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Abstract

We present SPORTREASON, a benchmark
for retrieval-augmented reasoning on numer-
ical sports questions. Unlike existing bench-
marks limited to one or two evidence units,
SPORTREASON requires combining and rea-
soning across free-text, structured tables, and
semi-structured infoboxes. We provide 3,000
human-verified QA pairs by repurposing ex-
isting QA and table generation datasets, and
by prompting large language models (LLMs).
Each pair is grounded in multiple evidence
from a multi-modal Wikipedia corpus contain-
ing 200K knowledge contexts. We evaluate ex-
isting retrievers and rerankers, along with agen-
tic Retrieval-Augmented Generation (RAG)
systems. The experimental results show that
multi-evidence retrieval remains a challenge.
Agentic RAG systems (e.g., Search-o1), de-
spite iterative retrieval and reasoning capabili-
ties, fail to improve performance due to impre-
cise query generation and distracting retrieval
information.

1 Introduction

Retrieval-augmented generation (RAG) has
emerged as a cornerstone of question answering
by empowering LLMs to retrieve and reason over
external knowledge. It has been widely adopted
in domain-specific applications such as financial
forecasting and scientific literature analysis (Zhao
et al., 2022; Lála et al., 2023). However, prior RAG
benchmarks mainly focus on question answering
over single evidence or single-modal evidence.
Many complex real-world questions require
reasoning across multiple contexts involving
complex modalities such as passages, tables, and
infoboxes in Wikipedia.

To bridge this gap, we introduce SPORTREA-
SON, a benchmark of numerical sports questions de-
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Figure 1: Example from SPORTREASON illustrat-
ing a question that requires identifying and combin-
ing facts across multiple tables, passages, and in-
foboxes—highlighting the challenge this poses for cur-
rent RAG systems.

manding reasoning over multi-tabular and multi-
textual evidence. We focus on the sports domain
because it offers rich multi-modal resources, in-
cluding structured data (e.g., player stats, team
rankings, event outcomes) and free-text (e.g., team
descriptions, event narratives). Despite this poten-
tial, the sports domain remains underrepresented
in existing QA benchmarks. SPORTREASON em-
phasizes aggregation-style questions that require
locating and combining facts distributed across ta-
bles, text passages, and infoboxes. As shown in
Figure 1, such questions require retrieving multiple
evidence items and aggregating numerical values
across modalities, greatly amplifying retrieval and
reasoning difficulty.

SPORTREASON includes 3,000 human-verified
question-answer pairs, backed by a 200K-
document corpus of Wikipedia text, tables, and in-
foboxes. We sourced these pairs via a carefully de-
signed LLM-based generation pipeline or by adopt-
ing samples from an existing, verified dataset. Our
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Dataset Setting Domain Gold Evidence Modality Corpus # Questions
TableSingle TableMultiple Text # Tables # Docs

WikiSQL Text2SQL Open 24.2K - 87.7K
Spider Text2SQL Open 1K - 10K
TempTabQA QA Open 1.2K - 11K
HybridQA QA Open 13K 300K 70K
MultiHiertt QA Finance 9.8K 2.5K 10.4K
WTR TabRet Open 16.2M - 6.9K
TANQ TabGen Open 10K 150K 1.4K
OTT-QA RAG Open 400K 5M 45K

SPORTREASON RAG Sports 40K 160K 3K

Table 1: Comparison of SPORTREASON with other benchmarks. TabRet: table retrieval, TabGen: table generation

evaluation framework spans lightweight to large-
scale retrievers and rerankers, as well as agentic
RAG systems (e.g., Search-o1 (Li et al., 2025)).
Our analysis reveals that: (1) LLM-based retriev-
ers achieve stronger performance across modali-
ties. (2) Multi-evidence retrieval remains a critical
challenge for existing retrievers. (3) Agentic RAG
systems fail to improve performance due to impre-
cise search queries, simple training, and irrelevant
distractions.

In summary, SPORTREASON delivers a realistic
and challenging benchmark for RAG research. Our
contributions are as follows:

• A benchmark of 3000 numerical sports ques-
tions requiring evidence aggregation across
both passages and (semi-) structured tables.

• A comprehensive evaluation of existing retriev-
ers, rerankers, and RAG systems.

