Middo: Model-Informed Dynamic Data Optimization for Enhanced LLM
Fine-Tuning via Closed-Loop Learning

Zinan Tang'?, Xin Gao'?, Qizhi Pei'?, Zhuoshi Pan'?
Mengzhang Cai'?, Jiang Wu!”, Conghui He'*, Lijun Wu'?*

!OpenDatal.ab
tangzinan@pjlab.org.cn

2Shanghai Artificial Intelligence Laboratory
{heconghui,wulijun}@pjlab.org.cn

¥, https://huggingface.co/collections/Word2Li/Middo
() https://github.com/Word2VecT/Middo

Abstract

Supervised Fine-Tuning (SFT) Large Language
Models (LLMs) fundamentally rely on high-
quality training data. While data selection and
data synthesis are two common strategies to
improve data quality, existing approaches of-
ten face limitations in static dataset curation
that fail to adapt to evolving model capabil-
ities. In this paper, we introduce Middo, a
self-evolving Model-informed dynamic data
optimization framework that uses model-aware
data selection and context-preserving data re-
finement. Unlike conventional one-off filter-
ing/synthesis methods, our framework estab-
lishes a closed-loop optimization system: (1) A
self-referential diagnostic module proactively
identifies suboptimal samples through tri-axial
model signals-loss patterns (complexity), em-
bedding cluster dynamics (diversity), and self-
alignment scores (quality); (2) An adaptive op-
timization engine then transforms suboptimal
samples into pedagogically valuable training
points while preserving semantic integrity; (3)
This optimization process continuously evolves
with the model’s capability through dynamic
learning principles. Experiments on multiple
benchmarks demonstrate that our Middo con-
sistently enhances the quality of seed data and
boosts LLMs’ performance, improving accu-
racy by 7.15% on average while maintaining
the original dataset scale. This work establishes
a new paradigm for sustainable LLM training
through dynamic human-Al co-evolution of
data and models.

1 Introduction

Large Language Models (LLMs) have revolution-
ized artificial intelligence by achieving state-of-
the-art performance across diverse domains, from
natural language understanding (Zhou et al., 2023c;
Hendrycks et al., 2021b) to mathematical reason-
ing (Cobbe et al., 2021; Hendrycks et al., 2021a)

* Corresponding authors.

|ff| Embedding
L Middo < [y tosparen >0ptimizer @
@ Self-alignment
- /

Mi
Al
M

H 0.3
5w 27 Wizard / Middo

LLaMA-3.1-8B
Alpaca / Middo

LLaMA-3.1-8B
Wizard / Middo

aMA-3.1-8B

349 LL:
23 Alpaca-do-mini / Middo

Figure 1: Comparison of different dataset and different
models before and after Middo optimization.

and code generation (Chen et al., 2021; Austin
et al., 2021). This success is largely attributed
to Supervised Fine-Tuning (SFT), where models
undergo rigorous training on high-quality, human-
aligned datasets to ensure outputs closely match
human expectations. Crucially, the quality of these
datasets directly dictates the model’s ultimate ca-
pabilities: noisy or suboptimal training data can
lead to degraded performance, while meticulously
curated data unlocks advanced reasoning, general-
ization, and robustness. As LLMs scale, the adage
“garbage in, garbage out” becomes increasingly im-
portant—highlighting the urgent need for system-
atic methods to optimize training data quality.
Existing approaches primarily fall into two cate-
gories to improve data quality: data selection (Cao
et al., 2024; Zhou et al., 2023b; Li et al., 2024d; Jia
et al., 2024; Zhou et al., 2025; Li et al., 2024e¢,a)
and data synthesis (Dai et al., 2025; Wang et al.,
2023a; Mukherjee et al., 2023; Xu et al., 2025; Liu
etal., 2024a; Gao et al., 2025). Data selection meth-
ods filter raw datasets using heuristic rules (e.g.,
length filters) (Zhao et al., 2024a) or statistical met-
rics like perplexity (PPL) (Liu et al., 2024a) and
Instruction-Following Difficulty (IFD) (Li et al.,
2024c) to retain “high-quality” samples. Con-

6871

Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing, pages 6871-6891
November 4-9, 2025 ©2025 Association for Computational Linguistics

https://huggingface.co/collections/Word2Li/middo-68c27d3b42f79febf7f6312c
https://github.com/Word2VecT/Middo

Model-Informed

uo13I3J3s eleq

Selection

Base
Model

Buiuny-auyy pasinsadng
Suiuies)
-l -
azisayjuAs

Optimize

Optimized <
Dataset Replacing selected data

A

selected data selected data

\%

\% v
Hard Data Low-quality Sparse Data
Data
v v v
o
7]
g
o
f_l;
@ @ 5.
o
P —— High-quality Extended
asier Data Befe Data

Expanding data distribution

Figure 2: The Middo pipeline: a closed-loop, iterative dynamic optimization framework for LLM fine-tuning. It
comprises three core modules that leverage model feedback: Loss Patterns identify overly complex samples, which
are then simplified; Self-alignment Scores evaluate data quality, transforming low-quality samples into high-quality
ones; and Embedding Cluster Dynamics detect sparse data points and expand the data distribution through targeted
augmentation. Middo ensure the training set continually evolves to better align with the model’s capabilities.

versely, data synthesis leverages advanced LLMs
(e.g., GPT-4 (Achiam et al., 2023)) to generate new
training examples, often through prompting or dis-
tillation (Li et al., 2024f). While both strategies
improve data quality, they suffer from critical limi-
tations. Selection methods are typically static, ap-
plying fixed criteria that ignore the evolving needs
of the model during training. Similarly, synthe-
sis approaches often discard original data, wasting
potentially valuable information, and risk generat-
ing distributionally narrow or redundant examples.
These one-time data curation methods fail to adap-
tively refine data along with the model’s progress.

