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Abstract

Process-supervised reward models serve as a
fine-grained function that provides detailed
step-wise feedback to model responses, facil-
itating effective selection of reasoning trajec-
tories for complex tasks. Despite its advan-
tages, evaluation on PRMs remains less ex-
plored, especially in the multimodal domain.
To address this gap, this paper first benchmarks
current vision large language models (VLLMs)
as two types of reward models: output reward
models (ORMs) and process reward models
(PRMs) on multiple vision-language bench-
marks, which reveal that neither ORM nor
PRM consistently outperforms across all tasks,
and superior VLLMs do not necessarily yield
better rewarding performance. To further ad-
vance evaluation, we introduce VILBENCH, a
vision-language benchmark designed to require
intensive process reward signals. Notably, Ope-
nAD’s GPT-40 with Chain-of-Thought (CoT)
achieves only 27.3% accuracy, challenging cur-
rent VLLMSs. Lastly, we preliminarily show-
case a promising pathway towards bridging
the gap between general VLLMs and reward
models—by collecting 73.6K vision-language
process reward data using an enhanced tree-
search algorithm, our 3B model is able to
achieve an average improvement of 3.3% over
standard CoT and up to 2.5% compared to
its untrained counterpart on VILBENCH by
selecting OpenAl ol’s generations. We will
release our code, model, and data at https:
//ucsc-vlaa.github.io/VilLBench.

1 Introduction

Reward models (RMs) play a crucial role in align-
ing model outputs with human preferences, benefit-
ing Large Language Models (LLMs) in both train-
ing and inference stages (Schulman et al., 2017; Bai
et al., 2022; Ouyang et al., 2022; Rafailov et al.,
2023; Chen et al., 2025). The most popular RMs
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include output reward models (ORMs) and process-
supervised reward models (PRMs). While ORMs
assess responses at the final output level (Zheng
et al., 2023; Stiennon et al., 2020), PRMs provide
detailed, step-wise feedback, making them particu-
larly useful for complex reasoning tasks (Lightman
et al., 2023; Wang et al., 2023; Zhang et al., 2025b).
Despite their advantages in the language domain,
the application of PRMs in multimodal contexts
remains underexplored, with most vision-language
RMs following the ORM paradigm (Xiong et al.,
2024; Lee et al., 2024a; Zang et al., 2025).

To advance the study of vision-language process
reward modeling, this paper presents a compre-
hensive suite of contributions encompassing (1)
a benchmarking study of state-of-the-art VLLMs
as reward models, (2) a newly curated dataset de-
signed for fine-grained step-wise reward evaluation,
and (3) an advanced vision-language PRM trained
on large-scale vision-language step reward data.
Our goal is to provide a deeper understanding of
the effectiveness of current vision-language reward
models and to pave the way for future improve-
ments in multimodal step-wise evaluations.

As our first contribution, we evaluate seven
VLLMs (six open-weight and one private) fol-
lowing MLLM-as-a-judge (Chen et al., 2024a;
Ge et al., 2023) across five challenging vision-
language tasks. This benchmarking effort sys-
tematically analyzes the models’ rewarding capa-
bilities in various domains, revealing several key
insights. For example, we observe that neither
ORM nor PRM consistently outperforms the other
across all tasks, indicating that different reason-
ing structures benefit from different rewarding ap-
proaches (Zhang et al., 2025b). Additionally, we
find that better VLLMs do not always translate
to superior reward capabilities, suggesting that re-
warding and generation abilities are not inherently
correlated. Our results also highlight that in spe-
cific domains such as text-dominant tasks, PRMs
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Figure 1: We present a suite of vision-language process reward modeling. We first benchmark current vision-
language models as different reward models, and present VILBENCH that requires intensive step-wise reward. Then
we collect 73K+ preference reward data to train a vision-language process reward model ViLPRM that performs

better than other baselines on VILBENCH.

is able to provide a greater advantage, suggesting
their strong potential in tasks requiring intricate,
step-wise reasoning.

Next, we introduce VILBENCH, a vision-
language benchmark that demands step-wise re-
ward feedback. Current vision-language bench-
marks primarily focus on evaluating final outputs,
which limits their ability to distinguish between
improvements driven by ORMs and PRMs. To ad-
dress this limitation, we curate a dataset of 600
examples that emphasize the necessity of step-
wise feedback. Our filtering protocol assembles
judges from six open-weight VLLMs to select ex-
amples that require fine-grained rewards beyond
simple correctness assessments. Notably, advanced
models like GPT-40 achieve only 27.3% accuracy
on VILBENCH, benefiting 3.0% more from PRM-
driven step-wise rewards than from ORMs, under-
scoring our benchmark’s difficulty and its emphasis
on fine-grained reward assessment.

Lastly, as a preliminary but promising step to-
wards bridging the gap between general VLLMs
and vision-language PRMs, we employ an en-
hanced multimodal Monte Carlo Tree Search
(MCTS) (Zhang et al., 2025a) to generate
ViLReward-73K, a dataset of 73.6K stepwise
vision-language reward samples drawn from five
training datasets. With this dataset, we train a
3B vision-language PRM that significantly im-
proves the evaluation accuracy of step-wise re-
wards. Specifically, this model substantially sur-
passes existing PRMs, achieving an average im-

Model Name LLM Model Size Date

InternLM-X2.5 (2024a) InternLM?2 7B 07/2024
LLaVA-OneVisoin (2024a) Qwen2 7B 08/2024
Qwen2-VL (2024c¢) Qwen2 7B 08/2024
InternVL-2.5 (2024c¢) Qwen2.5 8B 12/2024
Qwen2.5-VL (2025) Qwen2.5 3B, 7B 02/2025
GPT-40 (2024) Unknown Unknown  05/2024

Table 1: VLLMs used as different RMs for VILBENCH.

provement of 3.3% over standard CoT approaches
and up to 2.5% compared to its untrained counter-
part on VILBENCH. We also discuss potential chal-
lenges and future directions to conclude the paper.

