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Abstract

Despite impressive progress in areas like math-
ematical reasoning, large language models still
face challenges in consistently solving complex
problems. Drawing inspiration from key hu-
man learning strategies, we propose two novel
strategies to enhance the capability of large lan-
guage models to solve these complex problems.
First, Adaptive Difficulty Curriculum Learning
(ADCL) is a novel curriculum learning strategy
that tackles the Difficulty Shift phenomenon
(i.e., a model’s perception of problem difficulty
dynamically changes during training) by peri-
odically re-estimating difficulty within upcom-
ing data batches to maintain alignment with the
model’s evolving capabilities. Second, Expert-
Guided Self-Reformulation (EGSR) is a novel
reinforcement learning strategy that bridges the
gap between imitation learning and pure explo-
ration by guiding models to reformulate expert
solutions within their own conceptual frame-
work, rather than relying on direct imitation,
fostering deeper understanding and knowledge
assimilation. Extensive experiments on chal-
lenging mathematical reasoning benchmarks,
using Qwen2.5-7B as the base model, demon-
strate that these human-inspired strategies syn-
ergistically and significantly enhance perfor-
mance. Notably, their combined application
improves performance over the standard Zero-
RL baseline by 10% on the AIME24 bench-
mark and 16.6% on AIME25.

1 Introduction

The landscape of complex reasoning in large
language models (LLMs) has been dramatically
reshaped by recent breakthroughs, exemplified
by models such as OpenAI-o1(OpenAI et al.,
2024) and DeepSeek-R1(DeepSeek-AI et al.,
2025). These models generate extensive Chains-
of-Thought (CoT) (Wei et al., 2022) and exhibit
self-reflection, particularly in mathematical prob-

*Wei Lin is the corresponding author.

lem solving. A pivotal training paradigm underpin-
ning such advancements is Zero-RL (DeepSeek-AI
et al., 2025; Liu et al., 2025; Zeng et al., 2025),
which directly applies reinforcement learning (RL)
to the base model. This paradigm leverages on-
policy rollouts and rule-based rewards to elicit and
enhance innate reasoning capabilities, often outper-
forming supervised fine-tuning (SFT) for complex
tasks. Zero-RL’s success underscores its potential
to unlock deeper reasoning in LLMs.

Although the Zero-RL paradigm enhances com-
plex reasoning, we focus on two main refinements:
improving learning through strategic data arrange-
ment, and extending model capabilities beyond the
confines of on-policy exploration. First, although
curriculum learning (CL) (Deng et al., 2025; Wen
et al., 2025; Bengio et al., 2009) has been widely
adopted to structure learning in an easier-to-harder
progression using predefined difficulty metrics, it
faces a critical limitation: the model’s perception
of difficulty is inherently dynamic and evolves dur-
ing training. Applying static difficulty definitions
directly results in curricula that misalign with the
model’s real-time learning requirements, ultimately
leading to suboptimal training outcomes. Second,
the challenge of expanding model capability bound-
aries presents another fundamental constraint in
RL. Current approaches, including the Zero-RL
paradigm, predominantly rely on on-policy meth-
ods that depend solely on self-generated rollouts.
This creates an intrinsic limitation: the model’s
capacity for advancement becomes constrained by
its pre-training knowledge base, as it lacks expo-
sure to external reasoning patterns beyond its initial
capabilities.

To address these challenges, we draw inspira-
tion from well-established principles in cognitive
science and educational psychology. First, hu-
man learning is most effective within the Zone
of Proximal Development (ZPD) (Vygotsky and
Cole, 1978), which describes the conceptual space
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where tasks are challenging yet achievable with
guidance. A static curriculum fails to remain within
this zone as a model’s competence evolves. This
principle motivates our ADCL strategy, which dy-
namically adapts the training curriculum to consis-
tently target the model’s evolving ZPD, ensuring
optimal learning conditions. Second, deep under-
standing of complex material is fostered not by
passive absorption but through active processing,
a phenomenon known as the Self-Explanation Ef-
fect (Chi et al., 1994). Learners who actively ex-
plain expert solutions to themselves—rephrasing
logic and connecting it to their existing knowl-
edge—assimilate information more effectively than
those who simply memorize it. This insight under-
pins our EGSR strategy, which guides the model to
self-reformulate expert solutions, promoting a gen-
uine integration of new reasoning patterns rather
than rote imitation.

Inspired by these human learning characteris-
tics, we propose two novel training strategies to
enhance the Zero-RL training paradigm: (1) Adap-
tive Difficulty Curriculum Learning (ADCL) ad-
dresses the challenge of dynamic difficulty percep-
tion by employing periodic difficulty re-estimation
to adjust the curriculum based on the model’s
difficulty perception. (2) Expert-Guided Self-
Reformulation (EGSR) tackles the limitations of
on-policy exploration by enabling the model to
learn from high-quality trajectories from expert
policies. This is achieved not through mere im-
itation, but by guiding the model to actively re-
construct and internalize expert solutions, thereby
fostering the development of new reasoning capa-
bilities beyond its initial scope.

