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Abstract
Text-to-image models frequently fail to achieve
perfect alignment with textual prompts, par-
ticularly in maintaining proper semantic bind-
ing between semantic elements in the given
prompt. Existing approaches typically require
costly retraining or focus on only correctly
generating the attributes of entities (entity-
attribute binding), ignoring the cruciality of
correctly generating the relations between enti-
ties (entity-relation-entity binding), resulting in
unsatisfactory semantic binding performance.
In this work, we propose a novel training-
free method R-Bind that simultaneously im-
proves both entity-attribute and entity-relation-
entity binding. Our method introduces three
inference-time optimization losses that adjust
attention maps during generation. Compre-
hensive evaluations across multiple datasets
demonstrate our approach’s effectiveness, va-
lidity, and flexibility in enhancing semantic
binding without additional training.

1 Introduction

Text-to-Image (T2I) models have achieved remark-
able capabilities in synthesizing high-quality, pho-
torealistic images (Betker et al., 2023; Esser et al.,
2024). However, these models still face significant
challenges in faithfully interpreting and following
user prompts. Common failure modes include inac-
curacies in object generation, attribute assignments,
and relationships between entities (Li et al., 2024a),
highlighting persistent limitations in semantic bind-
ing.

Numerous approaches have been proposed to
address these limitations. Training-based meth-
ods such as GLIGEN (Li et al., 2023), CoMPaSS
(Zhang et al., 2024) demonstrate promising results
but face two critical challenges including high com-
putational resource requirements and uncertain gen-
eralization capabilities across diverse scenarios.

Training-free approaches have also been ex-
plored to address these limitations. SynGen (Rassin

A man shaping clay on a wheel in a
cluttered workshop.

a green bench and a blue bowl.

Figure 1: Examples of semantic binding using our
method. The images on the left are the original gen-
eration results by SD-1.5, and the images on the right
are generation results using SD-1.5 equipped with our
method.

et al., 2023) introduces specialized losses for entity-
attribute binding (correctly generating the attributes
of an entity, e.g., brown cat). Subsequent works
like (Li et al., 2024b; Meral et al., 2024) further
develop attention-based modifications for this pur-
pose. However, these methods focus exclusively
on entity-attribute binding, neglecting other crucial
prompt semantics, making them unable to address
many semantic binding problems. Notably, they
fail to address entity-relation-entity binding (cor-
rectly generating relations between entities, e.g., a
cat chasing a dog), which is equally (if not more)
vital for faithful text-to-image generation.

In this study, we propose a novel unified ap-
proach to enhance both entity-attribute and entity-
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relation-entity binding in text-to-image generation
by manipulating attention maps during inference.
Our key innovation lies in establishing relation-
aware attention patterns, where both entities main-
tain similar attention focus with this relation, while
preserving distinct attention map between entities
themselves to prevent entity confusion. Simulta-
neously, we enforce different image regions attend
to distinct prompt components, preventing infor-
mation omission or mixing. These principles with
other observations are implemented through three
carefully designed losses to perform inference-time
optimization during denoising, effectively enforc-
ing correct semantic bindings while penalizing in-
correct bindings without requiring additional train-
ing. As illustrated in Figure 1, our method effec-
tively handles complex prompts, with extensive
experiments demonstrating its effectiveness across
diverse scenarios and both U-Net and DiT-based
diffusion architectures.

To summarize, our main contributions are listed
as follows 1:

• We introduce a novel semantic binding ap-
proach which can address both entity-attribute
and entity-relation-entity semantic binding
with three carefully designed losses.

• Our method is training-free and model-
agnostic, effective in both U-Net based and
DiT based diffusion models, making it widely
available.

• Extensive experiments including both auto-
matic evaluation and human study demon-
strate the superiority of our method against
baselines and comparison methods, with an
average of 12.8% improvement on SD-1.5
against the strongest baseline.

2 Related Works

2.1 Diffusion Models
(Ho et al., 2020) first introduced DDPM, which
serves as the foundation for subsequent diffusion
models. In diffusion models, there are gener-
ally two types of conditioning algorithms: clas-
sifier guidance (Dhariwal and Nichol, 2021) and
classifier-free guidance (Ho and Salimans, 2022).
(Rombach et al., 2022) proposes conducting de-
noising in latent space, a technique that has proven
highly successful.

1Our code is available at https://github.com/
lleozhang/R-Bind.

Many studies (Podell et al., 2023; Esser et al.,
2024; Chen et al., 2024; Ho et al., 2022; Peebles
and Xie, 2023) present applicable text-to-image dif-
fusion models using classifier-free guidance. De-
spite the success of them, current text-to-image
diffusion models still suffer from failures in align-
ment with text prompts.

2.2 Improving Semantic Binding in Diffusion
Models

Many previous works have discussed ways of im-
proving semantic binding in diffusion models. GLI-
GEN (Li et al., 2023) utilizes grounded generation,
while CoMPaSS (Zhang et al., 2024) proposed a
specific module for spatial understanding. ELLA
(Hu et al., 2024b) utilizes a large language model
for better text understanding, and CoMat (Jiang
et al., 2024) utilizes a segmentation model to en-
hance training. Ranni (Feng et al., 2024) and To-
kenCompose (Wang et al., 2024) are two additional
methods. However, these methods are all training-
based methods, which face the problem of high
cost and a lack of generalization ability.

There are also training-free methods. Attent-
and-Excite (Chefer et al., 2023) first proposes mod-
ifying attention map and increasing the attention
score of entities. Divide-and-Bind (Li et al., 2024b)
further proposes entity-attribute binding using at-
tention map. SynGen (Rassin et al., 2023) and
CONFORM (Meral et al., 2024) introduces neg-
ative loss to further facilitate semantic binding,
while ToMe (Hu et al., 2024a) proposes token merg-
ing for entity-attribute binding. However, all of
these methods consider only entity-attribute bind-
ing, with more complex scenarios containing rela-
tion unexplored, limiting their practicability.