2 Part I: Benchmarking VLLMs as
Reward Models

VLLMs are demonstrating increasing strength
across a variety of tasks. One effective way to
further enhance their performance is by evalu-
ating their test-time scaling ability. To assess
the step-wise critique capabilities of VLLMs,
we benchmark seven different models (see Ta-
ble 1 for model details) following the paradigm
of LLM-as-a-judge (Chen et al., 2024a; Zheng
et al., 2023) on five widely used vision-language
tasks: MMStar (Chen et al.,, 2024b), Math-
Vista (Lu et al., 2024), MathVerse (Zhang et al.,
2024b), MMMU Pro (Yue et al., 2024), and Re-
alWorldQA (Grok-1.5 Team, 2024). To further
explore their inference-time scaling potential, we
adopt the Best-of-N (BoN) setting, where VLLMs
select the best response from a pool of N candi-
date responses (Wang et al., 2022; Lightman et al.,
2023). In detail, we adopt GPT-40 as the base so-
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Figure 2: Benchmark results of 7 different VLLMs as reward models on 5 vision-language benchmarks. The base
solution generator is GPT-40. We report the average PRM and ORM scores in subtitles.
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Figure 3: Correlations between the model performance and its reward performance on MMStar and MathVista. The
rewarding performance is averaged over 4 different NV in the BoN selection with GPT-40 as the generator.

lution sampler to sample 2% solutions given one
question. Then we incorporate different VLLMs as
the deterministic scorer to pick the best response
among the candidates by assigning scores between
1 to 5 to each reasoning step. More details about
prompt and model generation settings can be found
in Appendix A. Through this approach, we uncover
four key insights:

Findings 1: Neither ORM nor PRM excels
across all vision-language tasks.

Among the five VL benchmarks in Figure 2,
VLLMs as ORMs slightly outperform fine-grained
PRMs in four cases, with an average margin of
0.3%. However, on RealWorldQA, a challenging
VL task involving daily life images, knowledge,
and reasoning, the PRM surpasses ORM by an
average of 1.7%. Interestingly, the four datasets
where ORM performs better (MathVista, Math-
Verse, MMStar, and MMMU Pro) primarily fea-
ture formal reasoning and mathematical problems,

whereas RealWorldQA focuses on real-world sce-
narios. This contrasts with prior findings in the
language domain, where PRMs have been shown
to offer better guidance than ORMs for language-
only math and reasoning tasks (Wang et al., 2023;
Lightman et al., 2023; Wang et al., 2024b). One
possible explanation is that current VLLMs are
predominantly optimized on visual understanding
tasks, rather than step-wise rewarding tasks.

Reward models consistently enhance perfor-
mance across all five benchmarks compared to CoT
greedy decoding. As the BoN candidate selection
expands, RMs become increasingly effective in
boosting performance. However, the impact varies
across benchmarks. For example, in RealWorldQA,
only four RMs at N = 2% improve the base model
beyond CoT. In contrast, for the remaining bench-
marks, most RMs outperform CoT when N > 22,
Notably, on MathVerse, nearly all VLLMs enable
GPT-4o to surpass its CoT decoding at N > 2, ex-
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Figure 4: Model performance with the last n of step rewards selected under the Best-of-N paradigm.

cept for LLaVA-OneVision. This observation sug-
gests that vision-language reward models may be
less effective for complex visual perception tasks
than for formal reasoning challenges.

Method Text-dominant  Visual-dominant

Greedy 58.9 51.0
ORM 62.2 +33 49.0 2.0
PRM 62.0 +3.1 48.9 2.1

Table 2: Average accuracy over 7 RMs on text or visual
dominant examples in MathVerse using ORM or PRM.

Findings 2: Better vision-language models do
not necessarily lead to better reward models.

Previous research has demonstrated that stronger
VLLMs tend to produce better ORMs (Li et al.,
2024b). However, this correlation does not neces-
sarily hold for PRMs. To examine this, we plot
the correlation between a model’s greedy perfor-
mance and its rewarding ability on MMStar and
MathVista in Figure 3. In both tasks, ORMs exhibit
higher Pearson correlation scores between general
VLLM capability and rewarding ability, reinforc-
ing the relationship between these two attributes.
In contrast, under the PRM setting, the correlation
is notably weak, averaging just 0.06%. This sug-
gests that superior VLLM performance does not
directly translate to stronger rewarding capabili-
ties, particularly in process supervision. Notably,
LLaVA-OneVision and Qwen2.5-VL rank highest
as PRMs on these tasks. A surprising observa-
tion is that GPT-40, the strongest VLLM among
the tested models, underperforms as both an ORM
and PRM in the deterministic scoring setting. This
may be attributed to GPT-40’s tendency to over-
rate responses, introducing bias in certain reward
tasks (Song et al., 2023; Herrera-Berg et al., 2023).

Findings 1 and 2 highlight the need for the de-
velopment of more robust and generalizable PRMs
in the vision-language domain.

Findings 3: The best practice for a vision-
language reward model is to use rewards from
the last few steps.

Beyond PRM and ORM, alternative RMs exist
that balance between selecting only the final step
(ORM) and considering all step rewards (PRM)
by incorporating the last n step scores. We con-
duct experiments using the average of the last n
step rewards (i.e., n € [1,2,22 23 all]) as the fi-
nal reward signal on MMStar and MathVista. As
shown in Figure 4, the most effective approach con-
sistently falls between ORM and PRM, with the
optimal performance achieved by averaging the last
2 or 4 step rewards. Specifically, when using the
last 2 step rewards as the final signal, the selected
answer achieves the highest average accuracy, im-
proving by 0.41% and 0.57% over the ORM setting
on the two benchmarks. This finding suggests an
improved strategy for selecting vision-language re-
ward signals, striking a balance between ORM and
PRM for enhanced performance.

Findings 4: VLLMs as reward models pro-
vide more benefits on text-dominant examples.

On MathVerse, certain examples require a stronger
focus on textual reasoning (text-dominant), while
others rely more on visual understanding (visual-
dominant). We report the average performance
of RMs on these two subsets in Table 2. The re-
sults indicate that vision-language RMs provide
greater benefits to VLLMs on text-dominant ex-
amples but may negatively affect performance on
visual-dominant ones. Since reward signals are
integrated into the language generation process at
the textual level, this finding suggests that current
VLLMs exhibit stronger textual-level critique ca-
pabilities. This again, highlights the need for the
development of specialized vision-language reward
models to better handle visually intensive tasks.
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Dataset Souce  Size Split Ori. Size Dataset Source Class Size PR Size
MMStr IS0 vl LS00 o Mah 806 stdoe

an . o €0 a > B

g MathVista 150 estmini 1,000 CLEVR-Math (2022) Math 957 1425

CLS MathVerse 100 testmini 1 ,000 A-OKVQA (2022) General 2,044 9,241

- MMMU Pro 100 test 1,592 ScienceQA (2022) General 2,769 5,659

; RealWorldQA 100 test 756 Sum Math&General 16,926 73,560
Sum 600 test 5,848 Table 4: Statistics of ViLReward-73K, a vision-

Table 3: An overview of VILBENCH. * means that we
only sample 1000 entries from the testmini of Math-
Verse. Ori. Size is the original size of the dataset.

