BTS: Harmonizing Specialized Experts into a Generalist LLM

Qizhen Zhang' %'

Prajjwal Bhargava'*

Chloe Bi’® Chris X. Caif*

Jakob Foerster'>° Jeremy Fu'® Punit Singh Koura!® Ruan Silva'® Sheng Shen'

Emily Dinan'*

'Meta Superintelligence Labs

Suchin Gururangan’*

Mike Lewis*

2University of Oxford

gizhen.zhang@eng.ox.ac.uk, edinan@meta.com

Abstract

We present BRANCH-TRAIN-STITCH (BTS),
an efficient and flexible training algorithm
for combining independently trained large lan-
guage model (LLM) experts into a single, ca-
pable generalist model. Following Li et al.
[2022], we start with a single seed LLM which
is branched into domain-specific (e.g., coding
or math) experts with continual pretraining.
BTS combines experts using lightweight stitch
layers, which are inserted between frozen ex-
perts and the seed LLM, and trained on a small
datamix of the expert domains. Stitch layers en-
able the seed LLM to integrate representations
from any number of experts during the forward
pass, allowing it to generalize to new domains,
despite remaining frozen. Because BTS does
not alter the constituent LLMs, BTS provides
a modular and flexible approach: experts can
be easily removed or added with only a small
amount of training. Compared to alternative
model merging or upcycling approaches, BTS
yields the best generalist performance on a va-
riety of downstream tasks, while retaining the
specialized capabilities of each of the experts.

1 Introduction

To achieve strong performance across diverse do-
mains, large language models (LLMs) are often
densely trained on trillions of tokens using thou-
sands of GPUs [Dubey et al., 2024]. However,
this approach poses three challenges. 1) Infras-
tructure limitations: Large-scale training requires
massive synchronization across distant compute
clusters. The necessary interconnection hardware
is costly [Cottier et al., 2024], and the resulting
inter-device communication overhead significantly
slows down training [Gholami et al., 2024, Fernan-
dez et al., 2024, Narayanan et al., 2021]. Moreover,
the more devices involved, the greater the risk of
* Joint last author, ordered alphabetically

T Work done at Meta
¢ Ordered alphabetically

hardware failure, where a single device failure can
stop the entire training process [Kokolis et al., 2025,
Zhang et al., 2022a]. 2) Inefficient reuse of exist-
ing models: Many domain-specific expert models
are already publicly available [Azerbayev et al.,
2023, Roziere et al., 2023, Huang et al., 2023].
Pretraining from scratch is inefficient as it does
not reuse existing models’ expertise. 3) Data-mix
tradeoffs [Xie et al., 2023, Ye et al., 2024]: It can
be challenging to improve performance on a new
domain without forgetting the original data [Mc-
Closkey and Cohen, 1989, Aghajanyan et al., 2021]
or correct unwanted behaviors without impacting
others [Tuan et al., 2024].

“Branch-Train” methods [BTM; Li et al., 2022,
BTX; Sukhbaatar et al., 2024, BAM; Zhang
et al., 2024] address all three challenges by asyn-
chronously training smaller, distinct expert models
specialized to different domains in parallel. BTM
[Li et al., 2022] efficiently combines the expert
models by ensembling them at inference time, but
is limited because there are no learned connections
between expert layers; this restricts the model’s
overall expressivity, especially in distant test do-
mains. On the other hand, approaches like BTX
[Sukhbaatar et al., 2024] and BAM [Zhang et al.,
2024], which upcycle expert models into a Mixture-
of-Experts (MoE) model [Shazeer et al., 2017],
show strong downstream task performance, but
lose the flexibility and interpretability inherent in
a modular approach where experts remain distinct
and intact.

We present BRANCH-TRAIN-STITCH (BTS),
a new algorithm for building a generalist LLM
from a collection of smaller expert models which
achieves the best generalist model performance.
Like other “Branch-Train” methods, BTS begins
with a training phase in which small experts are
asynchronously created in parallel via independent
continued pretraining on domains of interest. The
experts are then adapted into a unified, general-

6816

Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing, pages 6816—-6834
November 4-9, 2025 ©2025 Association for Computational Linguistics



1) Branch

Seed LLM

2) Train Experts

3) Stitch

( )

BTS Stitch Layer M (Hub-into-Experts)

BTS%;;; _//[Proie;onﬂ — (Proie;ﬁon N)
[ $FFN ][ $FFN J [ $FFN J

[:kSeIf-Attention] [$Self-Anemion] [%:Self-Attention]

)
(#LM Layer 6)
(#LM Layer 5)

BTS Stitch Layer 2 (Experts-into-Hub)

%LM Layer 5) (#LM Layer5) "

:
(#LM Layer 6) (LM Layer 6)
B (
(

2 x x %LM Layer 4] [%LM Layer 4) [%LM Layer 4)
_ _ ( BTS Stitch Layer 1 (Hub-into-Experts) )
(BTS Gates ) (Brs g?‘es] """ (sLMLayer3) (#LMLayer3)  (#LMLayer3)
(Projection 1) (Projection N) (sLM Layer 2) (#LM Layer2) "~ (LM Layer2)
[*LM Layer 1] {%LM Layer 1] [%LM Layer 1)
$FFN ] [ SFFN J [ SFFN ] £
X A - L} Expert LLM N
[:iéSeIf-Attention] [:Z&'Self-Attention [SGSelf-Attention]
f T f

Figure 1: Overview of the BTS algorithm. BTS operates in three phases. Different colors correspond to different
expert domains. 1) Branch & 2) Train: Following Li et al. [2022], we begin with a pretrained seed LLM and create
N copies. Each copy is independently pretrained on its respective data mixture, resulting in specialized expert
models. 3) Stitch: Stitch layers are inserted throughout the LLM layers, alternating between the Experts-into-Hub
and the Hub-into-Experts stitch layer. Only the stitch layers are updated during this training phase. The BTS model
always has a Experts-into-Hub stitch layer as the last layer, as the hub output is returned as the final BTS output.

ist model by inserting and training stitch layers
between models, while keeping the experts them-
selves frozen.

This stitching architecture adds connections be-
tween experts via a gating mechanism on top of
the language model layer outputs which determine
how hidden states from one expert flow into an-
other. One can imagine several ways to combine
representations produced by different experts: all
experts can directly connect to all other experts,
only certain experts can connect to certain others,
and everything in between. We opt for a hub-and-
spoke model, in which a central “hub” model (the
seed LLM) can update its own representations via
the spokes (specialized experts), and vice versa,
but the experts have no direct connection to each
other. This design choice balances efficiency and
performance. Since the seed model is trained on a
variety of data, it is a natural choice for the hub, so
all of our experiments adopt this set-up.

For each layer in the forward pass, the stitching
architecture alternates between hub-to-expert merg-
ing, where the hidden representations of the experts
are updated with a projected hub LLM representa-
tion, and expert-to-hub merging, where the hub’s
hidden representation is updated with a combined

hidden representation of all experts. The final out-
put provided by the merged LLM is the output of
the hub (or, in our case, seed) model. These de-
sign choices are further motivated and validated
empirically with ablations in §4.

In experiments (§3), we find that BTS achieves
the best generalist model performance compared
to both expert merging and expert upcycling base-
lines and can even perform better than some in-
dividual experts on their target tasks. Notably,
this is achieved with training only the small set of
stitching parameters. The modular design of BTS,
in which individual experts remain unchanged in
the merging process, offers flexibility and inter-
pretability. Targeted performance improvements
for specific domains can be achieved completely
asynchronously. Furthermore, downstream behav-
iors can be easily understood by analyzing which
experts are ‘active’ at any given token, providing
transparency into the model’s decision-making pro-
cess.

Our contributions are summarized as follows:

* BRANCH-TRAIN-STITCH, §2: We propose
BRANCH-TRAIN-STITCH, an efficient and flexi-
ble approach stitching distinct expert models into
a more powerful, generalist LLM.

6817



* Experiments, §3: We validate this approach
through experiments on seed language models of
2.7B parameters. Our results show that BTS out-
performs competitive baselines in downstream
task performance, achieving the best average per-
formance across benchmarks.

* Analysis, §4: We motivate BTS architectural
choices with ablations and investigate the impact
on “cross capability” tasks, i.e. tasks at the in-
tersection of expert domains, and show that, in
certain settings, BTS can achieve cross capabil-
ity performance greater than any expert. Finally,
we provide a detailed analysis of the behavior of
the stitch layer at inference time, demonstrating
interpretable patterns where the specialized ex-
pert associated with the task is typically the most
utilized.