3 Preliminaries

Despite the complexity of text-to-image diffusion
models, generally a text-to-image diffusion model
contains a denoising network (either U-Net or DiT)
ϵθ and a noise scheduler F . Given a text prompt p,
at each denoising step t, the denoising network ϵθ
makes two predictions ϵθ(xt, t, c) and ϵθ(xt, t, ϕ),
where c is the text embedding of the given text
prompt p and xt is the noise map at timestep t.
The prediction following classifier-free guidance
is zt = ϵθ(xt, t, ϕ) + w̃(ϵθ(xt, t, c)− ϵθ(xt, t, ϕ)),
where w̃ is a hyper-parameter namely guidance
scale. Then, using noise scheduler F , we have
xt−1 = F (xt, zt, t). After a total of T denoising
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steps, we reach the final denoising result x0.
Inspired by previous works (Chefer et al., 2023),

at a certain denoising step t, if we can find a loss
function L which measures how well the genera-
tion process satisfies some constraints that probably
indicate a good generation result, we can perform
a gradient descent on xt as:

x
′
t = xt − α

∂L
∂xt

(1)

we can use x
′
t in the following inference

ϵθ(xt, t, c), ϵθ(xt, t, ϕ) to achieve x
′
t−1 instead of

xt for a better generation result.
Despite the various design choices of ϵθ, there

are generally always cross-attention operations
between the noise map xt and the text embed-
ding c to help condition on the given text. For-
mally, given a noise map xt ∈ RC×h×w , text
embedding c ∈ RL×C

′
, C,C

′
are correspond-

ing feature dimensions, h,w are the height and
width of the noise map, L is the length of text
prompt. For a cross-attention layer with H at-
tention heads, the corresponding attention map
is A(0) ∈ RH×I×L, I = h × w. Suppose there
are K attention layers, the final attention map is
A(1) ∈ RK×H×I×L. We average the final attention
map across different layers and heads for further
discussion, which is A ∈ RI×L

4 Our Method: R-Bind

4.1 Background and Motivation
Inspired by previous work (Chefer et al., 2023;
Rassin et al., 2023), we similarly identify improper
attention focus as a factor in failed semantic bind-
ing. However, while existing studies have exclu-
sively addressed entity-attribute binding scenarios,
the critical case of entity-relation-entity binding re-
mains unexplored. To illustrate this failure in entity-
relation-entity binding, consider a text prompt “a
man on the left of a lamp", we visualize the average
attention map of the relation part “on the left of" in
Figure 2.

Our analysis reveals a critical phenomenon dur-
ing denoising: while two distinct regions initially
attend to the relational tokens (i.e., “on the left of"),
this focus gradually collapses to a single region as
denoising progresses. This directly leads to seman-
tic binding failures, incorrectly positions “the man
below the lamp" rather than “on the left of" it. This
observation demonstrates that maintaining proper
attention focus throughout the denoising process

Figure 2: Example of a failure generation. The left
shows the attention map at the first denoising step, the
middle shows the attention map after 10 denoising steps,
and the right shows the final generation result.

is essential for achieving correct semantic binding
for entity-relation-entity binding, leading to our
method R-Bind.

4.2 R-Bind

Our method R-Bind operates through two stages:
semantic extraction and semantic binding enhance-
ment. First, we automatically parse the input
prompt to extract semantic information, including
entities, attributes, and relations. We then apply
three semantic binding losses using extracted se-
mantic information to ensure proper semantic bind-
ing through inference-time optimization. The com-
plete framework of our approach is illustrated in
Figure 3.

4.2.1 Semantic Extraction
We consider a more generalized semantic binding
in this work, including both entity-attribute binding
and entity-relation-entity binding. The first step is
to extract these semantics from the given prompt.

For a given prompt p comprising tokens
(t1, ..., tL), we categorize semantic components as
follows: entity tokens are tokens directly repre-
senting objects, like “cat"“car". Attribute tokens
are tokens describing entity properties without ref-
erencing other entities (e.g., "brown" in "a brown
cat"). Note that in the prompt “a cat chasing a dog",
“chasing a dog" is not viewed as an attribute, since it
contains another entity. Relation tokens are tokens
expressing inter-entity connections (e.g., "chasing"
in "a cat chasing a dog"). Note that we consider
all kinds of relations in this work instead of only
spatial relations, further broadening applicability.
For any certain entity, attribute, relation, there can
be one or more tokens corresponding to it due to
the complexity of expression or tokenization.

With these definitions, we can extract Entity set
Se = (e1, .., eg), where ei represents entity tokens
determining one entity, like “cat"“dog"; Entity-
Attribute set Sea = {(e1, a1), ..., (en, an)},
where ai represents attribute tokens describ-
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Figure 3: Overview of our method R-Bind. We use green in the texts to represent entity tokens, red to represent
attribute tokens, and blue to represent relation tokens. Our method contains two steps: Semantic Extraction (as
shown on the upper part) and Semantic Binding (as shown on the lower part). The left of the lower part shows the
generation result of original model, while the right of the lower part shows the generation result of R-Bind. The
middle part details how semantic binding is performed through inference-time optimization.

ing ei, like ei=“cat" and ai=“brown" given
“brown cat"; Entity-Relation-Entity set Sere =
{(e11, r1, e21), ..., (e1m, rm, e2m)}, where ri repre-
sents the corresponding relation tokens describing
the relation between e1i and e2i . For example, given
“cat chasing dog", we have e1i being “cat", ri being
“chasing" and e2i being “dog". The extraction of
this semantic information can be performed using
either a parser or an LLM.