2 Related Work

Retrieval-augmented question answering has
evolved to handle complex reasoning over struc-
tured sources (e.g., tables, infoboxes) and unstruc-
tured text. As shown in Table 1, early benchmarks
such as WikiSQL (Yavuz et al., 2018) and Spi-
der (Yu et al., 2018) focus on Text-to-SQL parsing
over one or more relational tables, emphasizing
logical form generation rather than retrieval-based
QA. Later benchmarks such as HybridQA (Chen
et al., 2020) extend the task to hybrid settings, com-
bining single-table questions with textual passages
to enable limited multi-hop reasoning. More recent
datasets such as TANQ (Akhtar et al., 2025) and
BRIGHT (Su et al., 2024) explore generative table
reasoning, where answers are derived from struc-
tured tabular content. OTT-QA (Chen et al., 2021a)
scales hybrid QA to millions of web documents,

while REAL-MM-RAG (Wasserman et al., 2025)
further incorporates images and captions into multi-
modal retrieval tasks. To support compositional rea-
soning, MultiHiertt (Zhao et al., 2022) encodes hi-
erarchical table structures for multi-step questions
in the finance domain. Separately, WTR (Chen
et al., 2021b) treats web-scale table retrieval as a
distinct retrieval task.

3 SPORTREASON Benchmark

We introduce SPORTREASON, a benchmark de-
signed to evaluate RAG systems on sports-related
questions that require reasoning over both textual
and tabular evidence. To ensure high data quality,
questions are either freshly generated using Gem-
ini 2.5 Flash (Google for Developers, 2025) under
carefully designed prompts or sourced from exist-
ing verified datasets. Every QA pair passes auto-
mated consistency checks followed by human veri-
fication. This rigorous pipeline makes SPORTREA-
SON a realistic, challenging testbed for multi-modal
retrieval and reasoning in question answering.

3.1 Dataset Construction
We curate question-answer pairs from three
datasets to ensure coverage of diverse reasoning
types. From HybridQA and TANQ, we reconstruct
QA pairs by prompting Gemini 2.5 Flash with ta-
ble and text evidence drawn from each dataset’s
provided metadata. For TEMPTABQA, we di-
rectly adopt existing questions that target single
infoboxes. We filter all questions to retain only
those that are numerical and sports-related.

To support multi-modal retrieval, we construct
a 200K-document corpus from Wikipedia com-
prising text passages, tables, and infoboxes. For
each gold-evidence item, we extract its Wikipedia
HTML content, including text, tables, and in-
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Ret. TabS TabS + Txt TabM TabM + Txt Overall

+ Rer. nDCG Rec. nDCG Rec. nDCG Rec. nDCG Rec. nDCG Rec.

SLM-based Retrievers & Rerankers (<1B parameters)
BM25 42.8 79.1 18.8 11.4 31.3 60.6 29.8 29.6 30.7 45.2
CON 20.5 50.7 3.8 2.9 28.8 46.5 20.2 18.4 18.3 29.6
JINE 47.4 62.7 25.5 9.4 25.3 46.8 25.3 36.2 30.9 38.8
BGE 51.6 73.6 15.1 9.6 40.6 58.0 26.5 26.6 33.4 41.9
+ GRR 52.8 75.3 15.4 9.5 41.6 61.0 27.9 27.9 34.4 43.4
+ BRM 61.1 75.9 21.4 11.3 43.8 60.5 34.6 27.5 40.2 43.8
+ BRL 47.9 72.9 18.1 10.9 39.3 56.6 33.3 27.1 34.6 41.9
+ JINR 63.2 78.4 21.9 12.3 43.5 61.9 37.6 32.0 41.6 46.1

LLM-based Embedding Models (>1B parameters)
GTE 64.1 85.8 15.7 8.5 32.9 55.3 32.4 27.5 36.3 44.3
E5M 46.7 77.8 19.3 10.6 46.4 68.4 37.1 34.8 37.4 47.9
GEM 70.7 87.5 26.6 15.5 53.0 76.8 43.5 38.4 48.5 54.6
INFS 58.9 83.4 25.9 14.5 45.4 65.3 42.7 34.7 43.2 49.5
INFL 71.7 90.0 30.9 17.5 47.6 72.9 45.3 41.1 48.9 55.4

Table 2: Retrieval performance measured by nDCG@30 and Recall@30. Overall is macro-averaged (equal weight
across tasks). All methods use the same Gemini 2.5 Flash reader. Ret.: retriever, Rer.: reranker. TabS : single-table
gold evidence, TabM : multi-table evidence, Txt: multiple textual evidence. Abbreviations: CON = Contriever, JINE
= Jina Embedding, BGE = bge-m3, GRR = GTE-Reranker, BRM = BGE-Reranker-v2-m3, BRL = BGE-Reranker-
large, JINR = Jina Reranker, GTE = GTE-Qwen2-1.5b, E5M = E5-Mistral, INFS = INF-Retriever-v1-1.5B, INFL =
INF-Retriever-v1, GEM = BGE-Multilingual-Gemma2. The best results are in bold.