2 BRANCH-TRAIN-STITCH

2.1 BTS algorithm overview'

The BTS algorithm (Figure 1) involves three stages,
resulting in an efficiently-trained generalist dense
model.

1. Branch: Following Li et al. 2022, given a pre-
trained Transformer seed model m, we create

n copies of the model my, ..., my,.

2. Train: Also following Li et al. 2022, each copy
of the seed model m; independently undergoes
a continued pretraining phase on a specialized
data mixture, D;, each tailored to different do-
mains such as code, math, and multilingual [Gu-
rurangan et al., 2020]. This phase yields special-
ized models that have enhanced performance
within their respective domains compared to the
seed model mg. However, these models might
perform worse in domains outside of their spe-
cialization as they forget knowledge from the
initial pretraining phase. We refer to these mod-
els m; as experts, and note that this usage of the
term “expert” differs in meaning from the feed
forward network (FFN) experts in MoE models.

3. Stitch: We merge the seed (mg) and expert mod-
els (my, @ > 0) from the previous steps using our
lightweight stitch layers W, which are trained
for a small number of steps on a mixture of data
from expert domains. The stitch layer architec-
ture is detailed in §2.2. Importantly, only the

'Relevent backgrounds and notions on language model
architectures are provided in Appendix B

stitch layers are updated during this phase, while
the parameters of the seed and expert models re-
main frozen. This ensures that BTS training is a
flexible approach — experts can be added or re-
moved after merging, only requiring retraining
stitch layer parameters.

2.2 Model architecture

We next provide more details on the BTS ar-
chitecture (Figure 1). We introduce the stitch
layer, which merges n + 1 Transformer models
mo, ..., My. We designate mg as the hub and
mi, ..., My, as the experts. The hub is usually the
seed model, unless otherwise noted.

Suppose the expert m; contains L Transformer
layers, {¢! }JLzl. We insert K stitch layers — one
each after every L%j Transformer layers. We de-
note W, as the stitch layer inserted after Trans-
former layers {Ef 2o

The stitch layer W}, takes as input the hidden
states, or outputs, from the hub’s j-th layer Eé and
the experts’ j-th layers, {Ef .. We denote the
hidden states respectively as hé for the hub and
{hf i, for the experts. The outputs of the stitch
layer, \Il]-(h%, Lhl) = (ﬁ%, ..., hi), become the
input to the corresponding experts m;’s j + 1-th
layer (f{ H). Each stitch layer ¥ introduces two
sets of learnable parameters:

1. Linear projections, {wpro;, , ---, Wproj, }» Where
Wproj, € RIM*AM either projects the expert hid-
den states to the hub model’s hidden state space
or projects the hub model’s hidden state into the
expert’s hidden state space.

2. A linear gate wgye € Rdimxdimxn ' which com-
putes the contribution of each model’s hidden
state.

To apply these gates, we alternate between two
types of stitch layers (refer to Figure 1 for the illus-
tration and Appendix F for the pseudo code):

The Experts-into-Hub Stitch Layer In this
layer, the expert models’ hidden states are first
projected into the hub model’s hidden state space.
The hub combines its own hidden state with the
projected experts’ hidden states, weighted by the
outputs of a softmax-based gating mechanism.

g = softmax(dropout(wsgate (h0)))

hi = wpraj, (hi), 1 € {1,...,n} 0

n
ho =ho*go+ Y _ gi*hi
i—1

6818



The Hub-into-Experts Stitch Layer In this
layer, the hub hidden state is projected into each of
the expert model’s hidden state space. Each expert
combines its own hidden state with a gated projec-
tion of the hub hidden state using a sigmoid-based
gating mechanism:

g = Sigmoid(dropout(wgate (ho)))
ho = ho

h; = (1_gi)*hi + gi*wproji(h[))y 1€ {1, . ,n}
2)
As we demonstrate in §4, this alternating archi-
tecture is essential for enabling cross capabilities
without degrading generalist performance.

3 Results: Building a generalist model

We validate the BTS approach through experiments
with a seed language model of 2.7B parameters.

3.1 Model details>

Seed model We pretrain a 2.7B parameter lan-
guage model, following the same text recipe used
in Llama 3 [Dubey et al., 2024]. See Table 6 in Ap-
pendix A for architecture details. The seed model
is trained for 15T tokens over 2.2M steps.

Expert models We create three copies of the seed
model, each of which is continually trained for 96k
training steps over a 200B token specialized data
mixture to produce expert models for code, math,
and multilingual tasks. We use a batch size of 2M
tokens. In practice, one can leverage existing open-
sourced experts such as [Roziere et al., 2023, Azer-
bayev et al., 2023]. We pretrained our own experts
to have full transparency into the data mixtures for
controlled experiments.’

BTS model We use four stitch layers to com-
bine the seed model together with the three ex-
pert models. The four stitch layers are inserted
after every five layers in the seed and expert mod-
els. We refer to the resulting model as the BTS
model. As described in §2, the four stitch lay-
ers alternate between a Hub-into-Expert layer and
Experts-into-Hub stitch layer. Upon initialization,
the BTS model is further trained for 15B tokens
over 7000 steps using a batch size of 2M tokens.
The optimization objective is to minimize the next-
token prediction loss from the hub model’s output.

2See Appendix C for additional model details.
3This also follows the same experiment setup from [Li
et al., 2022, Sukhbaatar et al., 2024, Zhang et al., 2024]

Training Total Active
Expert upcycling
BTX Sample 7.2B 7.2B 2.9B
BTX Soft 7.2B 72B  7.2B
BAM 8.4B 8.4B 8.4B
Expert merging
Model Soup N/A 2.7B 2.7B
BTM N/A 10.8B  10.8B
Expert Routing 15k 10.8B  2.7B
BAM Adapters 1.5B 99B 99B
BTS 264M 11B 11B

Table 1: Training, total, and active parameter count
for BTS and baselines. Unlike expert upcycling meth-
ods, expert merging methods require minimal number
of training parameters, making them more modular, in-
terpretable, and easy to train.

During the BTS training phase, only the stitch lay-
ers are updated while all the parameters of the seed
model and the expert models are frozen.

3.2 Data details

Seed model We adopt the same text pretraining
mixture as Llama 3 [Dubey et al., 2024].

Expert models Each dense expert is continued
pretrained on a specialized data mixture for 200B
tokens. The Code expert uses a recipe similar
to that of CodelLlama [Roziere et al., 2023] with
> 85% code tokens, utilizing the code data subset
of the seed model mixture. The Math expert trains
on OpenWebMath [Paster et al., 2023]. The Mul-
tilingual expert trains on 90% non-English and
10% English data from the seed mixture, following
[Dubey et al., 2024].

BTS model The data mixture for the BTS train-
ing phrase contains 15% each from the code, math,
and multilingual expert domains. The remaining
55% contains the seed model’s pretraining data
outside of these domains.

3.3 Baselines

In addition to the seed and expert models, we also
compare BTS with expert upcycling and expert
merging baselines. We use expert upcycling to de-
scribe methods where the seed and expert models
initialize an MoE model, which is further trained.

6819



The entire MoE is updated during training and as
such the experts and seed model themselves do not
remain intact. This approach loses the flexibility
and interpretability inherent in a more modular ap-
proach, and any model change requires updating
a large number of parameters. In contrast, expert
merging methods like BTS keep seed and expert
weights frozen during merging, preserving flexibil-
ity and interpretability.

Expert upcycling baselines:

¢ BTX [Sukhbaatar et al., 2024]: We upcycle
the seed and three expert models into an MoE*,
Our baselines include two BTX variants, where
the Feedforward Network (FFN) experts employ
one of two routing strategies: 1) sample top-1
routing [Sukhbaatar et al., 2024], where we use
a Gumbel-Softmax [Jang et al., 2016] for the
routing function, and 2) soft-routing, where all
four experts are activated at all times. We use the
same experiment setup as BTS runs.

* BAM [Zhang et al., 2024]: We upcycle the
seed model and the three expert models into an
MoE with both attention experts [MoA; Zhang
et al., 2022b] and FFN experts>. We employ soft-
routing for both sets of experts, ensuring that,
like BTS, all FFN and attention parameters of the
seed and expert models are activated during train-
ing and inference. We use the same experiment
setup as BTS runs.

Expert merging baselines:

* Model soup [Wortsman et al., 2022]: We aver-
age the weights of the seed and expert models.
No further training is required upon initialization.

* BTM [Li et al., 2022]: We ensemble the output
logits of the seed and expert models. The en-
semble weights are estimated using Bayes’ rule
with a uniform prior [Li et al., 2022, Gururangan
et al., 2023]. No further training is required upon
initialization.

