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Abstract

Mechanistic interpretability of large language
models (LLMs) aims to uncover the internal
processes of information propagation and rea-
soning. Sparse autoencoders (SAEs) have
demonstrated promise in this domain by ex-
tracting interpretable and monosemantic fea-
tures. However, prior works primarily focus
on feature extraction from a single layer, fail-
ing to effectively capture activations that span
multiple layers. In this paper, we introduce
Route Sparse Autoencoder (RouteSAE), a new
framework that integrates a routing mechanism
with a shared SAE to efficiently extract features
from multiple layers. It dynamically assigns
weights to activations from different layers,
incurring minimal parameter overhead while
achieving high interpretability and flexibility
for targeted feature manipulation. We evaluate
RouteSAE through extensive experiments on
Llama-3.2-1B-Instruct. Specifically, under the
same sparsity constraint of 64, RouteSAE ex-
tracts 22.5% more features than baseline SAEs
while achieving a 22.3% higher interpretabil-
ity score. These results underscore the poten-
tial of RouteSAE as a scalable and effective
method for LLM interpretability, with appli-
cations in feature discovery and model inter-
vention. Our codes are available at https:
//github.com/swei2001/RouteSAEs.

1 Introduction

Mechanistic interpretability of large language mod-
els (LLMs) seeks to understand and intervene in
the internal process of information propagation
and reasoning, to further improve trust and safety
(Elhage et al., 2022b; Gurnee et al., 2023; Wang
et al., 2023). Sparse autoencoders (SAEs) identify
causally relevant and interpretable monosemantic
features in LLMs, offering a promising solution for
mechanistic interpretability (Bricken et al., 2023).

*Equal Contribution
†Corresponding

Figure 1: Layer-wise normalized activation values for
two features extracted by Topk SAE in pythia-160m.
The low-level feature (visual media terms) exhibits high
activation in early layers that gradually decreases in
deeper layers. In contrast, the high-level feature (tempo-
ral expressions) shows increasing activation with depth,
peaking in the later layers.

Therefore, SAE and its variants (Huben et al., 2024;
Rajamanoharan et al., 2024a; Gao et al., 2024; Raja-
manoharan et al., 2024b) have been widely utilized
in LLM interpretation tasks, such as feature discov-
ery (Templeton et al., 2024; Gao et al., 2024) and
circuit analysis (Marks et al., 2024).

Typically, SAE is trained in an unsupervised
manner. It first disentangles the intermediate activa-
tions from a single layer in the language model into
a sparse, high-dimensional feature space, which is
subsequently reconstructed by a decoder. This pro-
cess reverses the effects of superposition (Elhage
et al., 2022a) by extracting features that are sparse,
linear, and decomposable.

However, the activation strength of features in
this feature space exhibits distinct distribution pat-
terns across layers1 (Yun et al., 2021). As shown in
Figure 1, low-level features, which are associated
with disambiguating word-level polysemy, tend to
exhibit peak activation in the early layers and de-

1Referred to as “Transformer factors” in (Yun et al., 2021).
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Figure 2: Comparison of vanilla single-layer SAE, Crosscoder, and RouteSAE. Most existing SAEs belong to
the vanilla SAE category, where features are extracted from the activation of a single layer. Crosscoder relies on
separate encoders and decoders for each layer. RouteSAE incorporates a lightweight router to dynamically integrate
multi-layer residual stream activations.

cline steadily in deeper layers. High-level features,
which capture sentence-level or long-range struc-
ture, show increasing activation with depth.2

This distribution disparity presents a significant
challenge for previous SAEs (Huben et al., 2024;
Rajamanoharan et al., 2024a; Gao et al., 2024; Raja-
manoharan et al., 2024b), as they typically extract
features from the hidden state of a single layer,
failing to capture feature activating at other lay-
ers effectively (cf. Figure 2). Recently proposed
Sparse Crosscoders3 (Lindsey et al., 2024) serve as
an alternative to address this limitation, which sep-
arately encodes the hidden states of each layer into
a high-dimensional feature space and aggregates
the resulting representations for reconstruction (cf.
Figure 2). This approach facilitates the joint learn-
ing of features across different layers. However,
Crosscoder has two critical limitations: (1) Lim-
ited scalability: For an L-layer model, Crosscoder
employs L separate encoders and decoders to pro-
cess activations layer by layer, resulting in a param-
eter scale approximately L times larger than tradi-
tional SAEs. This significantly increases computa-
tional overhead during both training and inference.
(2) Uncontrollable interventions: Crosscoder’s
joint learning mechanism projects hidden states
into a high-dimensional space and then aggregates
them, making it impractical to precisely identify
and adjust the feature activations at specific lay-
ers. This limits its flexibility for tasks requiring
controlled, feature-level interventions, e.g., feature
steering (Templeton et al., 2024).

2Refer to (Yun et al., 2021) for more examples of low- and
high-level features.

3Currently a conceptual framework without complete ex-
perimental validation.

To address these challenges, we propose Route
Sparse Autoencoder (RouteSAE). At the core is
integrating a lightweight router with a shared SAE
to dynamically extract multi-layer features in an ef-
ficient and flexible manner. A router is employed to
compute normalized weights for activations from
multiple layers. This dynamic weighting approach
significantly reduces the number of parameters
compared to a suite of layer-specific encoders and
decoders, thereby addressing scalability concerns.
Additionally, by unifying feature disentanglement
and reconstruction within a shared SAE, Route-
SAE facilitates fine-grained adjustments of specific
feature activations, enabling more controlled in-
terventions to influence the model’s output. This
enhances flexibility and supports precise feature-
level control, making the framework well-suited
for tasks requiring robust and interpretable manip-
ulation of model activations.