To overcome these limitations, we propose
Middo, Model-informed Dynamic Data Optimiza-
tion, a self-evolving framework that unifies model-
aware data selection with context-preserving data
refinement. Unlike static approaches, Middo
establishes a closed-loop optimization system
where data curation dynamically adapts to the
model’s evolving capabilities. The framework
operates through three core mechanisms: (1) A
self-referential diagnostic module that proactively
identifies suboptimal training samples using three
model signals: loss patterns (to detect complexity
mismatches between data and model proficiency),
embedding cluster dynamics (to assess diversity
gaps in the latent space), and self-alignment scores

(to evaluate data quality against the model’s own
knowledge). (2) An adaptive optimization engine
that transforms these suboptimal samples into ped-
agogically valuable training points. For example,
overly complex samples may be simplified through
stepwise decomposition, while low-diversity clus-
ters are enriched with controlled extension—all
while preserving the original data’s semantic intent.
(3) A dynamic principle that iteratively updates the
training dataset based on the model’s progress, en-
suring that data difficulty and diversity scale with
the model’s capabilities. By integrating these com-
ponents, Middo not only maximizes the utility of
existing data but also bridges the gap between static
data curation and adaptive model training.

Experiments across multiple benchmarks demon-
strate Middo ’s effectiveness especially on low-
quality datasets. Models trained with Middo opti-
mized data achieve consistent performance gains
over baselines, improving accuracy by 7.15% on
average while maintaining the original dataset
scale. Notably, Middo-trained models exhibit
stronger abilities to address hard problems, solving
more than three times the number of challenging
test problems (e.g., MATH, GPQA) compared to
models trained on static datasets. These results val-
idate that sustainable LLLM advancement requires
co-evolving data and models—a paradigm shift

6872

from today’s disjointed curation practices.

2 Related Work

2.1 Synthetic Data Generation

Synthetic data generation is a key technique for aug-
menting LLM fine-tuning. Early methods (Edunov
et al., 2018; Wieting and Gimpel, 2018) introduce
perturbation-based approaches to enhance data di-
versity, using character-level (Belinkov and Bisk,
2018) and word-level (Wei and Zou, 2019) modifi-
cations. These methods rely on fixed transforma-
tion rules, limiting adaptability.

LLMs have been leveraged for scalable data syn-
thesis (Sudalairaj et al., 2024; Jung et al., 2024;
Dai et al., 2025; Wang et al., 2023a; Mukherjee
et al., 2023; Xu et al., 2025; Liu et al., 2024a; Li
et al., 2025). Self-instruct methods (Wang et al.,
2023b) generate instruction-response pairs, while
Evol-Instruct (Xu et al., 2024) and Auto-Evol-
Instruct (Zeng et al., 2024) refine data complexity
iteratively. However, these methods remain static,
failing to adapt as models improve. Recent ap-
proaches integrate model feedback into data gener-
ation (Khan et al., 2025; Maosongcao et al., 2025;
Liang et al., 2025; Li et al., 2024f), incorporat-
ing student model signals for adaptive synthesis.
LLM2LLM (Lee et al., 2024) is an iterative data
augmentation strategy that enhances low-data fine-
tuning by using a teacher LLM to generate syn-
thetic training data from incorrect student LLM
predictions and I-SHEEP (Park et al., 2024) uses
an iterative self-enhancement paradigm.

2.2 Data Selection

Data selection is crucial for LLM fine-tuning, as
high-quality and informative data directly impacts
model performance (Zhou et al., 2023a; Xu et al.,
2023). Early heuristic-based methods rely on
surface-level statistics like item frequency (Raffel
et al., 2020) and repetition count (Laurengon et al.,
2022), but they also lack adaptability to model evo-
lution.

Recent work explores LLM-driven data selec-
tion, optimizing for quality, diversity, and com-
plexity (Cao et al., 2024; Zhou et al., 2023b; Li
et al., 2024d; Jia et al., 2024; Zhou et al., 2025; Li
et al., 2024e,a; Du et al., 2023; Kung et al., 2023).
The IFD metric (Li et al., 2024c) enables mod-
els to self-select training instances by comparing
loss with and without the instruction, while other
methods (Yu et al., 2024; Colombo et al., 2024;

Lu et al., 2024; Zhao et al., 2024b) use LLM self-
assessment for efficiency. Further advancements
integrate LLM-based evaluation mechanisms. Al-
paGasus (Chen et al., 2024) and LIFT (Xu et al.,
2023) use structured prompts for data assessment,
while DEITA (Liu et al., 2024b) introduces a multi-
dimensional scoring system based on complexity
and quality.