2.1 VILBENCH: A Vision-Language
Benchmark Requiring Intensive Reward
Feedback

As what we found previously, existing vision-
language benchmarks do not require intensive feed-
back from RMs like vision-language PRMs. To
address this, we leverage six open-weight VLLMs
to filter samples where they perform well as PRMs
but worse as ORMs under the BoN setting. To be
concrete, we evaluate the average performance of
ORMs and PRMs using 16 response candidates,
providing the RMs with a broader selection. We
introduce a PRM-preference indicator based on the
average PRM and ORM scores, denoted as Sprm
and Som, respectively. This indicator is calculated
as S = Sprm — Sorm, allowing us to rank all samples
across the five tested benchmarks according to their
scores. In Table 3, we illustrate how we sample
varying amounts of data from each task to construct
our final dataset, VILBENCH. For the evaluation
metric, since each question is paired with a ground
truth answer, we use accuracy between predicted
answers and the ground truth as the final metric.
We provide details of answer extraction and evalu-
ations in Appendix C.

3 Part II: VILPRM: A Vision-Language
Process Reward Model

3.1 Vision-Language Preference Data
Preparation

Data Selection and Filtering. Process prefer-
ence data have been proven to be effective in train-
ing RMs in specific domains like math and logi-
cal reasoning. However, in scenarios that demand
challenging visual perception understandings, the
potential of PRMs remains underexplored. In order
to generalize the vision-language PRM to subjects
other than just math, we consider collecting chal-
lenging VL data from general visual perception

language process reward preference dataset. We show
the initial size of the data source (Size) as well as the
size of the process reward instance (PR Size).

and math datasets. We follow three rules to fil-
ter data for the process reward model training: (1)
Unique image content for diverse visual features;
(2) Challenging questions that elicit model reason-
ing for better process scoring; (3) Diverse source
of the data for generalizing RM abilities in various
domains.

In detail, we draw samples from 5 vision-
language datasets consisting of 3 vision-language
math data and 2 challenging visual perception tasks.
For math domain:

* MAVIS-Geometry (Zhang et al., 2024c) is a
dataset consisting of visual geometry ques-
tions that use GPT-4 to rewrite or generate ge-
ometry visual problems and solutions. There
are four different difficulty levels, and we se-
lect the hardest two levels to sample 5,000
data as our metadata.

GeoQA170K (Gao et al., 2023) contains over
170K geometric image-caption and question-
answer pairs, building on GeoQA+ (Cao and
Xiao, 2022) and GeoQA3K (Lu et al., 2021).
We sample one question from each unique
images from the data, resulting in 8,063 ex-
amples in total.

* CLEVR-Math (Lindstrom and Abraham,
2022) is a synthesized VQA dataset based on
CLEVR (Johnson et al., 2017) that includes
math word problem solving. We only consider
957 questions with distinct images and need
multi-hop reasoning in the dataset.

And for the visual perception domain:

* A-OKVQA (Schwenk et al., 2022) contains
question-answering problems about natural
images, we select the questions that cannot
be answered directly from the difficult to di-
rect answer split of the dataset (1,544 exam-
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Visual Question
Answer the question based on the content of the image.
Question: How are persons here able to read at night?
Choices: A. kerosene B. gas lanterns C. electric light D. candles
Answer the question by outputting the letter corresponding to the correct choice.

Step 1: Analyze the image to identify any visible
sources of lighting or infrastructure that might
suggest the most likely method of lighting
available to the people in the area. Lok for
signs of electricity such as power lines or electric
poles or any other indicators that might suggest

Step 1: Analyze the image to identify any visible
sources of lighting or infrastructure that might
suggest the type of lighting used at night. Look
for signs of electrical wiring lamps or other
indicators that could help determine the most
likely source of light.

the use of kerosene gas lanterns or candles.
value: 0.2 J
[ value: 1.0 |
Step 2: Consider the context | | Step 2: Consider the context | | Step 2: Based on the image Step 2: Based on the image
of the image such as the rural | | of the image such as the rural | | observe the presence of an observe the presence of an
setting and the presence of | | setting and the presence of | | electric pole and power lines electric pole and power lines
traditional structures which | | simple structures which which suggests that electric light | | which suggests that electric
might suggest limited access | | might suggest limited access | | (Choice C) is a possible source of | | light (Choice C) is available in
to modern infrastructure like | | to modern infrastructure like | | lighting for reading at night. the area. Therefore the most
electricity. This context can | | electricity. This context can likely method for people to
help narrow down the most | | help narrow down the most value: 0.8 read at night would be using
likely sources of lighting from | | likely sources of lighting used electric light.
the given choices. atnight. value: 1.0
value: 0.2 ] |1 value: 0.2 | -

Step 3: Based on the rural setting and the Step 3: Based on the rural setting and

absence of visible electrical infrastructure it the absence of visible electrical

is more likely that traditional lighting infrastructure it is more likely that

methods are used. Evaluate the options traditional sources of lighting such as

provided and consider that kerosene lamps kerosene or candles are used. Therefore

or candles are more commonly used in areas consider options A (kerosene) and D

with limited access to electricity. Therefore (candles) as more probable choices.

the most likely answer is A. kerosene

value: 0.5 value: 0.5 X

Figure 5: An example of partial MCTS tree we con-
structed for ViLReward-73K. The metadata is from A-
OKVQA. We mark value scores from the preference
data at each node.

ples) and draw 500 samples from the rest data
points.

* ScienceQA (Lu et al., 2022) is a comprehen-
sive dataset with 21K examples in science, the
data is categorized into 12 grades based on the
difficulty level. We use data that is harder than
grade 7 as our metadata.

We present the detailed data volumes in Table 4.

MCTS Data Searching Engine. Instead of as-
signing coarse-grained binary scores (e.g., “good”
or “bad”) to each process (Lightman et al., 2023;
Wang et al., 2023), we adopt ReST-MCTS* (Zhang
etal., 2025a) to assign fine-grained value v between
0 to 1 to each reasoning step as the reward value.
Different from the vanilla ReST-MCTS*, we en-
able visual input for the policy model, allowing the
model to answer questions based on visual inputs.

