
tinual pre-training, which explicitly aligns multi-
lingual representations via multilingual semantic
alignment and language feature integration; and 2)
multilingual instruction fine-tuning, which com-
bines multilingual general instruction data with
multilingual translation instruction data to stimu-
late general capabilities while preserving the pre-
established alignment. Figure 1 illustrates the
framework of AlignX.

4.1 Multilingual Continual Pre-training
In the first stage, we conduct multilingual con-
tinual pre-training and efficiently align multi-
lingual representations through multilingual se-
mantic alignment and language feature integra-
tion, guided by multilingual instruction contrastive
learning LCTR and language matching learning
LLAM , respectively. This stage leverages English-
centric translation instruction data.

Multilingual Semantic Alignment Our prelim-
inary visualization reveals that LLMs tend to align
multilingual representations during processing. To
enhance this trend, we explicitly introduce a con-
trastive learning task at the intermediate layer, en-
couraging the model to produce similar represen-
tations for translation pairs.

Formally, given the dataset D and a translation
instruction data Ii = {xi,yi}, we compute its l-th
layer hidden states in model f(θ) as follows:

fl(I
i) = {fl(Ii)1, . . . , fl(Ii)n} (1)

We extract the hidden states of xi and yi based
on their respective token index ranges and get Ii

xi

and Ii
yi , and subsequently apply mean pooling to

obtain the sentence representation hx
i

and hy
i
:

hx
i
= g(fl(I

i
xi)), h

yi
= g(fl(I

i
yi)) (2)

where g(·) denotes mean pooling operation.
We take (xi,yi) as the positive example and

randomly select yj to form the negative example
(xi,yj). Then, the objective of multilingual in-
struction contrastive learning is:

LCTR = − E
xi,yi∈D

log
esim(hxi ,hyi )/τ

∑
yj esim(hxi ,hyj )/τ

(3)

where sim(·) calculates the similarity of differ-
ent sentences, and we use cosine similarity in our
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work. τ is a temperature hyper-parameter. To sim-
plify the implementation, we sample negative ex-
amples within every training batch.

Language Feature Integration Intuitively, af-
ter aligning the multilingual semantic space in
the intermediate layer, it becomes more difficult
for the model to distinguish between output lan-
guages. To bridge this gap, we leverage a lan-
guage matching task to inject language features.
Specifically, we train a language matching classi-
fier that predicts whether a given sentence pair is
in the same language (matched) or different lan-
guages (unmatched). The classifier takes the hid-
den states from the model’s final layer as input and
is optimized using a binary classification task.

Formally, given mean-pooled sentence repre-
sentations hx and hy, we concatenate and feed
them into the matching classifier to get a logit. The
ground truth is whether x and y belong to the same
language, denoted as y. The language matching
task is optimized with the cross-entropy loss:

LLAM = − E
x,y∈D

logM([hx;hy], y) (4)

where M(θ) denotes the language matching clas-
sifier, a 2-layer MLP in our work. To simplify the
implementation, we sample sentence pairs within
every training batch.

Final Loss Finally, we optimize the represen-
tation alignment objectives LCTR and LLAM

with the standard next token prediction loss of
LLMs, using multilingual translation instruction
data. The next token prediction loss LNTP is:

LNTP = − E
Ii∈D

∑

j

logP (Iij |Ii<j) (5)

The final loss of multilingual continual pre-
training stage is:

L = LNTP + α1LCTR + α2LLAM (6)

where α1 and α2 are hyper-parameters to balance
the losses.

4.2 Multilingual Instruction Fine-tuning

After multilingual representation alignment, we
leverage multilingual instruction fine-tuning to
effectively stimulate general capabilities while
maintaining the alignment established in the first
stage. We mix multilingual translation instruction

data, which implicitly provides alignment infor-
mation (Zhu et al., 2023), and multilingual general
instruction data, which efficiently stimulates mul-
tilingual general capabilities (Chen et al., 2024).
To ensure diversity and multilingual balance, we
sample English-centric translation pairs uniformly
across languages, pairing each with a randomly se-
lected translation instruction. General instruction
data are also sampled uniformly across languages.
Empirically, we maintain a 1:3 ratio of translation
data to general instruction data and a 1:5 ratio of
second-stage data to first-stage data. In this stage,
we optimize the model with the next token predic-
tion loss in Equation (5).

5 Experiment

5.1 Experiment Setup

Base LLMs We leverage LLaMA-7B (Touvron
et al., 2023a), LLaMA2-7B (Touvron et al.,
2023b), LLaMA3-8B-Instruct (Dubey et al.,
2024), Gemma-2B (Team et al., 2024) and
Mistral-7B-v0.3 (Jiang et al., 2023) as base LLMs.

Language Setup In the main experiment, we fo-
cus on ten languages: Arabic (Ar), Czech (Cs),
German (De), Greek (El), English (En), Hindi
(Hi), Russian (Ru), Turkish (Tr), Vietnamese (Vi)
and Chinese (Zh), spanning diverse families and
resource levels, and refer to this setup as AlignX.
To validate scalability, we extend to 51 languages
using LLaMA3-8B-Instruct, denoting this config-
uration as AlignX (51langs) to distinguish it from
the original 10-language setup.

Baselines We compare with these baselines: (1)
CPT-then-SFT follows the same two-stage mul-
tilingual instruction tuning as AlignX but with-
out LCTR and LLAM ; (2) ParroT-7B (Jiao et al.,
2023) leverages chat data to improve translation
ability; (3) BayLing1-7B (Zhang et al., 2023) and
BayLing2-8B (Zhang et al., 2024b) use multi-turn
interactive translation instruction data for cross-
lingual alignment; (4) BigTrans-13B (Yang et al.,
2023) applies continual pre-training on a large-
scale multilingual corpus; (5) Tower-7B (Alves
et al., 2024) first trains on multilingual data then
fine-tunes on translation instruction data.

Training Dataset We construct the multilin-
gual translation instruction data from OPUS-
100 (Zhang et al., 2020) and extract multilingual
general instruction data from Bactrian-X (Li et al.,
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Figure 3: Overall performance on multilingual general benchmarks. All the benchmarks are evaluated using
Accuracy metric. For comparison purposes, models with the same base LLM have the same color scheme, with
the lightest being the base LLM and the darkest being AlignX.

2023). Appendix B.1 and B.2 present details about
data processing and data statistics, respectively.

Evaluation Benchmarks We evaluate multilin-
gual general and cross-lingual generation capa-
bilities on five benchmarks: multilingual Hel-
laSwag (Zellers et al., 2019), multilingual Truth-
fulQA (Lin et al., 2022), XNLI (Conneau et al.,
2018), XStoryCloze (Lin et al., 2021b), evaluated
with Accuracy metric; and FLORES-101 (Costa-
jussà et al., 2022), evaluated with BLEU (Papineni
et al., 2002) and COMET (Rei et al., 2020) met-
rics. See Appendix B.3 for details.

Configuration In AlignX, the language match-
ing classifier is a 2-layer MLP with an intermedi-
ate dimension of 128 and an output dimension of

2. For training, we optimize using AdamW op-
timizer with a learning rate of 2e-6, training for
2 epochs per stage with a batch size of 128. We
empirically set α1 = 0.3, α2 = 0.4, and τ =
0.1. For evaluation, we use the MMT-LLM frame-
work (Zhu et al., 2024c) for FLORES-101 and
the lm-evaluation-harness framework (Gao et al.,
2024b) for other general benchmarks. All tasks
are evaluated in a 1-shot setup.

5.2 Main Results
AlignX improves multilingual general capabil-
ity. Figure 3 shows the results on multilingual
TruthfulQA, multilingual Hellaswag, XNLI, and
XStoryCloze, with detailed results in Appendix
C.1. While these benchmarks are out of our train-
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Methods X-En X-Ar X-Cs X-De X-El X-Hi X-Ru X-Tr X-Vi X-Zh Avg.
Gemma-2B Based

Gemma-2B 30.46 3.77 6.39 8.53 4.67 3.41 4.84 4.11 8.22 7.19 8.16
CPT-then-SFT 31.62 7.36 7.94 13.40 8.99 7.16 11.05 7.24 14.01 10.55 11.93

AlignX 31.68 6.94 8.75 13.84 8.83 7.40 10.63 7.94 15.87 11.02 12.29
Mistral-7B-v0.3 Based

Mistral-7B-v0.3 30.96 3.89 14.29 17.88 2.26 3.49 15.68 5.78 9.71 10.50 11.44
CPT-then-SFT 34.29 8.13 15.05 17.35 6.84 6.17 16.88 9.94 13.86 12.56 14.11

AlignX 33.85 8.00 14.58 16.54 6.77 6.74 16.59 10.34 14.18 12.78 14.04
LLaMA-7B Based

LLaMA-7B 20.81 0.74 5.70 9.05 0.80 0.97 6.60 1.22 1.10 1.60 4.86
ParroT-7B 17.91 0.22 3.28 4.65 0.45 0.26 1.86 1.59 1.67 1.81 3.37

BayLing1-7B 21.64 0.59 5.09 5.67 0.78 0.54 3.83 1.78 1.87 3.62 4.54
BigTrans-13B 21.30 2.10 5.27 5.31 1.38 4.03 4.66 3.80 2.54 4.95 5.53
CPT-then-SFT 27.02 3.21 9.38 11.90 3.34 2.66 10.48 4.79 6.26 5.64 8.47

AlignX 25.46 3.85 9.01 11.39 4.51 3.36 9.96 5.60 7.84 5.30 8.63
LLaMA2-7B Based

LLaMA2-7B 25.74 1.37 8.99 12.28 1.27 1.62 8.68 2.41 9.69 5.48 7.76
Tower-7B 30.48 1.51 7.74 12.75 1.33 1.79 10.15 2.26 8.56 9.26 8.58

CPT-then-SFT 31.61 3.46 13.50 17.73 2.74 2.71 14.39 5.37 13.53 10.52 11.55
AlignX 31.99 5.06 13.44 17.62 4.22 4.17 15.19 6.30 15.55 11.64 12.52

LLaMA3-8B-Instruct Based
LLaMA3-8B-Instruct 34.52 14.16 19.40 22.99 16.45 16.42 21.18 16.37 24.65 17.04 20.32

BayLing2-8B 35.21 13.83 15.09 18.33 14.26 16.02 18.14 14.09 22.41 15.94 18.33
CPT-then-SFT 36.50 14.82 19.68 23.98 17.82 16.09 21.52 15.26 24.65 19.08 20.94

AlignX 37.36 14.98 19.66 23.58 17.73 16.26 21.31 14.72 23.51 18.40 20.75
AlignX (51langs) 38.70 16.12 20.71 24.58 17.63 17.77 22.00 16.90 25.88 19.08 21.94

Table 1: The overall performance on the FLORES-101 benchmark. In each model group, we fine-tune the base
LLM (first row) to obtain CPT-then-SFT and AlignX. We report averaged BLEU scores for each target language.
"X" denotes all other nine languages except the target language. "Avg." denotes average scores on all translation
directions. We bold the highest scores.

ing distribution, AlignX achieves improvements
on all five base LLMs, demonstrating the general-
izability of AlignX. In contrast, data-level meth-
ods exhibit varying degrees of forgetting across
languages, indicating that cross-lingual alignment
achieved solely from continual pre-training on
large parallel datasets struggles to generalize be-
yond translation tasks. These findings demon-
strate the importance of multilingual representa-
tion alignment for enhancing multilingual capabil-
ity and generalizability.