foboxes. Text is segmented into 100-token pas-
sages. This choice follows recent findings that
shorter chunks (64–128 tokens) optimize retrieval
effectiveness for fact-based QA datasets (Bhat
et al., 2025). Structured elements are flattened into
a JSON-style string, following prior work (Kostić
et al., 2021; Wang et al., 2022), for seamless inte-
gration into existing RAG pipelines. We first apply
lexical and structural alignment methods, includ-
ing exact/fuzzy string matching, table hashing, and
infobox key–value comparison. These approaches
successfully aligned approximately 85% of gold
evidence items. For the remaining 15%—typically
arising from content drift or formatting changes in
the source Wikipedia pages—we employed dense
retrieval (BGE-M3 + FAISS) as a fallback. The
cosine similarity threshold was set to 0.85, chosen
based on empirical validation (see appendix B.4)
as it provided the best trade-off between precision
and recall. All fallback matches were subsequently
verified by human annotators to ensure correctness.

Finally, we augment the corpus with 180K dis-
tractor entries to further challenge retrievers’ ro-
bustness. To ensure data quality, we implement
a two-stage verification process. First, we have
Gemini 2.5 Flash answer each QA pair using its
gold evidence and retain only those with correct
answers and matching reasoning types. Then, hu-

man annotators verify that the evidence is sufficient
and the reasoning is logically sound. This process
guarantees that all selected question-answer pairs
are factually accurate and well-grounded. Further
construction and verification details are provided
in Appendix B.

3.2 Dataset Statistics

SPORTREASON contains 3,000 question–answer
pairs, evenly distributed across five reasoning types:
Multi-text, Multi-table, Single-table, Single-table
+ Multi-text, and Multi-table + Multi-text. This
set number is decided referencing to other evalu-
ation benchmarks (e.g., 5,000 in MMQA (Gupta
et al., 2023), 1,500 in BRIGHT (Su et al., 2024)).
We hope it can reflect a design choice to empha-
size human-verified quality over scale (see Table 1
for further comparison). On average, multi-table
questions reference 2.7 unique tables, while multi-
text questions draw on 4.5 passages. The retrieval
corpus comprises 200K evidence items, including
Wikipedia passages, tables, and infoboxes.

4 Experiment

4.1 Experiment Setup

We evaluate both retrieval and reasoning perfor-
mance through retrieval metrics and end-to-end
QA accuracy.
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Figure 2: Exact Match (EM) performance across tasks.
Results are grouped by task type: TabS , TabS+Txt,
TabM , TabM+Txt, and Overall (average of all tasks).
Abbreviations: TabS : single-table gold evidence,
TabM : multi-table evidence, Txt: multiple textual
evidence

Experimental Settings. Our study covers nine
retrievers, spanning sparse, dense, and LLM-based
embedding methods. In addition, we evaluate
three representative agentic RAG systems—Search-
o1, IRCoT (Trivedi et al., 2023), and R1-
searcher (Song et al., 2025). We consider four types
of evidence configurations. For all main retrieval
results (Table 2), we use the same Gemini 2.5 Flash
as answer generator. To study reader-side effects,
we also test LLaMA3-8B and Qwen2.5-32B with
a fixed retriever (Figure 3). Hyperparameters are
standardized, and model selection criteria are de-
tailed in Appendix D.1.

RAG Pipelines. In the vanilla setting, we retrieve
text, tables, and infoboxes independently, merge
them into a candidate pool, and either rerank or
directly select the top-k evidence units to feed into
the reader. We keep top-12 passages, top-6 tables,
and top-10 infoboxes after reranking. Agentic RAG
systems instead iteratively plan, retrieve, and rea-
son under their standard implementations. Further
implementation details are in Appendix D.2 and
our codebase.

Evaluation Metrics. Retrieval is assessed using
nDCG@30 and Recall@30, where recall measures
the percentage of gold evidence retrieved. QA out-
puts are evaluated with exact match, with cosine
similarity as a fallback for semantically equivalent
answers. EM also indirectly reflects retrieval qual-
ity, since missing evidence often leads to incorrect
answers. Full evaluation configurations are pro-
vided in Appendix D.4.