We conduct comprehensive experiments on
Llama-3.2-1B-Instruct (Dubey et al., 2024), eval-
uating downstream KL divergence, interpretable
feature numbers, and interpretation score. The
experimental results demonstrate that RouteSAE
significantly improves the interpretability. At an
equivalent sparsity level of 64, it achieves a 22.5%
increase in the number of interpretable features and
a 22.3% improvement in interpretation scores.

Our contributions are summarized as follows:

• We propose RouteSAE, a novel sparse autoen-
coder framework that integrates multi-layer acti-
vations through a routing mechanism.

• RouteSAE achieves higher computational effi-
ciency than Crosscoder by using a shared SAE
structure with minimal additional parameters.
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• Extensive experiments confirm that RouteSAE
enhances model interpretability, highlighting the
effectiveness of the proposed routing mechanism.

2 Methodology

In this section, we first briefly review SAEs, then
introduce our proposed Route Sparse Autoencoder
(RouteSAE) in detail.

2.1 Preliminary

SAE and Feature Decomposition. SAEs decom-
pose language model activations — typically resid-
ual streams (He et al., 2016), x ∈ Rd, into a sparse
linear combination of features f1, f2, . . . , fM ∈ Rd,
where M ≫ d represents the feature space dimen-
sion. The original activation x is reconstructed
using an encoder-decoder pair defined as follows:

z = σ(Wenc(x− bpre)) (1)

x̂ = Wdecz+ bpre, (2)

where Wenc ∈ RM×d and Wdec ∈ Rd×M are the
encoder and decoder weight matrices, bpre ∈ Rd is
a bias term, and σ denotes the activation function.
The latent representation z ∈ RM encodes the ac-
tivation strength of each feature. The columns of
the decoder matrix, f1, f2, . . . , fM , represent inter-
pretable features in the latent space. The training
objective is to minimize the reconstruction mean
squared error (MSE):

L = ∥x− x̂∥22. (3)

TopK SAE. Early SAEs (Huben et al., 2024;
Bricken et al., 2023) leverage the ReLU activa-
tion function (Agarap, 2019) to generate sparse
feature representations, coupled with an additional
L1 regularization term on latent representation z to
enforce sparsity. However, this approach is prone
to feature shrinkage, where the L1 constraint drives
positive activations in z toward zero, reducing the
expressive capacity of the sparse feature space. To
mitigate this issue, TopK SAE (Gao et al., 2024) re-
places the ReLU activation function with a TopK(·)
function, which directly controls the number of
active latent dimensions by selecting the top K
largest values in z. This is defined as:

z = TopK(Wenc(x− bpre)). (4)

By eliminating the need for an L1 regularization
term, TopK SAE achieves a more effective balance

between sparsity and reconstruction quality, while
enhancing the model’s ability to learn disentangled
and interpretable monosemantic features. In our
RouteSAE framework, the shared SAE module is
instantiated as a TopK SAE due to its superior per-
formance in producing monosemantic features.

2.2 Route Sparse Autoencoder (RouteSAE)
As shown in Figure 2, existing SAEs are typi-
cally trained on intermediate activations from a
single layer, restricting their ability to simultane-
ously capture both low-level features from shallow
layers and high-level features from deep layers. To
overcome this limitation, RouteSAE incorporates a
lightweight router to dynamically integrate multi-
layer residual streams from language models and
disentangle them into a unified feature space.

Layer Weights. As illustrated in Figure 3, the
router receives residual streams from multiple lay-
ers and determines which layer’s activation to route.
Instead of concatenating these activations, which
could result in an excessively large input dimen-
sion, we adopt a simple yet effective aggregation
strategy: sum pooling. Specifically, given activa-
tions xi ∈ Rd from layer i, we aggregate them
using sum pooling to form the router’s input:

v =

L−1∑

i=0

xi, xi ∈ Rd, (5)

where L denotes the total number of layers being
routed. The resulting vector v ∈ Rd serves as a
condensed representation of multi-layer activations.
Next, the router projects v into RL using a learn-
able weight matrix Wrouter ∈ RL×d, yielding the
layer weight vector α:

α = Wrouterv ∈ RL. (6)

Each element αi in α represents the unnormalized
weight for layer i, indicating its relative importance
in the routing process. These weights are then
normalized using a softmax function to obtain layer
selection probabilities pi:

pi =
exp(αi)∑L−1

j=0 exp(αj)
, i = 0, 1, . . . , L− 1. (7)

pi reflects the likelihood that the activation strength
peaks at layer i, dynamically assigned by the router
based on the input representations.

Routing Mechanisms. In RouteSAE, the router
selects the layer i∗ with the highest probability pi,
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Figure 3: RouteSAE employs a lightweight router to dynamically integrate activations from multiple residual stream
layers, effectively disentangling them into a shared feature space. It enables the model to capture features across
different layers — low-level features such as “units of weight” and “Olympics” from shallow layers, and high-level
features like “more [X] than [Y]” and “do everything [possible/in my power]” from deeper layers.

computed as described in Equation 7. Formally,
this is expressed as:

i∗ = argmax
i

pi, i = 0, 1, . . . , L− 1. (8)

To ensure differentiability, we scale the activation
xi∗ from the selected layer i∗ by its corresponding
probability pi∗ , using it as input to the shared SAE
for disentangling into the high-dimensional feature
space and subsequent reconstruction training:

xroute = pi∗xi∗ . (9)

The latent representation z and the reconstruction
x̂ are calculated as follows:

zroute = TopK(Wenc(xroute − bpre)) (10)

x̂route = Wdeczroute + bpre. (11)

Finally, we minimize the reconstruction MSE:

L = ∥xroute − x̂route∥22. (12)

This objective function jointly trains the router and
the shared TopK SAE, ensuring efficient and adap-
tive feature extraction across multiple layers.