Following the standard MCTS tree construction,
there are four major phases while tree node ex-
pansion during search: root node selection, node
expansion, route simulation and value backprop-
agation. For the final answer evaluation, we use
GPT-40 as the judge to evaluate the final output of
tree search. We mainly introduce the calculation
for node value and leave other details, including
reasons for selecting different data sizes, in Ap-
pendix B. We define the quality value vy, € [0, 1]
of a partial solution py, = [s1, S2, . . ., Sk| to evalu-
ate its progress toward a correct answer. vy, reflects

Model 3B 8B GPT-40 ol
ORM 30.8 27.8 28.1 349
PRM  31.1+03) 28709 31.1+3.00 34.9+0.0)

Table 5: The average accuracy of 3 open-weight VLLMs
as reward models on the proposed benchmark. PRMs
have more advantage in enhancing model performance
than ORMs on our VILBENCH.

the correctness and contribution of each step s;,
higher vy indicates a greater likelihood of being
correct. The reasoning distance my, is the minimum
steps needed to reach the correct answer from py,
estimated via simulations as it cannot be directly
computed. By introducing a weighted reward wyy,
for step sg, incorporating my, and the reward rg:

Vi —
Wep = <1 - W) (1—2rg), k=1,2,...
ey
The quality value updates iteratively:
0, k=0,
v = 2

max(vg_1 + wsk, 0), otherwise.
Here, m; = K — k, where K is the total steps in
solution s. Since reasoning for visual problems is
often simpler, we modified the prompt to require
the model’s output steps to be more granular, en-
suring that the model does not directly output the
answer at the very beginning. We present one ex-
ample of the reward value tree in Figure 5.

3.2 Process Reward Model Training

Based on the derived ViLReward-73K preference
data, we train a 3B vision-language PRM, ViLPRM.

Model Architecture. VilLPRM is built upon a 3B
VLLM Qwen2.5-VL (Bai et al., 2025). We follow
the common practice of PRM to use the pre-trained
weights of Qwen2.5-VL for most of the parts, such
as the visual encoder and the MLP projector, but
append a linear layer to output a scalar score after
the language head (Dong et al., 2024a; Wang et al.,
2024a). We do not consider generative score mod-
eling due to efficiency concerns. Since the base
model Qwen2.5-VL has been aligned with mas-
sive visual-language data, our reward model only
requires learning to classify good or bad steps in
vision-language reasoning trajectories and avoids
using other pre-training data for modality align-
ment. We formalize the model input and output as:
given the input question = and the model reasoning
response y, the score head f transforms the logits
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Figure 6: Accuracy results of different VLLMs using various RMs under the best-of-n strategy on VILBENCH.

feature of the last token into a scalar r(x, y). This
scalar value 7(z, y) serves as the predicted reward
score for the inputs.

Training. Unlike previous works that only as-
sign binary scores to the RM input, we have de-
tailed scores for each input that can classify step
responses better. We use the Mean Square Error
(MSE) loss between the ground truth reward and
the predicted one to update the ViLPRM. We add
more details about training in Appendix D.

4 Validating ViLPRM on VILBENCH

To validate the effectiveness of ViLPRM, we conduct
experiments under various settings on VILBENCH.

4.1 Experimental Setups

We choose the test-time scaling strategy to verify
the functionality of different RMs. On our filtered
VILBENCH, we first use 4 different VLLMs with
various model size as the solution sampler, i.e.,
Qwen2.5-VL-3B (Bai et al., 2025), InternVL-2.5-
8B (Chen et al., 2024c), GPT-40 (OpenAl, 2024)
and ol (OpenAl, 2025). For all models except
ol, we sample 16 candidate responses for BoN
selection. While we sample 4 solutions for ol due
to the high cost of this sampling process.

For PRMs, we include four VLLMs — Qwen?2.5-
VL-3B (Bai et al., 2025), Qwen2.5-VL-7B (Bai
et al., 2025), LLaVA-OneVision-7B (Li et al.,
2024a) and a recent vision-language PRM URSA-
RM (URSA for short) (Luo et al., 2025) as base-
lines, where URSA is a concurrent vision-language
PRM developed using a base model of 8B parame-
ters and trained on over 1000K carefully designed
preference reward data. It has shown great im-
provements in the multimodal math problems, but
lacks the capacity to generalize to more general
vision-language tasks.

4.2 Results and Analysis

VILBENCH requires more intensive reward
feedback than other VL benchmarks. To con-
firm that our filtered VILBENCH requires more

Model 2 4 8 16  Avg.
QwenVL 2.5 3B (2025) 30.7 31.5 29.7 288 302
LLaVA OV 7B (2024a)  30.7 312 29.7 29.0 302
QwenVL 2.57B (2025) 29.0 308 29.0 26.7 289
URSA (2025) 31.0 30.8 300 303 306
ViLPRM (Ours) 315 320 31.0 313 315

Table 6: The average accuracy over four solution gener-
ators using different PRMs under different BoN setups.

fine-grained step rewards beyond simple output
rewards, we present the average accuracy across
three different VLLMs (QwenVL2.5 3B, LLaVA-
OneVision 7B, and QwenVL2.5 7B) used as ORMs
or PRMs with four solution samplers in Table 5.
In most cases, PRMs enhance model performance
more effectively than ORMs, yielding an aver-
age improvement of 1.4%. However, one notable
exception occurs when selecting ol’s responses,
where no significant difference is observed between
ORM and PRM. This may be due to o1’s final out-
put steps lacking sufficient detail, with its internal
reasoning process hidden from users, making it less
effective for prompt engineering (OpenAl, 2025).

ViLPRM performs better than other VL. PRMs.
Figure 6 presents the performance of RMs across
four Best-of-N (BoN) settings with different so-
lution samplers. As the number of response can-
didates increases, RMs generally enhance model
performance. Specifically trained vision-language
PRMs consistently improve results over the CoT
strategy for N > 23. However, VLLM-based RMs
may negatively impact performance when N be-
comes too large. For instance, among three sets
of responses, three VLLMs acting as RMs exhibit
varying degrees of degeneration in candidate se-
lection from 23 to 2%. In contrast, the two vision-
language PRMs demonstrate greater consistency in
identifying superior responses. This finding rein-
forces our claim that current VLLMs are not yet ro-
bust enough to serve effectively as reward models.

Table 6 reports the average performance of dif-
ferent RMs. Compared to the larger PRM URSA,
which is trained on over ten times more data, our
ViLPRM achieves a superior average performance
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Find the perimeter of the parallelogram. Round to the nearest tenth if necessary.
Ans: 44

Step 1: Label the unknown side of the parallelogram as \\(x\\) and take the given 10 m
side to be the “base.” The 60 ° angle is then the interior angle between sides 10 and x
URSA: 0.922

Ours: 0.793

Step 2: Since the given 12 m is the (perpendicular) height relative to the 10 m base, we
use the fact that the height equals the “other side” times sin(60°): x - sin(60°) = 12
URSA: 0.914

Ours: 0.758

12 12 24
Step 3: Solve forx : x = = — = ~13856.

sin(60°) E 3
2

URSA: 0.922
Ours: 0.719

Step 4: The parallelogram has two sides of length 10 m and two sides of length
x =~ 13.856. Hence its perimeter is

P =2(10 +13.856) ~ 47.7m

URSA: 0.805

Ours: 0.766 Q

URSA PRM Score: 0.891
Ours PRM Score: 0.759

Step 1: Observe that the diagram labels one pair of opposite sides as 10 fm and the
other pair as 12 m (the dashed 12 m segment is actually the top/bottom side).