3 Methodology

An overview of our Middo is shown in Figure 2.
We first introduce the overall pipeline of Middo in
Section 3.1, then elaborate on the three core com-
ponents: complexity optimization (Section 3.2),
diversity optimization (Section 3.3), and quality
optimization (Section 3.4).

3.1 Middo Pipeline

As depicted in Figure 2, our Middo framework
establishes an iterative data-model co-evolution
loop driven by tri-axial signal analysis, along
with three interconnected data optimization mecha-
nisms, each targeting distinct dimensions of train-
ing sample selection: (1) Loss patterns, to identify
samples with mismatched complexity (overly chal-
lenging) relative to the current model’s capability
through loss trajectory analysis. (2) Embedding
cluster dynamics, to detect coverage gaps in the
semantic space, ensuring balanced conceptual rep-
resentation. (3) Self-alignment scores, for qual-
ity filtering to leverage the model’s self-evaluation
capacity to flag low-confidence or inconsistent re-
sponses through automated alignment scoring.

At each iteration, these parallel signal analyz-
ers jointly select suboptimal samples, which are
then regenerated through context-aware synthe-
sis—preserving original semantic intent while en-
hancing pedagogical value. The refined dataset
immediately feeds back into model training, cre-
ating a dynamic feedback loop where improved
model capabilities inform subsequent optimization
cycles. Notably, the optimized dataset remains
similar in data size, without extending large data
synthesis, leading to an efficient data optimization.
This self-referential mechanism ensures continuous
alignment between data characteristics and model
evolution. The following sections systematically
elaborate on the implementation of each signal-
specific optimization module and their synergistic
integration.

6873

3.2 Loss Patterns: Complexity Optimization

Complexity Selection. Complexity reflects the
“difficulty” or “compositionality” of data. A good
dataset usually requires a smooth complexity dis-
tribution of data for training (Havrilla et al., 2024;
Shen et al., 2024). Therefore, we introduce Loss
Patterns, which targets overly challenging samples
by modifying them to maintain a balanced and
learnable training set (Zhao et al., 2024b). Dur-
ing fine-tuning, the loss for a sample (X;,Y;) is
computed as the likelihood of predicting succes-
sive tokens given the instruction X; and its context.
We denote the loss before and after training as
Lore(X3,Y;) and Lyost (X, Yi), respectively.
Intuitively, we consider both the loss before and
after training to select the complex data. Specifi-
cally, we classify samples based on their loss evo-
lution: samples with both low Ly and Ly are
considered easy, while those with high values in
both metrics remain difficult, indicating excessive
complexity. A sample is included in the complex
subset DMrd if jts Lpre and Lpos both exceed the
thresholds 7p,re and Tpog, respectively. For adaptive
refinement, the thresholds are dynamically com-
puted. See Appendix B.3 for details on the dynamic
threshold settings used throughout the paper.

Complexity Optimization. For complex data op-
timization, instead of discarding difficult samples,
we transform them into simpler, more manageable
forms. Specifically, we replace samples in Dhrd
with their simplified counterparts, phard’ - Thig
is achieved by an automatic process in which a
LLM analyzes and summarizes the complex in-
structions (Zeng et al., 2024), then simplifies them
step by step while preserving the core educational
content. An example is shown in Appendix Fig-
ure 11. This iterative transformation process up-
dates the dataset by replacing overly complex sam-
ples with refined versions that offer more effec-
tive training samples. As training continues, this
adaptive approach ensures a continuous alignment
between data complexity and model capability.

3.3 Embedding Cluster Dynamics: Diversity
Optimization

Diversity Selection. Diversity is crucial for en-
suring broad concept coverage and a uniform data
distribution. Embedding Cluster Dynamics identi-
fies sparse data points that signal underrepresented
regions in the dataset. We extract sentence embed-
dings from the last hidden layer (%) of the model

trained in the previous iteration, using average pool-
ing, then compute the cosine similarity between
each data point and find the k-nearest neighbors
N (X;) for each data X;. A lower average cosine
similarity among these neighbors N (X;) indicates
the data is positioned in a sparser region. Thus, the
data points whose average cosine similarity score
(diversity score) is below a threshold are selected
for optimization.

Diversity Optimization. To enhance diversity-
balanced distribution, we augment the sparse sub-
set DPA5¢ by incorporating examples from their
corresponding Ny (X;) as demonstrations to gen-
erate new samples. This process generates an ex-
panded set DP¥¢ which is then integrated back
into the dataset. An instance can be found in Ap-
pendix Figure 13. This structured augmentation
strategy ensures that the data distribution becomes
both broader and more balanced, ultimately im-
proving the model’s generalization.