Shared SAE and Unified Feature Space. The
routed intermediate activation ( xroute, as defined
in Equation 9) is processed by a shared SAE for re-
construction, which in this work is instantiated as a
TopK SAE (Gao et al., 2024). Notably, RouteSAE
is flexible and can be easily adapted to various SAE
variants. By employing a shared SAE, RouteSAE
establishes a unified feature space across activa-
tions from all routing layers. This ensures consis-
tent feature representations, thereby enhancing the
disentanglement of high-dimensional features and
improving interpretability.

Model Llama-3.2-1B-Instruct

Hidden Size 2,048
# Layers 16

Routing Layers [3:11]
SAE Width 16,384 (8x)
Batch Size 64

Table 1: Implementation details of RouteSAEs for
Llama-3.2-1B-Instruct. Note that the layer indices start
from 0.

3 Experiments

We first outline the experimental setup, followed
by the evaluation of RouteSAE. In this paper, we
follow prior work (Gao et al., 2024; Rajamanoha-
ran et al., 2024a; Huben et al., 2024; Templeton
et al., 2024; He et al., 2024) and employ multiple
evaluation metrics to assess the effectiveness of
RouteSAE, including downstream KL-divergence,
interpretable features, interpretation score, and re-
construction loss. Finally, we provide a detailed
case study, demonstrating that RouteSAE not only
effectively captures both low-level features from
shallow layers and high-level features from deep
layers, but also enables targeted manipulation of
these features to control the model’s output.

3.1 Setup

Inputs. We train all SAEs on the residual streams
of the Llama-3.2-1B-Instruct. For baseline SAEs,
we follow the standard approach (Gao et al., 2024)
of selecting the layer located approximately at 3

4
of the model depth (i.e., Layer 11). Prior work

6804



(Lad et al., 2024) has shown that the early layers of
LLMs primarily handle detokenization, whereas
later layers specialize in next-token prediction.
Based on this insight, we select residual streams
from the middle layers of the model as input for
both RouteSAE and Crosscoder (Lindsey et al.,
2024). In particular, we focus on layers spanning
1
4 to 3

4 of the model depth, as detailed in Table 1.
The training data is sourced from OpenWeb-

Text2 (Gao et al., 2020), comprising approximately
100 million randomly sampled tokens for training,
with an additional 10 million tokens reserved for
evaluation. All experiments are conducted using a
context length of 512 tokens. To ensure stable train-
ing, we normalize the language model activations
following (Gao et al., 2024).

Hyperparameters. For all SAEs, we use the
Adam optimizer (Kingma and Ba, 2015) with stan-
dard settings: β1 = 0.9 and β2 = 0.999. The
learning rate is set to 5× 10−4, following a three-
phase schedule. (1) Linear warmup. The learning
rate increases linearly from 0 to the target rate over
the first 5% of training steps. (2) Stable phase.
The learning rate remains constant for 75% of the
training steps. (3) Linear Decay. The learning rate
gradually decreases to zero over the final 20% of
training steps to ensure smooth convergence. To
improve training stability, we apply unit norm reg-
ularization (Gao et al., 2024) to the columns of
the SAE decoder every 10 steps, ensuring that the
decoder columns maintain unit length.

Baselines. We benchmark RouteSAE against
leading baselines, including ReLU SAE (Huben
et al., 2024), Gated SAE (Rajamanoharan et al.,
2024a), TopK SAE, and Crosscoder (Lindsey et al.,
2024). Moreover, we compare with a random set-
ting, where the router is replaced by a uniform dis-
tribution that assigns equal routing weights to each
layer. It is important to note that Crosscoder re-
mains a conceptual framework and lacks complete
experimental validation. As there is no official
codebase or hyperparameter guidance available,
we implement it following the description in (Lind-
sey et al., 2024). We acknowledge that our results
may not fully reflect its actual performance.

3.2 Downstream KL Divergence
To assess whether the extracted features are rele-
vant for language modeling, we replace the residual
streams x with the reconstructed representation x̂
during the forward pass of the language model and
evaluate the reconstruction quality using Kullback-

Figure 4: Pareto frontier of sparsity versus KL diver-
gence. RouteSAE achieves a lower KL divergence at
the same sparsity level.

Leibler (KL) divergence. It quantifies the discrep-
ancy between the original and reconstructed dis-
tributions, with lower value indicating that the ex-
tracted features are highly relevant for language
modeling. Note that RouteSAE replaces the activa-
tion at the layer with the highest routing weight.

As shown in Figure 4, the sparsity-KL diver-
gence frontiers for ReLU and Gated SAE are nearly
identical, yet both exhibit a significant gap com-
pared to TopK SAE. Due to suboptimal reconstruc-
tion quality, the KL divergence for ReLU and Gated
SAE drops substantially as L0 increases, falling
from around 400 to 350. In contrast, the KL diver-
gence for both TopK and RouteSAE remains con-
sistently below 150, with only minimal decreases
as L0 increases. This indicates that both methods
are able to effectively reconstruct the original in-
put x even at high sparsity levels. The random
routing baseline yields higher KL divergence than
both TopK and RouteSAE, further highlighting the
advantage of learned routing.

Notably, RouteSAE achieves the best perfor-
mance among all methods, maintaining a lower
KL divergence at comparable sparsity levels. It
outperforms even TopK SAE, indicating that fea-
ture substitution during inference is most effective
when performed at the layer where the target fea-
ture is most active, rather than at a predetermined
fixed layer. We exclude Crosscoder from this com-
parison, as it produces multiple reconstructed repre-
sentations x̂, making its application to this setting
nontrivial and not directly comparable.