URSA: 0.926

Ours: 0.785

Step 2: A parallelogram’s perimeter is given by P = 2(a + b), where a and b are the
lengths of the adjacent sides.

URSA: 0.930

Ours: 0.859

Step 3: Substitute a = 10 m and b = 12 m into the formula:
P =2(10 + 12) = 2(22) = 44 m. Hence, the perimeter of the parallelogram is 44 m (which,

to one decimal place, is 44.0 m)
URSA: 0.297

Ours: 0.816

URSA PRM Score: 0.718 0

Ours PRM Score: 0.820

Figure 7: An example of process scores provided by
URSA (Luo et al., 2025) and our ViLPRM. We mark
different scores with different colors.

by 0.9% and outperforms its untrained 3B VLLM
counterpart by 1.3%. Additionally, RMs consis-
tently enhance the performance of ol, a model
known for leveraging an internal thinking process
as an efficient test-time scaling technique. This fur-
ther underscores the importance of developing reli-
able reward models, even for models with built-in
reasoning capabilities. We provide more evaluation
results covering a wider range of reward models in
Appendix F.

Examples for the Reward Task. In Figure 7,
we present an example of using our ViLPRM and
URSA for selecting the best response from Ope-
nAl o1’s responses. In the example, URSA prefers
more steps in the reasoning and even with wrong
trajectories, while our ViLPRM can choose accurate
solutions. This is likely because URSA was trained
on a massive amount of math reasoning data and
may develop the preference for complex rather than
accurate reasoning steps (Liu et al., 2025). We also
present another example about medical reasoning
in the Appendix E, which verifies that the proposed
vision-language PRM has the capacity to also per-
form well beyond just math or reasoning tasks.

Model Size  Accuracy
InternLM-XComposer2.5-Reward 7B 33.8
LLaVA OV 7B 36.5%
Qwen2 VL 7B 33.9%
LLaVA-Critic 7B 47.4%
VisualPRM 8B 274
GPT-40-mini (2024-07-18) - 44.8%*
Qwen-VL-Max - 48.1*
ViLPRM (Ours) 3B 46.3

Table 7: Model performance on VL-RewardBench, results
with * are taken directly from its open leaderboard.

Discussions We provide a detailed discussion of
PRM limitations in Appendix G. PRMs work well
in structured tasks but falter with unclear step seg-
mentation or uniform step weighting; adaptive eval-
uation and better segmentation could help. We
also discuss the point that multimodal RMs also
lack cross-task robustness, calling for more diverse
training and broader evaluation beyond accuracy.

5 ViLPRM on Reward Benchmarks

To further validate ViLPRM, we conduct experi-
ments on VL-RewardBench! (Li et al., 2024b) and
VisualProcessBench (Wang et al., 2025).

In Table 7, we provide results on VL-
RewardBench, a benchmark for output-level re-
ward modeling. We segment responses by sentence
and average the scores to adapt it to stepwise evalu-
ation. Despite the benchmark not being tailored for
PRMs, ViILPRM (3B) outperforms GPT-40-mini
(2024-07-18) and remains competitive with Qwen-
VL-Max and LLaVA-Critic (7B), demonstrating
strong generalization and effectiveness.

Model Size  Accuracy
Qwen2.5 VL 3B 11.7
LLaVA OV 7B 4.5
Qwen2.5 VL 7B 63.9
VisualPRM 8B 66.5
ViLPRM (Ours) 3B 68.8

Table 8: Model performance on VisualProcessBench. We
only consider correct and incorrect reasoning steps for evalua-
tion following the original implementation.

Table 8 presents results on VisualProcessBench,
which explicitly targets process-level visual rea-
soning. Following the official setup, we threshold
final scores at 0 to classify steps as correct or in-
correct. We observe that VILPRM shows similar
performance to VisualPRM with 8B parameters
and over 5 times more training data (400K for Vi-
sualPRM and 73K for VILPRM). For three VLLMs

1https://huggingface.co/spaces/MMInstruction/
VL-RewardBench
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we tested, we simply ask the model to judge if the
current solution step logically follows and is factu-
ally consistent with the image and question.

Across both VL-RewardBench and VisualPro-
cessBench, VILPRM demonstrates robust multi-
modal reward capabilities by providing more accu-
rate step-wise feedback and more practical guid-
ance for improving VLLM performance.

6 Related Works

Reward Benchmark. There are plenty of works
put their emphasis in the text-only reward bench-
marks (Lambert et al., 2024b; Liu et al., 2024; Zhou
et al., 2024a), and some of them are specifically
designed for PRMs (Song et al., 2025; Zhang et al.,
2025b). When shifting to vision-language domain,
traditional VLLM evaluation mainly focuses on the
general abilities of the model, including multiple
aspects like knowledge, reasoning, fairness, and
safety (Lee et al., 2024b; Tu et al., 2023; Yue et al.,
2024; Lu et al., 2024; Zhang et al., 2024b). VL-
RewardBench (Li et al., 2024b) is the first work
that sources reinforcement learning preference data
and rewrites knowledge-intensive vision-language
samples to form a diverse benchmark. Our pro-
posed VILBENCH fills the gap of benchmarking
PRMs in vision-language domain.

Reward Modeling. Reward models are impor-
tant for guiding Al models at both training and
inference stages. There are typically three different
forms of RMs: (1) discriminative RM treats the
rewarding task as token classification. It usually
leverages a linear head to fit the reward score via a
regression loss (Stiennon et al., 2020; Ouyang et al.,
2022). (2) LLM-as-a-judge leverages the genera-
tive ability of language models to output feedback
in the form of text, often a critique or explanation
of why a certain output is good or bad (Xiong et al.,
2024; Lee et al., 2024a; Zheng et al., 2023). (3)
Implicit RMs that are models optimized using DPO
that the predicted log probabilities are interpreted
as implicit reward signal (Lambert et al., 2024a; Lvi-
son et al., 2023; Zhou et al., 2024b). In our work,
the proposed ViLPRM is a discriminative RM.