4.2.2 Enhancing Semantic Binding
In the following description, we use D as a distance
measure between two 1-d vectors, which in this
work is selected as symmetric KL Divergence:

D(p, q) =
1

2
(DKL(p||q) +DKL(q||p)) (2)

DKL(p||q) =
∑

x

p(x) log
p(x)

q(x)
(3)

For simplicity, we take the case that each e, a, or
r corresponds to only a single token to illustrate our
method (without loss of generality). For discussion
about the case containing multiple tokens, please
refer to Appendix A. We use A[t] = A[:, t] ∈ RI ,

which is a 1-d vector representing the attention
map of a certain token (t is a single token). For two
tokens t1, t2, we note

Dt(t1, t2) = D(A[t1], A[t2]) (4)

Focus Distribution Focus Distribution considers
some basic principles that the attention map should
follow. First of all, distinct positions in the noise
map should attend to different parts in the prompt
to prevent information mixing or omission. Posi-
tions farther apart in the noise map should exhibit
greater divergence in their attention maps. For
instance, as shown in Figure 3, the problematic
overlap between attention regions for "ball" and
"bear" leads to failed generation of the ball object.
By strategically separating this attention focus, we
achieve more accurate and reliable generation of
all specified entities.

Secondly, each entity token should be focused
by at least one position to avoid missing an entity.
This is a similar observation with (Chefer et al.,
2023).

For an attention map A, we note Â[x] = A[x, :
] ∈ RL, which is a 1-d vector representing the at-
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tention map of a certain position in the noise map.
Specifically, x corresponds to position (i, j) in the
noise map where x = i ∗ w + j, i < h, j < w.
For each position in the noise map x = i ∗ w + j,
considering another position y = p∗w+ q, we can
calculate their Manhattan Distance as d(x, y) =
|i − p| + |j − q|. Therefore, we can construct a
weight matrix W ∈ RI×I ,Wxy = d(x, y) and W̃
is obtained by row-normalizing W . Therefore, de-
note Aw = W̃A, we can maximize the distance
between A and Aw to achieve our goal of making
farther positions in the noise map have different at-
tention focus on the prompt. Combining the above
analysis, the final focus loss is designed as:

Lfocus =− 1

I

∑

x

D(Â[x], Âw[x])− min
e∈Se

max
x

A[x, e]

(5)

Entity-Attribute Binding Inspired by (Rassin
et al., 2023), entity-attribute binding requires atten-
tion alignment between entity and attribute within
an entity-attribute pair while maintaining separa-
tion between different pairs. Specifically, an at-
tribute token (e.g., “grey" in Figure 3) should ex-
hibit high attention similarity with its correspond-
ing entity token (“bear"), while showing low at-
tention similarity with unrelated entities (“ball").
This ensures visual attributes correctly bind to their
target entities without interfering with other ob-
jects. We formalize this principle through our
entity-attribute binding loss:

Lea =
∑

(ei,ai)

[Dt(ei, ai)− 1

|Z|
∑

(ej ,aj)

K((ei, ai), (ej , aj))]

(6)

where |Z| is a normalizing factor, K is a
measurement between two entity-attribute pairs.
K((ei, ai), (ej , aj)) = Dt(ei, ej) + Dt(ei, aj) +
Dt(ej , ai) + Dt(ai, aj). To avoid separating po-
tentially related information, we only calculate
K((ei, ai), (ej , aj)) if and only if ei ̸= ej and
ai ̸= aj , otherwise K((ei, ai), (ej , aj)) = 0.

We would like to note that, a key distinction
between our implementation and (Rassin et al.,
2023) lies in the composition of the contrastive
part. (Rassin et al., 2023) contrastive term includes
all tokens not considered an attribute of the entity,
whereas our formulation is more refined, only tak-
ing other token-relation pairs. This design choice
is deliberate: it ensures that relation tokens related
to an entity are not inadvertently included in the

negative samples, which is crucial for accurately
generating entity-relation-entity information.

Entity-Relation-Entity Binding Entity-relation-
entity binding requires coordination of attention
patterns across three components: two entities and
their relation. The attention of relation tokens must
align with both entities to properly generate this
relation (e.g., "chasing" with both "bear" and "ball"
in Figure 3), while the entities themselves must
maintain distinct attention map to preserve their
individual identities. This dual constraint ensures
that the relationship is visually represented, and the
entities remain clearly differentiated in the gener-
ated image. Also, attention of entities and relations
within different triples should also be separated to
avoid confused generation results.

Combining the objectives above, we achieve the
entity-relation-entity loss as:

Lere =
∑

(e1i ,ri,e
2
i )

[Dt(e
1
i , ri) +Dt(e

2
i , ri)−min

(Dt(e
1
i , e

2
i ),

1

|Z|
∑

(e1j ,rj ,e
2
j )

K((e1i , ri, e
2
i ), (e

1
j , rj , e

2
j )))]

(7)

Similarly, |Z| is a normalizing factor and K
is a distance measurement between two entity-
relation-entity pairs. K((e1i , ri, e

2
i ), (e

1
j , rj , e

2
j )) =

Dt(e
1
i , rj)+Dt(e

2
i , rj)+Dt(e

1
j , ri)+Dt(e

2
j , ri)+

Dt(e
1
i , e

1
j ) +Dt(e

2
i , e

2
j ).

We also calculate K((e1i , ri, e
2
i ), (e

1
j , rj , e

2
j )) if

and only if e1i ̸= e1j , ri ̸= rj , e
2
i ̸= e2j , otherwise

K((e1i , ri, e
2
i ), (e

1
j , rj , e

2
j )) = 0.