4.2 Results

LLM-based retrievers achieve stronger perfor-
mance across modalities. As shown in Table 2,
the sparse BM25 is strong on single-table QA (Re-
call@30 79.1% on TabS) but degrades on hybrid
settings (Recall@30 29.6% on TabM+Txt). Dense
retrievers (e.g., BGE, Jina) are more stable across
modalities, and rerankers (e.g., GRR, BRM, BRL,
JINR) further improve them. LLM-based retriev-
ers (e.g., INF-Retriever (INFL), BGE-Multilingual-
Gemma2 (GEM)) outperform smaller models on
both nDCG@30 and Recall@30. For example,
INFL attains 90.0% Recall@30 on TabS and 72.9%
on TabM , and remains the top performer under
mixed-modality with 41.1% on TabM+Txt (and
17.5% on TabS+Txt).

Mixed-modality retrieval remains a critical chal-
lenge. Adding text to tabular queries sharply re-
duces recall even for the strongest retriever. For
INFL, Recall@30 drops from 90.0% (TabS) to
17.5% (TabS+Txt), a decrease of 72.5 percentage
points. Likewise, moving from TabM to TabM+Txt
reduces Recall@30 from 72.9% to 41.1% , while
nDCG@30 declines only modestly (e.g., 47.6 →
45.3 for INFL), indicating that many relevant items
are never retrieved once text is introduced.

Agentic RAG systems fail to improve perfor-
mance due to imprecise search queries, lim-
ited fine-tuning data and irrelevant distractions.
Despite their iterative retrieval capabilities, agen-
tic RAG systems fail to yield consistent improve-
ments on SPORTREASON, largely due to impre-
cise queries, limited training, and susceptibility
to irrelevant content. We first evaluated IRCoT
and R1-Searcher, both of which underperformed.
IRCoT is highly dependent on the quality of its
initial retrieval, often leading to error propagation
in subsequent reasoning steps. R1-Searcher, al-
though trained end-to-end for agentic RAG, fre-
quently produces under-specified queries (e.g., is-
suing “Morecambe F.C.” instead of asking for man-
agerial tenure). This limitation likely stems from
their primary fine-tuning on simpler multi-hop QA
datasets such as HotpotQA (Thakur et al., 2021),
which do not involve numerical reasoning or multi-
modal aggregation.

We also tested Search-o1 with iterative retrieval
and Web Search API. However, as shown in Fig-
ure 3, it delivered only marginal gains over vanilla
RAG. Its performance was constrained by failing
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Figure 3: Comparison between different RAG methods.
Vanilla RAG systems are tested based on the retrieval
results of INF-Retriever-v1

to gather all required evidence and by distraction
from irrelevant retrieved content. Additional failure
analyses are provided in Appendix E.

5 Conclusion

Our study confirms prior findings that dense re-
trievers outperform sparse ones, but also provides
new insights enabled by the SPORTREASON bench-
mark. First, we expose a generalization gap in agen-
tic RAG methods such as IRCoT and Search-o1:
although effective on simpler multi-hop datasets,
they fail to generalize to our multi-evidence, multi-
modal setting due to poor query planning and lim-
ited retrieval robustness. Second, we quantify a
pronounced bottleneck in mixed-modality retrieval:
even top-performing models suffer dramatic drops
in recall (e.g., from 90.0% on single-table tasks to
as low as 17.5% when text and tables must be com-
bined). These findings highlight key limitations
of current retrieval and reasoning approaches, un-
derscoring the need for modality-aware retrievers
and more robust query planning strategies in future
RAG systems.

Ethical Considerations

Our corpus is sourced from Wikipedia, which
may reflect inherent coverage biases, such as gen-
der or regional skew in sports reporting. Since
SPORTREASON primarily focuses on factual and
logical questions, these biases are less central to the
benchmark’s design and evaluation. Nevertheless,
we acknowledge their presence and encourage cau-
tion when generalizing beyond the sports domain.
Future work could extend this line of research to
explicitly analyze bias and fairness in multi-modal
retrieval and reasoning benchmarks.

Limitations

While SPORTREASON advances multi-modal nu-
merical QA, it has two main limitations.

Domain generality. Our dataset focuses on
sports, which may not capture all retrieval and rea-
soning challenges in other domains. Although the
core difficulty it highlights — retrieving and aggre-
gating mixed-modality evidence (tables, passages,
infoboxes) — is broadly applicable, validating our
findings in other domains such as finance or science
remains an open direction.