7 Conclusion

We introduce a comprehensive suite for vision-
language process reward modeling (PRM), and
evaluate seven VLLMs as reward models. Our re-
sults show VLLM-based PRMs improve stepwise
reasoning in structured vision-language tasks but

falter in visual-dominant scenarios, underscoring
the need for adaptive step evaluation. We collect
600 examples as VILBENCH where PRMs perform
better than ORMs and curate ViLReward-73K with
73.6K step-wise rewards, enabling ViLPRM to out-
perform other models on VILBENCH by 3.3%.
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Limitations

VILBENCH extends beyond traditional language-
only or multimodal output reward models by intro-
ducing a multimodal process reward model, along
with new benchmarks, datasets, and a dedicated
reward model. While we address the gap in cur-
rent benchmarking efforts for evaluating VLLMs
as reward models (especially PRMs) and conduct
experiments on five widely-used tasks, we acknowl-
edge that other vision-language tasks may have
been overlooked. For preference data collection,
we adopt a fully automated pipeline to gather 73K
vision-language samples, but do not explore in-
tegrating language-only process preference data
such as PRM800OK (Lightman et al., 2023), RLH-
Flow (Dong et al., 2024b) or Math Shepherd (Wang
et al., 2023), which have proven effective for train-
ing general-purpose vision-language models. Re-
garding the reward model, although our 3B model
outperforms mainstream RMs, larger models may
further improve performance—albeit at the cost of
greater computational overhead.
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A Experimental Settings for B Data Collection Details for

VLLM-as-a-Judge

ViLReward-73K

B.1 Data Selection

In this section, we demonstrate the details of how
we benchmark VLLMs as reward models on exist-
ing vision-language (VL) benchmarks. Following
(V)LLM-as-a-judge paradigm, we input the pre-
defined scoring rule, the question, as well as the
solution steps for VLLMs to judge the score. We
show our prompt below:

You are a highly capable multimodal AI as-
sistant tasked with evaluating the quality of
intermediate reasoning steps provided for vi-
sual questions. The input answer may repre-
sent an incomplete step in the larger reasoning
process. Assign a score from 1 to 5 based on
how well the step contributes to addressing the
question.

Question: question

Answer: answer

Your score should reflect the overall quality
of the answer, focusing on its relevance, co-
herence, accuracy, and clarity Scoring Scale
(1-5):

5 (Excellent): The reasoning step is highly
relevant, accurate, detailed, and exceptionally
clear, making a strong contribution to address-
ing the question.

4 (Good): The reasoning step is relevant,
mostly accurate, and clear, with logical pro-
gression and only minor flaws.

3 (Fair): The reasoning step is somewhat rel-
evant and partially accurate, demonstrating
basic logic but lacking detail, clarity, or preci-
sion.

2 (Poor): The reasoning step is partially rel-
evant but contains major errors, lacks coher-
ence, or is difficult to understand.

1 (Very Poor): The reasoning step is irrele-
vant or nonsensical, showing no meaningful
connection to the question or image.

After your evaluation, please: 1. Assign one
overall score from 1 to 5 based on the descrip-
tions above. 2. Explain your reasoning in de-
tail, highlighting specific strengths and weak-
nesses of the answer.

Example Response: Reasoning: [Explanation
of the evaluation]. Overall Score: [1-5]
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We detail the five datasets that we leverage for
ViLReward-73K.

* MAVIS-Geometry (Zhang et al., 2024c) is a
mathematical geometry problem dataset that
includes 4 different difficulty levels, marked
as depthO, depthl, depth2, and depth3. We
found that depthO and depthl are relatively
simple, while depth3, compared to depth2,
mostly just increases the number of composite
bodies without significantly increasing the dif-
ficulty. We chose depth2 as the source for our
synthetic data, selecting 5000 examples from
it as our question data. MAVIS-Geometry
categorizes question types into three classes:
text-dominant questions, text-lite questions,
and vision-dominant questions. We use vision-
dominant questions to enhance the model’s vi-
sual capabilities. We demonstrate the MCTS
tree constructed on MAVIS-Geometry in Fig-
ure 8.

* A-OKVQA (Schwenk et al., 2022) mainly
contains question-answering problems about
natural images, while the majority of these
problems are relatively straightforward, re-
quiring only basic visual recognition and com-
mon knowledge. In our study, we focused
specifically on the more challenging questions
within this dataset. We kept 9% of the more
difficult ones which were labeled as “difficult
direct answer". To generalize to the general
visual perception domain, we also sample 500
examples as metadata from the questions that
can be directly answered.

* GeoQA170K (Gao et al., 2023) contains over
170K geometric image-caption and question-
answer pairs, building on GeoQA+ (Cao and
Xiao, 2022) and GeoQA3K (Lu et al., 2021).
We sample one question from each unique
images from the data, resulting in 8,063 ex-
amples in total.

e CLEVR-Math (Lindstrom and Abraham,
2022) is a synthesized VQA dataset based on
CLEVR (Johnson et al., 2017) that includes
math word problem solving. They incorporate
addition/subtraction types of math problems.



Visual

I Question

Answer the question based on the content of the image.

Question: Side CD is shaped into an equilateral triangle. Side HI arcs into a
semi-circle inside the rectangle. What is the length of HI in shape GFHI?
Choices: A. 1/2 B. 2*V(3)*1/3 C. N(3)*n/8 D. N(3)*n

Answer the question by outputting the letter corresponding to the correct choice.

that side AB is 1 unit long.

AD=1.
Therefore CD =1 as well

Step 1: Determine the length of side CD which is
part of the equilateral triangle CDE.

Since CD is equal to DE and CE and the triangle
is equilateral we can use the given information

Since AD is perpendicular to AB and forms a
right angle triangle ABD is a right triangle with

length of CD.

value: 0.1

=1\3.

Step 1: Determine the length of side CD which is
part of the equilateral triangle CDE. Since CD isa
side of the equilateral triangle it is equal to the
other sides DE and CE. Given that the rectangle
ABCD has a side AD of length 1 and angle ADC
is 90 degrees we can use trigonometry to find the

Since triangle ADC is a right triangle CD can be

calculated using the tangent of angle ADC which
is 60 degrees (since CDE is equilateral angle

‘ CDE is 60 degrees).

Therefore CD = AD * tan(60 degrees) =1 * V3 ‘

Step 1: Determine the length of side CD which is
part of the equilateral triangle CDE.

Since CD is equal to DE and CE and the triangle
is equilateral we need to find the length of CD to
proceed. Given that AD is perpendicular to AB
and AD = 1 we can use the properties of the
equilateral triangle to find CD.