This paper makes the following main contribu-
tions:

• Conceptual and Empirical Insights: We
identify the Difficulty Shift phenomenon,
which undermines static curricula, and show
that Expert-Guided Self-Reformulation en-
ables more stable, on-policy knowledge in-
tegration than direct imitation.

• Novel Strategies: ADCL dynamically ad-
justs training curricula by periodically re-
estimating difficulty within upcoming data
batches to align with evolving model capabil-
ities. EGSR enables knowledge assimilation
by guiding models to reconstruct expert solu-
tions within their own conceptual frameworks,
rather than direct imitation.

• Comprehensive Experiments: Our experi-
ments confirm the efficacy of our proposed
ADCL and EGSR strategies, which synergisti-
cally enhance mathematical reasoning within
the Zero-RL baseline. Notably, their com-
bined application improves performance over
the standard Zero-RL baseline by 10% on the
AIME24 benchmark and 16.6% on AIME25.

2 Related Work

2.1 Curriculum Learning for LLMs

CL is a training strategy that mimics human learn-
ing progression by systematically increasing the
complexity of training data, typically following
an easier-to-harder trajectory. This principle has
demonstrated significant efficacy across various
machine learning domains from computer vision
(CV) (Guo et al., 2018; Jiang et al., 2014) and nat-
ural language processing (NLP) (Platanios et al.,
2019; Tay et al., 2019) to reinforcement learning
(RL), and notably in both the pre-training (Zhang
et al., 2025) and post-training (Wang et al., 2025;
Shi et al., 2025) phases of LLMs.

Specifically for reinforcement fine-tuning (RFT)
of LLMs, CL strategies are increasingly being
adopted to optimize the training process and im-
prove model performance (Naïr et al., 2024; Team
et al., 2025; Deng et al., 2025). Many current CL
applications in this context rely on static curricula,
where task difficulty is predetermined offline, and
data is curated accordingly(Lee et al., 2024; Team
et al., 2025). Although such predefined curricula
have demonstrated effectiveness, they may not dy-
namically adapt to the model’s evolving learning
state. To address this limitation of static curric-
ula, we propose the ADCL strategy, which dynami-
cally adjusts training curricula by periodically re-
estimating difficulty within upcoming data batches
to align with evolving model capabilities.

2.2 Reinforcement Learning for LLMs

Reinforcement learning methods are broadly cat-
egorized based on data utilization into on-policy
and off-policy techniques. On-policy algorithms,
such as PPO (Schulman et al., 2017) and TRPO
(Schulman et al., 2015), learn from data generated
by the current policy, ensuring stability but often
requiring extensive data. In contrast, off-policy
techniques, including DQN (Mnih et al., 2013) and
SAC (Haarnoja et al., 2018), utilize data from vari-
ous policies, enhancing data efficiency but poten-
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Figure 1: Illustration of the Difficulty Shift phenomenon and the ADCL counteraction. Top Row: Scatter plots
show the increasing divergence between the initial Predefined Rank (x-axis) and the model’s evolving Actual Rank
(y-axis) when using a predefined curriculum, demonstrating the growing Difficulty Shift over training steps. Bottom
Row: ADCL employs periodic difficulty re-estimation based on the current model state to re-sort the upcoming
batch. This dynamic adjustment results in the model’s Actual Ranks (y-axis) more closely aligning with the batch’s
re-estimated rank order (x-axis), correcting the Difficulty Shift observed with a predefined curriculum.

tially introducing instability and complexity.
In the context of post-training phases, on-policy

methods such as PPO and GRPO (Team, 2024)
have become the de facto standard. While off-
policy approaches such as DPO (Rafailov et al.,
2023) are also explored, a key challenge is inte-
grating the benefits of rich off-policy data with
on-policy stability. Direct integration often destabi-
lizes training due to significant distributional differ-
ences between the learning policy and the expert
policy. We propose the EGSR strategy to address
this by using expert demonstrations to guide the
current policy in generating improved, more on-
policy trajectories.

3 Method

3.1 Adaptive Difficulty Curriculum Learning

CL is a training strategy inspired by human cogni-
tion, where models learn progressively from easier
to harder examples. A critical challenge is the

model’s dynamic difficulty perception during train-
ing (a phenomenon we term Difficulty Shift). This
dynamic shift can render the initial, fixed difficulty
ranking(Deng et al., 2025; Wen et al., 2025) increas-
ingly inaccurate, misaligning the presented curricu-
lum with the model’s real-time learning needs and
potentially hindering training progression.

We provide empirical evidence of the Difficulty
Shift phenomenon in Figure 1. The color-coded
progress bar (left-to-right) illustrates the standard
GRPO algorithm training on a dataset. The top row
illustrates training using a predefined CL approach
with a predefined difficulty ordering established by
the base model. To analyze the shift, we extracted
several model checkpoints during this predefined
curriculum training. For each checkpoint, we as-
sessed its current perception of difficulty by evaluat-
ing it on the immediately following 300 data points
and ranking them based on the accuracy achieved
by that specific checkpoint. The resulting actual
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difficulty ranks (y-axis) are plotted against their
original predefined ranks (x-axis, monotonically
incrementing from 1 to 300) in scatter plots corre-
sponding to each checkpoint marker, with a gray
shaded region highlighting the 25th-75th percentile
deviation between the actual (y) and predefined
(x) ranks. As observed in the top progression of
Figure 1, training with the predefined curriculum
leads to progressively increasing dispersion in the
scatter plots and a widening of this quantile range,
both indicating a larger Difficulty Shift over time.
We attribute this increase in Difficulty Shift to the
increased deviation of the model from the initial
model during the training process.