Recent retriever models Our evaluation does
not have time to include several retriever mod-
els that have emerged after our experiments
(e.g., Qwen3-Embedding, ZeroSearch, and jina-
embeddings-v4 (Zhang et al., 2025; Günther et al.,
2025; Sun et al., 2025)). Future work should inves-
tigate whether these newer models, with their im-
proved retrieval capabilities, can more effectively
address the challenges posed by our benchmark.
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A QA pair creation prompt

Prompt for LLM

Category Templates

prompt_templates = {
"sorting": """

You are given tables and related evidence.
Ask a **numerical question** that involves **sorting** the data
(e.g., "What is the second highest...?", "Which row ranks third in...?").

Make sure:
- The answer is a number.
- Your explanation shows how sorting was used to reach the answer.
""",

"max_min": """
You are given tables and related evidence.
Ask a **numerical question** that requires identifying a **maximum or minimum**
(e.g., "What is the highest...?", "What is the smallest number of...?").

Make sure:
- The answer is a number.
- Your explanation describes how you found the max or min value.
""",

"counting": """
You are given tables and related evidence.
Ask a **counting-based numerical question**
(e.g., "How many rows satisfy...?", "How many entities meet condition X?").

Make sure:
- The answer is a number.
- Your explanation describes how the count was computed.
""",

"implicit_temporal": """
You are given tables and related evidence.
Ask a **numerical question** that involves **implicit temporal or numerical reasoning**,
such as identifying the most recent event.
Computing a numerical difference, or reasoning over years or values.

Examples:
- "What year was the latest X?"
- "How many times A won championships"

Make sure:
- The answer is a number.
- Your explanation describes the steps in temporal or comparative reasoning.
"""
}
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Prompt for LLM

QA pair generation prompt

### Task Requirements
1. **Avoid** phrases like “in the table”, “according to the data”, “from the document”,
"listed" etc.
2. Generate a single NEW numerical question whose answer is a single number.
3. Use **no more than 8** text evidences (in addition to the core evidence facts).
4. Provide a concise, step-by-step reasoning.
5. Verify that the answer is correct.
6. Ensure the answer is unique and precise (no ambiguous interpretations).
7. **Do NOT** reveal the format or origin of any evidence (e.g., table, document, link).
8. The question **MUST** require combining information from the evidence pool.
9. The question should stand alone as a general knowledge query.
10. The question must obey the rules of open-domain retrieval questions

### Evidence Rules
- Include at least 2 tables provided
- Add any helpful text evidences (limit 8).
- For every evidence you include, fill in a short "reason" explaining how it supports the answer.

### Examples
- 'Sort the Lewis Hamilton championship seasons after 2015
by the number of races from lowest to highest.
What is the number of races in the second season in this sorted list'
- 'How many Super Bowls that the Washington Redskins played in were held in California?'

### BAD EXAMPLES(DO NOT GENERATE THIS KIND OF QUESTIONS)
- 'What is the third highest capacity among the stadiums listed IN THE TABLE?'
- '"How many stadiums listed IN THE TABLE have a capacity greater than 20,000?'

### Output JSON (raw, no markdown)
{{
"question": "<your generated question>",
"reasoning": "<step-by-step explanation>",
"answer": <numeric_answer>,
"gold_evidences": [
{{

"id": "<table_or_text_id>",
"evidence_text": "<evidence_text, **keep this field name**
even if it's technically content>",
"reason": "<why it is needed>"

}}
// ... include all selected evidences here

],
"reasoning_type": "{category}"

}}

Original Question: {seed_question}

Available Evidences: {json.dumps(gold_evidences, ensure_ascii=False, indent=2)}
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B Dataset Construction Details

B.1 QA pair selection and creation
From TEMPTABQA: TEMPTABQA targets tem-
poral QA over Wikipedia Infobox tables. We adopt
its numerical-sport related question-answer pairs
and tables as-is, retaining them as single-table ques-
tions without added text.
From HybridQA: HybridQA offers multi-hop QA
with links to relevant tables and passages, though
lacking cell-level annotations. We prompt Gemini
2.5 Flash with each table accompanied by a list
of related texts to generate single-table, multi-text
questions.
From TANQ: TANQ is an open-domain QA
dataset answered in table format given multi-modal
evidences. We repurpose its evidence pools by
prompting Gemini 2.5 Flash to generate numerical
sports questions requiring reasoning over multiple
tables and texts.