« Expert routing: We train a linear router with
cross-entropy loss to select the model with the
lowest next-token loss for a given prompt, routing
the entire sequence to that model. It is trained for
1B tokens with a constant learning rate of 5e — 4
and batch size of 1M, as further training showed
no benefit.

“See Appendix B for details on the MoE architecture

5See Appendix B for a description of the attention experts
architecture.

* BAM with adapters [Zhang et al., 2024]:
We train an expert-intact variant of BAM with
soft-routing, adding a linear adapter W) €
Rdimxdim 4 each attention and FFN expert out-
put. Formally, we replace Equation 4 and Equa-
tion 5 by the following:

YMoE = sz
YMoA = Z Qz

where p and q are the normalized router proba-
bilities. Only the router and adapters are trained;
all other parameters remain frozen. We use the
same experiment setup as BTS.

)Wign, (FFN; (z))

3)
dttnl Attnz( ))

We report training, active, and total parameters
in Table 1. While BTS has the highest total param-
eter count, it requires far fewer training parameters
than expert upcycling methods. Since BTS inserts
a stitch layer every five layers, we compare its ef-
ficiency per five layers to the strongest baseline,
BAM, in Appendix E. We find that both models
achieve similar inference FLOPs per five layers,
but BTS has substantially lower training costs.

3.4 Evaluation

We evaluate zero- and few-shot performance on
tasks relevant to the expert domains.

General Knowledge and Reasoning We report
MMLU [5-shot; Hendrycks et al., 2021a] and Big-
Bench Hard (BBH) [3-shot; Suzgun et al., 2022].

Code We evaluate on MBPP [3-shot; Austin
et al., 2021] and HumanEval (HE) [0-shot; Chen
et al., 2021] benchmarks.

Multilingual We use machine translation tasks
in Flores [1-shot; Goyal et al., 2022] on seven lan-
guages: Dutch, Spanish, Portuguese, Vietnamese,
Indonesian, Hindi, and French. We report two
categories: (S) English as the source translation
language and (T) English as target translation lan-

guage.

Math We report the performance on GSM8K
[8-shot; Cobbe et al., 2021] and MATH [4-shot;
Hendrycks et al., 2021b].

3.5 Results

Results on general knowledge, code, multilingual,
and math benchmarks for the seed model, expert

6820



General Code Multilingual Math

MMLU BBH MBPP HE Flores(S) Flores(T) GSMSK MATH Avg.
2.7B Dense models
Seed Model 284 356 27.0 20.7 29.5 35.7 10.5 482 240
Code Expert 30.3 352  32.0 *25.0 29.0 35.5 114 440 254
Multiling. Expert 26.6 347 262 183 *31.9 *37.1 10.8  4.16 23.7
Math Expert *36.3 *37.2 262 16.5 23.6 32.7 *20.5 10.1 254
Expert upcycling
BTX Sample 304 36.6 30.0 21.3 30.5 36.0 13.9  6.58 25.7
BTX Soft 347 368 29.6 232 31.0 36.0 192  9.10 274
BAM 352 371 29.8 226 31.0 36.1 203 10.1 27.8
Expert merging
Model Soup 30.7 37.0 29.6 226 29.5 36.2 13.6  6.46 25.7
BTM 30.6 37.0 31.8 23.8 31.8 37.0 12.7  10.1 26.9
Expert Routing 284 356 27.0 23.8 30.8 37.0 10.5  5.04 248
BAM Adapters 340 37.0 28.8 22.6 31.0 36.1 18.8 10.0 27.3
BTS 358 369 *32.2 22.0 30.9 36.2 20.2  *10.6 *28.1

Table 2: Performance of BTS against expert merging and upcycling methods, seed and expert models measured
on popular benchmarks across several capabilities. Bolded numbers indicate the best performance among dense
models or merged models, while an asterisk (*) denotes the best performance across all models. Among all models,
BTS achieves the best average performance. Notably, BTS is the only method that outperforms domain-specific
experts on their own tasks, surpassing the coding expert on MBPP and the math expert on MATH.

models, and all expert merging and expert upcy-
cling baselines are reported in Table 2. We make
the following observations:

* Expert models highlight datamix tradeoffs:
While the dense expert models achieve the best
results in their domains, they significantly un-
derperform on other domains. This highlights
that improving performance in one domain may
come at the cost of regressing in others. For
example, the Math expert outperforms all mod-
els in GSM8K, but lags behind the seed model
substantially in coding tasks.

* Learned connections are important for expres-
sive merging: Methods like BAM with adapters
and BTS outperform expert merging methods
without learned connections between experts,
such as Model Soup, BTM, and Expert Routing.
This demonstrates the importance of adding in-
termediate learned connections between experts.

¢ BTS achieves the best generalist performance:
Among all models — seed, expert, expert merging,
and experts upcycling — BTS achieves the high-
est average performance across tasks. Notably,
BTS achieves similar or better performance to
the expert upcycling baselines at only a fraction
of the training parameters.

* BTS can outperform individual experts in
their specialized tasks: BTS emerges not only
as the most well-rounded generalist model, but is
also the only model which achieves better perfor-
mance than any individual expert in some tasks.
BTS outperforms the Code expert in MBPP and
the Math expert in the MATH task.

4 Ablations and analysis

4.1 Enabling cross capabilities

In addition to evaluating merged models on the
union of the expert capabilities, we also explore
whether merged models can demonstrate entirely
new capabilities at the intersection of expert spe-
cialties [Zhong et al., 2024]. For example — can
a Russian-language expert and a Math expert be
combined in such a way that the merged model
performs better than either expert at Russian math
tasks? We refer to these as cross capabilities.

Cross capabilities experimental set-up In order
to evaluate cross capabilities, we train an additional
Russian-language expert specifically on Russian
data, and all merged models are created with only

6821



General Code Multilingual Math
MMLU BBH MBPP HE Flores(S) Flores(T) GSMS8K MATH Avg.
Seed Hub 358 369 32.2 220 30.9 36.2 20.2 10.6 28.1
Math Hub 339 378 30.7 20.1 29.8 36.0 15.6 573 262

Table 3: Comparison of using the seed model as the hub versus an expert. We ablate BTS with a variant where
we use the Math expert model as the hub. Using the seed model as the hub significantly outperforms using an expert

model as the hub across most tasks.

Flores Ru-

GSMSK En/Ru Rw/En MGSM
Dense models
Seed Model 10.5 228 328 12.8
Math Expert *20.5 102 289 10.8
Russian Expert 948 *323 346 9.60
Seed DM 126 248 328 14.0
Expert upcycling
BTX Sample 156 299 343 17.6
BTX Soft 17.6  30.6 345 17.6
BAM 193 309 345 *184
Expert merging
Model Soup 175 147 323 13.2
BTM 20.5 *323 346  9.60
Expert Routing 948 *323 346 9.60
BAM Adapters 152 31.0 343 15.6
BTS 133 319 *34.7 16.0

Table 4: Cross capability performance. We evaluate
the seed model, Russian-language, and Math experts
on the Russian subset of MGSM. We compare their
performance with expert merging and expert upcyling
baselines trained with small amounts of in-domain data
on Russian math. We also continued pretraining the
strongest dense model, the seed model, on the same
in-domain data, referred to as Seed Model (DM).

the Russian and Math experts®. We make these
choices in order to study cross capability emer-
gence in a controlled setting:

* Reducing cross capability expert contamina-
tion: Our coding data contained significant por-
tions of non-English natural language, affecting
the Code expert’s ability in multilingual reason-
ing tasks, so we remove this model from this
mix [Blevins and Zettlemoyer, 2022]. We fur-
ther remove the seed model which contains both

®Note that when merging only two experts, there is no

notion of “hub” model: the stitch layers alternate between
merging Russian-into-Math and Math-into-Russian.

multilingual and math data.

* Prevalance of cross capability training and
evaluation data: We limit our study to languages
in which we have cross capability data to both
train and evaluate the models on — for this rea-
son, we focused on Russian and Math.

During the expert merging or upcycling train-
ing phase, we train on 2B tokens of Russian math
data extracted from web data using a combination
of language identification (LID) and math classi-
fiers. We found this additional cross capability in-
domain training data was essential for any variants
to achieve strong performance (see experiments in
§D.1).

We introduce an additional baseline via contin-
ued pretraining the strongest dense model, the seed
model, in a data-matched manner on the Russian
math data. This is to evaluate the impact of training
on in-domain data without increasing the overall
model capacity. Additional details of the experi-
mental set-up are provided in §D.1. All models are
evaluated on the Russian subset of MGSM (8-shot;
Shi et al. 2022), which are Russian translations of
examples from GSMS8K [Cobbe et al., 2021].