Since the triangle is equilateral the height (AD) is
equal to V3/2 times the side length (CD).
Therefore CD =2/\3.

value: 0.2

value: 0.1

Step 2: Since CD is part of the
equilateral triangle CDE and CD =1
the height of the equilateral triangle
from point D to side CE is V3/2. This
height is also the length of DG as DG
is perpendicular to CE. Since GFHI is
a rectangle with GF = DG the length of
GF is V3/2.

Therefore the diameter of the
semicircle HI is equal to GF which is
V3/2. The length of the semicircle HI is
(n/2) * (diameter) which is (n/2) *
(\3/2) = \3*n/4.

However this does not match any of
the given choices so let's re-evaluate

Step 2: Since CD is part of the
equilateral triangle CDE and CD = 1
the side length of the equilateral
triangle CDE is 1.

Now consider the rectangle GFHI
where HI is the diameter of the
semicircle. Since the semicircle is
inscribed within the rectangle the
diameter HI is equal to the side length
of the equilateral triangle which is 1.
Therefore the radius of the semicircle
is 1/2. The length of the arc HI is half
the circumference of a full circle with
radius 1/2 which is (1/2) * n=n/2.
Thus the correct choice is A. /2.

Step 2: Calculate the radius of the
semi-circle HI. Since HI is the
diameter of the semi-circle and the
rectangle GFHI is formed by extending
the equilateral triangle the length of HI
is equal to the side length of the
equilateral triangle CDE which is CD
=2A3.

Therefore the radius of the semi-circle
is half of HI which is (2/73)/2 = 1/3.
Now calculate the length of the arc HI
which is half the circumference of a
full circle with radius 1/73.

The circumference of a full circle is 21
times the radius so the length of the

the . The correct

should be: HI = (n/2) * (diameter) =
(/2) * (V3) = V3*m/2. This matches
choice D.

Therefore the correct answer is D.

value: 1.0 ‘

ircle arc HI is 7 times the radius
which is 7/V3. Simplifying we get the
length of HI as V3*/3.
Therefore the correct choice is B.
2%\(3)*n/3.

Step 2: Calculate the radius of the
semi-circle HI. Since HI is the
diameter of the semi-circle and the
rectangle GFHI is formed by extending
the equilateral triangle the length of HI
is equal to the side length of the
equilateral triangle which is CD.
Therefore the radius of the semi-circle
is CD/2 = (2/V3)/2 = 1/73. Now
calculate the length of the arc HI
which is half the circumference of a
circle with radius 1/73. The
circumference of a full circle with
radius 1/V3 is 2n(1/43) = 223,
Therefore the length of the semi-circle
arc HI is (2n/3)/2 = w/\3. Now
compare this with the given choices to
find the correct answer.

The correct choice is B. 2*(3)*n/3.

‘ value: 0.2 ‘

] |

‘ value: 0.2

value: 0.3 ‘

Figure 8: MCTS tree we have constructed for geometry problem datasets (e.g., MAVIS-Geometry). One path in
the tree yields a correct result, while the remaining paths result in incorrect answers. It is worth noting that we use
ellipses to omit some nodes in the original MCTS tree for better presentation.

We only consider 957 questions with distinct
images and need multi-hop reasoning in the
dataset.

* ScienceQA (Lu et al., 2022) is a comprehen-
sive datasets with 21K examples in science,
the data is categorized into 12 grades based on
the difficulty level. We use data that is harder
than grade 7 as our metadata.

B.2 MCTS Searching Details

Our construction of the search tree is primarily
based on the Monte Carlo Tree Search (MCTYS).
The process of building this search tree follows
several key steps:

Search Tree Initialization. The search process
begins with a root node that represents the initial
state of the problem. This root node serves as the
foundation for the entire search tree, with its parent
node set to None.

Node Expansion During Search. During each
iteration of the MCTS process, the tree undergoes
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expansion through four essential phases:

* Selection Phase. Starting from the root node,

a path is selected based on a specific strategy
(we use the Upper Confidence Bound algo-
rithm) until a node that has not been fully
expanded is identified.

Expansion Phase. For a node that has not
been fully expanded, potential child nodes
are generated. Each child node represents a
possible subsequent state and is incorporated
into the search tree structure with appropriate
depth and parent-child relationships.

Simulation Phase. From each newly ex-
panded node, a simulation is conducted us-
ing a predetermined strategy (often a random
approach) until a terminal state is reached.

Backpropagation Phase. The results ob-
tained from the simulation are propagated
backward through all nodes along the path
from the root to the expanded node. This pro-



cess updates key node statistics including the
visit count and value estimations.

Termination Criteria. The construction of the
search tree continues until specific termination con-
ditions are met. In our implementation, we set the
iteration limit to 10, meaning the search process
concludes after completing 10 iterations. Once this
criterion is satisfied, the search process terminates,
and the final tree structure is established.

Answer Evaluation. We follow the LL.M-as-a-
judge approach, using LLM to score the final an-
swers and then propagate these scores from leaf
nodes to previous nodes. We first prompt the LLM
to extract the final answer from the model’s out-
put, then input the question, the model-generated
answer, and the correct answer to the LLM to de-
termine whether the final answer is correct.

C VILBENCH Evaluation Details

We employ the accuracy between predicted an-
swers and the ground truth as the metric for our
VILBENCH. To avoid inaccurate extraction of the
answer, we follow previous works (Lu et al., 2024;
Zhang et al., 2024b) to employ GPT-based extrac-
tion. In detail, we prompt GPT-3.5-turbo to com-
pare the prediction with the ground truth, the input
instruction shows below:

Given the following:

### Generated Answer: model predicted an-
swer

### Ground Truth Answer: ground truth an-
swer

Please compare the final answer in the gener-
ated response to the ground truth answer. Ig-
nore any reasoning or intermediate steps and
focus only on whether the final letter answer
in the generated response matches the ground
truth.

Output True if the final answer aligns with the
ground truth answer; otherwise, output False.

D Vision-Language PRM Training Details

We employ the value head architecture for PRM
training. In detail, we train the model on our
ViLReward-73K for 2 epochs with a constant learn-
ing rate of 2e5. We randomly sample 300 in-
stances as the validation set during training and
save the model checkpoint with the lowest valida-

tion loss.

Model QwenVL 2.53B InternVL2.5-8B  GPT-40 GPT-ol  Average

LLaVA-Critic 30.05 28.50 26.83 34.13 29.88
XComposser 32.83 28.50 28.33 36.35 31.50
URSA 32.17 28.17 26.71 35.84 30.72
ViLPRM (Ours) 3233 30.50 30.33 34.39 31.89

Table 9: Model performance under the Best-of-8 setting
on ViLBench.