To counteract this detrimental Difficulty Shift
while maintaining computational tractability, we
propose Adaptive Difficulty Curriculum Learning
(ADCL), a dynamic difficulty-aware training strat-
egy. Instead of relying on a fixed, predefined order
or re-evaluating the entire dataset like standard Self-
Paced Learning (SPL)(Kumar et al., 2010), ADCL
leverages dynamic difficulty re-estimation based
on the model’s current state to re-sort upcoming
data batches. This mirrors how humans dynami-
cally adjust their learning paths based on perceived
task difficulty, rather than rigidly following a fixed
sequence.

The core mechanism of our ADCL algorithm
is the dynamic re-estimation and re-sorting of up-
coming data batches based on the model’s evolving
state. Specifically, the process begins by estimating
difficulty scores δ0(xi) for all samples in dataset D
using the initial model parameters θ0. After sort-
ing D according to these scores, it is partitioned
into K sequential batches B1, B2, ..., BK . These
batches are then processed iteratively. At iteration
k, the model parameters θk−1 are updated to θk by
training on batch Bk. Following this, ADCL re-
evaluates the difficulty scores δk(xi) for elements
within the subsequent batch Bk+1 using the up-
dated model θk. This batch is then internally re-
sorted according to the new difficulty estimation
before proceeding to the next iteration. This local-
ized, progressive re-sorting continues until all the
training is completed. The detailed pseudocode for
ADCL is provided in Appendix A.

As illustrated in the bottom row of Figure 1,
ADCL dynamically re-estimates the difficulty of
upcoming batches multiple times during training,
significantly correcting the difficulty deviation com-
pared to predefined CL.

3.2 Expert-Guided Self-Reformulation

RL for LLMs, particularly in reasoning tasks, of-
ten functions as a process to enhance sample ef-
ficiency. Although RL can improve accuracy on
problems the model can occasionally solve, it fun-
damentally struggles to elicit solutions for prob-
lems entirely outside the model’s current capabili-
ties. This limitation implies that the base model’s
inherent knowledge restricts the upper bound of
performance achievable through standard on-policy
RL techniques(Yue et al., 2025).

The standard objective for certain on-policy RL
algorithms, such as GRPO detailed in Eq.1, aims to
optimize the policy πθ using G trajectories {τi}Gi=1

sampled from a previous policy πθold for a given
question q. However, a frequent challenge in prac-
tical training scenarios with such algorithms is
the "zero-reward" situation. This occurs when all
G rollouts from πθold yield a reward of zero, i.e.,
R(τi) = 0 for all i. This outcome primarily stems
from problem complexity exceeding the model’s
current capabilities. In such zero-reward scenarios,
advantage estimates Âi,t across all actions effec-
tively vanish, resulting in null gradient updates
that fail to contribute to policy improvement. This
learning impasse highlights the need to incorporate
external guidance from an off-policy expert policy
πϕ. Such guidance, often provided through demon-
strations generated by this policy, can introduce
meaningful learning signals and potentially infuse
the model with knowledge beyond its current capa-
bilities.

One straightforward way to leverage guidance
from this expert policy is to replace a portion of
on-policy trajectories with M expert demonstra-
tions(Hester et al., 2018; Liu et al., 2022), creating
a hybrid trajectory set Tmixed = Ton ∪ Toff, where
Ton = {τi | τi ∼ πθold(·|q), i = 1, ..., G−M} and
Toff = {τj | τj ∼ πϕ(·|q), j = 1, ...M}. When in-
corporating off-policy demonstrations, importance
sampling must be applied to correct the distribution
shift, modifying the probability ratio in the GRPO
objective as:

ri,t(θ) =





πθ(τi,t|q,τi,<t)
πθold (τi,t|q,τi,<t)

, if τi ∈ Ton

πθ(τi,t|q,τi,<t)
πϕ(τi,t|q,τi,<t)

, if τi ∈ Toff

(3)

And the advantage estimates are computed as:

Ai =
R(τi)−mean(R(τmixed))

std(R(τmixed))
(4)
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JGRPO(θ) = E[q ∼ P (Q), {τi}Gi=1 ∼ πθold(·|q)]

1

G

G∑

i=1

1

|τi|

|τi|∑

t=1

{min [ri,t(θ)Ai, clip (ri,t(θ), 1− ϵ, 1 + ϵ)Ai]− βDKL [πθ||πref ]}

where ri,t(θ) =
πθ(τi,t|q, τi,<t)

πθold(τi,t|q, τi,<t)
and Ai =

R(τi)−mean({R(τk)}Gk=1)

std({R(τk)}Gk=1)
(1)

JGRPO-EGSR(θ) = E[q, g ∼ P (Q), {τi}Gi=1 ∼ πθold(·|q), {τ
′
i}Mi=1 ∼ πθold(·|q, g)]