Cross capabilities results Results are reported
in Table 4. Notably, BTS can effectively leverage
both experts to excel at a new task, surpassing the
data-matched seed model baseline, even though the
experts themselves remain unchanged: by adding
connections between them, the resulting model ex-
ceeds the sum of its individual parts. Among all
expert-merging baselines, BTS achieves the best
cross capability performance. BTX and BAM vari-
ants also show strong performance, outperforming
BTS, likely due to their significantly greater train-
ing capacity on in-domain data.

4.2 BTS architecture design

Below, we ablate the impact of choosing the seed
model as the hub, as well as the importance of the

6822



alternating stitch layer architecture. For additional
ablations on the impact of varying the number of
stitch layers, see §D.3.

Impact of hub model selection We default to
using the seed model as the hub in BTS, since all
experts are initialized from it, making its repre-
sentations more aligned with the experts than the
experts are with each other. We hypothesized that
allows a more effective merging of representations
via the BTS stitch layers. To test this, we use an ex-
pert model as the hub instead. We select the Math
expert for this experiment, as it has the best average
performance among all expert models, and treat the
seed model as a spoke. As shown in Table 3, using
the seed model as the hub consistently yields better
downstream performance.

Importance of the alternating stitch layer ar-
chitecture BTS alternates between Experts-into-
Hub and Hub-into-Experts stitch layers. We ab-
late this design by comparing to a non-alternating
variant with only all Experts-into-Hub layers. As
shown in Table 5, the alternating design signif-
icantly improves cross capability performance.
Both variants performe similarly on generalist tasks
(see Table 8). These results demonstrate that an
alternating architecture is essential for achieving
cross capability performance while maintaining
strong generalist performance.

Flores Ru-

GSMSK En/Ru Ruw/En MGSM

BTS Alternate 13.3 319 34.7 16.0
Non-Alternate 15.2 320 35.0 11.6

Table 5: Comparison of alternating and non-
alternating BTS variants on cross capabilities tasks
with additional in-domain Russian math training data.

4.3 Interpreting the BTS stitch layers

The gate values of the Experts-into-Hub stitch layer
determine the weight of each expert in the com-
bined representation. Intuitively, the higher the
expert or seed model’s gate values, the more impor-
tant this model is for the task. We inspect these val-
ues to get insight into the model’s decision-making
progress on various tasks.

Visualizing gate values on expert specialty tasks
Figure 2 visualizes how the gate values of the last
stitch layer, an Experts-into-Hub stitch layer, vary

when generating a sequence during inference on
various expert specialty tasks. The first row plots
the gate values for prompt tokens, while the second
row plots the gate values for the generated tokens.
Each column corresponds to a different prompt,
sampled from the corresponding benchmark task.
This visualization shows that the gate values
align closely with the task requirements. The spe-
cialized expert associated with the task typically
dominates the gate values, while effectively mix-
ing representations from different models over the
course of the sequence. For the math task GSMS8K,
the math expert has the highest gate values through-
out the generation, while the other models’ gate
values are near zero. For the language translation
task Flores, the multilingual expert and the seed
model dominate, with each model being relied on
more heavily at different parts of the prompt or
generation. For the coding task HumanEval, the
coding expert and the seed model dominates.

GSM8K(8-shot) Flores En/Deu(1-shot) HumanEval(0-shot)

0.8
b~ 0.6 0.4
[3) \— Base
5 051\ — code 0.4 =
(&) —— Multilingual 0.2
¢ Math 02 3 A
00 a — e
0 500 0 100 0 20
c 0.6
S 04
Sos 0.4 P
2 0.2
8 0.2 '
p— \/‘/\W
0.0 | =— =
0 20 0 20 0 50 100
Token Token Token

Figure 2: Visualization of BTS gate values in the
final stitch layer during inference. For each task,
the corresponding specialized expert typically has the
highest gate values, showing that BTS learns to rely on
the relevant experts.

Visualizing gate value transitions on context-
switching tasks Unlike merge methods which
make sequence-level choices about which expert
to use, BTS can effectively context switch over the
course of the sequence, seamlessly transitioning be-
tween different tasks. Figure 3 illustrates the gate
values of BTS’s final stitch layer when processing
context-switching prompts. These prompts are con-
structed by concatenating examples from Flores
(3-shot), GSMS8K (2-shot), and TriviaQA [2-shot;
Joshi et al., 2017], in that order, with vertical dotted
lines indicating where a new task begins. Each col-
umn corresponds to a different context-switching
prompt, created from distinct sampled inputs. In
both examples, BTS demonstrates its ability to dy-

6823



—— Base

06| —— Code
——  Multilingual
04 Math

0.2

0.8

0.6

0.4

0.2

0 100 200 300 400 500 600

Figure 3: Visualization of the gate values of BTS’s
final stitch layer for context-switching sequences at
inference time. These sequences are constructed by
concatenating question-answer examples from Flores
(3-shot), GSMS8K (2-shot), and TriviaQA (2-shot), in
that order, with dotted lines indicating task transitions.
Each plot corresponds to a different randomly sampled
prompt.

namically adjust expert utilization. During the Flo-
res prompt, the seed model and multilingual ex-
pert are predominantly active. During the GSM8K
prompt, the math expert takes over, and finally,
the seed model is most utilized for the TriviaQA
prompt. This highlights BTS’s capability to cor-
rectly activate the relevant experts for each task,
even when transitioning between diverse contexts.

5 Related work

Weights merging Previous works have demon-
strated that linearly interpolating the weights of
multiple expert models with the same architecture
can produce a more effective model. Model Soup-
ing [Wortsman et al., 2022] achieves this by uni-
formly averaging model weights, whereas methods
like BTM [Li et al., 2022], C-BTM [Gururangan
et al., 2023], and SMEAR [Mugeeth et al., 2023]
dynamically compute the weighting of each ex-
pert’s model parameters based on the given prompt.

Output ensembles In addition to averaging
model weights, several works have explored aver-
aging model outputs to create ensembles of expert
models [Li et al., 2022, Gururangan et al., 2023].
However, these approaches are limited in expres-
sivity.

Routing among dense models Another ap-
proach involves routing the entire input and gen-

eration to a single model selected from multiple
expert LLMs [Filippova et al., 2024, Ong et al.,
2024]. However, these methods are limited when
the input requires expertise from multiple domains
or involves context-switching between different
tasks.

Mixture-of-Experts upcycling Several works
have explored using pretrained dense models to ini-
tialize MoEs [Komatsuzaki et al., 2022, Sukhbaatar
et al., 2024, Zhang et al., 2024]. These approaches
copy each expert model’s parameters to initialize
the corresponding experts in the MoE. For the
MoE’s non-expert parameters, they average the
parameters of the pretrained experts. The router
is initialized from scratch. Following initializa-
tion, the MoE undergoes a training phase where all
model parameters are updated.

Adding connections between models Recent
works have proposed adapting language models
to new modalities by composing modality-specific
models, e.g., Alayrac et al. [2022] propose adding
cross-attention parameters to allow a language
model to condition on visual inputs, and Liang
et al. [2024] uses global self-attention to fuse mod-
els for different modalities. Perhaps most similar
to our work, Bansal et al. [2024] extend this idea to
domain-specific language models, and propose aug-
menting an “anchor” language model with a single
domain-specific model through cross-attention.

6 Conclusion

We introduced BRANCH-TRAIN-STITCH (BTS)
an efficient and flexible method for merging expert
models into a stronger, unified, generalist model.
BTS combines expert models by inserting novel
“stitch” layers between expert language model lay-
ers, which are learned in a lightweight training step.
In experiments, we find that this approach outper-
forms competitive baselines, yielding the strongest
generalist model performance with only a small
number of training parameters. In some settings,
BTS is shown to even outperform the expert models
in their specialized domains. We further demon-
strate that a BTS model can demonstrate new skills
at the intersection of expert domains and motivate
this architecture with extensive ablations and anal-
ysis. We hope this work furthers research into
efficient and flexible methods for creating gener-
alist large language models by re-using modular,
independently-trained experts.

6824



Limitations

Results on a parameter-matched data-matched
dense model Scaling up dense models, such as
training a parameter-matched data-matched dense
11B model, introduces infrastructure challenges
and datamix trade-offs. BTS and other “ Branch-
Train” methods [Li et al., 2022, Sukhbaatar et al.,
2024, Zhang et al., 2024] are explicitly designed to
alleviate these challenges by asynchronously train-
ing smaller experts in parallel without massive syn-
chronization overhead. And in many cases, the ex-
pert models already exist, making the method even
more practical. Thus, “Branch-Train” methods,
including BTS, are posed as alternative methods
to scaling dense models. Although a parameter-
matched data-matched baseline model would be
an interesting comparison, we focused our lim-
ited compute on the main comparison and ablation
showcasing the validity of our approach. For simi-
lar reasons, other “Branch-Train” methods [Zhang
et al., 2024, Sukhbaatar et al., 2024, Li et al., 2022]
also did not include such a baseline in their papers.