AlignX significantly enhances cross-lingual
generation capability. Table 1 presents results
on the FLORES-101 benchmark, with statistical
significance test, COMET scores, and additional
details in Appendix C and a case study in Ap-
pendix D. The results show that AlignX achieves
the highest scores on all base LLMs, with aver-
age +4.13, +2.6, +3.77, +4.76, and +0.43 BLEU
scores on Gemma-2B, Mistral-7B-v0.3, LLaMA-
7B, LLaMA2-7B, and LLaMA3-8B-Instruct, re-
spectively. This demonstrates AlignX’s versa-
tility, as it improves across LLMs with vary-
ing multilingual capabilities. Notably, BigTrans-
13B uses a larger base LLM, 300M translation

pairs, and some non-English translation directions
(e.g., Hi-Zh). In contrast, AlignX relies solely on
less than 1M English-centric translation pairs yet
still achieves higher translation scores, indicating
that representation alignment effectively enhances
LLMs’ cross-lingual capability.

Scaling AlignX to 51 languages further im-
proves multilingual general and cross-lingual
generation capabilities. To further validate the
effectiveness of AlignX across a broader range of
languages, we scale AlignX to 51 languages, listed
in Appendix B.4. Figure 4 presents the results on
multilingual general and translation benchmarks,
with detailed results in Appendix C. These results
indicate that AlignX performs effectively under
the 51-language setup, enhancing both multilin-
gual general and cross-lingual generation capabil-
ities. To illustrate the impact of language scaling,
we compare AlignX (51-langs) and AlignX (10-
langs) under the 10-language setup, as shown in
Figure 3 and Table 1. Surprisingly, increasing the
number of languages from 10 to 51 leads to fur-
ther gains in multilingual general and generation
tasks, without exhibiting the "curse of multilin-
guality" (Zhu et al., 2024a). This highlights the

6465



Ar

Bn

De
En

Es
FrGuHi

Hr
Id

It

Ml

Mr

Ne

Nl
Pt

Ro
Ru Sv Ta

Te
Uk

Vi

Zh

Multilingual TruthfulQA

25
30

35
40

45
50

Ar

Bn

De
En

Es
FrGuHi

Hr
Id

It

Ml

Mr

Ne

Nl
Pt

Ro
Ru Sv Ta

Te
Uk

Vi

Zh

Multilingual HellaSwag

25 30 35 40 45 50 55 60

Ar

De

El
EnEs

Fr

Hi

Ru

Sw

Th
Tr Ur

Vi

Zh

XNLI

32.535.037.540.042.545.047.550.0

Ar

En

Es
Hi

Id

My

Ru
Te

Zh

XStoryCloze

50
60

70
80

90

LLaMA3-8B-Instruct AlignX (51langs)

(a) Multilingual General Benchmarks

Af Ar Az Bn Cs De El En Et Fa Fi Fr Gl Gu He Hi Hr Id It Ja Ka KkKmKo Lv Lt Ml Mr MkMnMy Nl Ne Pl Pt Ps Ro Ru Si Sl Es Sv Ta Te Th Tr Uk Ur Vi Xh Zh

Target Languages

Af
Ar
Az
Bn
Cs
De
El

En
Et
Fa
Fi
Fr
Gl

Gu
He
Hi
Hr
Id
It
Ja

Ka
Kk

Km
Ko
Lv
Lt
Ml
Mr
Mk
Mn
My
Nl

Ne
Pl
Pt
Ps
Ro
Ru
Si
Sl
Es
Sv
Ta
Te
Th
Tr

Uk
Ur
Vi

Xh
Zh

So
ur

ce
 L

an
gu

ag
es

4

2

0

2

4

De
lta

 B
LE

U

(b) FLORES-101 Benchmark

Figure 4: Performance comparison of LLaMA3-8B-Instruct (blue) and AlignX (red) under the 51-language setup.
(a): Accuracy metric results on multilingual general benchmarks. (b): BLEU differences on FLORES-101 bench-
mark, with red showing better AlignX performance and blue showing better LLaMA3-8B-Instruct performance.

Methods TruthfulQA HellaSwag XNLI IWSLT2017
X-En En-X Non-En OTR

LLaMA-7B 24.77 41.79 35.70 31.20 16.08 10.90 30.92
w/o LCTR 31.34 44.03 36.07 36.13 28.68 20.01 4.89
w/o LLAM 32.22 43.99 36.27 36.81 29.39 18.59 12.59

AlignX 32.12 44.11 36.00 36.25 29.88 21.21 4.16

Table 2: Averaged results of variant models on LLaMA for multilingual general and IWSLT2017 benchmarks.
"w/o LCTR" and "w/o LLAM " remove the instruction contrastive learning and language matching in the first
stage, respectively. "Non-En" indicates translation between four non-English languages. "OTR" (off-target ratio)
represents the proportion of outputs in incorrect target languages, thus the lower the better. We bold the best results.

efficacy of multilingual representation alignment
across a large number of languages.

6 Analysis

In this section, we provide an in-depth analysis of
AlignX, examining the following aspects: the role
of two auxiliary objectives, improvements in mul-
tilingual representation alignment, enhancements
in cross-lingual generation and knowledge trans-
fer, the impact of corpus size, and gains in cross-
lingual alignment. Appendix E provides detailed
comparisons with representation-level AFP, along
with efficiency analysis. Additional evaluation
benchmarks are reported in Appendix B.3.

Instruction contrastive learning facilitates
knowledge sharing, and language matching
promotes more accurate cross-lingual gen-
eration. We conduct experiments on several
variant models to investigate the effectiveness of
training objectives. We experiment with German,

English, Italian, Dutch, and Romanian. These five
languages belong to the Indo-European language
family, which are relatively similar. We extract
the training and test sets from the IWSLT2017
dataset, follow the same data construction pro-
cess as the main experiment, and experiment
on LLaMA-7B. Table 2 presents the results,
highlighting the effectiveness of multilingual
representation alignment. Specifically, instruction
contrastive learning facilitates knowledge shar-
ing, primarily benefiting relatively low-resource
languages, but increases incorrect linguistic
output in cross-lingual generation. To mitigate
this off-target issue, language matching serves
as a regularizer for output languages, enhancing
LLMs’ ability to distinguish output languages.

AlignX effectively brings the multilingual
representations closer. To intuitively under-
stand the effectiveness of multilingual repre-
sentation alignment, we visualize multilingual
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Figure 5: Visualization of multilingual representations from the base model, xSFT model, CPT model, and AlignX
model after dimension reduction. The CPT and xSFT models train only the first and second stages of multilingual
instruction fine-tuning, respectively. The visualization process follows the same steps as in Figure 2.

W/T/L Grammar Language Fit
X-El 173 / 174 / 103 192 / 138 / 120
All 1098 / 2901 / 501 1223 / 2611 / 666

Table 3: Automatic evaluation results using GPT-4o on
cross-lingual generation. We compare paired outputs
of AlignX and LLaMA3-8B-Instruct, where “W/T/L”
indicates that AlignX produces better, comparable, or
worse translations, respectively. "X" denotes all other
nine languages except the target language.

representations of LLaMA3, data-level xSFT,
and representation-level CPT, AlignX. Figure 5
presents visualization results, demonstrating the
implicit multilingual alignment of xSFT and ex-
plicit multilingual alignment of AlignX. Com-
paring Figures 5(a) and 5(b), xSFT preliminar-
ily aligns multilingual representations without ex-
plicit auxiliary tasks, although some distant lan-
guages still exist. This alignment capability comes
from translation pairs, which naturally contain
alignment information. The comparison in Fig-
ures 5(b) and 5(d) shows that multilingual repre-
sentation alignment in the first stage is important
in bringing multilingual representations closer.
Appendix A presents detailed results for AlignX.

AlignX achieves better grammatical correct-
ness and more accurate target language ac-
cording to GPT-4o evaluation. To further ex-
amine how AlignX enhances cross-lingual gener-
ation, particularly in low-resource scenarios, we
employ GPT-4o as an automatic evaluator focus-
ing on the grammar and language fit dimensions.
Evaluations are conducted under the 10-language
setup. For each translation direction, we randomly
sample 50 instances and compare the outputs from
LLaMA3-8B-Instruct and AlignX. As shown in
Table 3, detailed in Appendix E.3, AlignX demon-
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Figure 6: Layer-wise probability changes of unem-
bedding the correct English answer token at non-final
layers during non-English translation among German,
Russian, and Chinese (e.g., De-Ru). Probabilities are
averaged across samples.

strates stronger grammatical correctness and more
appropriate target language across languages, es-
pecially low-resource languages (e.g., Greek).

AlignX facilitates knowledge transfer via cross-
lingual concept alignment in intermediate lay-
ers. Following Wendler et al. (2024), we analyze
how AlignX enhances knowledge transfer and in-
fluences cross-lingual representations. Specifi-
cally, we measure the likelihood that non-English
inputs activate English-centric representations in
intermediate layers through German, Russian, and
Chinese translation tasks (e.g., German–Chinese).
For each direction, we compute the probability of
unembedding the correct English token at non-
final layers, averaged across samples, and report
the change relative to LLaMA2 (e.g., AlignX –
LLaMA2). Figure 6 reveals that in the concept
space (Wendler et al., 2024), approximately layers
16 to 28, associated with language-agnostic pro-
cessing, AlignX exhibits higher probabilities of re-
trieving the English token, whereas CPT-then-SFT
fluctuates around zero. This indicates that AlignX
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Figure 7: Results of the general cross-lingual knowledge alignment evaluation with CLiKA (Gao et al., 2024a).
We present the re-scaled accuracy (RA) scores, where higher values (greater than 0) indicate better performance.
"Seen" and "Unseen" denote whether these languages are included during AlignX training. xCSQA and xGeo
evaluate Basic knowledge and Factual knowledge, respectively.

Methods WMT14 WMT17
De-En En-De Zh-En En-Zh
LLaMA-7B Based

LLaMA-7B 28.95 18.30 15.75 10.58
xSFT 28.83 19.15 16.16 18.69

AlignX 31.45 22.25 18.37 24.86
AlignX† 32.16 24.79 19.43 29.15

LLaMA2-7B Based
LLaMA2-7B 31.25 20.32 21.41 20.97

xSFT 30.81 20.42 18.88 24.51
AlignX 32.04 23.59 19.76 29.13
AlignX† 33.94 26.70 22.00 32.18

LLaMA3-8B Based
LLaMA3-8B 33.66 23.70 25.03 31.60

xSFT 34.77 26.45 25.06 35.77
AlignX 36.09 27.23 24.84 36.26
AlignX† 35.70 28.33 24.32 36.46

Table 4: The results for the WMT14EnDe and
WMT17EnZh benchmarks. The xSFT model only
trains the second stage of multilingual instruction fine-
tuning. AlignX† is a variant that increases the training
data in the first stage from 50K to 250K examples per
language direction. We bold the highest scores.

better aligns cross-lingual representations with the
English-centric concept space, leveraging English
as an interlingua to improve cross-lingual transfer.