All questions are filtered to make sure they are
numerical and sports-related.

B.2 Wikipedia Page Processing
To construct the retrieval corpus, we parse
Wikipedia HTML pages and clean them by remov-
ing non-content elements such as <sup>, <style>,
footnote links, and citation markers. From each
page, we extract three types of content:

• Raw Text: Paragraphs and lists from the main
content body, truncated before sections like
“References” or “External links”.

• Infoboxes: Key-value metadata blocks typi-
cally on the right side of the page, parsed from
infobox HTML class regions.

• Tables: All HTML tables marked with the
wikitable or sortable class are retained.

Text is segmented into non-overlapping 100-
token chunks using a spaCy-based sentence seg-
menter and the BGE-M3 tokenizer to ensure token
consistency for downstream embedding.

B.3 Evidence Matching Procedure
Each gold evidence is aligned to an entry in the
corpus using the following hierarchy:

Textual Evidence. We first attempt exact string
matching against the text corpus. If no match is
found, we apply fuzzy string matching using Rapid-
Fuzz’s token_set_ratio, with a similarity thresh-
old of at least 85 to consider it a match.

Table Evidence. For each candidate table, we
compute a hash based on its sorted column head-
ers and the content of its rows. We then com-
pare hashes to identify the correct match efficiently.
This structural comparison handles content reorder-
ing and small variations.

Infobox Evidence. Infoboxes are flattened into
sets of key-value string pairs. We use the same
strategy as for text evidence—first attempting exact,
then fuzzy matching based on the flattened string
content.

B.4 Dense Retrieval Fallback
Lexical and structural alignment methods (exact/-
fuzzy string matching, table hashing, and infobox
key–value comparison) successfully matched ap-
proximately 85% of gold evidence items. Dense
retrieval fallback was required in the remaining
15% of cases, primarily due to content drift or for-
matting changes in the underlying Wikipedia pages.
All dense retrieval matches were manually verified
by annotators to ensure alignment quality, under-
scoring that the fallback was applied sparingly and
always under human supervision. Corpus entries
were embedded with the BGE-M3 encoder and
stored in FAISS indexes, one per modality (text,
table, infobox).

For unmatched gold evidence, the following pro-
cedure was applied:

• Embed the evidence using the same BGE-M3
model.

• Retrieve the top-1 nearest neighbor from the
corresponding FAISS index.

• If cosine similarity ≥ 0.85, accept the re-
trieved item as a match.

• Otherwise, treat the evidence as novel and add
it to the corpus as a new entry.

The cosine similarity threshold was empirically
validated to ensure reliable dense alignment. A
sample of 50 gold evidence items was manually
aligned by expert annotators and compared against
dense retrieval results at different thresholds. As
shown in Table 3, a threshold of 0.85 achieved the
best trade-off between precision and recall, yield-
ing the highest F1 score (0.93).

This multi-stage alignment process ensures com-
prehensive coverage of gold evidence while main-
taining retrieval realism.
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Threshold Precision Recall F1

0.75 0.78 0.98 0.87
0.80 0.86 0.96 0.91
0.85 0.92 0.94 0.93
0.90 0.94 0.90 0.92
0.95 0.98 0.84 0.91

Table 3: Validation of cosine similarity thresholds for
dense retrieval alignment.

B.5 Quality Control
In the first stage, given the gold tables and passages,
we prompt Gemini 2.5 Flash to solve each ques-
tion. A QA pair is retained only if the predicted
answer matches the annotated ground truth and the
inferred reasoning type (e.g., counting, compari-
son) matches the intended category. In the second
stage, we recruit human annotators from American
universities to assess each sample to confirm that
(1) the evidence is sufficient and self-contained,
and (2) the reasoning or calculations are logically
valid. Samples with flaws are either corrected or re-
moved. Human annotators are being compensated
at $20/hour. (Feng et al., 2025; Zhang et al., 2024)

C Dataset Format Details

Each dataset sample is represented as a structured
JSON object with the following main fields:

• id: Unique identifier for the sample.

• seed_question: The natural language ques-
tion.

• answers: A list of one or more numeric or
string answers.

• reasoning_type: The reasoning category
(e.g., counting, comparison).

• seed_dataset and meta: Metadata about the
sample source.

The core component is gold_evidences, a list
of evidence objects required to answer the question.
Each evidence includes:

• Text evidence: A plain string passage ex-
tracted from Wikipedia.

• Table evidence: A JSON object with:

– columns: List of column headers.
– rows: List of rows; each is a list of cells

corresponding to the columns.