3.4 Self-alignment Scores: Quality
Optimization

Quality Selection. High-quality data is essen-
tial for fine-tuning, as poor-quality samples can
degrade performance (Zhou et al., 2023a). To re-
duce manual annotation costs, many approaches
use the LL.M-as-a-Judge paradigm (Chen et al.,
2024; Xu et al., 2023). To achieve this, in-
stead of relying on an external judge, we leverage
the fine-tuned model itself to assess data quality
via Self-alignment Scores, effectively incorporat-
ing the model’s own feedback. Specifically, for
each instruction-response pair (X;,Y;) in D, the
model predicts scores St (X;) for instruction
and S7"%(X;,Y;) for instruction-response pair
based on three key metrics 7 from AlignBench (Liu
et al., 2024c¢): Clarity, Completeness, and Factual-
ity. The final quality score S(X;, Y;) is obtained by
averaging these scores. These samples with scores
below a similar dynamic threshold are identified as
low-quality, forming the seed dataset D%,

Quality Optimization. To refine D'V, we use
LLMs to automatically analyze and improve these
samples via tailored evolution strategies (prompt
templates and examples are provided in the Ap-
pendix Figure 12). This process converts low-
quality samples into higher-quality versions, de-
noted as D'°V. The dataset is then updated by re-
placing the original low-quality samples with D'°%,

6874

maintaining the dataset size while progressively en-
hancing its overall quality.

In each iteration, after the three data selection
and optimization processes described above, the op-
timized dataset is then fed back for the next round
of model training.

4 Experiment

4.1 Settings

Data Optimization Configurations. We con-
duct optimization on the Alpaca (Taori et al., 2023)
and WizardLM (Xu et al., 2024) datasets. For a
fair comparison, we also include a rewritten ver-
sion of Alpaca, where responses are generated by
GPT-40-mini, in our optimization process. Each
dataset undergoes three iterations of optimization.
Demonstrating that our method does not require
a powerful external model, we synthesize data us-
ing DataDreamer (Patel et al., 2024) with GPT-4o-
mini, setting both temperature and top_p to 1.0
to ensure diversity. A detailed analysis of the com-
putational cost is provided in Appendix A, and the
effects of the number of neighbors and iteration
counts are discussed in Appendix B.

Training and Evaluation Settings. We fine-
tune LLaMA-3.1-8B (Dubey et al., 2024) and
Mistral-7B-v0.3 (Jiang et al., 2023) using LLaMA-
Factory (Zheng et al., 2024) with the specific hy-
perparameters detailed in Appendix C.5. For each
iteration of Middo’s optimization, the base model
is fine-tuned for one epoch on the dataset opti-
mized in that specific iteration to mitigate the risk
of overfitting to the data (Lee et al., 2024; Liang
et al., 2025). Evaluation is conducted using Open-
Compass (Contributors, 2023), with vLLM (Kwon
et al., 2023) for acceleration. To validate the ef-
fectiveness and generalization capabilities of our
approach, we assess model capabilities in general
knowledge using IFEval (Zhou et al., 2023c) and
MMLU (Hendrycks et al., 2021b); mathematical
problem-solving on GSM8K (Cobbe et al., 2021)
and MATH (Hendrycks et al., 2021a); code gen-
eration on HumanEval (Chen et al., 2021) and
MBPP (Austin et al., 2021); and commonsense
reasoning on Hellaswag (Zellers et al., 2019) and
GPQA (Rein et al., 2024).

4.2 Main Results

The evaluation results on all benchmarks over var-
ious data iterations and models are presented in

Table 1. We can see that Middo consistently en-
hances model performance across all benchmarks,
achieving an average accuracy increase of 7.15%
over three iterations on the Alpaca dataset based on
LLaMA-3.1-8B, all while preserving the original
data scale. Moreover, when extending our experi-
ments to Mistral-7B-v0.3, we observed an average
improvement of 4.75%, further underscoring the ro-
bustness and adaptability of our framework across
different model architectures.

Dynamic Iterative Improvement. On the Al-
paca dataset, the average score increased progres-
sively with each iteration. Across the MMLU,
GSMS8K, MATH, and MBPP benchmarks, we ob-
served consistent, step-by-step improvements over
multiple iterations. This showcases the versatility
of our approach, which excels in general capabili-
ties, mathematics, and coding. Notably, accuracy
on GSMS8K improved by 15.55%, and Hellaswag
saw an 11.11% increase when evaluated on the
LLaMA-3.1-8B model. For Mistral-7B-v0.3, we
observed an 11.07% improvement on MMLU, a
12.59% increase on GSMS8K, and a 10.6% gain
on GPQA. These results underscore the effective-
ness of our method in driving performance gains
and highlight the cumulative benefit of our iterative
optimization process.

Further Validation on 40-mini Rewritten Data.
Steady improvements observed on the 4o-mini
rewritten Alpaca dataset—averaging a 2.2% in-
crease overall, with MMLU showing an impressive
11.87% boost—demonstrate that these gains are
not merely a result of using 40-mini data. This il-
lustrates that our framework intrinsically enhances
data quality and model performance. Importantly,
we achieve these improvements without resorting
to stronger variants such as GPT-40 (Hurst et al.,
2024), reinforcing the robustness and general ap-
plicability of our method.