Scaling up the dataset of multilingual repre-
sentation alignment consistently enhances non-
English language generation. We investigate
the impact of scaling the first-stage training dataset
for multilingual representation alignment on lan-
guage generation, using German (De), English
(En), and Chinese (Zh) with LLaMA-7B. Train-
ing and test sets are drawn from WMT14EnDe
and WMT17EnZh. In Stage 1, we vary the cor-
pus size for each language pair from 50K to 250K,
while Stage 2 training follows the same settings
as in the main experiment. As presented in Ta-

ble 4, AlignX mainly enhances the performance in
the non-English translation directions, consistent
with Table 2. Moreover, extending corpora size in
the first stage further enhances performance, espe-
cially in non-English generation.

AlignX achieves better cross-lingual alignment.
To validate AlignX’s impact on cross-lingual
alignment, we use the CLiKA framework (Gao
et al., 2024a), evaluating Basic and Factual knowl-
edge with the xCSQA and xGeo benchmarks. We
compute re-scaled accuracy scores, which exclude
the interference of random baseline and question
difficulty for better cross-lingual comparison. Re-
sults in Figure 7 show that AlignX improves cross-
lingual alignment across multiple languages, re-
ducing multilingual performance gaps. Remark-
ably, AlignX also generalizes well to unseen lan-
guages, with cross-lingual alignment correlating
strongly with similar languages from training,
suggesting generalization is influenced by lan-
guage family similarities.

7 Conclusion

In this paper, we propose AlignX, an efficient
two-stage representation-level framework for en-
hancing multilingual performance of multilingual
LLMs. Results on several pre-trained LLMs
and multiple widely used benchmarks show that
AlignX effectively enhances multilingual general
capabilities and cross-lingual generation capabil-
ities. The analysis further demonstrates the im-
pact of AlignX on LLMs, including bringing mul-
tilingual representations closer and improving the
cross-lingual alignment of LLMs.
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Limitations

Given LLMs with uneven multilingual capabili-
ties, AlignX enhances both the multilingual gen-
eral capability and cross-lingual generation capa-
bility, and alleviates the imbalance of multilin-
gual capabilities, which matches our motivation.
However, the multilingual performance of the fi-
nal model is the outcome of the combined influ-
ence of the base model and AlignX, meaning that
the imbalance remains unavoidable. This suggests
that we are still far from achieving fully balanced
multilingual capabilities.
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A Detailed Visualization across Layers
on LLaMA3

We use the FLORES-101 dev set, with 997 sen-
tences per language. We directly input the sen-
tence into the LLM to obtain the hidden state se-
quence, perform average pooling to derive the sen-
tence representation, and apply t-SNE (Van der
Maaten and Hinton, 2008) for dimension reduc-
tion to 2-dim. Detailed visualization results for
both the base LLM and the AlignX LLM, based
on LLaMA3-8B, are presented in Figure 8 and 9,
respectively.

B Detailed Information for Training
Dataset

B.1 Data Processing

For multilingual translation instruction data, we
randomly select English-centric translation pairs
from the OPUS-100 (Zhang et al., 2020) corpus
and sample a translation instruction from the trans-
lation instruction set for each pair. For instruc-
tion diversity, we prompt ChatGPT to generate a
set of ten translation instructions, as shown in Ta-
ble 5. For multilingual general instruction data,
we primarily draw from the Bactrian-X (Li et al.,
2023) dataset, a multilingual version of the Al-
paca (Taori et al., 2023) dataset available in 52
languages2. The instructions are translated using
Google Translate, and the responses are generated
with GPT-3.5-Turbo. We filter out off-target re-
sponses using the langid toolkit (Lui and Baldwin,
2012). In the first stage, we sample 50k translation
pairs per translation direction, resulting in 0.9M
translation instruction data in total. In the second
stage, we sample 2.5k translation instruction data
per translation direction and 10k general instruc-
tion data per language, resulting in 145k mixed in-
struction data in total.

B.2 Statistics on Corpora Size and
Languages

Table 6 presents statistics on corpora size for our
approach and some typical data-level systems. Ta-
ble 7 presents information on languages involved
in this work.

2Since Greek (El) is not included in Bactrian-X, we ob-
tain the Greek Alpaca dataset from https://github.com/
NJUNLP/x-LLM.

B.3 Details about Evaluation Benchmarks

We evaluate multilingual general capabilities and
cross-lingual generation capabilities on the fol-
lowing benchmarks:

• Multilingual TruthfulQA (Lin et al., 2022):
This is the multilingual version of the Truth-
fulQA benchmark and evaluates knowledge
and truthfulness capabilities.

• Multilingual HellaSwag (Zellers et al.,
2019): This is the multilingual version of the
HellaSwag benchmark and evaluates com-
monsense reasoning and contextual under-
standing capabilities.

• Cross-lingual Natural Language Inference
(XNLI) (Conneau et al., 2018): This bench-
mark evaluates language transfer and cross-
lingual sentence classification.

• XStoryCloze (Lin et al., 2021b): This is a
multilingual commonsense reasoning bench-
mark for evaluating story understanding,
story generation, and script learning.

• FLORES-101 (Costa-jussà et al., 2022):
This is a multilingual machine translation
benchmark and evaluates the cross-lingual
generation capability.

The multilingual HellaSwag and TruthfulQA
benchmarks are obtained from Okapi (Lai et al.,
2023), translated by ChatGPT. We evaluate the
trained languages. In the analysis section, we fur-
ther experiment on the following benchmarks:

• IWSLT2017 (Cettolo et al., 2017), WMT143

and WMT174: These benchmarks are classi-
cal multilingual translation benchmarks and
evaluate cross-lingual generation capabilities
of different language subsets.

• xCSQA (Lin et al., 2021a): This is the multi-
lingual version of CSQA and evaluate cross-
lingual commonsense reasoning.

• xGeo (Gao et al., 2024a): This benchmark
evaluates cross-lingual knowledge align-
ment.

3https://huggingface.co/datasets/wmt/wmt14
4https://huggingface.co/datasets/wmt/wmt17
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Figure 8: Preliminary visualization of the multilingual representations across layers in the LLaMA3 after dimen-
sion reduction. We leverage the FLORES-101 dev set, which is multi-way parallel.
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Figure 9: Visualization of the multilingual representations across layers in AlignX, trained on LLaMA3, after
dimension reduction. We leverage the FLORES-101 dev set, which is multi-way parallel.
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Translation Instruction Set
Translate this text from {src_lang} to {tgt_lang}.

Convert this sentence from {src_lang} to {tgt_lang}.
Change this paragraph from {src_lang} to {tgt_lang}.
Render this message from {src_lang} to {tgt_lang}.
Translate this phrase from {src_lang} to {tgt_lang}.

Turn this text from {src_lang} to {tgt_lang}.
Rewrite this statement from {src_lang} to {tgt_lang}.

Provide a translation from {src_lang} to {tgt_lang} for this text.
Offer a {tgt_lang} translation for this text from {src_lang}.

Give a {tgt_lang} version of this text from {src_lang}.

Table 5: The translation instruction set in this work. "src_lang" denotes the source language, and "tgt_lang" denotes
the target language.

Methods Languages Data per Language Total Data
x-LLaMA (Zhu et al., 2023) 6 736.1K sentences 4.4M sentences
SDRRL (Zhang et al., 2024c) 15 150K sentences* 2.3M sentences*
BayLing1 (Zhang et al., 2023) 4 75.5K sentences 302K sentences

BayLing2 (Zhang et al., 2024b) 158 20.3K sentences 3.2M sentences
ParroT (Jiao et al., 2023) 3 67.4K sentences 202.2K sentences

BigTrans (Yang et al., 2023) 102 880.4M tokens + 2.4k sentences 89.8B tokens + 241K sentences
ALMA (Xu et al., 2024) 6 121.7B tokens + 9.8K sentences 703B tokens + 58.7K sentences

AlignX (10langs) 10 104.5K sentences 1.0M sentences
AlignX (51langs) 51 112.9K sentences 5.8M sentences

Table 6: Statistics on corpus size for our approach and some typical systems. We list the number of fine-tuned
languages, the total corpus size, and the average corpus size per language. “*” indicates that the detailed corpus
size is not given in the paper and we estimate a lower bound.

ISO 639-1 Language ISO 639-1 Language ISO 639-1 Language
Af Akrikaans Hr Croatian Pl Polish
Ar Arabic Id Indonesian Ps Pashto
Az Azerbaijani It Italian Pt Portuguese
Bn Bengali Ja Japanese Ro Romanian
Cs Czech Ka Georgian Ru Russian
De German Kk Kazakh Si Sinhala
El Modern Greek Km Khmer Sl Slovenian
En English Ko Korean Sv Swedish
Es Spanish Lt Lithuanian Ta Tamil
Et Estonian Lv Latvian Te Telugu
Fa Persian Mk Macedonian Th Thai
Fi Finnish Ml Malayalam Tr Turkish
Fr French Mn Mongolian Uk Ukrainian
Gl Galician Mr Marathi Ur Urdu
Gu Gujarati My Burmese Vi Vietnamese
He Hebrew Ne Nepali Xh Xhosa
Hi Hindi Nl Dutch Zh Chinese

Table 7: The languages and corresponding language codes used in this work.
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B.4 Languages Included in the 51-Language
Setup

To further validate the effectiveness of AlignX
across a broader range of languages, we conduct
experiments involving 51 languages. We select
languages from the intersection of Bactrian-X and
OPUS-100, with the addition of Greek. The lan-
guages are: Akrikaans (Af), Arabic (Ar), Azer-
baijani (Az), Bengali (Bn), Czech (Cs), German
(De), Modern Greek (El), English (En), Span-
ish (Es), Estonian (Et), Persian (Fa), Finnish (Fi),
French (Fr), Galician (Gl), Gujarati (Gu), He-
brew (He), Hindi (Hi), Croatian (Hr), Indone-
sian (Id), Italian (It), Japanese (Ja), Georgian
(Ka), Kazakh (Kk), Khmer (Km), Korean (Ko),
Lithuanian (Lt), Latvian (Lv), Macedonian (Mk),
Malayalam (Ml), Mongolian (Mn), Marathi (Mr),
Burmese (My), Nepali (Ne), Dutch (Nl), Pol-
ish (Pl), Pashto (Ps), Portuguese (Pt), Romanian
(Ro), Russian (Ru), Sinhala (Si), Slovenian (Sl),
Swedish (Sv), Tamil (Ta), Telugu (Te), Thai (Th),
Turkish (Tr), Ukrainian (Uk), Urdu (Ur), Viet-
namese (Vi), Xhosa (Xh), Chinese (Zh).

C More Evaluation Metrics and Detailed
Results

C.1 Multilingual General Benchmarks

Table 11, 12 and 13 show results on multilingual
TruthfulQA, multilingual HellaSwag, and XNLI
benchmark, respectively, and Table 15, 16, 17 and
18 present results on corresponding benchmarks
under 51-language setup.

C.2 Multilingual Translation Benchmark

To better evaluate the quality of multilingual trans-
lation, we report the results for statistical signif-
icance test in Table 19, and COMET (Rei et al.,
2020)5 metric in Table 20, respectively. We
present detailed BLEU results for each base LLMs
on the multilingual translation benchmark in Table
21, 23, 24, 25 and 26. We present the averaged
BLEU scores under the 51-language setup in Ta-
ble 27.