Model QwenVL 2.53B  InternVL2.5-8B  GPT-40 GPT-ol Average
LLaVA-Critic 29.38 28.00 27.33 34.47 29.79
XComposser 33.17 28.17 28.50 3891 32.19
URSA 32.83 28.33 26.88 36.69 31.18
ViLPRM (Ours) 33.17 30.00 30.87 36.07 32.53

Table 10: Model performance under the Best-of-16 set-
ting on ViLBench.

E Scoring Examples from RMs

In Figure 9, we present another example in the
domain of medical reasoning task. As the PRM
URSA (Luo et al., 2025) was not trained on the do-
main of general knowledge, it gives biased judges
in this case. In the meanwhile, our ViLPRM is capa-
ble of providing more accurate and consistent step
rewards in this domain.

F More Results of VILPRM

To further demonstrate the effectiveness of ViL-
PRM, we compare it with another two reward
models LLaVA-Critic (Xiong et al., 2024) and
InternLM-XComposer2.5-Reward-7B (Zang et al.,
2025). We randomly draw 200 samples from ViL-
Bench and evaluate under Best-of-8 and Best-of-16
settings. Results in Table 9 and Table 10 show
that VILPRM consistently outperforms the larger
InternLM-XComposer2.5-Reward (7B) by average
margins of 0.39 and 0.34, respectively. LLaVA-
Critic, though consuming over 5 times more com-
putational resources as a generative reward model,
performs suboptimally due to its coarse-grained,
non-stepwise feedback.

G Discussions

Vision-Language PRM is Bounded by Clear
Step Segmentation. How to best split the reason-
ing step for PRMs has always been a problem (Liu
et al., 2025; Guo et al., 2025; Cui et al., 2025). In
structured tasks like math problems, PRMs provide
fine-grained feedback, improving step-by-step rea-
soning. However, when the segmentation of steps
is unclear or reasoning is unnecessary, PRMs may
harm the performance. For instance, text-heavy
tasks saw a 3% accuracy boost with PRMs, while
visual-dominant tasks suffered a 2% drop, likely
due to PRMs overemphasizing irrelevant steps.
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PRMs also struggle when all steps are treated
equally. Previous works have proposed to use sin-
gle step to represent all step rewards (Wang et al.,
2024b; Liu et al., 2025). We found that rewarding
only the last few critical steps improved accuracy
more than using all steps, striking a balance be-
tween PRMs and ORMs. A major challenge is iden-
tifying which steps truly matter. Future improve-
ments should focus on adaptive step evaluation,
where PRMs automatically adjust reward weight
based on step importance. Better segmentation
strategies, such as enforcing clearer step structures
during training or integrating step selection mech-
anisms can help PRMs generalize better across
tasks.

Improved Training Paradigm is Required for
Multimodal RMs. Current training approaches
for multimodal reward models fail to generalize
across diverse tasks. Many RMs, including PRMs,
are task-sensitive (Zhang et al., 2025b; Liu et al.,
2025), meaning they work well on specific domains
but struggle elsewhere. For example, PRMs trained
on math tasks such as URSA perform poorly on
vision-heavy reasoning, suggesting that current
methods do not equip RMs with broad evaluation
skills. Besides, our results show that even advanced
VLLMs like GPT-40 do not automatically become
good reward models, often overrating responses.

To improve vision-language PRMs, training
must diversify data sources, integrating both textual
and visual-heavy reasoning tasks. Instead of rely-
ing solely on step-wise learning, future RMs should
also consider incorporating adaptive reward mech-
anisms, adjusting considered step scores based on
task complexity. Additionally, evaluation bench-
marks for reward models should also go beyond
accuracy, assessing consistency, bias, and general-
ization (Yasunaga et al., 2025).

H Declaration of Al Tool Usage

During the preparation of this manuscript, I used
OpenAl’s GPT-40 model for minor language re-
finement and smoothing of the writing. The Al tool
was not used for generating original content, con-
ducting data analysis, or formulating core scientific
ideas. All conceptual development, experimenta-
tion, and interpretation were conducted indepen-
dently without reliance on Al tools.

Retinal detachment occurs because this region (arrow)

A. Is the site of fusion of the optic cup and optic vesicle.

B. Is poorly vascularized.

C. The pigment epithelium is part of the choroid and adheres to it

Ans: A

Step 1: Recall that the retina develops from a two-layered optic cup
(the inner “neural” layer and the outer “pigmented” layer). Although
embryologically both layers are “retinal,” anatomically the pigmented
epithelium is tightly adhered to the choroid (via Bruch’s membrane)
but only loosely apposed to the photoreceptor layer.

URSA: 0.945
Ours: 0.754

Step 2: Because the pigment epithelium is so firmly anchored to the
choroid, any disruption (e.g., fluid, traction) more easily separates the
neural retina away from the pigment epithelium than it does the
pigment epithelium from the choroid. Consequently, this is the usual
plane along which a retinal detachment occurs.

URSA: 0.933
Ours: 0.820

Step 3: Among the answer choices given, the one that most closely
matches this explanation is that the pigment epithelium “belongs” to
(i.e. is most firmly bound to) the choroid, causing the retina to detach
at that interface.

Correct answer:
C. The pigment epithelium is part of the choroid and adheres to it.

URSA: 0.965
Ours: 0.754

URSA PRM Score: 0.948
Ours PRM Score: 0.776

Step 1: Recall the embryology of the retina. The “optic vesicle”
finvaginates to form the “double-layered optic cup,” with its fouter
layer giving rise to the retinal pigment epithelium (RPE) and its inner
layer forming the neural retina.

URSA: 0.879
Ours: 0.844

Step 2: Understand the weak point. Because these two layers meet (but
do not form a firm adhesion) at what was originally their boundary in
the early optic cup, there remains a potential “cleavage plane” between
the RPE and the neural layers. This is precisely where retinal
detachments occur.

URSA: 0.859
Ours: 0.793

Step 3: Match with the best choice. Of the given options, the only one
referring to the embryologic origin of this weak junction is option A:
“Is the site of fusion of the optic cup and optic vesicle.” That
embryologic fusion is inherently insufficient to anchor the retina
firmly, accounting for the tendency to detach at this plane.

Answer: A. Is the site of fusion of the optic cup and optic vesicle.

v

Figure 9: An example from o01’s generation of a medical
reasoning example from our VILBENCH.

URSA: 0.149
Ours: 0.809

URSA PRM Score: 0.629
Ours PRM Score: 0.815
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