• Infobox evidence: A nested JSON structure
of key-value pairs, with possible multi-level
nesting.

Each evidence also includes:

• id: A unique identifier for the evidence
source.

• type: One of text, table, or infobox.

• url: Source URL of the Wikipedia page.

• reason: A short rationale for why the evi-
dence is relevant.
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Model Name Category Source / Repository

BM25 Sparse retriever (MacAvaney et al., 2020)
Contriever Dense retriever (SLM) (Izacard et al., 2021)
BGE-M3 Dense retriever (SLM) https://huggingface.co/BAAI/

bge-m3
Jina-embeddings-v3 Dense retriever (SLM) (Sturua et al., 2024)
INF-Retriever-v1 Embedding retriever (LLM) https://huggingface.co/infly

/inf-retriever-v1
INF-Retriever-v1-1.5b Embedding retriever (LLM) same as above
GTE-Qwen2-1.5B Embedding retriever (LLM) (Li et al., 2023b)
E5-Mistral-7B Embedding retriever (LLM) (Wang et al., 2023)
BGE-Gemma2 Embedding retriever (LLM) (Li et al., 2023a)

Table 4: Retriever models and their official sources. SLM = small-language-model retriever, LLM = large-language-
model retriever.

D Experiment Setup

D.1 Model Selection

For clarity, we summarize the models used in Ta-
ble 4, including their official repositories. For
the reader model, we adopt Gemini 2.5 Flash to
generate final answers based on the retrieved and
reranked evidence.

D.2 Experiment Details

Our QA pipeline is composed of three stages: re-
trieval, reranking, and answer generation.

Retrieval. For each query, we retrieve:

• Top-100 text passages

• Top-25 tables

• Top-40 infoboxes

For each query, we evaluated retrievers indepen-
dently, including sparse methods (e.g., BM25) and
dense retrievers (e.g., Contriever, BGE-M3). No
weighted fusion between sparse and dense scores
was applied; running each retriever separately en-
sures transparent attribution of performance dif-
ferences. Retrieved candidates were then either
reranked (when a reranker was used) or directly
passed to the reader. Dense embeddings were gen-
erated using SentenceTransformer models (e.g.,
BGE-M3), with similarity computed via cosine or
L2 distance.

Reranking. All candidates are reranked using
the corresponding reranker. We rerank up to 70
candidates per query, and retain:

• Top-12 text passages

• Top-6 tables

• Top-10 infoboxes

Reader. For the main evaluation, Gemini 2.5
Flash is fixed as the reader to ensure consistent com-
parison across retrievers. For further analysis (Fig-
ure 3), we also evaluate alternative readers, includ-
ing LLaMA3-8B and Qwen2.5-32B, implemented
with vLLM. In all cases, the reader is prompted to
produce answers in LaTeX-style \boxed{} format
for consistent extraction and evaluation.

D.3 Agentic RAG implementation
For agentic RAG systems, search-o1 is imple-
mented via its official GitHub repository. While
IRCoT (Trivedi et al., 2023) and R1-searcher (Song
et al., 2025) are implemented through FlashRAG’s
pipelines (Jin et al., 2024). Further implementa-
tion details are provided in Appendix D.2 and the
codebase.

D.4 Evaluation Configuration
We evaluate both retrieval and answer quality under
a unified configuration across all models.

Each query retrieves up to 100 passages, 25 ta-
bles, and 40 infoboxes from the corpus. In rerank-
ing settings, we apply a cross-encoder to select the
top 12 passages, 6 tables, and 10 infoboxes. In
non-reranking settings, we retain top candidates
based on raw retriever scores.

To support numerical reasoning, all models are
prompted to produce LaTeX-style outputs in the
form of \boxed{}. We extract final predictions
using regular expressions applied to model outputs.
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Retrieval Metrics. We report retrieval quality
using two standard ranking metrics: nDCG@30
and Recall@30.

nDCG@30 (Normalized Discounted Cumulative
Gain) rewards relevant items ranked higher in the
retrieved list. It is defined as:

nDCG@k =
DCG@k

IDCG@k

and

DCG@k =

k∑

i=1

reli
log2(i+ 1)

where reli ∈ {0, 1} denotes the binary relevance
of the i-th ranked document, and IDCG@k is the
ideal DCG computed from a perfect ranking. This
setting is inherited from (Su et al., 2024)

Recall@30 measures retrieval completeness, de-
fined as:

Recall@k =
# relevant documents retrieved in top-k

total # of relevant documents

This metric is especially informative in multi-
evidence settings, where multiple documents may
be required to answer a single query.