Based on these above analysis, our final loss is:

L = Lfocus + Lea + Lere (8)

With our final loss (Equation 8), we can per-
form inference-time optimization with Equation 1.
Details about our method design can be found in
Appendix A.

5 Experiment Setup

5.1 Baseline Methods

To comprehensively evaluate our method, we im-
plement it on two distinct base models: Stable-
Diffusion-1.5 (SD-1.5) (Rombach et al., 2022)
and Stable-Diffusion-3 (SD-3) (Esser et al., 2024),
which differ in both architecture and capability.
On SD-1.5, we compare against five training-free
baselines: Attend-and-Excite (A&E) (Chefer et al.,
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Model Base Method Name T2ICompBench
(Color)

T2ICompBench
(Spatial)

GenAIBench
(Attribute)

GenAIBench
(Spatial)

SD-1.5

Base model 37.6 8.7 63.4 62.0
A&E 54.4 10.3 66.2 64.7

SynGen 55.7 10.9 65.1 62.4
ToMe 40.6 8.8 63.7 61.4
D&B 55.3 10.4 64.5 61.7

CONFORM 68.7 10.2 63.6 61.9
R-Bind (Ours) 68.8 15.6 68.2 67.9

SD-3 Base Model 80.3 31.2 80.1 78.4
R-Bind (Ours) 82.5 32.0 80.7 79.4

Table 1: Main Results of our method and compared baselines on test datasets. We use the evaluation met-
rics proposed corresponding to each test set, which means BLIP-VQA for T2ICompBench(Color), UniDet for
T2ICompBench(Spatial), and VQAScore for GenAIBench.

2023), SynGen (Rassin et al., 2023), ToMe (Hu
et al., 2024a), Divide-and-Bind (D&B) (Li et al.,
2024b), and CONFORM (Meral et al., 2024). No-
tably, these baselines cannot be directly applied to
SD-3 due to architectural differences, limiting their
comparison to SD-1.5 only. For fair evaluation,
we exclude all training-based methods from our
comparisons.

5.2 Benchmarks and Metrics

We employ both constructed structured prompts
and more natural prompts across multiple bench-
marks. For constructed structured prompts, we
utilize the color and spatial splits from T2I-
CompBench (Huang et al., 2023), adopting their
original metrics (BLIP-VQA and UniDet)(Huang
et al., 2023). We also leverage GenAIBench
(Li et al., 2024a), organizing its prompts into
two test sets: GenAIBench(attribute) containing
all prompts testing attribute binding skill, and
GenAIBench(spatial) comprising prompts evalu-
ating spatial relation skill. While these sets are
not mutually exclusive and involve multiple skills,
this categorization enables clearer analysis of spe-
cific capabilities. We employ VQAScore (Li et al.,
2024a) for GenAIBench evaluation. We generate
one image per prompt for evaluation.

5.3 Implementation Details of Our Method

We select the first 50% of total inference steps per-
forming R-Bind following (Rassin et al., 2023), and
perform gradient descent (Equation 1) twice each
step. For SD-1.5, since it is a U-Net architecture
and the resolution of attention map changes, we
gather and average all attention maps at resolution
16×16 to calculate L, still following (Rassin et al.,
2023). For SD-3, since it uses a DiT architecture
and the resolution of attention maps remains the

same, we gather and average all cross attention
maps. To maintain a fair comparison, we use the
same noise prior for the same base model. The se-
mantic extraction can be performed with any pow-
erful LLMs, and we use Gemma-3 (Team, 2025)
for semantic extraction (without the loss of gen-
erality). More details about our experiments and
implementation can be found in Appendix B.

6 Experiment Results and Analysis

6.1 Main Results
The experimental results in Table 1 demonstrate
R-Bind’s superior performance across all datasets
against all baseline when implemented on SD-1.5,
directly supporting the effectiveness of R-Bind. We
would also like to note that, while baseline methods
are specifically designed for entity-attribute bind-
ing, they nevertheless show slight improvements
over the base SD-1.5 model on the entity-relation-
entity focused T2ICompBench(Spatial) dataset.
We attribute this unexpected gain to their implicit
enhancement of entity generation or treatment of
relations as attributes. However, this implicit en-
hancement is not enough for performing correct
entity-relation-entity binding, indicating that previ-
ous baselines are unable to address entity-relation-
entity binding effectively.

CONFORM emerges as a strong competitor on
T2ICompBench(Color), matching our method’s
performance on this entity-attribute focused dataset.
However, its superiority diminishes on other
datasets, revealing limitations in complex appli-
cations. In contrast, R-Bind maintains consistently
high performance across all scenarios, demonstrat-
ing robust practical applicabiliy.

Notably, several baselines eve exhibit perfor-
mance degradation on GenAIBench(Spatial), sug-
gesting that over-optimization for entity-attribute
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Lfocus Lea Lere
T2ICompBench

(Color)
T2ICompBench

(Spatial)
GenAIBench

(Attribute)
GenAIBench

(Spatial)

✗ ✗ ✗ 37.6 8.7 63.4 62.0
✓ ✗ ✗ 55.0 10.8 68.1 65.6
✗ ✓ ✗ 64.4 8.7 65.9 63.5
✗ ✗ ✓ 39.0 12.8 64.7 63.3
✓ ✓ ✗ 68.2 10.8 68.2 66.1
✓ ✗ ✓ 55.6 15.6 68.0 67.4
✗ ✓ ✓ 64.4 12.8 65.7 65.1
✓ ✓ ✓ 68.8 15.6 68.2 67.9

Table 2: Ablation study of our method using SD-1.5. ✓ refers to the corresponding loss is applied to the final loss
L, while ✗ indicates the loss is not applied to L. The first line corresponds to the base model, and the last line
corresponds our whole method R-Bind. The evaluation metrics remain the same as before.

binding may actually impair model performance in
some scenarios. This finding underscores the im-
portance of jointly addressing both entity-attribute
and entity-relation-entity binding, as implemented
in our approach.