1

G−M

G−M∑

i=1

1

|τi|

|τi|∑

t=1

{min [ri,t(θ)Ai, clip (ri,t(θ), 1− ϵ, 1 + ϵ)Ai]− βDKL [πθ||πref ]}

+
1

M

M∑

i=1

1

|τ ′
i |

|τ ′i |∑

t=1

{
min

[
r
′
i,t(θ)Ai, clip

(
r
′
i,t(θ), 1− ϵ, 1 + ϵ

)
Ai

]
− βDKL [πθ||πref ]

}

where ri,t(θ) =
πθ(τi,t|q, τi,<t)

πθold(τi,t|q, τi,<t)
, r

′
i,t(θ) =

πθ(τ
′
i,t|q, τ

′
i,<t)

πθold(τ
′
i,t|q, g, τ

′
i,<t)

and Ai =
R(τi)−mean({R(τk)}G−M

k=1 + {R(τ
′
k)}Mk=1))

std({R(τk)}G−M
k=1 + {R(τ

′
k)}Mk=1)

(2)

While this approach is theoretically sound, in
practice the expert policy πϕ is typically inacces-
sible or uses incompatible tokenization schemes,
making the probability ratio calculation infeasible.
Even when πϕ is available, the substantial distribu-
tional differences between policies often produce
extreme importance weights with destabilizing vari-
ance. Our experiments in Section 4.2 demonstrate
that incorrectly treating expert demonstrations as
on-policy samples may degrade performance on
complex reasoning tasks.

We argue that the core issue lies in the distri-
butional mismatch between the reference solution
trajectories generated by an external expert pol-
icy πϕ and the trajectories naturally produced by
the current policy πθold . Inspired by the human
learning analogy of restating solutions, we pro-
pose a method that circumvents the need to esti-
mate πϕ or handle large importance weights. In-
stead of directly incorporating the off-policy tra-
jectory τj ∼ πϕ, we use expert demonstrations to
guide πθold in generating more effective trajecto-
ries τ

′
i ∼ πθold(·|q, g), where g represents the guid-

ance information. Similar to how students learn
by rephrasing solutions in their own words, this
approach produces trajectories that are naturally
aligned with the model’s current capabilities while

Figure 2: Perplexity (PPL) of four trajectory types under
the current model policy πθ across training checkpoints:
unguided model generations τq (blue), reference expert
solutions s (green), model-generated trajectories guided
by (s, a) τs,a (orange), and those guided by a alone τa
(red). Lower PPL indicates better alignment with πθ.

incorporating expert knowledge. This guided gen-
eration creates samples that remain fundamentally
"on-policy" while bridging the gap toward expert
performance.

To verify our hypothesis, we experimentally
measured the model’s perplexity (PPL) on four dis-
tinct trajectory types across multiple training check-

6623



points, using 300 problems defined by (q, s, a)
triples (question, expert solution, answer); these re-
sults are shown in Figure 2. We evaluated PPL for:
(1) unguided model generations τq, (2) reference
expert solutions s, (3) model-generated trajectories
τs,a guided by both s and a, and (4) trajectories τa
guided by a alone. Throughout training, the PPL of
reference expert solutions s consistently remained
the highest, while the PPL of the model’s unguided
outputs τq was the lowest, serving as a baseline
for its natural generative distribution. Crucially,
the PPL of τs,a and τa was found to be substan-
tially lower than PPL(s) and markedly closer to
PPL(τq). These PPL results indicate that guid-
ing the model to generate solutions yields trajec-
tories significantly more aligned with its current
policy (i.e., more ’on-policy’) than directly using
off-policy expert solutions.

Building on our PPL analysis (Figure 2), we pro-
pose Expert-Guided Self-Reformulation (EGSR),
a novel reinforcement learning training strategy
designed to enhance on-policy reinforcement learn-
ing algorithms, like GRPO. The EGSR training
objective, presented in Equation.2, integrates M
expert-guided trajectories τ ′i ∼ πθold(·|q, g) (where
g is guidance derived from expert policy πϕ) with
G − M standard rollouts, particularly when ini-
tial exploration yields zero rewards. For these
guided trajectories, the ratio r′i,t(θ) is calculated
with respect to their specific generation policy
πθold(·|q, g). This is justified as our PPL findings
indicate that trajectories from πθold(·|q, g) are dis-
tributionally closer to the model’s unguided outputs
than trajectories from the original expert policy
πϕ, thereby promoting more stable, near-on-policy
learning while still leveraging expert knowledge.
The detailed pseudocode for EGSR is provided in
Appendix B.