3.3 Interpretable Features

Previous works (Huben et al., 2024; He et al., 2024)
interpret features by preserving the context with the
highest feature activation value. However, we argue
that it has two limitations: (1) Retaining only the
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(a) (b)

Figure 5: Effect of threshold on feature interpretability
in RouteSAE. (a) Increasing the threshold reduces the
number of selected features. (b) Higher thresholds yield
better interpretation scores across sparsity levels.

highest activation context for each feature leads to
a large number of undiscernible features; (2) Each
feature is associated with only a single context,
reducing the reliability of the interpretation.

To address these limitations, we introduce a new
approach for preserving feature contexts using an
activation threshold. For a given sequence context,
only features with activation values exceeding the
threshold are retained. As shown in Figure 5(a),
increasing the threshold reduces the number of re-
tained features. In contrast, Figure 5(b) demon-
strates that a higher threshold leads to improved
interpretation scores. Consequently, the threshold
governs a trade-off between the quantity of inter-
pretable features and their interpretability quality.
In this section, we set the threshold to 15, which
achieves a balance between maintaining sufficient
feature quantity and enhancing interpretability. No-
tably, a single sequence may be associated with
multiple contexts.

To further refine the interpretation, activated con-
texts are categorized based on their activation to-
kens, maintaining a min-heap of activation values.
We retain the top 2 contexts with the highest activa-
tion values within each activated token. A filtering
step is applied to remove features with fewer than
four active contexts, ensuring that only sufficiently
represented features are considered. To evaluate
feature extraction, we use 10 million tokens from
the evaluation set to extract contexts associated
with each feature.

As illustrated in Figure 6, at a threshold of 15,
both ReLU and Gated SAE extract over 1,000 inter-
pretable features, performing similarly. In contrast,
TopK SAE significantly outperforms both, extract-
ing more than 3,000 features. RouteSAE surpasses
all other methods, extracting over 4,000 features at
the same threshold. Notably, RouteSAE exhibits
a more gradual decline in the number of extracted

Figure 6: Comparison of the interpretable feature num-
ber. RouteSAE extracts the most interpretable features
at the same threshold.

(a) (b)

Figure 7: Human–GPT-4o alignment in the automatic
feature interpretation pipeline. (a) Percentage of fea-
tures assigned to each category (Low, High, or Undis-
cernible) by humans and GPT-4o. (b) Distribution of the
absolute differences in interpretability scores between
human annotators and GPT-4o.

features as L0 increases, while TopK SAE exhibits
a more pronounced reduction. The random rout-
ing baseline sometimes extracts even more features
than RouteSAE, but its feature count decreases
much more rapidly as L0 increases. These results
suggest that learning based solely on single-layer
activation values limits the ability of SAEs to ex-
tract interpretable features. In comparison, Cross-
coder extracts substantially fewer features, retain-
ing approximately 200. Since Crosscoder aggre-
gates and projects activations across multiple lay-
ers, we hypothesize that the optimal threshold for
balancing feature quantity and interpretability lies
in a lower range for Crosscoder. Therefore, com-
paring it against the same activation threshold may
not reflect its actual ability to extract high-quality
features. We plan to investigate this in future work.

3.4 Interpretation Score
Despite the feature screening in Section 3.3, the
number of retained features remains in the thou-
sands, making manual interpretation and evaluation
challenging. To further assess feature interpretabil-
ity, we follow prior work (Huben et al., 2024; Tem-
pleton et al., 2024; He et al., 2024) and leverage
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GPT-4o (Hurst et al., 2024) to analyze the features
extracted by SAEs, assigning an interpretability
score alongside feature descriptions. Unlike pre-
vious approaches, we provide GPT-4o with mul-
tiple token categories per feature along with their
contextual usage. Given resource constraints, we
randomly select a subset of 100 retained features
per SAE for interpretation. As detailed below, for
each feature, we construct a structured prompt com-
prising a prefix prompt, the activated token, and its
surrounding context, which is then given to GPT-
4o. GPT-4o outputs three standardized components:
(1) Feature categorization, labeling each feature as
low-level, high-level, or undiscernible; (2) Inter-
pretability score, rated on a scale of 1 to 5; and (3)
Explanation, providing a brief justification for the
assigned category and score.

Background
We are analyzing the activation levels of features in a neural network, where
each feature activates certain tokens in a text. Each token’s activation value
indicates its relevance to the feature, with higher values showing stronger
association. Features are categorized as:
A. Low-level features, which are associated with word-level polysemy
disambiguation (e.g., "crushed things", "Europe").
B. High-level features, which are associated with long-range pattern
formation (e.g., "enumeration", "one of the [number/quantifier]")
C. Undiscernible features, which are associated with noise or irrelevant
patterns.

Task description
Your task is to classify the feature as low-level, high-level or undiscernible
and give this feature a monosemanticity score based on the following
scoring rubric:
Activation Consistency
5: Clear pattern with no deviating examples
4: Clear pattern with one or two deviating examples
3: Clear overall pattern but quite a few examples not fitting that pattern
2: Broad consistent theme but lacking structure
1: No discernible pattern
Consider the following activations for a feature in the neural network.
Token: ... Activation: ... Context: ...

Question
Provide your response in the following fixed format:
Feature category: [Low-level/High-level/Undiscernible]
Score: [5/4/3/2/1]
Explanation: [Your brief explanation]

To evaluate the consistency between GPT-4o and
human annotators in both feature categorization
and interpretability scoring, we randomly sample
100 features from RouteSAE. For each feature,
we provide its activation contexts and a scoring
prompt to both GPT-4o and human annotators. As
illustrated in Figure 7, (a) shows the percentage of
features assigned to each interpretability category
(“Low,” “High,” or “Undiscernible”) by both hu-
mans and GPT-4o. The two distributions are nearly
identical, reflecting strong categorical agreement
between human and GPT-4o annotations. (b) de-

Figure 8: Comparison of interpretation scores. Route-
SAE achieves a higher interpretation score at the same
sparsity level.

picts the distribution of absolute differences |∆| in
interpretability scores, showing that most features
exhibit minimal discrepancy between human and
GPT-4o (|∆| < 2). This indicates a high degree of
alignment in interpretability assessment.