SD-3 is built with different architecture with
SD-1.5, with no prior work having explored seman-
tic binding methods on this state-of-the-art model.
Our results demonstrate that attention-based seman-
tic binding remains effective even for SD-3’s DiT
architecture, with consistent performance gains
across all datasets. These findings validate both
the generalizability of our approach and its poten-
tial applicability to cutting-edge diffusion models.
The observed improvements are further corrobo-
rated by our human evaluation study (Section 6.3),
which provides additional evidence of the method’s
practical benefits.

6.2 Ablation Study

While the design of our three losses is intuitive, we
conduct comprehensive ablation studies on SD-1.5
to rigorously evaluate each component’s contribu-
tion. The results are shown in Table 2.

The ablation studies yield several key insights.
First, any combination of Lfocus,Lea,Lere pro-
duces better results than the base SD-1.5 model,
with some combinations even matching or surpass-
ing the baseline methods in Table 1. This confirms
the effectiveness of each individual loss compo-
nent. Second, we observe consistent performance
gains when adding additional losses. For example,
Lfocus + Lea outperforms Lfocus alone, and the
full combination Lfocus+Lea+Lere achieves the
best results. This observation clearly demonstrates
that the three losses work jointly to provide a better
result instead of interfering with each other.

Third, we reach an interesting observation that
the relative importance of losses varies much

between the structured T2ICompBench prompts
and more natural GenAIBench prompts. On
T2ICompBench, the specialized binding losses
(Lea for attribute and Lere for relation) prove
most crucial, outperforming the general focus loss
Lfocus alone, though there is still improvement
using Lfocus only. However, the behavior shifts
notably on GenAIBench, where Lfocus provides
more substantial improvements than either Lea or
Lere alone. This finding aligns with the results in
Table 1, where Attend-and-Excite (A&E) emerges
as the strongest baseline for GenAIBench.

It is important to emphasize that while Lfocus
drives the most significant gains on GenAIBench,
incorporating Lea,Lere still yields additional per-
formance improvements. Moreover, on struc-
tured benchmarks like T2ICompBench, Lfocus
alone proves insufficient. These results collectively
demonstrate that all three losses play vital though
distinct roles in enhancing semantic binding.

Two additional insights emerge from our anal-
ysis. First, while Lfocus shares some similarity
with A&E, its standalone performance surpasses
A&E, demonstrating the superiority of our formu-
lation. Secondly, T2ICompBench(Spatial) contains
no entity-attribute prompts, making Lfocus + Lere
equivalent to the full combination Lfocus + Lea +
Lere. In contrast, T2ICompBench(Color) includes
some entity-relation-entity prompts, resulting in
slight performance differences between Lfocus +
Lea + Lere and Lfocus + Lea, a small evidence
proving the usefulness of Lere.

6.3 Human Evaluation

To validate that our improvements reflect genuine
quality gains rather than metric exploitation, we
conduct comprehensive human evaluations across
both models. For SD-3, we randomly select 100
output pairs from GenAIBench(Attribute), com-
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Prompt SD-1.5 A&E SynGen ToMe D&B CONFORM
R-Bind

(SD-1.5)
SD-3

R-Bind
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Table 3: Generated results of different methods.

paring base model against SD-3 enhanced with
R-Bind. Three independent annotators assessed
each pair, selecting the preferred output or marking
"draw" for indistinguishable quality through ma-
jority voting. We repeat this evaluation on SD-1.5,
comparing against two strongest baselines Attend-
and-Excite (A&E) and CONFORM. In SD-1.5
“Draw" refers to R-Bind generates one of but not
only the preferred results. Details of human evalu-
ation is in Appendix B.

SD-3 R-Bind SD-3 Draw -
0.53 0.05 0.42 -

SD-1.5 R-Bind A&E CONFORM Draw
0.61 0.15 0.08 0.16

Table 4: Preference rate of generation results on differ-
ent models and methods.

The human evaluation results in Table 4 demon-
strate R-Bind’s consistent superiority. For SD-3,
our method produces preferred outputs in over 50%
of cases while matching the base model’s quality
in 42% of instances ("Draw"). This high Draw
rate primarily occurs when SD-3 already gener-
ates near-perfect results, leaving minimal room for
improvement. Nevertheless, R-Bind still achieves
measurable gains in the majority of cases where
enhancement is possible.

The SD-1.5 comparisons reveal even more pro-
nounced advantages, with lower Draw rates (indi-
cating more discernible differences) and clear pref-
erence for R-Bind over the baselines (A&E and
CONFORM). These consistent results across mod-
els provide robust evidence that R-Bind’s improve-
ments represent genuine quality enhancements.

6.4 Case Study

Firstly, we present the case after our method is
applied in Figure 4 as a comparison with Figure 2.

Figure 4: Example of the generation process after R-
Bind is applied. The left shows the attention map at the
first denoising step, the middle shows the attention map
after 10 denoising steps, and the right shows the final
generation result.

As can be seen from Figure 4, after 10 denois-
ing steps, the attention map clearly shows two dis-
tinct regions attending to the relation "on the left
of", each corresponding to one of the entities (man
and lamp). This observed behavior matches our
intended design, revealing that the method success-
fully maintains correct attention focus for relation
and their associated entities.