Active parameter count of BTS While BTS has
the highest active parameter count, it uses far fewer
training parameters than expert upcycling methods.
As BTS inserts a stitch layer every five layers, we
compare BTS to the strongest baseline, BAM, in
Appendix E, finding similar inference efficiency
per five layers, but significantly lower training cost
during merging. One future direction is improv-
ing BTS to not only have fewer training parame-
ters, but also fewer active parameters. One way
of achieving this is adding a router layer after the
input embedding layer, which dynamically selects
a subset of relevant experts based on the input se-
quence. Then, only a subset of experts would be
stitched for each input sequence. This modification
would effectively introduce sparsity, reducing the
number of active parameters and mitigating poten-
tial redundancy. Exploring this approach would be
an interesting direction for future research.

Results beyond Pre-Training Our work focuses
on the pretraining stage, so all models, including
baselines, are trained on pretraining data only. This
is consistent with prior works in the “Branch-Train”
family [Sukhbaatar et al., 2024, Zhang et al., 2024]:
while our approach can be directly applied in in-
struction finetuning or reinforcement learning fine-
tuning procedures, we leave that for future work as
we focused on the pretraining stage in this paper.

Acknowledgments

We extend our thanks to Sachin Mehta, Ruslan
Mavlyutov, Alexei Baevski, Onur Celebi, Niladri
Chatterji and Mik Vyatskov for their assistance
with the training infrastructure. We’d like to also
thank Ravikumar Rajendran, Siarhei Loginau and
Tim Wang for their assistance with the compute
infrastructure. We thank Vedanuj Goswami for his
assistance in training the models used in the ex-
periments. We are also grateful to Anirudh Goyal,
Akhil Mathur, and Wenhan Xiong for providing
helpful pointers regarding data mixtures. We ap-
preciate Ellen Tan, Rocky Wang, Todor Mihaylov,
Xuchao Jia, and Mihir Sanjay Kale for helping with
using the data preparation pipeline. We also thank
Florian Laplantif, Norman Cheng, Lovish Madaan,
and Kunal Bhalla for their support with the eval-
uation infrastructure. QZ thanks Chris Lu for dis-
cussions on the project and helpful suggestions
during the rebuttals. Finally, we thank Melanie
Kambadur for her general assistance and support
of this project.

6825



References

Armen Aghajanyan, Akshat Shrivastava, Anchit Gupta,
Naman Goyal, Luke Zettlemoyer, and Sonal Gupta.
2021. Better fine-tuning by reducing representational
collapse. In 9th International Conference on Learn-
ing Representations, ICLR 2021, Virtual Event, Aus-
tria, May 3-7, 2021. OpenReview.net.

Jean-Baptiste Alayrac, Jeff Donahue, Pauline Luc,
Antoine Miech, Iain Barr, Yana Hasson, Karel
Lenc, Arthur Mensch, Katherine Millican, Malcolm
Reynolds, Roman Ring, Eliza Rutherford, Serkan
Cabi, Tengda Han, Zhitao Gong, Sina Samangooei,
Marianne Monteiro, Jacob L. Menick, Sebastian
Borgeaud, and 8 others. 2022. Flamingo: a visual
language model for few-shot learning. In Advances
in Neural Information Processing Systems 35: An-
nual Conference on Neural Information Processing
Systems 2022, NeurIPS 2022, New Orleans, LA, USA,
November 28 - December 9, 2022.

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten
Bosma, Henryk Michalewski, David Dohan, Ellen
Jiang, Carrie Cai, Michael Terry, Quoc Le, and
Charles Sutton. 2021. Program synthesis with large
language models. Preprint, arXiv:2108.07732.

Zhangir Azerbayev, Hailey Schoelkopf, Keiran Paster,
Marco Dos Santos, Stephen McAleer, Albert Q Jiang,
Jia Deng, Stella Biderman, and Sean Welleck. 2023.
Llemma: An open language model for mathematics.
arXiv preprint arXiv:2310.10631.

Rachit Bansal, Bidisha Samanta, Siddharth Dalmia,
Nitish Gupta, Shikhar Vashishth, Sriram Ganap-
athy, Abhishek Bapna, Prateek Jain, and Partha
Talukdar. 2024. Llm augmented llms: Expanding
capabilities through composition. arXiv preprint
arXiv:2401.02412.

Terra Blevins and Luke Zettlemoyer. 2022. Language
contamination helps explain the cross-lingual capa-
bilities of english pretrained models. arXiv preprint
arXiv:2204.08110.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan,
Henrique Ponde de Oliveira Pinto, Jared Kaplan,
Harri Edwards, Yuri Burda, Nicholas Joseph, Greg
Brockman, Alex Ray, Raul Puri, Gretchen Krueger,
Michael Petrov, Heidy Khlaaf, Girish Sastry, Pamela
Mishkin, Brooke Chan, Scott Gray, and 39 others.
2021. Evaluating large language models trained on
code.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian,
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro
Nakano, Christopher Hesse, and John Schulman.
2021. Training verifiers to solve math word prob-
lems. arXiv preprint arXiv:2110.14168.

Ben Cottier, Robi Rahman, Loredana Fattorini, Nestor
Maslej, Tamay Besiroglu, and David Owen. 2024.
The rising costs of training frontier ai models. arXiv
preprint arXiv:2405.21015.

Tri Dao. 2023. Flashattention-2: Faster attention with
better parallelism and work partitioning. arXiv
preprint arXiv:2307.08691.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey,
Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman,
Akhil Mathur, Alan Schelten, Amy Yang, Angela
Fan, and 1 others. 2024. The llama 3 herd of models.
arXiv preprint arXiv:2407.21783.

Jared Fernandez, Luca Wehrstedt, Leonid Shamis,
Mostafa Elhoushi, Kalyan Saladi, Yonatan Bisk,
Emma Strubell, and Jacob Kahn. 2024. Hard-
ware scaling trends and diminishing returns in
large-scale distributed training. arXiv preprint
arXiv:2411.13055.

Anastasiia Filippova, Angelos Katharopoulos, David
Grangier, and Ronan Collobert. 2024. No need to
talk: Asynchronous mixture of language models.
arXiv preprint arXiv:2410.03529.

Amir Gholami, Zhewei Yao, Sehoon Kim, Coleman
Hooper, Michael W Mahoney, and Kurt Keutzer.
2024. Ai and memory wall. IEEE Micro.

Naman Goyal, Cynthia Gao, Vishrav Chaudhary, Peng-
Jen Chen, Guillaume Wenzek, Da Ju, Sanjana Krish-
nan, MarcAAZ Aurelio Ranzato, Francisco Guzman,
and Angela Fan. 2022. The flores-101 evaluation
benchmark for low-resource and multilingual ma-
chine translation. Transactions of the Association for
Computational Linguistics, 10:522-538.

Suchin Gururangan, Margaret Li, Mike Lewis, Wei-
jia Shi, Tim Althoff, Noah A Smith, and Luke
Zettlemoyer. 2023. Scaling expert language models
with unsupervised domain discovery. arXiv preprint
arXiv:2303.14177.

Suchin Gururangan, Ana MarasoviAG, Swabha
Swayamdipta, Kyle Lo, 1z Beltagy, Doug Downey,
and Noah A. Smith. 2020. Don’t stop pretrain-
ing: Adapt language models to domains and tasks.
Preprint, arXiv:2004.10964.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou,
Mantas Mazeika, Dawn Song, and Jacob Steinhardt.
2021a. Measuring massive multitask language under-
standing. Preprint, arXiv:2009.03300.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul
Arora, Steven Basart, Eric Tang, Dawn Song, and
Jacob Steinhardt. 2021b. Measuring mathematical
problem solving with the math dataset. NeurIPS.

Quzhe Huang, Mingxu Tao, Chen Zhang, Zhenwei An,
Cong Jiang, Zhibin Chen, Zirui Wu, and Yansong
Feng. 2023. Lawyer llama technical report. arXiv
preprint arXiv:2305.15062.

Eric Jang, Shixiang Gu, and Ben Poole. 2016. Categori-
cal reparameterization with gumbel-softmax. arXiv
preprint arXiv:1611.01144.