Initial Dataset Quality. Our experiments reveal
that higher-quality datasets require fewer modifica-
tions to reach optimal performance. On LLaMA-
3.1-8B, for instance, while the Alpaca dataset
achieves peak performance at third iteration, the 4o-
mini rewritten Alpaca required only two iterations,
and the Wizard dataset reaches its best performance
in just one round.

Comparison with Other Works. We com-
pare Middo with both data selection (Alpaca-
clean(Ruebsamen, 2023), Superfiltering (Li et al.,

6875

General Math Code Reasoning

Setting Average
MMLU IFEval GSM8K MATH HumanEval MBPP Hellaswag GPQA
Base Model: LLaMA-3.1-8B
init 4746 41.09 35.63 4.96 39.63 37.40 48.11 5.56 32.48

Alpaca iferl 50.13 4577 43.67 10.62 40.24 39.20 56.37 13.64 37.45

Alpaca
40-mini

Wizard iter] 4839 5011 5444 13.80 46.95 4500 6354 2020 42.80

it 27.66 4322 2221 3.88 29.27 28.80 44.17 051 2497
Alpaca ifer] 3131 4562 29.57 582 30.49 33.80 42.73 1465 2925
iter 2687 4946 31.69 6.84 31.71 31.00 5395 556 29.64
iter3 3873 4401 3480 6.64 26.22 3140 44.86 111 2972
init 3156 43.14 4488 9.64 42.07 37.80 4625 2121 3456
flpa,ca, iterl 3133 4793 45.19 8.72 37.20 41.32 41.32 1970 34.09
o-minl .2 2883 4792 4890 11.34 35.37 3840 4263 2727 35.08
iter3 2896 5078 4860 10.10 32.32 39.00 32.95 2020 32.86
init 4071 5095 4496 8.10 35.98 35.60 5398 9.09 3492
Wizard iter] 4139 5118 4443 944 37.80 38.60 59.01 1717 3738
iter2 3387 5171 4708 926 39.02 3840 66.18 19.70 38.15

Table 1: Performance comparison on different benchmarks using LLaMA-3.1-8B and Mistral-7B-v0.3 as base
models. We use Alpaca, Alpaca-4o-mini, and Wizard as the optimization datasets for Middo. The init means
training on the original dataset, while ifer means training on the optimized dataset. Both init and iter settings are
trained for one epoch. The best performance on average is highlighted in bold and the second best is underlined.

Method Size General Math Code Reasoning Average
MMLU IFEval GSM8K MATH HumanEval MBPP Hellaswag GPQA
Alpaca 52.0k 4746 41.09 35.63 4.96 39.63 37.40 48.11 5.56 32.48
Data Selection
Alpaca-clean 517k 47.21 43.92 43.90 4.20 29.27 43.40 60.17 5.56 34.70
Superfiltering 78k 3996 37.80 44.50 5.38 40.85 44.00 42.38 27.27 35.27
Superfiltering GPT4 78k 3771 34.35 53.68 11.00 9.15 45.60 57.81 2.53 31.48
Long 1.0k 25.51 14.75 56.33 16.56 13.41 45.60 25.83 0.00%* 24.75
AlpaGasus 9.2k 3398 4882 43.82 6.06 35.98 42.40 44.50 18.18 34.22
Data Augmentation

I-SHEEP 8.4k 23.61 29.61 43.14 8.28 3232 32.60 41.83 0.00%* 26.42
Alpaca-GPT4 52.0k 5194 38.68 50.87 10.28 17.07 43.60 63.02 0.51 34.50
WizardLM 70.0k 46.12 46.14 53.30 12.72 40.24 48.00 53.05 12.12 38.96
Middo Alpaca 57.6k 5132 43.20 51.18 12.92 39.63 41.80 58.78 16.67 39.63
MiddOnly' Alpaca 88k 4347 40.78 65.20 15.58 51.83 47.60 58.65 17.68 42.60

Middo Alpaca-4o-mini 63.1k 44.69 47.96 57.62 18.50 52.44 45.40 57.37 19.70 42.96
MiddOnly' Alpaca-do-mini 249k 4150 45.66 60.80 20.06 46.34 48.00 55.01 24.75 42.71

Table 2: Results of Middo compared to other baseline methods. The best and second best results are highlighted
in bold and underlined, respectively. Our method outperforms all baselines in the average score. *Note that 0.00
indicates that the method did not solve any examples. 1 Denotes training solely on Middo-generated data.

6876

2024b), Long (Zhao et al., 2024a), AlpaGa-
sus (Chen et al., 2024)) and data augmentation
(Alpaca-GPT4 (Peng et al., 2023), I-SHEEP (Liang
et al., 2025), WizardLM (Xu et al., 2024)) methods
on the Alpaca dataset.

We use the optimal dataset obtained through
Middo from Alpaca for comparison with other base-
lines. Additionally, to ensure a relatively fair com-
parison with data selection methods, we include a
dataset that only uses the optimized data without
incorporating any unoptimized samples, referred to
as MiddOnly, to isolate the effect of the optimiza-
tion process and make a direct comparison with
data selection approaches.