4 Experiments

4.1 Setup

(1) Datasets: Our datasets are curated from high-
quality reasoning corpora including S1 (Muen-
nighoff et al., 2025) and DeepScaleR (Luo et al.,
2025). We applied filtering criteria to ensure so-
lutions are verifiable by Math-Verify1 and prob-
lems require computational rather than proof-based
solutions. We estimated problem difficulty us-
ing Qwen2.5-7B(Yang et al., 2024) as our base

1https://github.com/huggingface/Math-Verify

model, performing 32 rollouts per problem to cal-
culate accuracy rates. From this evaluation, we
created a collection of 6,894 problems with accu-
racy rates between 10%-90%, termed BaseSet-7K.
To provide a more extensive set of instances for our
EGSR method to leverage for guidance, we supple-
mented BaseSet-7K by incorporating an additional
3,000 problems where the base model consistently
achieved 0% accuracy. This formed the augmented
collection termed AugSet-10K.
(2) Benchmarks: To evaluate our models’ math-
ematical reasoning capabilities, we use five estab-
lished benchmarks: MATH500(Lightman et al.),
AIME242, AIME253, AMC234, and Minerva-
math(Lewkowycz et al., 2022). We report pass@8
for AIME24 and AIME25 to mitigate the high
variance that would result from pass@1 on these
smaller benchmark sets, and use standard pass@1
for all other benchmarks.
(3) Settings: We implemented our training frame-
work using TRL(von Werra et al., 2020) with
Qwen2.5-7B as the base model. For GRPO, we
used 8 rollouts per problem, a global batch size
of 1024, and a fixed learning rate of 1 × 10−6.
Our reward function, drawing inspiration from
(Team, 2024), is a composite reward: R(τ) =
λ1 ·Rformat(τ) + λ2 ·Raccuracy(τ), where

Rformat(τ) =

{
1 if τ follows the output format
0 otherwise

and

Raccuracy(τ) =

{
1 if τ contains correct answer
0 otherwise

, we set λ1 = 1.0 and λ2 = 2.0.
For the ADCL strategy, we utilized the BaseSet-

7K dataset, and our implementation divided the
curriculum into four difficulty-based batches and
performed three difficulty re-estimations.

For the EGSR strategy, we utilized the AugSet-
10K dataset, and explored two guidance strategies:
using only the expert’s final answer a (EGSR(a))
or using both the answer a and the solution process
s (EGSR(s, a)). Considering that GRPO’s learning
effectiveness is maximized when the success rate is
around 50% (Bae et al., 2025), we thus generated
4 guided trajectories in such instances. Complete
hyperparameters and training results are provided
in Appendix C.

2https://huggingface.co/datasets/hendrydong/aime24
3https://huggingface.co/datasets/TIGER-Lab/AIME25
4https://huggingface.co/datasets/zwhe99/amc23
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Model MATH AIME24 AIME25 AMC23 Minervamath

Qwen2.5-7B 69.40 16.67 16.67 32.50 15.44
+ SFT 70.80 13.33 13.33 35.00 16.91
+ RL 72.40 26.67 16.67 45.00 18.01

+ PCL 75.40 30.00 23.33 50.00 22.42
+ ADCL 76.20 33.33 30.00 55.00 22.78

+ off-policy 66.00 23.33 16.67 30.00 18.65
+ EGSR(a) 72.60 30.00 20.00 50.00 20.96
+ EGSR(s, a) 79.40 33.33 30.00 57.50 24.63

+ ADCL & EGSR 81.80 36.67 33.33 55.00 25.74

Table 1: Performance of Qwen2.5-7B with various training strategies on mathematical reasoning benchmarks,
+SFT: Supervised Fine-Tuning, +RL: Standard GRPO algorithm, +PCL: GRPO with Predefined Curriculum Learning,
+ADCL: GRPO with our Adaptive Difficulty Curriculum Learning, +off-policy: GRPO with direct replacement of
rollouts by expert solutions, +EGSR(a): Our ESGR method using only expert answer (a) for guidance, +EGSR(s, a):
Our ESGR method using expert solution (s) and answer (a) for guidance, +ADCL&EGSR: Combination of our ADCL
and EGSR(s, a) methods. Bold and underline represent the 1st and 2nd in performance.

4.2 Main Results
Our main results are presented in Table 1. Ini-
tially, we observed that while SFT (+SFT) showed
slight improvements on some benchmarks, its per-
formance on more complex benchmarks such as
AIME24 and AIME25 actually decreased com-
pared to the base model. In contrast, the standard
RL (+RL) method brought more significant and
stable performance improvements on most bench-
marks. These findings indicate that RL adapts to
complex tasks better than SFT.

Comparing CL strategies, our proposed Adap-
tive Difficulty Curriculum Learning (+ADCL) con-
sistently outperforms Predefined Curriculum Learn-
ing (+PCL). This advantage stems from ADCL’s
curriculum design, which ensures more effective
alignment with the model’s evolving state.

Turning to expert guidance, the naive incorpora-
tion of expert solutions via direct off-policy guid-
ance (+off-policy) led to a degradation in perfor-
mance compared to the +RL baseline. In contrast,
our EGSR strategies, both EGSR(a) and EGSR(s,a),
surpassed this naive approach, with EGSR(s,a)
achieving the most favorable results among the
guidance methods. While EGSR(a), which uses
only the final expert answer for guidance, we ob-
served instances where it could lead the model
to generate trajectories that reach the correct an-
swer via a flawed or incomplete reasoning pro-
cess, even though such trajectories might exhibit
lower perplexity. An example illustrating such a
scenario, where the model correctly predicts the an-

swer but with an erroneous solution when guided
by the answer alone, is provided in Appendix F.
EGSR(s,a), by incorporating guidance from both
the expert’s solution process and the final answer,
encourages the model to reformulate a more com-
plete and coherent reasoning path within its own
conceptual framework, leading to more effective
improvements in reasoning capabilities.