We present more cases in Table 3. As can be
seen from the cases, the generation results of our
method consistently aligns with the text prompt bet-
ter. For example, in the first line, all methods except
ours fail to generate moldy oranges on the left on
SD-1.5, and the original SD-3 fails to distinguish
moldy oranges on the left and the fresh orange
on the right. Our method successfully addresses
these problems, showing better performance. More
results and analysis can be found in Appendix C.
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7 Conclusion

Our work introduces R-Bind, a novel training-free
method that improves semantic binding consider-
ing entity-relation-entity binding scenarios. By
simultaneously optimizing entity-attribute binding
and entity-relation-entity binding, our method out-
performs all existing baselines on comprehensive
benchmarks. R-Bind’s effectiveness applies to both
UNet-based and DiT-based architectures, demon-
strating its practical value for state-of-the-art sys-
tems. Rigorous validation through ablation studies,
human evaluations, and qualitative analyses further
support the effectiveness of R-Bind.

Limitations

Our method is a inference-time optimization
method, leading to a higher inference cost com-
pared with base models, yet this is a common prob-
lem of all inference-time optimization methods.
Also, if the model starts at a really “bad" attention
map, our method cannot fix this problem, which is
also a common problem of this kind of method.

Ethics Statement

Our method aims at improving alignment between
generated image and text prompt, so as long as the
text prompt is not harmful, our method will not
produce any harmful content. And since we use
open-source models and datasets for experiments,
the safety of contents in our experiment is gener-
ally guaranteed. LLM is used to extract semantics,
which is a quite common usage. We conduct hu-
man evaluation on the basis of voluntary and each
annotator is paid fairly. We also use LLM to as-
sist writing. We use open-source dataset and code
following their license and intended uses.
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A Details of Our Method

A.1 Multiple Tokens
As is mentioned, given an entity-attribute pair
(e, a), the entity may contain multiple tokens e =
(et1, ..., etk), and the attribute may also contain
multiple tokens a = (at1, ..., atl). The formulation
mentioned in Section 4 is a conceptual simplified
representation, and we would like to present details
on how to handle these as follows:

Firstly, these multiple entity tokens e =
(et1, ..., etk) jointly represent a certain entity, so
we average the attention map of all these tokens, in

this case we have Ã[e] =
1

k

∑k
i=1A[eti].

Secondly, these attribute tokens may present dif-
ferent attributes. For example, consider a prompt “a
brown fat cat", the attribute tokens are (brown, fat).
Therefore, we would like to optimize the worst
semantic binding of all attributes. Formally, we
have:

D(Ã[e], A[a]) = max
i

D(Ã[e], A[ati]) (9)

However, when calculating K((ei, ai), (ej , aj)),
separating all these tokens can be rather compli-
cated. Therefore, when calculating K, we also
average the attention map of all attribute tokens,

which is Ã[a] =
1

l

∑l
i=1A[ati].

For clearer notation, we use:

D̃t(t1, t2) = D(Ã[t1], Ã[t2]) (10)

Thus we have:

K((ei, ai), (ej , aj)) = D̃t(ei, ej)+

D̃t(ei, aj) + D̃t(ej , ai) + D̃t(ai, aj)
(11)

The calculation of K follows the same require-
ment as mentioned in Section 4.

The final Lea considering multiple tokens is rep-
resented as:

Lea =
∑

(ei,ai)∈Sea

[D(Ã[e], A[a])−

1

|Z|
∑

(ej ,aj)∈Sea

K((ei, ai), (ej , aj))]
(12)

Similarly, given an entity-relation-entity triplet
(e1, r, e2), the entity may contain multiple tokens,
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which we deal with as before. The relation may
also contain multiple tokens (rt1, ..., rtu). Simi-
larly, we would like to optimize the worst semantic
binding, which is:

max
i

(D(Ã[e1], A[rti]) +D(A[rti], Ã[e2])) (13)

Denote Ã[r] =
1

u

∑u
i=1A[rti], we have:

K((e1i , ri, e
2
i ), (e

1
j , rj , e

2
j )) = D̃t(e

1
i , rj) + D̃t(e

2
i , rj)+

D̃t(e
1
j , ri) + D̃t(e

2
j , ri) + D̃t(e

1
i , e

1
j ) + D̃t(e

2
i , e

2
j )

(14)

This calculation of K also follows the same re-
quirement as mentioned in Section 4.

So the final Lere considering multiple tokens is:

Lere =
∑

(e1i ,ri,e
2
i )

max
i

(D(Ã[e1], A[rti]) +D(A[rti], Ã[e2]))−

min(D̃t(e
1
i , e

2
i ),

1

|Z|
∑

(e1j ,rj ,e
2
j )

K((e1i , ri, e
2
i ), (e

1
j , rj , e

2
j )))

(15)

A.2 Algorithm
To provide a more comprehensive understanding
of our algorithm, we present a pseudo code in Al-
gorithm 1:

B Details of Experiment Setup

B.1 Models, Benchmarks and
Hyper-Parameters

We use SD-3 and SD-1.5 using their default hyper-
parameters. The checkpoints and hyper-parameter
used are as follows:

Model Name Checkpoint T w

SD-3 SD-3-Medium 1 28 7.0
SD-1.5 SD-1.5 2 50 7.5

Table 5: Details of our inference hyper-parameter.

For our method, we perform optimization in the
first 50% steps in the inference following previ-
ous practice (Rassin et al., 2023), corresponding

to T0 =
T

2
. We perform optimization twice per

denoising step, corresponding to T1 = 2. The op-
timization step size is set to α = 6 for SD-1.5
and α = 8 for SD-3 since SD-3 is a larger model.
Also, we observe that the optimization process of
SD-3 is sometimes not quite stable, so we apply

Algorithm 1 Denoising with R-Bind
1: Input total denoising steps T , noise prior xT ,

denoising network ϵθ, text prompt p, noise
scheduler F , guidance scale w̃, text encoder E,
R-Bind step threshold T0, optimization steps
T1, optimization step size α.