D Case Study for Multilingual
Translation

To intuitively understand the superiority of
AlignX translations, we provide some representa-
tive, diverse, and multilingual translation cases of

5https://huggingface.co/Unbabel/wmt22-comet-da

LLaMA2-7B and AlignX. We use online Google
Translate to translate non-English text into English
for clear understanding. Figure 10 presents the
cases. While LLaMA2 fails to provide accurate
translations, AlignX provides accurate and con-
cise translations. While LLaMA2 fails to provide
accurate translations in these cases, including mis-
translations, omissions, or even the incorrect target
language, AlignX provides accurate and concise
translations.

E Additional Analysis

E.1 Comparison with Representation-level
AFP

We further compare our approach with AFP (Li
et al., 2024a), a SOTA representation-level
method. AFP enhances multilingual semantic
alignment through an auxiliary contrastive learn-
ing objective applied to translation pairs and
cross-lingual instruction data. We evaluate AFP
on 10 languages, using cross-lingual instruc-
tions constructed from approximately 1.15M in-
stances—comparable in scale to AlignX (1.14M
instances). Following AFP’s optimal hyperparam-
eters, results in Table 8 demonstrate that AlignX
outperforms AFP in both multilingual understand-
ing and cross-lingual generation.

We attribute AlignX’s superior performance
to two key factors. First, AlignX aligns more
closely with the LLMs’ inherent “align-then-
diverge” pattern by combining contrastive learn-
ing with language matching, thereby mitigating
the performance degradation in generation when
aligning semantic representations alone. Second,
AlignX integrates contrastive learning and lan-
guage matching directly within the instruction for-
mat. This encourages the model to naturally learn
intra-sentence language shifts, leading to more ac-
curate cross-lingual generation compared to AFP’s
cross-lingual instruction tuning.

E.2 Efficiency Analysis

To evaluate the training efficiency, we compare
the training cost between AlignX and CPT-then-
SFT, using the same two-stage dataset but without
the two auxiliary tasks. All experiments are con-
ducted under identical hardware and hyperparam-
eter settings, including 4×A800-80G GPUs, fixed
training steps, batch size, and micro-batch size. As
shown in Table 9, AlignX incurs only minimal ad-
ditional cost, as the auxiliary tasks are integrated
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Translation 

Direction
Source Reference LLaMA2 Outputs AlignX Outputs

Ru-De

Все животные, которые 

первоначально прибыли на эти 

острова, добрались сюда вплавь, 

прилетели или их прибило 

течением.

Alle Tiere, die ursprünglich auf den Inseln

eintrafen, kamen entweder durch

Schwimmen, Fliegen oder Anschwemmen

hierher.

(Translation: All the animals that 

originally arrived on the islands came 

here either by swimming, flying or 

washing ashore.)

"All the animals that first arrived on these 

islands came by swimming, flying or were 

washed ashore."

Alle Tiere, die ursprünglich auf diesen Inseln 

ankamen, kamen hierher zu Fuß, zu Wasser 

oder wurden von den Strömungen hierher 

getrieben.

(Translation: All the animals that 

originally arrived on these islands came 

here on foot, by water or were carried here 

by the currents.)

De-Ar

Dennoch sollten Sie den Rat von 

Behörden befolgen, alle Schilder 

beachten und insbesondere 

Augenmerk auf 

Sicherheitswarnungen richten.

مع هذا، اطلب النصائح من السلطات، وامتثل لجميع 

.الإشارات، وانتبه جيداً لتحذيرات السلامة

(Translation: However, seek advice 

from authorities, obey all signs, and pay 

close attention to safety warnings.)

لغ كل شاشة ينبغي أن يتم تقديم الرد للمؤسسات الحكومية ويب

ويبلغ من أي ملاحظات الأمن ويبلغ من أي ملاحظات الأم

(Translation: The response should be 

provided to the government institutions 

and every screen should be informed and 

any security notes should be reported and 

any mother notes should be reported.)

جميع ومع ذلك يجب أن تتبع توجيهات السلطات وتحتفظ ب

.الأشكال ويجب أن تركز في أولويات الأمان والحذر

(Translation: However, you should follow 

the directions of the authorities and keep 

all forms and should focus on safety and 

caution priorities.)

El-En

Από την άλλη πλευρά, οι 

συνθήκες πάγου και χιονιού είναι 

φυσιολογικές σε πολλές χώρες, 

όπου η κυκλοφορία συνεχίζεται ως 

επί το πλείστον χωρίς διακοπές 

όλο το χρόνο.

On the other hand, icy and snowy 

conditions are normal in many countries, 

and traffic goes on mostly uninterrupted all 

year round.

From the other side, the patterns of 

snowflakes and icicles are found in many 

places, where the cycle continues without 

interruptions throughout the year.

From the other side, the conditions of snow 

and ice are natural in many countries, where 

the circulation continues throughout the year 

without interruptions.

En-Zh

The Internet combines elements of 

both mass and interpersonal 

communication.

互联网结合了大众传播和人际传播的要
素。 (Translation: The Internet 

combines elements of mass and 

interpersonal communication.)

互联网结合了两种通信方式的特点。
(Translation: The Internet combines the 

characteristics of both modes of 

communication.)

互联网把大众传播和个人交流的元素结合
在一起。 (Translation: The Internet 

combines elements of mass communication 

and personal communication.)

Figure 10: Multilingual translation cases of LLaMA2-7B and AlignX.

TruthfulQA HellaSwag XNLI XStoryCloze FLORES-101
(COMET)

FLORES-101
(OTR)

LLaMA-7B Based
LLaMA-7B 25.91 35.44 35.70 58.75 48.25 48.78

AFP 29.00 36.18 37.30 62.64 62.17 15.37
AlignX 31.26 37.68 39.24 64.70 62.78 8.42

LLaMA2-7B Based
LLaMA2-7B 28.35 37.79 35.92 60.50 54.34 43.76

AFP 31.79 38.35 36.31 62.66 64.11 17.68
AlignX 32.99 38.99 37.76 64.29 68.64 8.07

Table 8: Comparison between AFP and AlignX. We report averaged Accuracy, COMET, and OTR (off-target ratio)
scores under the 10-language setup. We bold the best results.

6477



You are a multilingual translation quality evaluator. Given a translation task, including translation direction, 

source text, and ground truth, compare two translation outputs across multiple evaluation dimensions. 

"win" stands for output1 is better, "lose" stands for output2 is better, and "tie" stands for two outputs are 

similar. Output strictly in the following JSON format and **do not include any explanations or reasoning**.

## Input:

translation_direction: {translation_direction}

source: {source}

ground_truth: {ground_truth}

output1: {output1}

output2: {output2}

## Output Format:

{"grammar": "win/tie/lose", "target_language_fit": "win/tie/lose"}

The Template for Automatic GPT-4o Evaluation

Figure 11: Template used for automatic GPT-4o evaluation. We randomly stack the translation outputs from
LLaMA-8B-Instruct and AlignX, treating them as output1 and output2.

Relative Speed Training (Stage 1)
CPT+SFT 1.00×

AlignX 0.95×

Table 9: Training efficiency comparison. AlignX intro-
duces negligible additional cost compared to the base-
line.

into the same forward pass during Stage 1. Stage
2 and inference incur no further overhead, as no
extra parameters or computations are involved be-
yond CPT-then-SFT.

E.3 Detailed GPT-4o Evaluation Results
We present the GPT-4o evaluation template in Fig-
ure 11 and provide detailed results in Table 10,
grouped by target language. For high-resource
languages (e.g., English and German), GPT-4o
predominantly produces neutral judgments. In
contrast, for low-resource languages (e.g., Arabic,
Greek, and Czech), GPT-4o shows a clear pref-
erence for AlignX outputs. These findings high-
light the effectiveness of the language-matching
task, which proves particularly beneficial in low-
resource scenarios.

W/T/L Grammar Language Fit
X-En 52 / 394 / 4 80 / 359 / 11
X-Ar 185 / 191 / 74 191 / 165 / 94
X-Cs 127 / 264 / 59 135 / 248 / 67
x-De 103 / 325 / 22 102 / 309 / 39
X-El 173 / 174 / 103 192 / 138 / 120
X-Hi 149 / 203 / 98 144 / 179 / 127
X-Ru 81 / 333 / 36 93 / 320 / 37
X-Tr 108 / 277 / 65 123 / 238 / 89
X-Vi 53 / 380 / 17 80 / 339 / 31
X-Zh 67 / 360 / 23 83 / 316 / 51

All 1098 / 2901 / 501 1223 / 2611 / 666

Table 10: Detailed automatic evaluation results us-
ing GPT-4o on cross-lingual generation. We compare
paired outputs of AlignX and LLaMA3-8B-Instruct,
where “W/T/L” indicates that AlignX produces better,
comparable, or worse translations, respectively. "X"
denotes all other nine languages except the target lan-
guage.
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Methods Ar De En Hi Ru Vi Zh Avg.
Gemma-2B Based

Gemma-2B 27.94 26.40 23.01 26.52 26.78 27.52 26.65 26.40
CPT-then-SFT 31.18 29.44 27.54 26.26 30.46 29.68 29.44 29.14

AlignX 32.08 29.19 26.93 25.49 30.58 30.06 28.81 29.02
Mistral-7B-v0.3 Based

Mistral-7B-v0.3 30.79 31.22 29.01 27.30 31.22 30.19 29.31 29.86
CPT-then-SFT 36.22 37.82 36.60 29.24 38.45 35.41 35.03 35.54

AlignX 36.87 36.93 38.31 29.62 39.47 36.69 33.38 35.89
LLaMA-7B Based

LLaMA-7B 28.98 24.49 23.10 28.33 24.75 26.24 25.51 25.91
BayLing1-7B 30.27 28.17 32.07 29.88 30.20 27.39 29.95 29.70

ParroT-7B 31.57 28.81 27.17 27.94 29.44 27.77 26.65 28.48
BigTrans-13B 27.17 25.89 27.05 26.26 30.20 20.64 25.38 26.08
CPT-then-SFT 32.86 31.73 33.66 27.04 31.85 30.19 31.35 31.24

AlignX 30.92 30.84 33.66 27.30 33.38 31.85 30.84 31.26
LLaMA2-7B Based

LLaMA2-7B 30.53 28.68 26.19 28.07 29.44 29.68 25.89 28.35
Tower-7B 29.62 27.03 25.21 27.43 27.66 27.26 24.37 26.94

CPT-then-SFT 31.95 33.63 33.41 28.33 35.53 34.78 31.22 32.69
AlignX 33.51 32.87 33.90 28.46 35.79 35.29 31.09 32.99

LLaMA3-8B-Instruct Based
LLaMA3-8B-Instruct 34.67 34.01 35.74 30.53 36.29 32.74 35.53 34.22

BayLing2-8B 29.50 26.27 24.97 26.26 30.08 29.17 28.81 27.87
CPT-then-SFT 34.15 33.38 35.25 29.11 35.15 37.96 35.41 34.34

AlignX 35.45 34.14 38.56 30.14 36.29 38.98 38.45 36.00
AlignX (51langs) 35.58 35.66 38.80 30.66 39.85 40.89 37.44 36.98

Table 11: Detailed results on multilingual TruthfulQA benchmark. "Avg." denotes average scores on all languages.
We bold the highest scores.