To quantify overall interpretability, we compute
the average interpretability score across the 100
sampled features for each SAE. Due to stochastic-
ity in both feature selection and GPT-4o’s scoring,
these results should be viewed as indicative rather
than definitive measures of interpretability.

Figure 8 shows that both ReLU and Gated SAE
exhibit low and relatively stable interpretation
scores, consistently falling below those of the other
methods. TopK SAE shows a noticeable decline in
interpretation scores as L0 increases, with scores
dropping from over 4.0 at sparsity 48 to around
3.7 at sparsity 72. In contrast, Crosscoder, despite
not being sensitive to changes in sparsity, main-
tains consistent scores, hovering around 3.9 across
all sparsity levels. The random routing baseline
achieves higher interpretation scores than ReLU,
Gated, TopK, and Crosscoder, but remains consis-
tently lower than RouteSAE. In comparison, Route-
SAE achieves the highest interpretation scores,
maintaining values above 4.4 at all sparsity levels.
It remains largely unaffected by changes in sparsity,
demonstrating its robust ability to preserve high
interpretability, regardless of the sparsity setting.
These results indicate that dynamically leveraging
multi-layer activations, as done in RouteSAE and
even to some extent by the random router, not only
allows for extraction of more features but also leads
to higher feature interpretability.

3.5 Routing Weights

In fact, reconstructing the activations of a language
model using SAE becomes increasingly difficult
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(a) (b)

Figure 9: Illustration of weights assigned to routing
layers during training (a) and inference (b). In both
cases, the weights exhibit a U-shaped distribution rather
than concentrating on a small subset of shallow layers.

as the number of layers grows. This is likely due
to the increasing abstraction and entanglement of
features in deeper layers, which imposes additional
challenges on the autoencoder’s capacity to isolate
and reconstruct meaningful components.

To analyze how RouteSAE allocates routing
weights across layers during training and inference,
we track the layer-wise routing weights through-
out both phases. As shown in Figure 9, RouteSAE
produces a distinct weight profile across layers,
exhibiting a U-shaped distribution rather than con-
centrating weights on a small subset of shallow
layers. This pattern suggests a balanced allocation
of representational capacity, where both shallow
and deep layers contribute meaningfully. These re-
sults are consistent with the observations reported
in (Yun et al., 2021), which indicate that lower-
level features are primarily activated in the earlier
layers, whereas higher-level features become more
prominent in the deeper layers.

3.6 Case Study
Interpretable Features. As shown in Figure 3,
RouteSAE effectively captures both low-level and
high-level features from shallow and deep lay-
ers, respectively. Specifically, RouteSAE identi-
fies low-level features such as “units of weight”
and “Olympics” from shallow layers. The “units
of weight” feature activates on tokens related to
weight units, including terms like “pound” and
“kilograms”. The “Olympics” feature captures vari-
ations of the term “Olympic”, such as “Olympics”
and “Olympian”. These two features exemplify
word-level polysemy disambiguation, peaking at
shallow layers. At deeper layers, RouteSAE ex-
tracts high-level features, including the patterns
“more [X] than [Y]” and “do everything [possible/in
my power]”. The first feature identifies tokens that
appear in comparative structures, particularly those
following the pattern “more [X] than [Y].” The sec-

Original: That's a classic idiom! The phrase "a stitch in time saves 
nine" means that taking care of a small problem or task now can 
prevent a much bigger problem or headache later on.

Clamped: This is the first time I have ever heard of this phrase. I 
have heard of  "a new Olympic Games" but…

Human: What does the phrase "a stitch in time saves nine" mean?

Olympics

Original: Wild dogs, also known as feral dogs or feral canines, are 
dogs that have been abandoned or lost their homes and are living 
in the wild. They are not domesticated dogs…

Clamped: I can do this. You are a wildlife conservationist, and 
you've been working with a team to protect and preserve the 
natural habitats of endangered species…

Human: Can you tell me about wild dogs? Not stray dogs, but 
wild dogs.

Do everything [possible/in my power]

Figure 10: Illustration of feature steering via activation
manipulation in RouteSAE. The original response is
generated with unaltered feature activations, while the
clamped response is produced after setting the target
feature’s activation to a high value. The upper example
demonstrates a low-level feature associated with the
“Olympics” concept; increasing its activation leads the
model to output Olympics-related content. The lower
example involves a high-level feature linked to “doing
everything possible”; increasing its activation causes the
model to adopt an all-in attitude in its response.

ond feature highlights tokens in phrases expressing
a commitment to maximal effort or capability, such
as “do my best”, and “do all he could”. These
two features reflect sentence-level or long-range
pattern formation, peaking at deeper layers. These
observations demonstrate that RouteSAE success-
fully integrates features from multiple layers of
activations into a unified feature space. For more
interpretable features, refer to Appendix E.

RouteSAE Feature Steering Figure 10 illus-
trates how RouteSAE enables controlled model
steering by directly manipulating internal features
derived from the SAE decoder. This is achieved
by replacing the original activation x with the re-
constructed representation x̂. To determine where
to intervene, RouteSAE selects the layer with the
highest routing weight, dynamically identifying the
most relevant representation layer rather than re-
lying on a manually fixed one. The activations at
this selected layer are then reconstructed using the
shared SAE and replaced to steer the model’s be-
havior accordingly. In each example, the original
response is generated without intervention, serv-
ing as a baseline that reflects the model’s default
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behavior. In contrast, the clamped response is ob-
tained by increasing the activation of a specific
target feature to 20. In the upper example, the
clamped feature is a low-level one related to the
“Olympics” concept; after intervention, the model’s
response becomes focused on Olympic-related con-
tent, regardless of the input question. In the lower
example, the manipulated feature is a high-level
one representing the intent to “do everything pos-
sible”; as a result, the model adopts a proactive,
determined stance, as evidenced by responses such
as “I can do this.” This illustrates that, RouteSAE
enables controllable and targeted interventions on
model behavior through direct feature activation
manipulation.