6826


https://openreview.net/forum?id=OQ08SN70M1V
https://openreview.net/forum?id=OQ08SN70M1V
http://papers.nips.cc/paper_files/paper/2022/hash/960a172bc7fbf0177ccccbb411a7d800-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/960a172bc7fbf0177ccccbb411a7d800-Abstract-Conference.html
https://arxiv.org/abs/2108.07732
https://arxiv.org/abs/2108.07732
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2004.10964
https://arxiv.org/abs/2004.10964
https://arxiv.org/abs/2009.03300
https://arxiv.org/abs/2009.03300

Mandar Joshi, Eunsol Choi, Daniel S Weld, and Luke
Zettlemoyer. 2017. Triviaga: A large scale distantly
supervised challenge dataset for reading comprehen-
sion. arXiv preprint arXiv:1705.03551.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B
Brown, Benjamin Chess, Rewon Child, Scott Gray,
Alec Radford, Jeffrey Wu, and Dario Amodei. 2020.
Scaling laws for neural language models. arXiv
preprint arXiv:2001.08361.

Apostolos Kokolis, Michael Kuchnik, John Hoffman,
Adithya Kumar, Parth Malani, Faye Ma, Zachary De-
Vito, Shubho Sengupta, Kalyan Saladi, and Carole-
Jean Wu. 2025. Revisiting reliability in large-scale
machine learning research clusters. In 2025 IEEE
International Symposium on High Performance Com-
puter Architecture (HPCA), pages 1259—-1274. IEEE.

Aran Komatsuzaki, Joan Puigcerver, James Lee-Thorp,
Carlos Riquelme Ruiz, Basil Mustafa, Joshua Ainslie,
Yi Tay, Mostafa Dehghani, and Neil Houlsby.
2022.  Sparse upcycling: Training mixture-of-
experts from dense checkpoints. arXiv preprint
arXiv:2212.05055.

Margaret Li, Suchin Gururangan, Tim Dettmers, Mike
Lewis, Tim Althoff, Noah A Smith, and Luke Zettle-
moyer. 2022. Branch-train-merge: Embarrassingly
parallel training of expert language models. arXiv
preprint arXiv:2208.03306.

Weixin Liang, Lili Yu, Liang Luo, Srinivasan Iyer, Ning
Dong, Chunting Zhou, Gargi Ghosh, Mike Lewis,
Wen-tau Yih, Luke Zettlemoyer, and 1 others. 2024.
Mixture-of-transformers: A sparse and scalable ar-
chitecture for multi-modal foundation models. arXiv
preprint arXiv:2411.04996.

Ilya Loshchilov and Frank Hutter. 2017. Decou-
pled weight decay regularization. arXiv preprint
arXiv:1711.05101.

Michael McCloskey and Neal J. Cohen. 1989. Catas-
trophic interference in connectionist networks: The
sequential learning problem. volume 24 of Psychol-
0gy of Learning and Motivation, pages 109-165. Aca-
demic Press.

Mohammed Mugeeth, Haokun Liu, and Colin Raffel.
2023. Soft merging of experts with adaptive routing.
arXiv preprint arXiv:2306.03745.

Deepak Narayanan, Mohammad Shoeybi, Jared Casper,
Patrick LeGresley, Mostofa Patwary, Vijay Kor-
thikanti, Dmitri Vainbrand, Prethvi Kashinkunti,
Julie Bernauer, Bryan Catanzaro, and 1 others. 2021.
Efficient large-scale language model training on gpu
clusters using megatron-lm. In Proceedings of the in-
ternational conference for high performance comput-
ing, networking, storage and analysis, pages 1-15.

Isaac Ong, Amjad Almahairi, Vincent Wu, Wei-Lin
Chiang, Tianhao Wu, Joseph E Gonzalez, M Waleed
Kadous, and Ion Stoica. 2024. Routellm: Learning
to route 1lms with preference data. arXiv preprint
arXiv:2406.18665.

Keiran Paster, Marco Dos Santos, Zhangir Azerbayeyv,
and Jimmy Ba. 2023. Openwebmath: An open
dataset of high-quality mathematical web text. arXiv
preprint arXiv:2310.06786.

Baptiste Roziere, Jonas Gehring, Fabian Gloeckle, Sten
Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi Adi,
Jingyu Liu, Tal Remez, Jérémy Rapin, Artyom
Kozhevnikov, Ivan Evtimov, Joanna Bitton, Man-
ish Bhatt, Cristian Canton-Ferrer, Aaron Grattafiori,
Wenhan Xiong, Alexandre Défossez, Jade Copet, and
6 others. 2023. Code llama: Open foundation models
for code. CoRR, abs/2308.12950.

Baptiste Roziere, Jonas Gehring, Fabian Gloeckle, Sten
Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi Adi,
Jingyu Liu, Romain Sauvestre, Tal Remez, and 1
others. 2023. Code llama: Open foundation models
for code. arXiv preprint arXiv:2308.12950.

Noam Shazeer, Azalia Mirhoseini, Krzysztof Maziarz,
Andy Davis, Quoc V. Le, Geoffrey E. Hinton, and
Jeff Dean. 2017. Outrageously large neural networks:
The sparsely-gated mixture-of-experts layer. In 5th
International Conference on Learning Representa-
tions, ICLR 2017, Toulon, France, April 24-26, 2017,
Conference Track Proceedings. OpenReview.net.

Freda Shi, Mirac Suzgun, Markus Freitag, Xuezhi Wang,
Suraj Srivats, Soroush Vosoughi, Hyung Won Chung,
Yi Tay, Sebastian Ruder, Denny Zhou, and 1 others.
2022. Language models are multilingual chain-of-
thought reasoners. arXiv preprint arXiv:2210.03057.

Sainbayar Sukhbaatar, Olga Golovneva, Vasu Sharma,
Hu Xu, Xi Victoria Lin, Baptiste Roziere, Jacob
Kahn, Daniel Li, Wen-tau Yih, Jason Weston, and
1 others. 2024. Branch-train-mix: Mixing expert
Ilms into a mixture-of-experts llm. arXiv preprint
arXiv:2403.07816.

Mirac Suzgun, Nathan Scales, Nathanael Schirli, Se-
bastian Gehrmann, Yi Tay, Hyung Won Chung,
Aakanksha Chowdhery, Quoc V Le, Ed H Chi, Denny
Zhou, , and Jason Wei. 2022. Challenging big-bench
tasks and whether chain-of-thought can solve them.
arXiv preprint arXiv:2210.09261.

Yi-Lin Tuan, Xilun Chen, Eric Michael Smith,
Louis Martin, Soumya Batra, Asli Celikyilmaz,
William Yang Wang, and Daniel M. Bikel. 2024.
Towards safety and helpfulness balanced responses

via controllable large language models. CoRR,
abs/2404.01295.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems 30: Annual Conference on Neural
Information Processing Systems 2017, December 4-9,
2017, Long Beach, CA, USA, pages 5998—-6008.

Mitchell Wortsman, Gabriel Ilharco, Samir Ya Gadre,
Rebecca Roelofs, Raphael Gontijo-Lopes, Ari S Mor-
cos, Hongseok Namkoong, Ali Farhadi, Yair Car-
mon, Simon Kornblith, and 1 others. 2022. Model

6827


https://doi.org/10.1016/S0079-7421(08)60536-8
https://doi.org/10.1016/S0079-7421(08)60536-8
https://doi.org/10.1016/S0079-7421(08)60536-8
https://doi.org/10.48550/ARXIV.2308.12950
https://doi.org/10.48550/ARXIV.2308.12950
https://openreview.net/forum?id=B1ckMDqlg
https://openreview.net/forum?id=B1ckMDqlg
https://doi.org/10.48550/ARXIV.2404.01295
https://doi.org/10.48550/ARXIV.2404.01295
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html

soups: averaging weights of multiple fine-tuned mod-
els improves accuracy without increasing inference
time. In International conference on machine learn-
ing, pages 23965-23998. PMLR.

Sang Michael Xie, Hieu Pham, Xuanyi Dong, Nan Du,
Hanxiao Liu, Yifeng Lu, Percy Liang, Quoc V. Le,
Tengyu Ma, and Adams Wei Yu. 2023. Doremi: Op-
timizing data mixtures speeds up language model
pretraining. In Advances in Neural Information Pro-
cessing Systems 36: Annual Conference on Neural
Information Processing Systems 2023, NeurlPS 2023,
New Orleans, LA, USA, December 10 - 16, 2023.

Jiasheng Ye, Peiju Liu, Tianxiang Sun, Yunhua Zhou,
Jun Zhan, and Xipeng Qiu. 2024. Data mixing laws:
Optimizing data mixtures by predicting language
modeling performance. CoRR, abs/2403.16952.