Results in Table 2 show our method achieves
the highest average score of 42.96, outperforming
all other approaches. Notably, even when using
only the optimized subset MiddOnly Alpaca, our
method delivers a robust average score of 42.60.
This demonstrates that iterative improvement is
not primarily driven by data size, but rather by the
effectiveness of our dynamic data selection and
optimization process in identifying and generating
data with high learning value for models.

5 Analysis
5.1 Ablation Studies

To assess the effectiveness of Middo and the con-
tribution of each optimization pipeline, we con-
duct ablation experiments with the LLaMA-3.1-8B
model on the Alpaca dataset. Specifically, we ana-
lyze the following ablations: (a) w/o loss: removes
Loss Patterns. (b) w/o neighbor: excludes Embed-
ding Cluster Dynamics. (c) w/o score: removes
Self-alignment Scores.

iteration Ablations IFEval MATH HumanEval Hellaswag Average

w 4577 10.62 40.24 56.37 38.25
iterl w/o loss 4249 10.11 39.02 59.53 37.79
w/o neighbor 39.01 10.82 42.07 57.86 37.45
w/o score 4348 10.20 36.59 48.40 34.67
w 44.63 1240 39.63 59.22 38.97
iter2 w/o loss 42.28 9.92 42.68 58.21 38.27
w/o neighbor 46.75 10.26 34.76 46.66 34.61
w/o score 4418 1176 39.02 51.38 36.58
w 4424 1292 39.63 59.25 39.01
iter3 w/o loss 43.18 12.42 36.59 55.30 36.87
w/o neighbor 40.12 12.46 34.15 56.83 35.89
w/o score 45.17 792 40.85 54.67 37.15

Table 3: Ablation study on the development set. We
report the performance of the model with different abla-
tions. The ablations include removing the loss patterns,
embedding cluster dynamics and self-alignment scores
separately. The best performance is highlighted in bold.

The ablation results in Table 3 consistently show

that removing any part of the framework leads to a
decline in performance across multiple iterations,
reinforcing that each component plays a signifi-
cant role in the overall performance. This trend
holds across the second (iter2) and third (iter3)
iterations, where the removal of any pipeline con-
sistently results in suboptimal performance, further
highlighting the importance of balancing complex-
ity, diversity, and quality in the optimization pro-
cess. These findings underscore the necessity of
the full framework for achieving optimal results.

5.2 Effect of Selected Data Scale

40.42 9-62

39.03
6.82 37.45

36.995 /<,
2 34.48
3
$33.38
[
o
g 29.85
<

26.33 L —e— Mistral

2;(‘%-]"4 —=— LLaMA
22.81 —

10k 15k 20k
(19.2%) (28.8%) (38.5%)

Data Size

Ok 5k
(0.0%) (9.6%)

Figure 3: Performance comparison of Middo on the Al-
paca dataset with varying refined data sizes. The x-axis
represents the number and percentage of data selected
for refinement, while the y-axis shows the average ac-
curacy across three iterations. To ensure fairness, we
guarantee that the data after refinement is the same.

We investigate the impact of the different scales
of the selected and optimized data in this section
by varying the thresholds for data selection. Re-
sults are illustrated in Figure 3. We observe that
increasing the size of the refined data initially leads
to an upward trend in performance; however, once
the refined data exceeds a certain threshold, perfor-
mance begins to decline. To maintain the potential
for further iterative improvement, we set the re-
fined data size at a moderate level that optimally
balances the cost and benefit of the optimization
process. In the first iteration, each component se-
lects approximately 5% of the data for refinement.
By controlling the parameter m, the amount of data
refined can adaptively change as the model’s ca-
pability increases. Detailed data sizes selected in
each iteration are provided in Appendix E.

5.3 Data Analysis

For a deeper understanding of how Middo trans-
forms the dataset, we provide an analysis of its
impact on data complexity, diversity, and quality.

6877

Complexity. To quantify how Middo modulates
dataset complexity, we analyze the loss distribution
evolution through optimization cycles. As shown
in Figure 4, the original dataset exhibits a long-
tailed distribution with extreme loss values up to
12.99. After applying Middo, the maximum loss
decreases by 71.05% to 3.76, indicating success-
ful mitigation of overly complex samples and the
distribution mode shifts leftward, suggesting bet-
ter alignment between data complexity and model
capability. This transformation demonstrates our
framework’s ability to adaptively prune pathologi-
cal samples while preserving pedagogically valu-
able challenges.

y) N Original data
0 / TN 1 Middo optimized data

Maximum Loss

Density
//p ‘

Max Loss

8
03 6

\ ,1 3%
0.2

Original Optimizgd

0.0 05 10 15 2.0 25 3.0 35 20
Loss

Figure 4: Loss distribution comparison before and after
applying Middo. The density curve reflects the relative
frequency of data points within specific loss intervals.
The inset subfigure highlights the maximum loss reduc-
tion from 12.99 to 3.76.

Diversity. To analyze the diversity of the dataset
after applying Middo, we visualize the data distri-
bution using t-SNE (Van der Maaten and Hinton,
2008). Figure 5 reveals how the augmented data
points are distributed relative to the original data.
Notably, most of the augmented samples are lo-
cated at the peripheries of the clusters, effectively
filling in the sparsely populated regions. This dis-
tribution indicates that Middo is not merely adding
redundant data but is instead enhancing the over-
all coverage of the latent space. By strategically
augmenting the dataset at the cluster edges, Middo
improves the diversity and ensures a more uniform
distribution of data points, ultimately contributing
to better model generalization.