Furthermore, our two proposed training strate-
gies, ADCL and EGSR, can be synergistically com-
bined for even better performance. When used to-
gether (+ADCL & EGSR), these strategies show
substantial gains over the standard RL approach.
Specifically, the combined approach achieved a
10% improvement on AIME24, a 16.66% improve-
ment on AIME25, and a 7.73% improvement on
Minervamath compared to the +RL baseline.

5 Analysis

5.1 Generalization to Other Architectures

To assess the generalizability of our proposed
strategies, we conducted additional experiments
on models with different architectures and scales:
Llama3.1-8B-Instruct(Grattafiori et al., 2024) and
Qwen2.5-1.5B(Yang et al., 2024). As shown in
Table 2, the combination of ADCL and EGSR con-
sistently and significantly outperforms the RL base-
line across both models. These results confirm
that the benefits of our methods are not specific to
a single model family but are broadly applicable,
highlighting their robustness.
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Model MATH AIME24 AIME25 AMC23

Qwen2.5-1.5B 32.60 10.00 3.33 22.50
+SFT 35.80 10.00 0.00 27.50
+RL 59.00 16.67 6.67 35.00
+PCL 61.20 16.67 10.00 35.00
+ADCL 67.00 16.67 10.00 40.00
+off-policy 30.80 6.67 0.00 7.50
+EGSR 64.60 26.67 16.67 45.00
+ADCL & EGSR 69.80 23.33 20.00 47.50

Model MATH AIME24 AIME25 AMC23

Llama3.1-8B 46.20 13.33 3.33 27.50
+SFT 44.00 6.67 6.67 22.50
+RL 53.20 13.33 6.67 32.50
+PCL 54.60 20.00 10.00 35.00
+ADCL 56.40 23.33 10.00 40.00
+off-policy 32.00 13.33 6.67 15.00
+EGSR 60.40 20.00 13.33 40.00
+ADCL & EGSR 60.60 23.33 13.33 42.50

Table 2: Performance on Qwen2.5-1.5B and Llama3.1-
8B-Instruct, using the same experimental setup as in
Table 1. Bold and underline represent the 1st and 2nd
in performance.

5.2 ADCL Training Dynamic

Figure 3 illustrates the ADCL training dynamics
under different strategies. Standard RL without
curriculum (NoCL) shows a steady increase in ac-
curacy reward. In contrast, curriculum-based strate-
gies (ADCL and PCL), despite showing a decrease
in accuracy reward later in training due to increased
problem difficulty, consistently maintain higher re-
wards compared to the baseline raw accuracy at
corresponding difficulty levels. This confirms that
learning is occurring and the reward decrease is
primarily driven by the curriculum’s progression to
harder tasks. The key advantage of our proposed
ADCL over PCL lies in its adaptive nature. PCL’s
reward curve declines relatively smoothly because
its static difficulty ranking suffers from Difficulty
Shift; training batches inevitably mix samples of
varying actual difficulty relative to the model’s cur-
rent state, averaging out the perceived challenge.
ADCL, however, employs periodic difficulty re-
estimation and batch re-sorting based on the cur-
rent model’s perception. Appendix D quantifies
this re-sorting against the Difficulty Shift. This
leads to a steeper reward curve, particularly after
re-estimation points, because ADCL immediately
presents the model with a batch ordered according
to its updated sense of "easy-to-hard".

Figure 3: Comparison of reward dynamics under differ-
ent training strategies. The curves represent Adaptive
Difficulty Curriculum Learning (ADCL, red), Prede-
fined Curriculum Learning (PCL, blue), and No Cur-
riculum learning (NoCL, cyan). The dashed yellow line
(Raw Acc) indicates the basemodel’s performance on
curriculum-ordered data.

Model MATH AIME25 AMC23 Minervamath

Qwen2.5-7B 89.40 30.00 87.50 49.63
+ SFT 90.20 23.33 90.00 50.36
+ RL 88.60 26.67 85.00 49.26
+ off-policy 93.20 40.00 92.50 51.47
+ EGSR(s, a) 93.40 46.67 92.50 51.84

Table 3: Model performance comparison using pass@32
metric, which better reflects capability boundaries.

5.3 Impact of Expert Guidance on Capability
Boundaries

To further investigate whether expert guidance gen-
uinely expands a model’s intrinsic problem-solving
capabilities, we evaluated various methods using a
pass@32 metric. Compared to pass@1 or pass@8,
pass@32 allows the model substantially more op-
portunities to explore diverse solution paths, of-
fering a clearer view of its underlying capability
boundaries. The results presented in Table 3 re-
veal that standard RL, while effective at optimiz-
ing for common success, did not expand and even
slightly contracted the model’s capability bound-
ary compared to the base model. SFT provided a
marginal improvement. In contrast, methods in-
corporating expert guidance demonstrated more
significant expansions of these boundaries. No-
tably, our EGSR(s,a) strategy achieved the largest
improvement, increasing the pass@32 accuracy on
AIME25 by a substantial 16.67% over the base
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model, suggesting that it fosters deeper knowledge
assimilation rather than merely refining existing
skills.