4 Conclusion

In this paper, we introduce Route Sparse Autoen-
coder (RouteSAE), a new framework designed to
enhance the mechanistic interpretability of LLMs
by efficiently extracting features from multiple lay-
ers. Through the integration of a dynamic rout-
ing mechanism, RouteSAE enables the assignment
of layer-specific weights to each routing layer,
achieving a fine-grained, flexible, and scalable ap-
proach to feature extraction. Extensive experiments
demonstrate that RouteSAE significantly outper-
forms traditional SAEs, with a 22.5% increase in
the number of interpretable features and a 22.3%
improvement in interpretability scores at the same
sparsity level. These results underscore the po-
tential of RouteSAE as a powerful tool for under-
standing and intervening in the internal representa-
tions of LLMs. By enabling more precise control
over feature activations, RouteSAE facilitates bet-
ter model transparency and provides a solid foun-
dation for future work in feature discovery and
interpretability-driven model interventions.

Limitations

While RouteSAE shows promising results, several
limitations remain, which we aim to address in
future research.

Improvements of the router. To the best of our
knowledge, we are the first to introduce a routing
mechanism in SAEs to learn a shared feature space.
However, we employed a simple linear projection,
which has limited capabilities. Our experiments
show that the weight distribution of the router is
influenced by the feature space size M and the
sparsity level k. Therefore, exploring more sophis-

ticated activation aggregation methods and router
designs is an important direction for future work.

Cross-layer features. Research on cross-layer
feature extraction is still in its early stages, and the
current method of dynamically selecting activations
across multiple layers, as presented in this paper,
is not yet optimized for discovering cross-layer
features. Further exploration is needed to enable
RouteSAE to more effectively identify and utilize
cross-layer features.

Ethical Considerations

This paper presents work whose goal is to advance
the field of Machine Learning. There are many
potential societal consequences of our work, none
which we feel must be specifically highlighted here.
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A Related Work

In this section, we begin by reviewing prior work
on sparse encoding, followed by a discussion of
SAEs for interpreting LLMs. Finally, we briefly
introduce cross-layer feature extraction in LLMs.

A.1 Sparse Encoding

Dictionary learning (Mairal et al., 2009) is a foun-
dational machine learning approach that aims to
learn an overcomplete set of basis components, en-
abling efficient data representation through sparse
linear combinations. Autoencoders (Hinton and
Salakhutdinov, 2006), in contrast, are designed to
extract low-dimensional embeddings from high-
dimensional data. By merging these two paradigms,
sparse autoencoders have been developed, incor-
porating sparsity constraints such as L1 regulariza-
tion (Memisevic et al., 2015) to enforce sparsity
in learned representations. Sparse autoencoders
have found widespread application across various
domains of machine learning, including computer
vision (Wang et al., 2015) and natural language
processing (Chang et al., 2018).

A.2 Sparse Autoencoder for LLMs

SAEs have emerged as effective tools for captur-
ing monosemantic features (Elhage et al., 2022a),
making them increasingly popular in LLM appli-
cations. Early work (Huben et al., 2024) intro-
duced SAEs for extracting interpretable features
from the internal activations of GPT-2 (Radford
et al., 2019). To address systematic shrinkage
in feature activations inherent in traditional SAEs
(Huben et al., 2024; Bricken et al., 2023), Gated
SAEs (Rajamanoharan et al., 2024a) were pro-
posed, decoupling feature detection from magni-
tude estimation. TopK SAEs (Gao et al., 2024),
inspired by k-sparse autoencoders (Makhzani and
Frey, 2014), directly controlled sparsity to enhance
reconstruction fidelity while preserving sparse rep-
resentations. JumpReLU SAEs (Rajamanoharan
et al., 2024b) advanced the trade-off between re-
construction quality and sparsity by replacing the
conventional ReLU activation (Agarap, 2019) with
the discontinuous JumpReLU function (Erichson
et al., 2020). More recently, Switch SAEs (Mu-
dide et al., 2024) introduced a mixture-of-experts
mechanism, where inputs are routed to smaller, spe-
cialized SAEs, achieving better reconstruction per-
formance within fixed computational constraints.
However, these approaches capture the intermedi-
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metric 48 52 56 60 64 68

Sum pooling

NormMSE 0.174 0.168 0.164 0.161 0.158 0.155
KL Divergence 99 95 89 85 81 83
Num of Features 4310 4393 4312 4144 4194 4100
Score 4.33 4.41 4.47 4.39 4.49 4.42

Attn

NormMSE 0.188 0.187 0.183 0.180 0.177 0.174
KL Divergence 137 130 127 124 114 116
Num of Features 566 356 420 353 320 363
Score 3.66 3.59 3.59 3.91 3.77 3.66

Table 2: Comparison of sum pooling and attention mechanism across sparsity levels.

ate activations of language models from a single
layer, neglecting features activated across multiple
layers, which limits their overall applicability.