Quality. The self-alignment score trajectories
across different iterations are presented in Figure 6.
The observed trend indicates a gradual increase in
the average score as the iterations progress. This
improvement signifies that the quality of the data

100

-100

—200

=200 -100 0 100 200

Figure 5: t-SNE visualization of the Alpaca dataset
before and after applying Middo. The original dataset is
shown in light blue, while the augmented data is in dark
blue. The dark blue points tend to occupy the sparsely
populated regions of the light blue point distribution.

is becoming more closely aligned with the model’s
evolving capabilities. Through the adversarial self-
play mechanisms and iterative quality refinement,
the model is able to assess and enhance the quality
of both the instructions and responses within the
dataset. As the self-alignment scores increase, it re-
flects that the refined data is not only more accurate
but also more consistent with the model’s internal
standards and expectations. This detailed evolu-
tion of the self-alignment scores provides critical
insights into the dynamic process of dataset opti-
mization, confirming that our approach effectively
transforms low-quality samples into high-quality
learning material over successive iterations.

—e— Alpaca
—m— Alpaca-40-mini
Wizard

©
N o
a O

8.036 8.058

©
o
S

8.008 013 7982

Self Alignment Score
.\] ~
w ~
(=} (%))

>
[¥]
3}

7.01

X
o
S

1 2 3
Iteration

Figure 6: Self-alignment score evolution across itera-
tions. The x-axis represents the number of iterations,
while the y-axis shows the average self-alignment score.

6 Conclusion

In this paper, we present Middo, a model-informed
dynamic data optimization framework that trans-

6878

forms LLM fine-tuning via closed-loop learning.
Unlike traditional static methods, Middo estab-
lishes a self-evolving system that continuously
adapts to the model’s evolving capabilities. It em-
ploys three core mechanisms: complexity optimiza-
tion refines overly complex samples using loss pat-
terns, ensuring the training data remains appropri-
ately challenging; diversity optimization enhances
dataset diversity by analyzing embedding cluster
dynamics; and quality optimization leverages self-
alignment scores to evaluate and improve the qual-
ity of training samples. Experiments on multiple
benchmarks demonstrate that Middo consistently
boosts LLMs’ performance, achieving an average
accuracy improvement of 7.15% while maintaining
the original data scale on LLaMA-3.1-8B. Ablation
studies confirm the effectiveness of each compo-
nent, underscoring the importance of balancing
complexity, diversity, and quality. Middo ’s adapt-
ability and model-awareness make it a powerful
tool for sustainable LLM training. Moreover, our
approach paves the way for future research in adap-
tive training that continuously optimizes learning
efficiency.

Limitations

Despite its promising results, Middo has several
limitations: (1) Middo relies on the model be-
ing fine-tuned itself for identifying data quality
and complexity. This means that the approach re-
quires a sufficiently capable base model, and the
performance may be limited if the base model is
not strong enough to generate meaningful diag-
nostics for data refinement. (2) Middo does not
currently utilize Reinforcement Learning, which
could further enhance data refinement, especially
for complex or subjective tasks. (3) The closed-
loop optimization system may lead to higher com-
putational costs as the dataset grows or updates
become more frequent, presenting scalability chal-
lenges. (4) Middo may propagate biases present in
the initial training data, limiting fairness and gen-
eralization if the base model is trained on biased
data. These limitations highlight areas for future
improvement, such as integrating RL, optimizing
for scalability, and addressing data biases.

Acknowledgments

This work is supported by Shanghai Artificial In-
telligence Laboratory. Zinan Tang is an intern at
Shanghai Artificial Intelligence Laboratory.

References

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama
Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman,
Shyamal Anadkat, et al. 2023. Gpt-4 technical report.
arXiv preprint arXiv:2303.08774.

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten
Bosma, Henryk Michalewski, David Dohan, Ellen
Jiang, Carrie Cai, Michael Terry, Quoc Le, and
Charles Sutton. 2021. Program synthesis with large
language models. Preprint, arXiv:2108.07732.

Yonatan Belinkov and Yonatan Bisk. 2018. Synthetic
and natural noise both break neural machine transla-
tion. In International Conference on Learning Rep-
resentations.

Yihan Cao, Yanbin Kang, Chi Wang, and Lichao Sun.
2024. Instruction mining: Instruction data selection
for tuning large language models. In First Confer-
ence on Language Modeling.