Qizhen Zhang, Nikolas Gritsch, Dwaraknath Gnanesh-
war, Simon Guo, David Cairuz, Bharat Venkitesh,
Jakob Foerster, Phil Blunsom, Sebastian Ruder, Ah-
met Ustun, and 1 others. 2024. Bam! just like that:
Simple and efficient parameter upcycling for mixture
of experts. arXiv preprint arXiv:2408.08274.

Susan Zhang, Stephen Roller, Naman Goyal, Mikel
Artetxe, Moya Chen, Shuohui Chen, Christopher De-
wan, Mona Diab, Xian Li, Xi Victoria Lin, and 1
others. 2022a. Opt: Open pre-trained transformer
language models. arXiv preprint arXiv:2205.01068.

Xiaofeng Zhang, Yikang Shen, Zeyu Huang, Jie Zhou,
Wenge Rong, and Zhang Xiong. 2022b. Mixture of
attention heads: Selecting attention heads per token.
arXiv preprint arXiv:2210.05144.

Ming Zhong, Aston Zhang, Xuewei Wang, Rui Hou,
Wenhan Xiong, Chenguang Zhu, Zhengxing Chen,
Liang Tan, Chloe Bi, Mike Lewis, and 1 others. 2024.
Law of the weakest link: Cross capabilities of large
language models. arXiv preprint arXiv:2409.19951.

6828


http://papers.nips.cc/paper_files/paper/2023/hash/dcba6be91359358c2355cd920da3fcbd-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/dcba6be91359358c2355cd920da3fcbd-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/dcba6be91359358c2355cd920da3fcbd-Abstract-Conference.html
https://doi.org/10.48550/ARXIV.2403.16952
https://doi.org/10.48550/ARXIV.2403.16952
https://doi.org/10.48550/ARXIV.2403.16952

A Architecture details for seed and expert

models

Layers 20
Model Dimension 3072
FFN Dimension 12288
Attention Heads 24
Key/Value Heads 1
Activation Function SwiGLU
Vocabulary Size 128,000

.. . RoPE
Positional Embeddings (0 = 500,000)

Table 6: Architecture details for the 2.7B parameter
seed model and expert models.

See Table 6 for the architecture details for the
2.7B parameter seed model and expert models.

B Language model architecture
background

Transformer The typical architecture of large
language models (LLMs) is built by stacking mul-
tiple Transformer blocks [Vaswani et al., 2017].
Each Transformer block consists of a Multi-Headed
Attention module, commonly referred to as the at-
tention layer, followed by a residual connection
and a feed-forward neural network (FFN).

Mixture-of-Experts The Mixture of Experts
[MoE; Shazeer et al., 2017] model replaces the
FFN in the Transformer by an MoE layer. An MoE
layer consists of a linear router and a set of N FFN
experts, denoted as {FFN;(z)}Y . The router pro-
duces router logits, which we denote as p(x) after
normalization, for the input representation . p;(x)
is the gating value for the i-th FFN expert, FFN;.
The router assigns the input representation x to a
subset of experts, 7, with the highest gate values.
The final output of the MoE layer is the weighted
sum of the selected experts’ outputs, weighted by
their gating values:

YMoE = sz(:z:)FFNz(:r) “4)

€T
Mixture-of-Attention Mixture of Attention
[MoA; Zhang et al., 2022b] extends MoE by also

replacing the attention layer in Transformers with
an MoA layer. Similar to the MoE layer, an MoA

layer comprises of a set of NV attention experts (de-
noted as {Attentionj(x)};vz 1)» a linear router that
outputs router logits. We denote the normalized
router logits as ¢(x). The MoA layer’s final output
is a gating-value weighted sum of the computations
from the selected attention experts M:

YMoA = Z ¢i(x)Attention; (). (5)
ieM

C Additional model training details

Seed model We pretrain a 2.7B parameter lan-
guage model, following the same text recipe used
in Llama 3 [Dubey et al., 2024]. See Table 6 for
architecture details. We employ a learning rate
schedule that warms up from 0 to 4e-4 over 2000
steps, then undergoes a cosine decay to 1% of the
peak learning rate. The seed model is trained for
2.2 million steps on 15T tokens.

Expert models We create three copies of the seed
model, each of which is continually trained for 96k
training steps over a 200B token specialized data
mixture to produce expert models for code, math,
and multilingual tasks. During the continued pre-
training phase, we use a batch size of 2M tokens
and a learning rate of 5e-6, followed immediately
by a cosine decay schedule that reduces the learn-
ing rate to 1% of its initial value. This learning rate
is derived by annealing from the final learning rate
used at the end of seed model pretraining, adjusted
to account for the reduced batch size in this con-
tinued pretraining phase. We adopted this learning
rate strategy as it yielded the most stable learning
during the continued pretraining phase

BTS model We use four stitch layers to combine
the seed model together with the three expert mod-
els. The four stitch layers are inserted after every
five layers in the seed and expert models. We re-
fer to the resulting model as the BTS model. As
described in §2, the four stitch layers alternate be-
tween a Hub-into-Expert stitch layer and Experts-
into-Hub stitch layer. Upon initialization, the BTS
model is further trained for 15B tokens over 7000
steps using a batch size of 2M tokens. The opti-
mization objective is to minimize the cross entropy
loss from the hub model’s output. The learning rate
schedule warms up from 0 to 5e-6 over 2000 steps,
then undergoes a cosine decay to 1% of the peak
learning rate. Note that during the BTS training
phase, only the stitch layers are updated while all

6829



Flores

GSMS8K En/Ru RwEn Ru-MGSM
Dense models
Seed Model 10.5 22.8 32.8 12.8
Math Expert *20.5 10.2 28.9 10.8
Russian Expert 9.48 323 *34.6 9.60
Expert upcycling
BTX Sample 18.3 30.4 34.0 10.0
BTX Soft 18.0 30.0 33.9 124
BAM *20.5 30.6 34.5 10.8
Expert merging
Model Soup 17.5 14.7 32.3 *13.2
BTM 20.5 323 34.6 9.60
Expert Routing 9.48 323 *34.6 9.60
BAM Adapter 18.1 30.9 34.1 12.8
BTS 19.0 31.6 33.0 10.0

Table 7: Cross capability performance of merged models without in-domain data. We evaluate the seed model,
Russian-language, and Math experts on Russian MGSM [Shi et al., 2022] and compare performance with merged
and upcycled models. We do not use any in-domain training data during the merging or upcycling training process.
The results indicate that a small amount of cross capability data is necessary for merged or upcycled models to
effectively learn cross capabilities.

General Code Multilingual Math
MMLU BBH MBPP HE Flores(S) Flores(T) GSMS8K MATH Avg.
BTS Alternate 35.8 369 322 220 309 36.2 20.2 10.6 28.1
Non Alternate 36.1 379 324 22.6 314 36.4 19.9 10.8 284

Table 8: Comparison of alternating and non-alternating BTS variants on generalist tasks. Both variants achieves
similar performance on most domains, with the non-alternating variant slightly outperforming the alternating variant

on average.

the parameters of the seed model and the expert
models are frozen.

Expert Routing We train a linear router €
RYMX™ that routes to either the seed model or one
of the expert models. The router’s training objec-
tive is a classification cross-entropy loss where the
target is the model with the smallest next-token
prediction loss for the input. Given a prompt, the
router decides on the model and routes all subse-
quent tokens to the same model. During training,
the routing decision is made based on the average
embedding of the first ¢ tokens in the input, where ¢
is randomly sampled between 32 and 256. During
inference, the routing decision is made based on
the average embedding of the entire prompt. We
train the linear router with a constant learning rate
of 5e-4 and batch size of 1M. The model is trained

for 1 billion tokens only, as we did not see an im-
provement in downstream metrics or training loss
with further training.

D Additional Ablations

D.1 Cross capabilities: additional details and
experiments

D.1.1 Further experiment details

Russian expert model training To enhance
cross capabilities in mathematical skills for Rus-
sian, we train an additional expert specifically on
Russian data. The expert training setup follows the
same procedure outlined in §C. For training data,
we utilize the Russian subset of the multilingual
dataset previously used for the multilingual expert,
as described in §3.2.

6830



General Code Multilingual Math
MMLU BBH MBPP HE Flores(S) Flores(T) GSMS8K MATH Avg.
10 Layers 36.1 37.8 31.8 22.0 31.2 36.5 19.1 104 28.1
4 Layers 358 369 322 220 33.9 36.2 20.2 10.6 28.1
1 Layer 349 378 29.6 19.5 30.8 359 17.7 99 270

Table 9: Ablations on the effect of varying number of stitch layers on downstream task performance. The
first two rows are configurations with 10 and 4 stitch layers distributed uniformly throughout the seed and expert
models. The third row is a configuration with a single Experts-into-Hub stitch layer placed after the last dense
model layers. The 10 and 4 layers configuration performs similarly, but the single-layer configuration lags behind

model performance significantly.