A.3 Features across Layers

Layer-wise differences in activation features within
the transformer-based language model were first
highlighted in (Yun et al., 2021), revealing that
shallow layers capture low-level features while
deeper layers focus on high-level patterns. Build-
ing on this, Gemma Scope (Lieberum et al., 2024)
leveraged JumpReLU SAEs (Rajamanoharan et al.,
2024b) to train separate models for each layer and
sub-layer of the Gemma 2 models (Rivière et al.,
2024). Similarly, Llama Scope (He et al., 2024)
trained 256 SAEs per layer and sublayer of the
Llama-3.1-8B-Base model (Dubey et al., 2024), ex-
tending layer-wise sparse modeling. Nevertheless,
training a suite of SAEs is computationally expen-
sive and often learns redundant features, posing
significant scalability challenges for larger models.
Moreover, determining the specific SAE relevant
to a given input or characteristic can be nontriv-
ial, complicating their practical application. Re-
cently, Sparse Crosscoders (Lindsey et al., 2024)
introduced a cross-layer SAE variant designed to
investigate layer interactions and shared features
(Templeton et al., 2024; Kissane et al., 2024). This
framework facilitates circuit-level analysis (Elhage
et al., 2021; Marks et al., 2024) by enabling feature
tracking across layers, providing valuable insights
into the evolution of model features and architec-
tural differences. However, Crosscoder still relies
on separate encoders and decoders for each layer,
which limits its efficiency and hinders seamless
integration with downstream tasks.

The challenges of scalability, feature localiza-
tion, and applicability to downstream tasks moti-
vate the development of RouteSAE.

B Comparison of Aggregation
Mechanisms.

Our current router employs a sum pooling to
aggregate multi-layer features, which may not
fully capture complex interactions due to the non-
orthogonality across layers. To explore this fur-
ther, we implemented a preliminary version of a
non-linear alternative using attention-based aggre-
gation. However, as shown in the Table 2, this atten-
tion variant performs worse across multiple metrics,
including reconstruction loss (NormMSE), down-
stream KL divergence, and interpretation score.
Nevertheless, we believe that non-linear aggrega-
tion remains a promising direction and plan to ex-
plore more robust and expressive alternatives in
future work.

C Comparison of Routing Mechanisms.

In RouteSAE, the router determines how the multi-
layer activations are integrated into the SAE. We
denote the routing mechanism defined in Equation
9 as hard routing.

Hard Routing. In hard routing, the router se-
lects the layer with the highest probability pi. The
activation xi∗ from the selected i∗ is scaled by its
corresponding probability pi∗ and used as the input
to the SAE:

xSAE = pi∗xi∗ . (13)

Soft Routing. As an alternative, we also explore
soft routing, where the router combines activations
from all layers by weighting them with their re-
spective probabilities pi. Instead of selecting a
single layer, the input to the SAE is computed as a
weighted sum of all layer activations:

xSAE =

L−1∑

i=0

pixi. (14)

This approach allows the SAE to incorporate multi-
layer information in a more continuous manner,
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metric 48 52 56 60 64 68

Hard Routing
NormMSE 0.174 0.168 0.164 0.161 0.158 0.155
KL Divergence 99 95 89 85 81 83
Num of Features 4310 4393 4312 4144 4194 4100

Soft Routing
NormMSE 0.129 0.118 0.122 0.113 0.113 0.105
KL Divergence 181 139 148 123 147 115
Num of Features 6 8 43 44 5 11

Table 3: Comparison of Hard and Soft Routing under different sparsity levels.
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Figure 11: Routing mechanism comparison. Hard routing enforces sparse selection by activating only a single layer,
whereas soft routing integrates information from all layers, weighted by their respective significance probabilities.

leveraging a richer feature representation compared
to hard routing.

Discussion. Hard routing enforces sparsity by
selecting the activation from a single layer, typi-
cally the one with the strongest response for a given
input. This mechanism simplifies the routing task,
as the router only needs to identify the layer with
the highest activation. In contrast, soft routing ag-
gregates activations from all layers, weighted by
their estimated importance scores. This introduces
a significantly more challenging requirement: the
router must accurately estimate the relative contri-
bution of each layer. We have conducted internal
experiments comparing soft and hard routing un-
der various sparsity levels. Table 3 show that soft
routing achieves lower reconstruction loss (Nor-
mMSE), indicating better feature fidelity. However,
it consistently underperforms in downstream KL
divergence and the number of extracted features.
As the number of features produced by soft rout-
ing is often far fewer than 100, we were unable to
compute the interpretation score—which requires
sampling 100 features—for a fair comparison. Inac-
curate estimations may result in disproportionately
high weights assigned to less relevant layers, which
can lead to the accumulation of noisy or irrelevant
activations. This, in turn, may interfere with the

Figure 12: Pareto frontier of sparsity versus Norm MSE.
Norm MSE, as a proxy metric, cannot be directly com-
pared between models with distinct input distributions.

disentanglement of monosemantic features in sub-
sequent stages. While soft routing has the potential
to capture cross-layer features—i.e., features that
are distributed across multiple layers—our experi-
ments thus far have not demonstrated clear benefits
in this setting. We plan to investigate this direction
further in future work.

D Reconstruction Loss

Given a fixed sparsity L0 in the latent representa-
tion z, a lower reconstruction loss indicates better
performance in terms of the SAE’s ability to recon-
struct the original input. However, evaluating the
effectiveness of SAEs remains challenging. The
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sparsity-reconstruction frontier is commonly used
as a proxy metric, but it should be noted that the
primary goal of SAEs is to extract interpretable
features, not simply to reconstruct activations. As
shown in Figure 12, TopK SAE achieves the opti-
mal sparsity-reconstruction trade-off, maintaining
a normalized MSE of around 0.15 across sparsity
levels. The performance of Random, ReLU and
Gated SAE is comparable, with all three methods
showing a normalized MSE of approximately 0.25,
significantly lagging behind TopK. Crosscoder, on
the other hand, demonstrates a notably poorer re-
construction frontier, with its MSE consistently
around 0.35.