Methods Ar De En Hi Ru Vi Zh Avg.
Gemma-2B Based

Gemma-2B 32.12 36.94 52.60 29.74 36.39 35.60 35.82 37.03
CPT-then-SFT 32.14 37.50 53.01 29.85 36.65 35.93 36.37 37.35

AlignX 32.74 37.83 53.22 30.10 37.17 36.32 36.68 37.72
Mistral-7B-v0.3 Based

Mistral-7B-v0.3 32.73 43.96 61.80 29.42 43.24 35.73 40.99 41.12
CPT-then-SFT 35.21 43.83 61.82 30.77 43.01 37.58 40.47 41.81

AlignX 35.83 45.16 63.71 31.44 43.85 38.05 41.91 42.85
LLaMA-7B Based

LLaMA-7B 28.03 39.04 56.84 26.83 37.00 28.04 32.27 35.44
BayLing1-7B 27.77 39.38 57.61 26.85 36.36 28.11 36.53 36.09

ParroT-7B 27.22 37.93 59.58 26.58 35.75 27.83 32.20 35.30
BigTrans-13B 26.74 41.12 58.99 26.99 35.34 27.21 37.23 36.23
CPT-then-SFT 30.69 39.22 57.49 28.08 37.23 31.54 33.77 36.86

AlignX 31.10 40.14 58.97 28.69 38.14 32.55 34.17 37.68
LLaMA2-7B Based

LLaMA2-7B 29.30 39.96 57.60 28.04 37.95 35.43 36.26 37.79
Tower-7B 29.06 43.70 57.30 28.46 41.82 34.83 35.69 38.69

CPT-then-SFT 30.42 41.65 58.75 28.78 39.15 36.08 36.93 38.82
AlignX 31.05 41.51 58.67 28.97 39.17 36.33 37.25 38.99

LLaMA3-8B-Instruct Based
LLaMA3-8B-Instruct 36.51 44.20 57.61 33.63 42.41 39.53 41.36 42.18

BayLing2-8B 36.29 42.88 56.58 33.90 41.22 39.81 42.61 41.90
CPT-then-SFT 36.80 45.00 59.14 32.58 43.47 41.52 41.48 42.86

AlignX 37.63 45.61 59.97 32.66 43.84 42.10 41.97 43.40
AlignX (51langs) 37.59 45.73 59.66 33.52 43.98 42.20 42.05 43.53

Table 12: Detailed results on multilingual HellaSwag benchmark. "Avg." denotes average scores on all languages.
We bold the highest scores.
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Methods Ar De El En Hi Ru Tr Vi Zh Avg.
Gemma-2B Based

Gemma-2B 33.29 41.29 33.49 44.86 36.79 38.19 36.43 36.39 35.82 37.39
CPT-then-SFT 33.86 42.33 33.61 43.45 37.19 39.68 37.75 38.39 36.02 38.03

AlignX 33.49 42.45 34.34 45.38 38.19 40.20 39.32 39.24 36.99 38.84
Mistral-7B-v0.3 Based

Mistral-7B-v0.3 33.90 43.33 33.86 43.69 36.55 38.63 36.27 36.71 37.79 37.86
CPT-then-SFT 34.66 43.45 34.34 43.45 39.44 41.04 37.91 38.96 38.39 39.07

AlignX 35.38 42.09 34.78 46.35 40.40 44.74 39.64 39.72 38.63 40.19
LLaMA-7B Based

LLaMA-7B 33.90 39.04 33.86 42.77 33.69 35.62 34.02 33.90 34.54 35.70
BayLing1-7B 33.69 40.96 33.98 43.86 34.58 41.73 34.13 34.02 36.67 37.07

ParroT-7B 33.37 38.92 33.61 46.02 35.34 40.72 33.69 33.98 36.63 36.92
BigTrans-13B 34.02 40.64 34.38 41.89 35.06 39.60 35.46 34.54 35.38 36.77
CPT-then-SFT 34.58 41.57 34.22 46.95 37.63 40.08 36.10 37.47 37.51 38.46

AlignX 35.38 43.25 34.66 48.39 37.31 39.32 36.67 39.40 38.80 39.24
LLaMA2-7B Based

LLaMA2-7B 33.94 39.00 33.86 41.69 34.94 35.86 34.22 34.70 35.06 35.92
Tower-7B 33.57 41.16 33.61 40.64 35.02 36.99 33.73 34.18 35.38 36.03

CPT-then-SFT 34.14 40.76 33.82 42.33 38.03 39.56 36.02 37.43 37.67 37.75
AlignX 34.34 40.96 34.34 42.29 36.67 39.88 36.31 36.87 38.19 37.76

LLaMA3-8B-Instruct Based
LLaMA3-8B-Instruct 34.90 45.18 37.11 44.74 39.96 41.97 40.68 38.63 40.40 40.40

BayLing2-8B 34.34 39.12 34.14 41.45 35.74 36.31 38.47 34.90 37.35 36.87
CPT-then-SFT 35.14 45.38 34.74 47.55 40.80 41.77 41.53 42.21 40.52 41.07

AlignX 35.46 44.38 35.26 46.75 40.12 41.61 40.36 41.73 40.68 40.71
AlignX (51langs) 36.59 46.10 36.18 45.86 42.21 41.16 43.33 41.61 40.84 41.54

Table 13: Detailed results on XNLI benchmark. "Avg." denotes average scores on all languages. We bold the
highest scores.

Methods Ar En Hi Ru Zh Avg.
Gemma-2B Based

Gemma-2B 53.61 75.65 57.71 61.35 58.70 61.40
CPT-then-SFT 55.66 78.23 59.43 63.27 61.61 63.64

AlignX 55.86 78.42 60.29 63.86 61.15 63.92
Mistral-7B-v0.3 Based

Mistral-7B-v0.3 51.36 80.15 54.86 65.32 63.34 63.00
CPT-then-SFT 59.43 82.66 57.71 69.29 66.58 67.13

AlignX 59.36 83.92 60.03 70.95 67.84 68.42
LLaMA-7B Based

LLaMA-7B 48.11 77.43 51.89 62.14 54.20 58.75
BayLing1-7B 48.71 80.01 51.42 65.19 62.54 61.57

ParroT-7B 48.51 83.59 52.35 63.20 53.74 60.28
BigTrans-13B 48.84 80.28 48.18 61.35 61.75 60.08
CPT-then-SFT 55.26 81.47 54.40 66.05 57.58 62.95

AlignX 57.18 82.53 57.11 67.44 59.23 64.70
LLaMA2-7B Based

LLaMA2-7B 50.50 77.83 52.61 62.14 59.43 60.50
Tower-7B 49.24 78.23 53.47 66.58 58.84 61.27

CPT-then-SFT 54.27 80.87 54.86 65.78 63.73 63.90
AlignX 55.06 80.94 56.06 66.05 63.34 64.29

LLaMA3-8B-Instruct Based
LLaMA3-8B-Instruct 61.75 80.61 65.25 71.01 67.90 69.30

BayLing2-8B 59.43 76.51 62.81 67.11 65.65 66.30
CPT-then-SFT 63.20 81.73 63.53 71.08 68.89 69.69

AlignX 62.14 82.33 63.53 72.60 69.36 69.99
AlignX (51langs) 63.47 81.34 64.39 72.47 69.23 70.18

Table 14: Detailed results on XStoryCloze benchmark. "Avg." denotes average scores on all languages. We bold
the highest scores.
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TruthfulQA Ar Bn De En Es Fr Gu Hi Hr
LLaMA3-8B-Instruct 34.54 29.71 34.01 35.74 36.76 35.83 27.63 30.53 33.55

AlignX (51langs) 35.58 30.86 35.66 38.80 37.90 39.01 28.32 30.66 34.59
Id It Ml Mr Ne Nl Pt Ro Ru

LLaMA3-8B-Instruct 34.32 35.89 28.53 28.53 29.33 37.20 37.44 35.04 36.29
AlignX (51langs) 37.66 38.06 28.82 32.33 29.72 38.47 39.09 36.97 39.85

Sv Ta Te Uk Vi Zh Avg.
LLaMA3-8B-Instruct 37.60 27.46 26.24 35.84 35.41 35.53 33.29

AlignX (51langs) 36.05 27.73 26.67 36.49 40.89 37.44 34.90

Table 15: Detailed results on multilingual TruthfulQA benchmark under the 51-language setup. We bold the
highest scores.

HellaSwag Ar Bn De En Es Fr Gu Hi Hr
LLaMA3-8B-Instruct 36.54 29.08 44.24 57.61 47.97 46.78 28.06 33.63 37.73

AlignX (51langs) 37.59 29.61 45.73 59.66 49.79 48.13 28.31 33.52 39.78
Id It Ml Mr Ne Nl Pt Ro Ru

LLaMA3-8B-Instruct 41.73 45.34 26.43 27.86 27.86 44.79 46.05 41.45 42.76
AlignX (51langs) 43.27 46.25 26.61 28.24 28.66 45.87 48.01 42.62 43.98

Sv Ta Te Uk Vi Zh Avg.
LLaMA3-8B-Instruct 43.83 26.02 26.93 39.36 40.22 41.31 38.48

AlignX (51langs) 44.89 25.97 27.10 40.72 42.20 42.05 39.52

Table 16: Detailed results on multilingual HellaSwag benchmark under the 51-language setup. We bold the highest
scores.

XNLI Ar De El En Es Fr Hi Ru Sw
LLaMA3-8B-Instruct 34.86 45.18 37.11 44.66 41.69 42.29 39.80 42.05 34.94

AlignX (51langs) 36.59 46.10 36.18 45.86 44.86 44.54 42.21 41.16 34.66
Th Tr Ur Vi Zh Avg.

LLaMA3-8B-Instruct 39.28 40.72 37.51 38.55 40.52 39.94
AlignX (51langs) 41.73 43.33 35.98 41.61 40.84 41.12

Table 17: Detailed results on XNLI benchmark under the 51-language setup. We bold the highest scores.

XStoryCloze Ar En Es Hi Id My
LLaMA3-8B-Instruct 61.75 80.61 72.60 65.25 67.31 50.10

AlignX (51langs) 63.47 81.34 73.13 64.39 68.56 49.04
Ru Te Zh Avg.

LLaMA3-8B-Instruct 71.01 61.02 67.90 66.40
AlignX (51langs) 72.47 61.09 69.23 66.97

Table 18: Detailed results on XStoryCloze benchmark under the 51-language setup. We bold the highest scores.