2: Get text embedding c = E(p)
3: Extract semantics Se, Sea, Sere from p.
4: for t = T, ..., 1 do
5: if t ≤ T0 then
6: for s = 1, ..., T1 do
7: Run forward ϵθ(xt, t, c) to achieve at-

tention map A
8: Calculate Lfocus,Lea,Lere using

A,Se, Sea, Sere

9: L = Lfocus + Lea + Lere
10: Update xt ← xt − α

∂L
∂xt

11: end for
12: end if
13: Predict ϵθ(xt, t, c), ϵθ(xt, t, ϕ)
14: Classifier-Free Guidance: zt ←

ϵθ(xt, t, ϕ) + w̃(ϵθ(xt, t, c)− ϵθ(xt, t, ϕ))
15: Denoising Step: xt−1 ← F (xt, zt, t)
16: end for
17: Output denoising result x0

an additional adaptive operation on SD-3, which
is αt = eLα at each optimization step t. Note that
this operation is not necessary and our method gen-
erally works fine without it. This also suggest a
future direction for dynamic tuning of the optimiza-
tion step size in test-time optimization methods,
which we leave for future study. We present an ex-
periment on the influence of step size in Appendix
C.3.

We also list benchmark statistics in Table 6:

T2ICompBench
(Color)

T2ICompBench
(Spatial)

GenAIBench
(Attribute)

GenAIBench
(Spatial)

300 300 1000 3 831

Table 6: Benchmark statistics.

1https://huggingface.co/stabilityai/
stable-diffusion-3-medium-diffusers

2https://huggingface.co/
stable-diffusion-v1-5/stable-diffusion-v1-5

3We randomly sampled 1000 prompts belonging to this
category.
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B.2 Details of Semantic Extraction

We utilize Gemma-3-27B (Team, 2025) to perfor-
man semantic extraction since it is a powerful LLM.
Note that this semantic extraction is a text-only
task.

The Semantic Extraction process involves two
stages: parsing the input prompt to identify and
categorize semantic information (entities, entity-
attribute, and entity-relation-entity), and token map-
ping of these elements according to the diffusion
model’s text tokenizer to produce the token se-
quences required for attention map manipulation.
This dual-stage approach ensures that our binding
losses operate on precisely the same textual rep-
resentations used by the diffusion model’s cross-
attention mechanisms during image generation.

In our work, both steps are conducted by the
LLM. For the first step, the prompt used is as fol-
lows:

Correctness Verification To validate the relia-
bility of our semantic extraction pipeline, we per-
formed manual verification on 100 randomly sam-
pled prompts from GenAIBench(Spatial), finding
93% exact match accuracy between the LLM’s ex-
traction results and ground truth annotations. This
high accuracy confirms the LLM’s effectiveness
for semantic extraction in our context. Also, for
the structured prompts in T2ICompBench(Color)
and T2ICompBench(Spatial), the structure of the
prompts guarantees perfect (100%) extraction ac-
curacy.

Discussion of LLM Usage While many prior
works rely on custom rule-based parsers for se-
mantic extraction, such approaches face significant
challenges in handling the full complexity of real-
world prompts, particularly when dealing with in-
tricate relations and tokenization (e.g., splitting one
word into multiple tokens). To ensure robust gen-
eralization, we instead employ an LLM (Gemma-
3-27B) as our semantic extractor. Crucially, our
experiments confirm that the performance gains
stem from our novel binding framework rather
than the use of LLM. In fact, CONFORM (Meral
et al., 2024) and D&B (Li et al., 2024b) do not
open-source the parser their used, so we also equip
these methods with the same LLM (Gemma-3-27B)
when testing them. However they still underper-
form compared with our method R-Bind, as can
be seen from Table 1. Also, on T2ICompBench,
where LLM and parser extractions yield identi-

cal results, our method maintains clear superior-
ity. These results demonstrate that our semantic
binding methods, not the use of LLM, drive the ob-
served improvements. We would also like to note
that, our selected LLM is not the only possible way
of performing semantic extraction. Other strategies,
such as smaller LLMs, better-designed rule-based
parsers, or even human annotation (which is quite
common for practical usage, as many works re-
quire additional human input instead of providing
a parser).

B.3 Details of Human Evaluation

We ask three human annotators to rank the images
based on the alignment between image and text
prompt only. The inter-annotator agreement is 0.93.
All annotators are college students and are capable
and responsible of conducting this task. A simpli-
fied evaluation criteria is shown as follows:

Human Evaluation Criteria

Please select the image that aligns with the
text best from the given images. You can se-
lect more than one image if you believe the
consistency between your selected images
and the text is comparable. The consistency
between image and text indicates whether
the image faithfully describes the contents
mentioned in the text.

Our annotation protocol applies majority voting
to achieve the final result. The images selected
by most annotators are viewed as the winner. If
R-Bind and another baseline are selected the same
times, we label this a “Draw". There are no cases
where both baselines are selected the same times.

C More Results and Analysis

C.1 Discussion on Efficiency

Inference-time optimization bear a natural worry
of efficiency. We admit that our method does make
inference slower, yet we argue that this efficiency
decrease is acceptable and not significantly beyond
other inference-time optimization methods. We
present the efficiency comparison in Table 7.