6 Conclusion

Drawing inspiration from human learning strate-
gies, this work addresses key challenges in enhanc-
ing the capabilities of large language models to
solve complex tasks. We first observed the Dif-
ficulty Shift phenomenon, where a model’s per-
ception of problem difficulty changes dynamically
during training, hindering static curriculum learn-
ing. To counteract this, we propose Adaptive Diffi-
culty Curriculum Learning (ADCL), which period-
ically re-estimates difficulty to maintain an aligned
learning path. Secondly, recognizing that existing
methods often fail to help models assimilate knowl-
edge beyond their initial capabilities, we introduce
Expert-Guided Self-Reformulation (EGSR). EGSR
guides models to actively reformulate expert so-
lutions within their own conceptual framework,
rather than relying on direct imitation, fostering
deeper knowledge assimilation. Experiments vali-
date our proposed ADCL and EGSR, showing they
significantly outperform baselines, especially in
combination. These findings highlight the value of
incorporating adaptive human-like learning mecha-
nisms into LLM training.

Limitations

While we identify and address the Difficulty Shift
phenomenon within our RL framework, a broader
investigation into its prevalence and characteristics
across different training paradigms, such as Su-
pervised Fine-Tuning (SFT), and various domains
would offer a more comprehensive understanding.
The current implementation of ADCL employs a
fixed number of difficulty re-estimations and re-
sortings; an exploration of varying these frequen-
cies could further illuminate its impact on correct-
ing the Difficulty Shift and optimizing performance.
The efficacy of EGSR is closely tied to the quality
of expert demonstrations, and while our study as-
sumes access to high-quality demonstrations, the
precise impact of imperfections, errors, or biases
within these demonstrations on the model’s learn-
ing process warrants further investigation. Our
findings are primarily demonstrated using a spe-
cific model architecture, size, and datasets focused
on mathematical reasoning; further studies would
be beneficial to ascertain the generalizability of

our proposed ADCL and EGSR strategies across
a wider range of model types, scales, and diverse
application domains.
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A Pseudocode for ADCL

Algorithm 1 Adaptive Difficulty Curriculum Learning
Input: Dataset D = {xi}Mi=1; initial policy model πθ0 ; number of batches K;.

1: ∀xi ∈ D, compute difficulty score δ0(xi) = f(πθ0 , xi) ▷ Initial difficulty estimation
2: Dsorted ← Sort(D, δ0) ▷ Sort based on increasing difficulty
3: Partition Dsorted into {B1, B2, . . . , BK} where |Bk| = ⌊M/K⌋ or ⌈M/K⌉
4: for k = 1 to K do
5: θk ← TrainModel(θk−1, Bk) ▷ Update πθ using RL algorithm (e.g., GRPO)
6: if k < K then
7: ∀xi ∈ Bk+1, compute δk(xi) = f(πθk , xi) ▷ Re-estimate difficulty
8: Bk+1 ← Sort(Bk+1, δk) ▷ Re-sort next batch

Output: πθK .

B Pseudocode for EGSR

Algorithm 2 Expert-Guided Self-Reformulation
Input initial policy model πθinit ; reward models rϕ; DatasetD = {(qi, si, ai)}Ni=1, where qi is the question,
si is the solution, and ai is the answer;

1: policy model πθ ← πθinit

2: for iteration = 1, . . . , I do
3: for step = 1, . . . , M do
4: Sample a batch Db from D
5: Update the old policy model πθold ← πθ
6: Sample G trajectories {τi}Gi=1 ∼ πθold(· | q) for each question q ∈ Db

7: Compute rewards {R(τi)}Gi=1 for each sampled trajectory τi using rϕ
8: if

∑G
i=1R(τi) = 0 then ▷ All rewards are zero

9: Generate guided trajectories {τ ′
i}Mi=1 ∼ πθold(· | f(q, s, a))

10: Create mixed trajectory τmixed = {τk}G−M
k=1 ∪ {τ

′
k}Mk=1

11: Recompute rewards for τmixed

12: Compute advantages Ai,t for each token t in each trajectory τi from Tmixed
13: for GRPO iteration = 1, . . . , µ do
14: Update πθ by maximizing the GRPO-EGSR objective in Eq. 2

Output πθ
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C Training Hyperparameters

The complete hyperparameters used during training
are shown in Table 4.

Training Setup

global_batch_size 1024
per_device_batch_size 8
num_machines 4
num_devices 32 (4 × 8 H20s)

Rollout Configuration

rollout_backend vllm
tensor_parallel_size 1
data_parallel_size 8
num_generation 8
max_completion_length 4096
temperature 0.7

GRPO Training Configuration

learning rate 1e-6 (constant)
beta 0
epsilon 0.2
reward functions format, accuracy
reward weights 1.0, 2.0
num_iteration 4
gradient_accumulation_steps 4

SFT Training Configuration

learning rate 2e-5 (decay)
max_length 8192
gradient_accumulation_steps 1

Table 4: Training Hyperparameters

Detailed training curves can be found in Figure
4, Figure 5, and Figure 6.