System Comparison Statistical Significance
Gemma-2B v.s. AlignX 84 / 90

Mistral-7B-v0.3 v.s. AlignX 70 / 75
LLaMA-7B v.s. AlignX 81 / 86

LLaMA2-7B v.s. AlignX 90 / 90
LLaMA3-8B-Instruct v.s. AlignX 41 / 55

LLaMA3-8B-Instruct v.s. AlignX (51langs) 79 / 87

Table 19: Statistical significance tests for multilingual translations. We present the results in the a / b format,
indicating that AlignX outperforms corresponding base LLMs in b translation directions, where the improvements
in a translation directions are significant (p_value < 0.05).
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Methods X-En X-Ar X-Cs X-De X-El X-Hi X-Ru X-Tr X-Vi X-Zh Avg.
Gemma-2B Based

Gemma-2B 84.55 58.84 65.20 65.51 61.16 47.02 58.03 59.54 66.23 68.94 63.50
CPT-then-SFT 85.39 66.02 71.24 68.44 75.27 71.04 73.17 74.44 72.29 53.28 71.06

AlignX 85.29 67.31 72.18 73.44 70.88 53.34 71.07 67.10 76.59 75.71 71.29
Mistral-7B-v0.3 Based

Mistral-7B-v0.3 84.48 55.65 75.34 55.99 74.30 48.51 75.88 64.37 75.44 39.13 64.91
CPT-then-SFT 86.12 67.44 78.00 67.01 78.79 62.68 77.28 72.97 82.13 45.18 71.76

AlignX 85.89 69.75 77.36 68.06 78.42 64.36 74.21 73.96 80.72 47.93 72.07
LLaMA-7B Based

LLaMA-7B 75.00 40.37 54.13 59.23 41.90 31.76 54.66 39.34 39.68 46.44 48.25
ParroT-7B 73.26 41.27 50.66 52.59 44.57 37.55 42.05 48.77 51.12 48.96 49.08

BayLing1-7B 75.42 45.47 55.07 55.91 44.80 38.46 48.74 46.24 49.15 55.85 51.51
BigTrans-13B 74.06 47.67 55.28 54.75 41.81 43.11 50.54 51.01 46.16 57.95 52.23
CPT-then-SFT 81.97 52.74 69.79 53.93 64.40 52.98 68.70 57.34 71.23 37.58 61.07

AlignX 80.87 57.97 69.28 67.98 57.80 41.33 70.23 56.32 62.20 63.79 62.78
LLaMA2-7B Based

LLaMA2-7B 77.49 43.00 61.16 64.16 40.35 34.73 57.70 45.95 61.93 56.93 54.34
Tower-7B 82.20 49.46 62.54 45.12 65.12 45.22 67.40 62.23 61.20 36.98 57.75

CPT-then-SFT 84.70 55.94 75.96 55.52 74.11 50.75 77.10 71.81 77.67 42.27 66.58
AlignX 85.08 60.82 75.92 77.14 56.04 41.80 79.61 57.69 75.23 77.05 68.64

LLaMA3-8B-Instruct Based
LLaMA3-8B-Instruct 86.62 75.12 83.98 81.97 78.77 63.49 84.51 78.50 83.26 82.10 79.83

Bayling2-8B 86.41 75.09 78.40 76.46 78.41 77.82 76.66 81.51 81.55 64.92 77.72
CPT-then-SFT 80.23 71.73 75.22 72.08 76.80 74.31 72.10 76.38 77.32 57.85 73.40

AlignX 86.85 78.78 84.07 81.65 81.24 63.67 85.18 78.51 83.31 82.70 80.60
AlignX (51langs) 87.61 79.81 84.70 82.49 78.25 63.98 85.73 79.20 84.60 83.46 80.98

Table 20: The averaged COMET (Rei et al., 2020) scores on FLORES-101. "X" denotes all other training lan-
guages except the target language. "Avg." denotes average scores on all translation directions. We bold the highest
scores.

6482



Gemma-2B En Ar Cs De El Hi Ru Tr Vi Zh Avg.
En - 13.18 20.98 26.93 13.48 16.34 22.70 14.71 29.78 18.80 19.66
Ar 29.79 - 4.28 6.26 3.19 1.43 1.89 1.57 6.01 4.69 6.57
Cs 34.67 5.08 - 10.62 3.99 0.39 7.37 3.23 2.86 7.35 8.40
De 40.67 5.55 6.71 - 5.94 5.42 4.21 4.37 8.65 10.00 10.17
El 29.11 1.16 3.37 5.85 - 0.73 0.91 1.18 4.51 3.11 5.55
Hi 27.36 0.60 2.70 4.00 1.01 - 1.00 2.55 2.97 4.72 5.21
Ru 31.54 4.08 9.18 10.39 6.97 2.69 - 3.18 6.69 8.07 9.20
Tr 25.48 1.19 1.96 2.73 0.91 0.78 0.61 - 2.19 1.58 4.16
Vi 29.69 1.87 2.97 3.20 2.25 2.19 1.72 2.82 - 6.41 5.90
Zh 25.79 1.23 5.40 6.78 4.26 0.69 3.13 3.34 10.31 - 6.77

Avg. 30.46 3.77 6.39 8.53 4.67 3.41 4.84 4.11 8.22 7.19 8.16
CPT-then-SFT En Ar Cs De El Hi Ru Tr Vi Zh Avg.

En - 14.09 21.22 27.78 15.28 16.77 23.02 16.17 30.21 20.10 20.52
Ar 30.41 - 6.05 11.50 8.67 4.97 4.91 4.11 11.68 6.19 9.83
Cs 35.66 7.92 - 15.86 9.71 5.77 17.92 6.43 9.44 10.50 13.25
De 41.12 9.13 11.57 - 11.09 9.48 16.40 10.29 19.39 14.03 15.83
El 30.81 5.53 4.08 11.71 - 3.80 8.76 3.82 9.59 7.72 9.54
Hi 28.47 4.61 3.05 8.22 5.27 - 3.93 3.67 5.18 4.95 7.48
Ru 33.20 7.92 5.43 14.34 10.56 8.62 - 7.52 17.19 12.52 13.03
Tr 26.69 4.82 3.32 8.29 5.15 2.44 5.05 - 6.96 7.23 7.77
Vi 31.75 5.79 8.01 10.31 7.50 5.70 8.98 6.74 - 11.75 10.73
Zh 26.51 6.40 8.77 12.55 7.70 6.86 10.49 6.44 16.49 - 11.36

Avg. 31.62 7.36 7.94 13.40 8.99 7.16 11.05 7.24 14.01 10.55 11.93
AlignX En Ar Cs De El Hi Ru Tr Vi Zh Avg.

En - 14.47 21.49 27.83 15.38 16.87 23.13 16.02 29.83 19.81 20.54
Ar 30.27 - 7.20 12.72 8.31 5.70 6.20 5.45 16.38 8.58 11.20
Cs 35.73 7.42 - 15.86 9.59 5.60 18.18 7.78 12.31 11.15 13.74
De 41.47 8.63 9.96 - 10.97 8.33 14.82 10.40 18.89 13.04 15.17
El 31.14 4.58 5.71 12.21 - 4.72 8.35 5.20 15.56 8.25 10.64
Hi 27.77 3.93 3.38 8.49 5.32 - 2.08 5.08 8.90 6.42 7.93
Ru 33.55 7.88 10.54 15.80 10.11 8.97 - 7.31 17.46 12.78 13.82
Tr 26.68 3.60 3.90 8.72 5.13 3.12 4.56 - 7.46 7.23 7.82
Vi 31.65 5.70 7.62 10.34 7.13 5.83 9.56 7.22 - 11.91 10.77
Zh 26.82 6.24 8.96 12.55 7.54 7.42 8.82 7.04 16.03 - 11.27

Avg. 31.68 6.94 8.75 13.84 8.83 7.40 10.63 7.94 15.87 11.02 12.29

Table 21: Detailed BLEU scores of the FLORES-101 benchmark on Gemma-2B.
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Mistral-7B-v0.3 En Ar Cs De El Hi Ru Tr Vi Zh Avg.
En - 6.81 27.30 32.95 4.24 6.50 28.21 11.44 17.66 17.92 17.00
Ar 27.37 - 9.83 13.82 1.54 2.06 9.39 2.71 7.27 6.00 8.89
Cs 39.36 4.44 - 24.67 2.94 3.60 23.31 5.81 9.89 12.60 14.07
De 43.69 4.88 22.01 - 2.88 4.17 23.23 7.58 12.35 13.55 14.93
El 26.20 3.08 10.98 14.53 - 2.04 12.24 3.67 7.65 6.55 9.66
Hi 21.61 1.94 5.76 8.91 1.04 - 5.69 3.73 5.04 5.73 6.61
Ru 35.88 4.80 20.29 22.52 3.11 3.97 - 6.53 11.75 12.59 13.49
Tr 26.89 2.68 8.40 12.69 1.51 3.75 12.30 - 7.00 9.11 9.37
Vi 30.29 3.76 11.15 15.48 1.73 2.56 15.23 5.40 - 10.44 10.67
Zh 27.33 2.59 12.85 15.39 1.38 2.76 11.55 5.11 8.81 - 9.75

Avg. 30.96 3.89 14.29 17.88 2.26 3.49 15.68 5.78 9.71 10.50 11.44
CPT-then-SFT En Ar Cs De El Hi Ru Tr Vi Zh Avg.

En - 16.21 28.75 32.61 11.61 12.61 28.31 18.36 24.52 20.24 21.47
Ar 32.65 - 12.41 14.45 5.37 3.60 13.14 6.51 11.12 8.93 12.02
Cs 40.75 9.28 - 20.96 7.68 6.31 21.98 10.29 14.58 14.07 16.21
De 45.30 9.76 18.86 - 8.64 7.85 21.75 12.04 16.98 15.03 17.36
El 33.75 7.07 15.00 17.68 - 4.52 16.59 8.08 12.68 10.29 13.96
Hi 27.87 4.80 9.68 11.71 4.34 - 10.75 7.66 8.71 8.93 10.49
Ru 37.33 8.84 20.55 21.34 7.83 6.07 - 10.39 14.85 13.68 15.65
Tr 29.47 5.17 6.16 8.63 5.13 5.64 11.59 - 8.66 10.09 10.06
Vi 32.05 6.42 10.92 14.07 5.74 4.36 14.50 7.36 - 11.81 11.91
Zh 29.40 5.65 13.13 14.70 5.21 4.57 13.27 8.80 12.68 - 11.93

Avg. 34.29 8.13 15.05 17.35 6.84 6.17 16.88 9.94 13.86 12.56 14.11
AlignX En Ar Cs De El Hi Ru Tr Vi Zh Avg.