EM. We determine exact match (EM) using
modality-specific criteria:

• Numerical answers: Considered correct if
they exactly match the gold answer as a string.

• Textual answers: Evaluated using cosine sim-
ilarity between sentence embeddings from
BGE-small-en-v1.5; a match is accepted if
similarity with any gold answer exceeds 0.85.

All models are evaluated under identical retrieval
settings and inference prompts to ensure fair com-
parison across modalities and architectures.

E Failure Analysis

E.1 IRCoT Failure Case
Question: "How many individuals honored in a
season before the 1980–81 NHL season had a role
as a coach or general manager?"

Iteration 0:

Thought: The question asks for individ-
uals honored in a season before 1980–81
who had a role as a coach or general man-
ager.

Iteration 1:

Thought: The document mentions Al
Arbour and Lorne Henning as head
coach and assistant coach respectively,
but no general manager is mentioned.
New Thought: So the answer is: 2.

Analysis: In this example, IRCoT’s initial retrieval
failed to retrieve sufficient information—omitting
individuals with general manager roles. As a re-
sult, the model prematurely concluded the answer
based solely on partial coaching data. Because the
subsequent reasoning relied on this incomplete con-
text, the pipeline did not issue further queries to
check for general managers, ultimately leading to
an incorrect final prediction.

E.2 R1-Searcher Failure Case
Question: "What is the greatest number of years
any single individual served as manager of More-
cambe F.C.?"

Generated Queries:

• Query 0: "Morecambe F.C. managers"

• Query 1: "Other managers of Morecambe
F.C."

• Query 2: "Number of years served by
Ernest Churchill Smith, Pierre Sinibaldi, Ur-
bain Braems, Raymond Goethals, Arie Haan,
Johan Boskamp, and Franky Vercauteren"

Analysis: The queries generated by R1-Searcher
failed to accurately capture the required context.
While the initial queries correctly reference "More-
cambe F.C. managers", they are too generic or
drift toward unrelated individuals in later iterations.
Specifically, Query 2 lists managers unrelated to
Morecambe F.C., leading the retriever to irrelevant
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Error Cat-
egory

Proportion Description

Retrieval
Failure

∼70% Missing necessary ev-
idence due to im-
precise or incomplete
queries

Reasoning
Failure

∼25% Correct evidence re-
trieved, but logical or
numerical reasoning
was incorrect

Answer
Format
Failure

∼5% Reasoning correct,
but output format
prevented automatic
extraction

Table 5: Systematic error taxonomy on 150 sampled
failure cases. Retrieval failures dominate, highlighting
retrieval as the main bottleneck.

documents. As a result, the system was unable to
locate the correct table and produce an accurate
answer.

E.3 Systematic Error Taxonomy

To complement the illustrative failure cases, we
categorized 150 randomly sampled errors into three
categories: retrieval failure, reasoning failure, and
answer format failure. The distribution is shown in
Table 5.

E.4 Notes on Agentic RAG Baselines

R1-Searcher is primarily fine-tuned on multi-hop
textual QA datasets such as HotpotQA, which lack
complex numerical reasoning and multi-modal ag-
gregation, resulting in a notable generalization gap
on SPORTREASON. IRCoT interleaves retrieval
and reasoning, but its effectiveness is highly sen-
sitive to the initial retrieval step, often leading to
error propagation when early evidence is incom-
plete. Search-o1 leverages large reasoning models
(e.g., Qwen QwQ-32B, Gemini 2.5 Flash) with
tool-calling capabilities, though details of its train-
ing corpus remain undisclosed. Despite these ad-
vanced features, Search-o1 delivered only marginal
gains over vanilla RAG. Its performance was con-
strained by failing to gather all required evidence
and by distraction from irrelevant retrieved content.
We note that our experiments adhered to the stan-
dard prompts released in the original papers; while
prompt engineering may affect outcomes, our goal
was to evaluate generalization without task-specific

tuning.

Prompt Sensitivity. We did not attempt exten-
sive prompt engineering or query reformulation be-
yond the standard prompts provided in the original
works. Preliminary trials with ad-hoc modifica-
tions sometimes degraded performance, highlight-
ing the sensitivity of current agentic RAG systems
to prompt design. A systematic ablation of prompt
engineering strategies therefore remains an impor-
tant avenue for future work.
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