Merged models training As an additional base-
line, we continually pretrain the strongest dense
model in russian MGSm, the seed model, on the
same Russian math pretraining data used for the
merged models. All experiments share the follow-
ing training configuration:

* Learning rate schedule: we warm up from 0 to
5e — 6 over 1000 steps, then undergoes a cosine
decay to 10% of the peak learning rate. The
merged models are trained for a total of 2000
steps. One exception is the expert routing model
is trained for 1000 steps in total with a constant
learning rate of 5e¢ — 4. This was chosen upon
tuning the hyperparameters.

e Batch size: we use a batch size of 1M tokens.

» Token count: All models were trained on 2B to-
kens of Russian math over 2000 training steps.
The exception is expert routing, which only
trained on 1B tokens over 1000 steps, as we did
not see performance improvement with further
training.

D.1.2 Results on merging and upcycling
models without in-domain data

In Table 7, we show results on merging and upcy-
cling models without in-domain data. The merging
phase is instead trained on a data mixture com-
posed of 50% of math expert and 50% of Russian
expert’s continue pretraining data mixture.

We observe that despite being trained with more
tokens during the merging phase, all baseline meth-
ods does not significantly outperform the seed
model on the cross capability task Russian MGSM.
This indicates that in-distribution data is essential.

D.2 Ablations on the alternating architecture

The BTS architecture involves alternating between
the Experts-into-Hub stitch layer and the Hub-into-

Experts stitch layer. We ablate the impact of adopt-
ing this alternating architecture as opposed to uti-
lizing all Experts-into-Hub layers. As shown in Ta-
ble 5, the alternating architecture (first row) yields
significantly better cross capability performance
compared to using only homogeneous Experts-
into-Hub stitch layers (second row). However,
both the alternating and non-alternating architec-
tures achieve comparable performance on general-
ist tasks, as shown in Table 8. These results demon-
strate that an alternating architecture is essential
for achieving cross capability performance while
maintaining strong generalist performance.

D.3 Ablations on the impact of the number of
stitch layers

We measure the impact of varying the number of
stitch layers on model performance, as shown in
Table 9. The first two rows present configurations
with 10 and 4 stitch layers, respectively, distributed
uniformly throughout the seed and expert models.
In the third row, we investigate a configuration with
a single Experts-into-Hub stitch layer placed after
the final language model layers.

Our ablations show that a single stitch layer is
insufficient for learning to effectively merge capa-
bilities, as its performance lags significantly be-
hind configurations with 4 or 10 layers. This also
demonstrates that the BTS models with more than
one stitch layer combine models in a more expres-
sive way than than simply combining output rep-
resentations. The 4 and 10 layer configurations
perform similarly, however, we note that this may
be due to under-training of the 10 layer variant
as all models are trained on the same number of
tokens.

6831



Model MMLU BBH MBPP HE Flores(S) Flores(T) GSMS8K MATH Average
BTS 35.8 36.9 322 220 30.9 36.2 20.2 10.6 28.1
BTS

(no upweight) 30.7 36.2 314 238 30.7 36.2 13.0 7.3 26.2
BAM 35.2 37.1 298 226 31.0 36.1 20.3 10.1 27.8
BAM

(no upweight) 28.9 36.4 314 238 30.8 35.9 13.2 6.2 25.8
BAM Adapters 34.1 37.0 28.8  22.6 31.0 36.1 18.8 10.0 27.3
BAM Adapters

(no upweight) 29.0 36.3 30.8 22.0 30.7 36.0 12.7 6.2 25.5

Table 10: We compare BTS and its strongest baselines trained with and without upweighting. Without
upweighting, BTS and baselines almost always do worse on every benchmark, as they do not see enough expert

data to integrate the expertise of different experts.

D.4 Importance of Data Upweighting

We constructed the data mixture for the BTS train-
ing phase by starting from the seed model data mix
and up-weighting the proportion of data from each
expert’s domain to 15%. This upweighting ensures
that the BTS stitching weights are sufficiently ex-
posed to domain-specific data, enabling them to
learn how to effectively leverage each expert.

To highlight the importance of expert domain
upweighting, we compare BTS and its strongest
baselines trained with and without upweighting.
In Table 10, we show BTS and baselines almost
always do worse on every benchmark without up-
weighting, as they do not see enough expert data to
integrate the expertise of different experts.

6832



Operation Type BAM BTS
Attention Router Params 5Nexperts dmodel -
FLOPs 10nexperts Amodel -
Attention: QKV Params | 15nexperts@model@atn | 15Nexperts@model datn
FLOPs 307experts A2 del 307experts A2 o del
Attention: Mask Params - -
FLOPs 10nexpertsnctxdm0del 10nexpertsnctxdm0del
Attention: Projection Params | 5Nexperts@atn@model | DMexperts@attnImodel
FLOPs | 10nexperts@2odel 107expertsd2 el
FFN Router Params 5Nexperts Amodel -
FLOPs 107expertsdmodel -
FFN Params | 7.5Nexpertsdmodeldff | 7-5Nexpertsdmodel dff
FLOPs 60d model dtf 60d model dtt
BTS: Gate Params - Nexpertsdmodel
FLOPs - 2Nexpertsmodel
BTS: Expert Projections | Params - d?nodelnexperts
FLOPs - 2Nexperts dr2nodel

Table 11: We present the estimated FLOPs per token for every five layers, as BTS inserts one stitch layer every five
layers in our experiments. We adopt the standard FLOPs counting methodology, excluding negligible operations

such as non-linearities, biases, and layer normalization.

E Efficiency Analysis

We compare the efficiency between BTS and the
most competitive generalist baseline from Table 2,
BAM.

Table 11 and Table 12 present the estimated
“FLOPs per token” for every five layers, as BTS
inserts one stitch layer every five layers in our ex-
periments. We adopt the standard FLOPs counting
methodology from [Kaplan et al., 2020], where
we exclude negligible operations such as non-
linearities, biases, and layer normalization. The
exact FLOPs count in Table 12 is calculated using
the architecture details in Table 6.

Inference FLOPs | Training Params
BAM 4,781,752,320 8.4 billion
BTS 4,857,028,608 264 million

Table 12: Based on the arithmetic breakdown from
above, we obtain the inference FLOPs and training pa-
rameters using the architecture details in Table 6 in the
Appendix. The first row shows the arithmetic break-
down for inference FLOPs per token for every five lay-
ers. The second row shows the number of training pa-
rameters during the training phase for the entire model.

We observe that BTS requries approximately the
same inference compute as BAM, every five layers,
with only a 1.6% increase in FLOPs. However,
BTS uses 30x fewer trainable parameters, result-
ing in substantial training efficiency gains:

* Memory savings: BTS reduces optimizer state
size by 30x. Since AdamW [Loshchilov and Hut-
ter, 2017] stores two float32 values per parameter,
BTS saves more than 65 GB of memory savings
compared to BAM.

* Training efficiency: BTS computes 30x fewer
gradients. As the backward pass typically costs
twice the FLOPs of the forward pass [Kaplan
et al., 2020, Dao, 2023], this yields significant
reductions in training compute.

6833



F Pseudo Code for BTS

def

def

StitchLayer(xs, merge_into_hub=True):

nnon

xs: dense models' outputs
x_hub = x[0]
x_experts = x[1:]

g = w_gate(x_hub) # [bs, seq_len, dim, 1+n_experts]

# Experts-into-Hub Layer
if merge_into_hub:
g = dropout(g).softmax(dim=-1)
h_experts = [
w_projlil(x_experts[i]) for i in range(n_experts)
]
h_hub = (g * stack([h] + h_experts, dim=-1)).sum(-1)

# Hub-into-Expert Layer

else:
g = dropout(g).sigmoid()
h_experts = = [
(1 - gl..., i+ 1]) » x_experts[i]
+ (gl..., 1+ 1] * w_projlil(x_hub))

for i in range(n_experts)
h_hug = x_hub
return stack([h_hub] + h_experts, dim=-1)
BTSBlock(xs, ith_layer, BTS_freq):

x_hub = hub_model_layer(xs[0])

x_experts = [expert_model_layer[i]l(xs[i+1]) for i in n_experts]
xs = stack([x_hubl + x_experts, dim=-1)
if ith_layer % BTS_freq = = 0:

# Alternate between two types of stitch layers
hs = StitchLayer(xs, merge_into_hub=(ith_layer//BTS_freq)%2)
return hs

return xs

6834