Figure 4: Reward curves from training the ADCL strat-
egy and relevant baseline methods

Figure 5: Reward curves from training the EGSR strat-
egy and relevant baseline methods

Figure 6: Supervised Fine-Tuning (SFT) training curve
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D Quantifying ADCL Re-sorting
Dynamics

Curriculum Batch NIR

Batch 1 (No Re-estimation) 0.000
Batch 2 (After 1st Re-estimation) 0.331
Batch 3 (After 2nd Re-estimation) 0.363
Batch 4 (After 3rd Re-estimation) 0.369

Table 5: Normalized inversion rates for the subsequent
batch, quantifying the re-sorting difference after each
ADCL difficulty re-estimation event.

To verify ADCL’s re-sorting mechanism, we
measured the disagreement between the predefined
and the dynamically re-estimated sample orders
within batches using the Normalized Inversion Rate
(NIR). This metric calculates the fraction of sample
pairs whose relative order is flipped (0=identical,
higher=more different). Table 5 shows the NIR
measured for each curriculum batch after the pre-
ceding difficulty re-estimation event. The rate in-
creased from 0 for the initial batch (Batch 1, where
no re-estimation was applied) to 0.331, 0.363, and
0.369 for Batches 2, 3, and 4 (processed after
the 1st, 2nd, and 3rd re-estimations, respectively).
These substantial, non-zero rates confirm re-sorting
occurs (affecting 33-37% of pairs). This increasing
NIR trend indicates that the underlying Difficulty
Shift becomes more pronounced as training pro-
gresses, necessitating greater adaptation by ADCL.

E Prompts for EGSR

Prompt for EGSR(a): Generating Trajec-
tory τ(a)

Problem:
{problem}

Think step−by−step to reach the solution. Output
your reasoning process and final answer using this
format:
<think>
[Write your complete reasoning process here,
showing each step of your thinking]
</think>

boxed{{answer}}
"""

Prompt for EGSR(s, a): Generating Trajec-
tory τ(s, a)

Problem:
{problem}

Reference Solution:
{solution}

You already know the answer, but it's important to
understand the solution in your own way. Like a
student who learns by reformulating rather than
memorizing, develop your own step−by−step
reasoning that leads to a similar conclusion.

IMPORTANT: Do NOT copy the reference solution
verbatim. Instead, reconstruct the reasoning path

using your own understanding and expression style.
Your goal is to demonstrate comprehension by

explaining the solution in your natural reasoning
pattern.

Use this format:
<think>
[Your original reasoning process here, showing how
YOU would reach this solution]

</think>

boxed{{answer}}

F Case Study: Emergence of Flawed
Reasoning Steps under Answer-Only
Guidance in EGSR

We observe that if EGSR guides self-reformulation
using only the final answer (a), the model, despite
lower perplexity (PPL) in its outputs, tends to gen-
erate flawed reasoning pathways. It appears the
model may construct its solution to forcibly arrive
at the provided correct answer, a behavior reminis-
cent of reward hacking.

Case Study

Question:
Find the maximum value of x+2y+3√

x2+y2+1
over all real

numbers x and y.

Solution:
Because we want to find the maximum value of the
expression, we can assume that both x and y are
positive; if not, then replacing x and y with |x| and
|y| would strictly increase the value of the expression.
By Cauchy-Schwarz, (12+22+32)(x2+y2+1) ≥
(x+2y+3)2, or 14(x2+y2+1) ≥ (x+2y+3)2.
Hence,

x+ 2y + 3√
x2 + y2 + 1

≤
√
14.

Equality occurs when x = y
2
= 1

3
, so the maximum

value is
√
14 .
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Answer:
√
14 .

Flawed τ(a) Example (Correct Answer):
[...] (Attempted Lagrange Multipliers, noted system
was complex to solve) [...] Since the problem asks
for the maximum value..., we can use the fact that the
maximum value of a function of the form ax+by+c√

x2+y2+d

is given by
√
a2 + b2 + c2. (Error: Cited formula is gener-

ally incorrect, ignores ’d’.) Applying this to our function:
a = 1, b = 2, c = 3, d = 1. The maximum value is:√
12 + 22 + 32 =

√
1 + 4 + 9 =

√
14. </think>

Thus, the maximum value is
√
14 . (Correct answer via

incorrect method.)

Correct τ(s, a) Example:
<think> Applying the Cauchy-Schwarz inequality
with vectors (1, 2, 3) and (x, y, 1), we get: (12 +
22 + 32)(x2 + y2 + 1) ≥ (x · 1 + 2y · 1 + 3 · 1)2,
This simplifies to: 14(x2+y2+1) ≥ (x+2y+3)2.
[...] Taking the square root of both sides and rearrang-
ing yields:

√
14 ≥ |x+ 2y + 3|√

x2 + y2 + 1

Since we seek the maximum value, the expression is
bounded above by

√
14. Equality holds if and only

if the vectors (1, 2, 3) and (x, y, 1) are proportional,
i.e., when x

1
= y

2
= 1

3
. Thus, the maximum value is

indeed achievable. </think>
The final answer is:

√
14 .
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