As can be seen from Table 7, our method, though
a lot slower than base model, bear similar inference
time with most other baseline methods, indicating
that our method does not bear severe efficiency
problem compared with other baseline methods.
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Extraction Prompt

[System Prompt]: You are a helpful assistant good at extracting information from complex text.
You will be given a text and your task is to extract three types of information from the given text.
The three types of information are:
Entity Information, which is the entities mentioned in the text.
Entity-Attribute information, which is a tuple containing an entity and the attribute describing it.
Entity-Relation-Entity information, which is a tuple containing two entities and the relation
between them.
Please extract the three types of information from the given text. You should output them as:
Entity Information: [Entity information], Entity-Attribute Information: [entity-attribute informa-
tion], Entity-Relation-Entity Information: [entity-relation-entity information]. If there is no such
information belonging to such category, you should output [None].
If there are pronouns in the text, you should correctly replace them with the corresponding entities
in the extracted information.
Entities with no attribute should not appear in Entity-Attribute information, same for Entity-
Relation-Entity information.
Do not mix entity-attribute information and entity-relation-entity information. If the attribute of an
entity is a verb, please check whether it is entity-relation-entity information.
Do not miss any entity-attribute information and entity-relation-entity information. You should
output all reasonable extracted information.
[In-Context Examples]
[User Prompt]: The provided text prompt is {text}.
[Model Output]:

Token Matching Prompt

[System Prompt]: You are a helpful assistant good at matching token id with extracted information
from a complex text.
You will be given the text and extracted information from the text and a corresponding token list.
Your task is to replace the information in the extracted information with correct token id using the
token list.
There are three types of information: Entity Information, which describes the entities mentioned in
the text.
Entity-Attribute information, which is a tuple containing an entity and the attribute describing it.
Entity-Relation-Entity information, which is a tuple containing two entities and the relation
between them.
You should output them as: Entity Information: [Entity information], Entity-Attribute Informa-
tion: [entity-attribute information], Entity-Relation-Entity Information: [entity-relation-entity
information]. If there is no such information belonging to such category, you should output [None].
You should use token ids to represent, entity, attribute and relation as your final output. Each entity,
attribute, relation can be represented using one or multiple token ids.
The Entity-Attribute information should be represented as: (token ids of entity, token ids of
attribute). The Entity-Relation-Entity information should be represented as: (token id of entity 1,
token id of relation, token id of entity 2). The Entity Information should be represented as: (token
ids of entites). [None] should not appear in any certain information tuple.
[In-Context Examples]
[User Prompt]: The provided text prompt is {text}. The extracted information is {information}.
The token list is {tokens}.
[Model Output]:
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Method Name Seconds Per Image

Base Model 2.12
A&E 8.31

SynGen 5.79
ToMe 6.78
D&B 13.75

CONFORM 9.71
R-Bind(Ours) 11.69

Table 7: Average seconds required for each pipeline.
Semantic extraction is not counted as part of the time
since there can be multiple possible ways of performing
semantic extraction, such as using parsers, LLMs of
different sizes or even human annotations.

For better mitigating efficiency problem, we con-

duct another experiment using T0 =
T

4
on SD-1.5.

The results are shown in Table 8.

Method Name T2ICompBench(Spatial) SPI

SynGen 10.9 5.79

R-Bind (T0 =
T

2
) 15.6 11.69

R-Bind (T0 =
T

4
) 14.0 7.78

Table 8: Results under different optimization steps T0.

As can be seen from the results, setting T0 =
T

4
further improves efficiency with acceptable perfor-
mance drop, still outperforming baseline method
SynGen, indicating a better potential for efficiency
and performance tradeoff.

C.2 Discussion on Loss Weighing
Our proposed final loss function is shown as:

L = Lfocus + Lea + Lere (16)

which provides an equal weighing of the three
components. However, to delve deeper, the loss
can be written as:

L = αLfocus + βLea + γLere (17)

We conduct another experiment on SD-1.5 to ex-
plore whether different loss weighing have a great
influence on our method. The result is shown in
Table 9.

As the results demonstrate, selecting α = β =
γ = 1(equal weighing) already yields highly com-
petitive results. The marginal performance changes
observed with different weightings confirm that

α β γ Color Spatial

1 1 1 68.8 15.6
1.5 1 1 67.8 13.0
1 1.5 1 67.3 15.6
1 1 1.5 68.8 15.9

Table 9: Results of different loss weighing. “Color"
and “Spatial" refer to corresponding splits of
T2ICompBench.

our method is robust and not overly sensitive to
the loss weight configuration. This validates our
choice of using equal weights as a practical and
effective default setting.

C.3 Discussion on Step Size

The optimization step size α in Equation 1 is an in-
teresting hyper-parameter. We analyze its influence
on SD-1.5. The results are shown in Table.

α Color Spatial

4 65.4 13.7
6 68.8 15.6
8 68.6 15.8

Table 10: Results of different optimization step sizes.
“Color" and “Spatial" refer to corresponding splits of
T2ICompBench.

As the results show, modifying α does not have
a significant impact on our method’s performance,
as long as α is within a reasonable range (e.g.,
from 6 to 8). However, α should not be too small.
Also, even at a suboptimal small value, our method
still provides competitive results when compared
to other baselines in Table 1, further highlighting
its effectiveness and robustness.

C.4 Failure Case Analysis

No method is perfect and it is natural for any
method to fail on some cases. Here we would
like to analyze why our method fails on a certain
case. The failure case is shown in Figure 5.

We attribute the failure of this case to the bad
initial attention map. As can be seen from the
attention map of “girl" at t = T , which is the first
denoising step, the attention map is rather scattered
and has no focus on the entity “girl" itself. After
our method is applied 20 steps, the attention map
is still scattered, though slightly better than the
original. As a result, the model actually has no
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Table 11: Generation results on different models and methods.

Figure 5: A failure case using R-Bind. The left images
are attention maps of corresponding tokens at certain
steps. The right is the generation result. The prompt is
“a chicken of on the left of a girl".

idea how to generate the entity “girl", let alone the
relation “on the left of". This example shows that
if the original attention map is much flawed, our
method, though still able to improve the attention
map, fails to completely address the problem since
it is just an inference-time optimization method.

C.5 More Case Study
We present more generated examples in Table 11.
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