En - 15.90 28.19 31.06 11.62 13.11 27.37 18.98 22.05 19.47 20.86
Ar 32.52 - 12.67 14.44 5.55 4.26 14.00 7.24 12.28 10.33 12.59
Cs 39.89 8.52 - 21.16 7.55 6.80 21.38 10.30 15.11 13.89 16.07
De 44.36 9.46 19.45 - 8.74 8.37 21.10 11.85 16.30 14.52 17.13
El 33.53 6.96 8.77 14.92 - 5.18 15.25 8.28 13.45 11.15 13.05
Hi 28.03 4.64 7.93 8.55 3.89 - 10.25 7.68 9.62 8.53 9.90
Ru 36.74 8.54 19.64 19.23 7.94 6.55 - 11.02 15.72 13.90 15.48
Tr 29.35 5.33 8.47 11.20 4.93 6.21 11.71 - 9.85 10.74 10.87
Vi 32.13 6.79 12.59 14.27 5.75 4.84 14.68 8.36 - 12.49 12.43
Zh 28.11 5.89 13.51 14.07 4.98 5.31 13.57 9.38 13.23 - 12.01

Avg. 33.85 8.00 14.58 16.54 6.77 6.74 16.59 10.34 14.18 12.78 14.04

Table 22: Detailed BLEU scores of the FLORES-101 benchmark on Mistral-7B-v0.3.
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LLaMA-7B En Ar Cs De El Hi Ru Tr Vi Zh Avg.
En - 2.40 19.71 27.24 2.16 2.71 21.16 3.85 3.08 5.65 9.77
Ar 13.56 - 0.77 3.00 0.10 0.10 1.41 0.17 0.22 0.15 2.16
Cs 34.83 1.17 - 16.94 1.19 1.49 14.86 1.55 1.45 1.52 8.33
De 40.18 1.44 11.38 - 1.45 1.79 13.55 2.31 1.97 2.86 8.55
El 16.40 0.14 1.73 4.85 - 0.20 2.77 0.28 0.45 0.45 3.03
Hi 9.89 0.09 0.59 2.29 0.11 - 0.80 0.25 0.15 0.06 1.58
Ru 32.22 1.10 11.29 14.84 1.27 1.40 - 0.90 0.99 2.71 7.41
Tr 10.19 0.15 0.99 2.77 0.31 0.42 1.47 - 0.93 0.59 1.98
Vi 9.93 0.10 1.43 2.12 0.36 0.31 0.90 0.75 - 0.38 1.81
Zh 20.13 0.09 3.39 7.40 0.23 0.35 2.44 0.96 0.68 - 3.96

Avg. 20.81 0.74 5.70 9.05 0.80 0.97 6.60 1.22 1.10 1.60 4.86
ParroT-7B En Ar Cs De El Hi Ru Tr Vi Zh Avg.

En - 0.53 18.50 28.85 1.15 1.10 13.69 3.19 2.58 12.62 9.13
Ar 7.82 - 0.57 0.71 0.18 0.18 0.22 0.54 0.60 0.13 1.22
Cs 32.60 0.19 - 2.71 0.45 0.15 0.58 2.02 2.29 0.76 4.64
De 38.36 0.22 2.39 - 0.47 0.16 0.62 2.06 2.18 0.64 5.23
El 9.95 0.17 0.97 1.38 - 0.14 0.35 1.05 1.25 0.22 1.72
Hi 5.67 0.11 0.52 0.54 0.19 - 0.24 0.59 0.71 0.11 0.96
Ru 29.72 0.17 1.95 2.25 0.40 0.13 - 1.53 1.76 0.98 4.32
Tr 9.56 0.20 1.58 1.92 0.44 0.15 0.25 - 2.02 0.45 1.84
Vi 7.78 0.19 1.53 1.76 0.46 0.17 0.32 1.74 - 0.36 1.59
Zh 19.76 0.18 1.55 1.71 0.34 0.18 0.44 1.63 1.68 - 3.05

Avg. 17.91 0.22 3.28 4.65 0.45 0.26 1.86 1.59 1.67 1.81 3.37
BayLing1-7B En Ar Cs De El Hi Ru Tr Vi Zh Avg.

En - 2.34 19.97 30.54 1.86 1.89 17.23 3.68 3.98 19.80 11.25
Ar 11.23 - 0.61 0.78 0.17 0.17 0.22 0.59 0.64 0.26 1.63
Cs 36.89 0.55 - 5.94 1.16 0.56 6.50 2.21 2.29 2.71 6.53
De 42.72 0.87 10.99 - 1.34 0.81 7.86 2.70 2.68 5.71 8.41
El 14.16 0.22 1.38 1.50 - 0.19 0.42 0.92 1.18 0.38 2.26
Hi 8.71 0.15 0.63 0.80 0.16 - 0.29 0.63 0.64 0.22 1.36
Ru 33.66 0.35 5.92 3.65 0.87 0.29 - 1.66 1.62 2.04 5.56
Tr 11.29 0.26 1.93 2.85 0.57 0.44 1.04 - 2.14 0.90 2.38
Vi 11.25 0.32 1.96 2.57 0.49 0.27 0.56 1.96 - 0.58 2.22
Zh 24.81 0.26 2.44 2.42 0.41 0.23 0.39 1.67 1.64 - 3.81

Avg. 21.64 0.59 5.09 5.67 0.78 0.54 3.83 1.78 1.87 3.62 4.54
BigTrans-13B En Ar Cs De El Hi Ru Tr Vi Zh Avg.

En - 5.01 25.23 25.50 3.02 9.48 19.04 11.49 6.03 15.56 13.37
Ar 10.09 - 1.90 1.28 0.55 1.95 1.76 0.82 0.99 1.87 2.36
Cs 36.23 2.84 - 4.80 1.55 4.96 6.08 4.20 2.99 7.93 7.95
De 38.06 2.36 3.82 - 1.54 4.57 4.78 4.04 2.84 4.21 7.36
El 5.61 0.15 0.71 0.77 - 0.57 0.70 0.84 0.87 0.59 1.20
Hi 12.81 1.16 0.97 1.47 0.74 - 1.09 1.37 0.97 4.30 2.76
Ru 30.17 2.61 2.66 2.82 1.70 4.38 - 3.10 2.51 3.80 5.97
Tr 20.54 1.42 2.37 3.01 1.04 2.50 2.28 - 2.23 3.57 4.33
Vi 12.89 0.73 1.87 2.30 0.79 1.02 1.03 2.19 - 2.74 2.84
Zh 25.26 2.65 7.86 5.84 1.49 6.81 5.19 6.11 3.44 - 7.18

Avg. 21.30 2.10 5.27 5.31 1.38 4.03 4.66 3.80 2.54 4.95 5.53

Table 23: Detailed BLEU scores of the FLORES-101 benchmark on LLaMA-7B (part 1).
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CPT-then-SFT En Ar Cs De El Hi Ru Tr Vi Zh Avg.
En - 10.30 24.08 28.80 8.22 7.93 23.71 11.49 15.14 12.37 15.78
Ar 23.79 - 6.01 7.70 0.99 0.66 6.44 2.06 3.38 2.80 5.98
Cs 36.37 4.49 - 19.09 4.68 3.38 18.49 5.82 7.65 7.81 11.98
De 41.17 4.49 14.53 - 5.38 3.68 16.39 7.13 8.14 8.48 12.15
El 24.94 0.61 2.48 3.98 - 0.15 4.24 2.03 3.50 2.71 4.96
Hi 17.95 0.49 3.99 5.45 0.16 - 4.09 1.82 2.21 1.54 4.19
Ru 33.53 3.84 16.94 17.33 4.45 3.00 - 5.55 6.92 7.20 10.97
Tr 19.88 1.56 3.55 6.63 2.24 2.56 6.10 - 4.26 3.72 5.61
Vi 23.27 1.64 4.78 8.00 1.97 1.25 6.45 3.58 - 4.12 6.12
Zh 22.32 1.49 8.06 10.12 1.99 1.34 8.40 3.61 5.17 - 6.94

Avg. 27.02 3.21 9.38 11.90 3.34 2.66 10.48 4.79 6.26 5.64 8.47
AlignX En Ar Cs De El Hi Ru Tr Vi Zh Avg.

En - 11.55 22.81 26.19 9.79 8.86 21.46 13.14 17.60 12.14 15.95
Ar 22.59 - 6.35 8.11 2.88 1.35 6.24 2.89 4.94 2.74 6.45
Cs 34.25 4.53 - 17.22 5.97 3.77 17.34 6.56 8.94 7.20 11.75
De 38.44 5.02 11.58 - 6.35 3.94 13.66 7.52 9.46 7.39 11.48
El 24.57 2.69 4.15 5.48 - 2.25 7.95 3.28 6.33 2.95 6.63
Hi 16.30 1.09 4.21 5.25 1.67 - 4.00 2.77 3.26 1.68 4.47
Ru 31.75 4.03 15.09 15.97 5.71 3.63 - 6.08 8.63 6.71 10.84
Tr 18.18 1.80 3.96 7.05 2.92 2.97 4.92 - 4.67 3.20 5.52
Vi 22.52 2.11 5.23 7.52 2.86 1.82 6.23 3.90 - 3.71 6.21
Zh 20.51 1.79 7.69 9.70 2.41 1.64 7.83 4.27 6.72 - 6.95

Avg. 25.46 3.85 9.01 11.39 4.51 3.36 9.96 5.60 7.84 5.30 8.63

Table 24: Detailed BLEU scores of the FLORES-101 benchmark on LLaMA-7B (part 2).
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LLaMA2-7B En Ar Cs De El Hi Ru Tr Vi Zh Avg.
En - 3.76 23.28 30.07 3.01 4.20 22.54 6.87 24.64 14.65 14.78
Ar 16.20 - 1.93 4.62 0.14 0.05 1.08 0.33 2.62 0.39 3.04
Cs 37.30 1.73 - 20.18 1.65 2.16 16.04 2.49 10.35 7.96 11.10
De 41.71 1.99 17.75 - 1.98 2.32 16.12 4.35 17.50 9.61 12.59
El 16.96 0.17 2.14 4.93 - 0.14 1.58 0.49 2.65 0.38 3.27
Hi 11.31 0.05 1.87 3.20 0.11 - 1.04 0.71 1.43 0.27 2.22
Ru 33.69 1.69 16.27 17.95 1.79 1.86 - 2.27 14.16 7.74 10.82
Tr 17.52 0.48 2.85 6.90 0.62 1.33 3.87 - 4.28 2.38 4.47
Vi 30.75 1.42 8.78 13.12 1.09 1.08 10.81 2.48 - 5.96 8.39
Zh 26.23 1.08 6.05 9.57 1.06 1.45 5.08 1.74 9.57 - 6.87

Avg. 25.74 1.37 8.99 12.28 1.27 1.62 8.68 2.41 9.69 5.48 7.76
Tower-7B En Ar Cs De El Hi Ru Tr Vi Zh Avg.

En - 3.80 20.85 38.97 2.94 4.86 33.97 5.79 21.00 25.39 17.51
Ar 21.32 - 2.12 4.13 0.54 0.21 0.94 0.73 3.69 1.62 3.92
Cs 39.63 1.72 - 20.98 1.59 1.96 15.29 1.99 6.69 13.60 11.49
De 45.31 2.24 14.98 - 1.93 2.79 23.09 3.44 13.20 17.58 13.84
El 22.87 0.25 2.60 6.38 - 0.35 2.36 1.05 4.72 1.34 4.66
Hi 18.38 0.09 1.35 2.56 0.34 - 0.94 0.73 2.54 0.55 3.05
Ru 38.30 2.22 13.68 16.48 1.94 2.38 - 2.46 12.57 9.64 11.07
Tr 21.47 0.85 2.74 6.72 0.64 1.24 5.36 - 3.40 4.85 5.25
Vi 35.66 1.31 5.06 10.44 1.13 0.88 5.33 2.27 - 8.75 7.87
Zh 31.39 1.10 6.26 8.08 0.92 1.44 4.04 1.90 9.22 - 7.15

Avg. 30.48 1.51 7.74 12.75 1.33 1.79 10.15 2.26 8.56 9.26 8.58
CPT-then-SFT En Ar Cs De El Hi Ru Tr Vi Zh Avg.