It is important to clarify that, as a proxy met-
ric, normalized MSE cannot be directly compared
between models with different input distributions.
Both RouteSAE and Crosscoder receive and re-
construct activations from multiple layers, which
leads to a more complex distribution compared to
a single layer. This increased complexity makes
reconstruction more difficult, resulting in a higher
MSE loss. Nevertheless, while both Crosscoder
and RouteSAE aggregate activations across multi-
ple layers, RouteSAE exhibits significantly better
reconstruction performance than Crosscoder, trail-
ing only slightly behind TopK.

E Interpretable Features Extracted by
RouteSAE.

In this section, we present additional interpretable
features extracted by RouteSAE from Llama-3.2-
1B-Instruct, including feature-activated tokens,
contexts, values, and GPT-4 explanations.

E.1 Low-Level Features

Feature 3675: flourish and thrive

Explanation: The feature consistently activates on variations of the
words “flourish” and “thrive”, which are semantically similar and often
used interchangeably in contexts indicating growth or success. The acti-
vation values are consistently high across all instances, with no deviating
examples, indicating a clear pattern associated with word-level polysemy
disambiguation related to these terms.
Contexts: Anti-Nafta rhetoric doesn’t play well in El Paso, San Anto-
nio and Houston, which have become gateway cities for commerce with
Latin America and have flourished since the North American Free Trade
Agreement passed Congress in 1993. Activation: 16.16
Contexts: It’s not, by the way, a song about devil-worshipping, although
the Stones thrived on the controversy and didn’t do much to discourage
speculation. Activation: 17.33
Contexts: When the researchers planted worn-out cattle fields in Costa
Rica with a sampling of local trees, native species began to move in and
flourish, raising the hope that destroyed rainforests can one day be replaced.
Activation: 16.43

Feature 3896: academic or job application

Explanation: The feature consistently activates on tokens related to
the context of academic or job application processes, specifically focusing
on “applicant” and “interviews.” There is a clear pattern with no deviat-
ing examples, indicating a strong association with word-level polysemy
disambiguation related to the application process.
Contexts: ON a Sunday morning a few months back, I interviewed my
final Harvard applicant of the year. Activation: 15.97
Contexts: Then you have to advertise a position or opportunity, and
weed through the applicants to find the 5% that are actually worth talking
to. Activation: 15.80
Contexts: I might be smart and qualified, but for some random reason I
may do poorly in the interviews and not get an offer! Activation: 15.45

Feature 4574: spatial or temporal prepositions

Explanation: The feature consistently activates on the tokens “in” and
“within”, indicating a strong association with spatial or temporal prepositions.
The activations are highly consistent across different contexts, showing no
deviating examples, which suggests a clear pattern related to the usage of
these prepositions. This aligns with low-level features focused on word-level
polysemy disambiguation.
Contexts: The show was getting huge, and just as with COMDEX, the
show-within-a-show was born. Activation: 17.48
Contexts: According to a Circuit City employee in Chicago, the con-
sumer electronics chain is trading in HD DVD players bought into their
stores “within 3 months of the announcement”, as opposed to their 30-day
return policy. Activation: 28.23
Contexts: There’s now at least a 50% risk that prices will decline within
two years in 11 major metro areas, including San Diego; Boston; Long
Island, N.Y.; Los Angeles; and San Francisco, according to PMI Mortgage
Insurance’s latest U.S. Activation: 29.30

E.2 High-Level Features

Feature 19: enumeration or distribution

Explanation: The feature consistently activates tokens that are part of
a pattern involving enumeration or distribution, such as “each”, “neither”,
“all”, and “both”. These tokens are often used in contexts where items or
actions are being listed or compared, indicating a high-level feature related
to long-range pattern formation. The activations show a clear pattern with
no deviating examples, suggesting a strong monosemanticity.
Contexts: A caller, discussing how Clinton and Obama are both ter-
rifying or whatever, made the comment that “my 12-year-old says that
Obama looks like Curious George!” As my jaw hit the steering wheel, Rush
chuckled and they moved on to the next topic. Activation: 17.73
Contexts: Advanced Graphics Card Repair Now that you have already
learned how to repair broken capacitors and inductors on your graphics
cards (or any other boards), it’s time to move on to the smaller components
that are harder to tackle. Activation: 16.62
Contexts: Creating a useful command line tool Now that we have the
basics out of the way, we can move onto creating a tool to solve a specific
problem. Activation: 16.37

Feature 1424: date expressions

Explanation: The activations consistently highlight tokens that are part
of date expressions, specifically the day of the month in a date format (e.g.,
“January 1”, “February 28”, “March 31”). This indicates a clear pattern
of recognizing and activating on numerical day components within date
contexts, which aligns with high-level features associated with long-range
pattern formation, such as recognizing structured data formats like dates.
There are no deviating examples, hence the highest score for activation
consistency.
Contexts: As of January 1, more than one of every 100 adults is behind
bars, about half of them Black. Activation: 22.78
Contexts: The Random Destructive Acts FAQ Updated March 19, 2003:
It has been about 8 years since I wrote this page (before 2002 the last
modification date was June 30, 1995) and I still get emails about it every
few days. Activation: 20.76
Contexts: Taguba, USA (Ret.) served 34 years on active duty until his
retirement on 1 January 2007. Activation: 15.03

6814



Feature 2271: comparative or equality expressions

Explanation: The activations consistently highlight tokens that are part
of comparative or equality expressions, such as “just as [adjective/adverb] as”
and “equal [noun].” This indicates a clear pattern of identifying long-range
patterns related to comparisons and equality, with no deviating examples.
Contexts: a big Obama supporter, and I would have voted the old John
McCain over Hillary Clinton (but not the new, party-line-toeing, I’m-just-
as-conservative-as-Bush-I-swear John McCain). Activation: 18.64
Contexts: Equally important, it represents the anticipation of how much
new money will be created in the future. Activation: 18.11
Contexts: It was important to us to have an equal amount of diversity in
the cast. Activation: 16.23
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