En - 9.07 25.85 32.45 6.52 8.32 26.44 11.77 26.20 18.41 18.34
Ar 26.07 - 10.17 12.74 0.51 0.57 11.25 2.67 10.43 7.48 9.10
Cs 39.60 4.25 - 22.33 3.80 2.54 18.13 6.31 15.26 12.85 13.90
De 44.03 5.87 19.76 - 4.59 4.38 20.01 8.17 18.96 14.65 15.60
El 27.86 0.10 9.49 14.07 - 0.12 9.00 1.55 7.27 3.64 8.12
Hi 23.80 0.22 7.39 10.49 0.08 - 8.26 2.67 6.31 6.09 7.26
Ru 35.72 4.96 19.78 21.96 3.95 3.69 - 6.57 16.62 13.44 14.08
Tr 24.45 1.24 5.62 11.40 1.59 1.29 7.62 - 7.10 6.74 7.45
Vi 34.36 2.61 11.15 18.09 1.80 1.31 15.57 4.31 - 11.34 11.17
Zh 28.60 2.80 12.26 16.08 1.79 2.17 13.20 4.33 13.59 - 10.54

Avg. 31.61 3.46 13.50 17.73 2.74 2.71 14.39 5.37 13.53 10.52 11.55
AlignX En Ar Cs De El Hi Ru Tr Vi Zh Avg.

En - 10.48 25.76 32.04 7.67 8.65 26.37 12.64 26.56 18.31 18.72
Ar 27.55 - 10.26 12.96 3.00 1.81 11.54 3.32 12.62 7.77 10.09
Cs 39.59 6.14 - 22.39 5.09 4.34 20.06 7.07 16.93 13.66 15.03
De 44.07 6.67 18.69 - 5.42 4.92 19.67 8.71 19.17 14.65 15.77
El 28.80 2.34 11.51 15.16 - 2.97 12.76 2.99 13.37 7.47 10.82
Hi 24.34 1.59 7.47 10.62 1.92 - 8.65 3.83 9.70 7.03 8.35
Ru 35.72 6.36 20.37 21.90 5.38 4.91 - 7.31 17.80 14.03 14.86
Tr 25.25 2.91 4.89 10.58 2.63 3.47 8.47 - 8.64 8.52 8.37
Vi 34.38 4.95 10.15 17.40 3.88 3.16 15.76 5.15 - 13.28 12.01
Zh 28.24 4.07 11.85 15.52 3.02 3.28 13.39 5.64 15.17 - 11.13

Avg. 31.99 5.06 13.44 17.62 4.22 4.17 15.19 6.30 15.55 11.64 12.52

Table 25: Detailed BLEU scores of the FLORES-101 benchmark on LLaMA2-7B.
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LLaMA3-8B-Instruct En Ar Cs De El Hi Ru Tr Vi Zh Avg.
En - 19.84 29.14 34.97 22.59 24.18 29.12 24.19 34.37 22.71 26.79
Ar 34.30 - 17.84 21.34 15.69 13.92 20.16 14.14 23.71 14.93 19.56
Cs 39.19 14.84 - 26.63 17.30 16.78 24.19 16.65 24.76 16.88 21.91
De 42.08 15.43 23.80 - 18.67 18.60 24.54 18.44 26.25 18.41 22.91
El 34.10 13.76 19.31 22.65 - 14.38 21.03 15.08 24.36 16.07 20.08
Hi 33.51 12.02 15.59 19.43 13.87 - 17.10 15.59 21.47 14.84 18.16
Ru 34.68 14.57 21.57 23.66 16.85 15.93 - 15.84 24.68 17.28 20.56
Tr 32.65 12.40 14.76 19.72 14.68 15.59 18.19 - 20.63 15.73 18.26
Vi 33.58 13.26 17.46 20.66 14.73 14.22 19.81 13.74 - 16.54 18.22
Zh 26.57 11.35 15.15 17.88 13.69 14.22 16.52 13.68 21.62 - 16.74

Avg. 34.52 14.16 19.40 22.99 16.45 16.42 21.18 16.37 24.65 17.04 20.32
BayLing2-8B En Ar Cs De El Hi Ru Tr Vi Zh Avg.

En - 20.71 26.02 33.80 20.33 25.40 27.74 21.87 34.28 25.99 26.24
Ar 34.86 - 13.58 16.54 13.10 13.14 16.34 12.12 21.00 11.17 16.87
Cs 38.11 14.61 - 15.44 14.73 15.56 19.20 12.43 20.29 16.25 18.51
De 43.00 15.51 19.83 - 16.57 18.13 22.67 15.81 25.58 18.62 21.75
El 34.11 12.56 14.11 18.44 - 13.31 16.53 12.59 20.76 13.86 17.36
Hi 33.67 12.36 12.85 17.46 12.25 - 15.31 14.83 20.99 14.05 17.09
Ru 35.71 13.32 15.45 19.52 14.75 14.58 - 13.61 22.36 14.76 18.23
Tr 33.16 11.77 9.06 11.59 11.18 14.82 13.07 - 15.08 13.16 14.77
Vi 34.36 13.04 11.14 16.35 12.24 14.14 17.00 10.61 - 15.64 16.06
Zh 29.88 10.60 13.81 15.80 13.16 15.10 15.38 12.96 21.39 - 16.45

Avg. 35.21 13.83 15.09 18.33 14.26 16.02 18.14 14.09 22.41 15.94 18.33
CPT-then-SFT En Ar Cs De El Hi Ru Tr Vi Zh Avg.

En - 23.02 30.38 36.01 24.94 27.11 29.83 24.74 35.22 25.35 28.51
Ar 37.32 - 18.60 22.10 18.11 12.86 20.37 13.00 24.03 16.91 20.37
Cs 40.18 15.50 - 26.77 17.68 15.60 24.25 14.69 24.81 19.03 22.06
De 42.84 16.09 23.83 - 19.42 17.60 24.05 17.24 26.34 20.18 23.07
El 35.75 13.35 18.13 22.86 - 12.76 21.31 11.81 22.75 17.84 19.62
Hi 35.91 12.58 16.97 20.65 15.51 - 18.35 14.93 21.31 17.36 19.29
Ru 35.91 15.26 21.78 24.01 20.02 15.51 - 15.94 24.22 18.43 21.23
Tr 34.98 12.60 14.68 21.68 14.83 14.05 18.19 - 20.29 17.88 18.80
Vi 36.49 13.55 16.56 22.35 14.94 14.32 19.82 11.02 - 18.78 18.65
Zh 29.16 11.45 16.18 19.38 14.94 15.00 17.51 14.00 22.88 - 17.83

Avg. 36.50 14.82 19.68 23.98 17.82 16.09 21.52 15.26 24.65 19.08 20.94
AlignX En Ar Cs De El Hi Ru Tr Vi Zh Avg.

En - 23.21 29.89 35.39 24.93 26.57 29.53 23.51 35.05 24.47 28.06
Ar 37.62 - 18.80 22.27 17.28 13.05 20.05 12.90 23.04 15.80 20.09
Cs 41.63 16.12 - 26.91 18.22 15.67 24.44 13.48 22.81 18.60 21.99
De 44.68 16.26 23.09 - 19.08 18.11 24.30 15.42 24.40 19.56 22.77
El 35.23 14.59 18.94 23.08 - 13.42 20.73 12.42 22.65 16.08 19.68
Hi 36.92 12.63 17.05 20.41 15.18 - 17.99 15.08 20.38 17.09 19.19
Ru 36.88 15.20 22.10 23.92 18.97 15.34 - 15.10 23.89 18.03 21.05
Tr 36.40 11.68 13.83 19.90 15.19 15.51 18.01 - 17.75 17.53 18.42
Vi 36.90 14.12 16.94 21.83 15.90 14.06 19.71 11.34 - 18.42 18.80
Zh 30.02 11.02 16.31 18.51 14.83 14.62 17.07 13.22 21.61 - 17.47

Avg. 37.36 14.98 19.66 23.58 17.73 16.26 21.31 14.72 23.51 18.40 20.75
AlignX (51langs) En Ar Cs De El Hi Ru Tr Vi Zh Avg.

En - 23.64 30.43 36.44 19.37 27.91 30.36 23.14 36.11 25.45 28.09
Ar 39.31 - 18.85 22.65 18.05 14.72 20.18 14.79 24.62 16.18 21.04
Cs 42.14 16.72 - 27.83 19.15 17.73 24.99 16.57 25.86 19.19 23.35
De 45.96 17.50 24.77 - 19.71 19.26 24.77 18.85 27.44 20.25 24.28
El 38.63 15.91 20.76 23.91 - 15.55 21.90 16.09 25.21 17.70 21.74
Hi 37.27 13.73 17.67 20.60 15.72 - 18.25 17.15 22.09 17.20 19.96
Ru 38.36 15.71 22.37 25.10 19.17 16.31 - 16.56 25.16 18.65 21.93
Tr 36.90 13.93 16.31 22.03 15.86 16.75 19.33 - 22.25 17.97 20.15
Vi 38.34 15.21 18.47 22.70 15.93 15.15 20.43 14.32 - 19.10 19.96
Zh 31.42 12.70 16.74 19.95 15.69 16.55 17.78 14.60 24.22 - 18.85

Avg. 38.70 16.12 20.71 24.58 17.63 17.77 22.00 16.90 25.88 19.08 21.94

Table 26: Detailed BLEU scores of the FLORES-101 benchmark on LLaMA3-8B-Instruct.
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FLORES-101 X-Af X-Ar X-Az X-Bn X-Cs X-De X-El X-En X-Et
LLaMA3-8B-Instruct 16.64 11.71 7.47 8.10 16.21 19.48 14.15 30.30 10.65

AlignX (51langs) 16.67 13.75 7.18 8.41 17.70 21.29 16.02 34.87 12.77
X-Fa X-Fi X-Fr X-Gl X-Gu X-He X-Hi X-Hr X-Id

LLaMA3-8B-Instruct 14.30 12.80 26.06 18.12 4.10 12.30 14.97 13.39 19.37
AlignX (51langs) 14.92 13.06 28.29 19.47 4.48 13.19 16.60 14.70 21.25

X-It X-Ja X-Ka X-Kk X-Km X-Ko X-Lv X-Lt X-Ml
LLaMA3-8B-Instruct 19.11 16.27 2.79 8.00 0.76 12.45 10.64 10.35 3.01

AlignX (51langs) 20.36 18.32 2.09 6.38 1.17 13.50 13.29 12.32 3.14
X-Mr X-Mk X-Mn X-My X-Nl X-Ne X-Pl X-Pt X-Ps

LLaMA3-8B-Instruct 6.84 16.07 2.68 0.95 17.28 6.94 14.07 23.46 3.24
AlignX (51langs) 7.43 18.41 2.39 0.81 19.20 7.86 14.83 25.28 2.91

X-Ro X-Ru X-Si X-Sl X-Es X-Sv X-Ta X-Te X-Th
LLaMA3-8B-Instruct 19.29 17.91 1.84 12.93 19.02 19.05 3.67 4.09 12.16

AlignX (51langs) 20.18 19.38 1.88 14.47 19.81 21.29 3.80 3.92 12.30
X-Tr X-Uk X-Ur X-Vi X-Xh X-Zh Avg.

LLaMA3-8B-Instruct 13.68 16.79 8.65 20.63 0.85 14.45 12.35
AlignX (51langs) 15.02 15.64 9.09 22.34 2.90 16.66 13.39

Table 27: The averaged BLEU scores on FLORES-101 under the 51-language setup. "X" denotes all other training
languages except the target language. "Avg." denotes average scores on all translation directions. We bold the
highest scores.
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