Lichang Chen, Shiyang Li, Jun Yan, Hai Wang, Kalpa
Gunaratna, Vikas Yadav, Zheng Tang, Vijay Srini-
vasan, Tianyi Zhou, Heng Huang, and Hongxia Jin.
2024. Alpagasus: Training a better alpaca with fewer
data. In The Twelfth International Conference on
Learning Representations.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming
Yuan, Henrique Ponde de Oliveira Pinto, Jared Ka-
plan, Harri Edwards, Yuri Burda, Nicholas Joseph,
Greg Brockman, Alex Ray, Raul Puri, Gretchen
Krueger, Michael Petrov, Heidy Khlaaf, Girish Sas-
try, Pamela Mishkin, Brooke Chan, Scott Gray,
Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz
Kaiser, Mohammad Bavarian, Clemens Winter,
Philippe Tillet, Felipe Petroski Such, Dave Cum-
mings, Matthias Plappert, Fotios Chantzis, Eliza-
beth Barnes, Ariel Herbert-Voss, William Hebgen
Guss, Alex Nichol, Alex Paino, Nikolas Tezak, Jie
Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain,
William Saunders, Christopher Hesse, Andrew N.
Carr, Jan Leike, Josh Achiam, Vedant Misra, Evan
Morikawa, Alec Radford, Matthew Knight, Miles
Brundage, Mira Murati, Katie Mayer, Peter Welinder,
Bob McGrew, Dario Amodei, Sam McCandlish, Ilya
Sutskever, and Wojciech Zaremba. 2021. Evaluat-
ing large language models trained on code. Preprint,
arXiv:2107.03374.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian,
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro
Nakano, Christopher Hesse, and John Schulman.
2021. Training verifiers to solve math word prob-
lems. Preprint, arXiv:2110.14168.

Pierre Colombo, Telmo Pessoa Pires, Malik Boudiaf,
Dominic Culver, Rui Melo, Caio Corro, Andre F. T.
Martins, Fabrizio Esposito, Vera Lucia Raposo, Sofia
Morgado, and Michael Desa. 2024. Saullm-7b: A
pioneering large language model for law. Preprint,
arXiv:2403.03883.

6879

https://arxiv.org/abs/2108.07732
https://arxiv.org/abs/2108.07732
https://openreview.net/forum?id=BJ8vJebC-
https://openreview.net/forum?id=BJ8vJebC-
https://openreview.net/forum?id=BJ8vJebC-
https://openreview.net/forum?id=wF6k0aWjAu
https://openreview.net/forum?id=wF6k0aWjAu
https://openreview.net/forum?id=FdVXgSJhvz
https://openreview.net/forum?id=FdVXgSJhvz
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2110.14168
https://arxiv.org/abs/2110.14168
https://arxiv.org/abs/2403.03883
https://arxiv.org/abs/2403.03883

OpenCompass Contributors. 2023. Opencompass:
A universal evaluation platform for foundation
models. https://github.com/open-compass/
opencompass.

Haixing Dai, Zhengliang Liu, Wenxiong Liao, Xiaoke
Huang, Yihan Cao, Zihao Wu, Lin Zhao, Shaochen
Xu, Fang Zeng, Wei Liu, et al. 2025. Auggpt: Lever-
aging chatgpt for text data augmentation. I[EEE
Transactions on Big Data.

Qianlong Du, Chengging Zong, and Jiajun Zhang. 2023.
Mods: Model-oriented data selection for instruction
tuning. Preprint, arXiv:2311.15653.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey,
Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman,
Akhil Mathur, Alan Schelten, Amy Yang, Angela
Fan, et al. 2024. The llama 3 herd of models. arXiv
preprint arXiv:2407.21783.

Sergey Edunov, Myle Ott, Michael Auli, and David
Grangier. 2018. Understanding back-translation at
scale. In Proceedings of the 2018 Conference on

Empirical Methods in Natural Language Processing,
pages 489-500.

Xin Gao, Qizhi Pei, Zinan Tang, Yu Li, Honglin Lin,
Jiang Wu, Lijun Wu, and Conghui He. 2025. A strate-
gic coordination framework of small LMs matches
large LMs in data synthesis. In Proceedings of the
63rd Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages
11552-11570, Vienna, Austria. Association for Com-
putational Linguistics.

Alex Havrilla, Andrew Dai, Laura O’Mahony, Koen
Oostermeijer, Vera Zisler, Alon Albalak, Fabrizio
Milo, Sharath Chandra Raparthy, Kanishk Gandhi,
Baber Abbasi, et al. 2024. Surveying the effects
of quality, diversity, and complexity in synthetic
data from large language models. arXiv preprint
arXiv:2412.02980.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou,
Mantas Mazeika, Dawn Song, and Jacob Steinhardt.
2021a. Measuring massive multitask language under-
standing. In International Conference on Learning
Representations.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul
Arora, Steven Basart, Eric Tang, Dawn Song, and
Jacob Steinhardt. 2021b. Measuring mathematical
problem solving with the MATH dataset. In Thirty-
fifth Conference on Neural Information Processing
Systems Datasets and Benchmarks Track (Round 2).

Aaron Hurst, Adam Lerer, Adam P Goucher, Adam
Perelman, Aditya Ramesh, Aidan Clark, AJ Os-
trow, Akila Welihinda, Alan Hayes, Alec Radford,
et al. 2024. Gpt-4o system card. arXiv preprint
arXiv:2410.21276.

Qi Jia, Siyu Ren, Ziheng Qin, Fuzhao Xue, Jinjie
Ni, and Yang You. 2024. Boosting llm via learn-
ing from data iteratively and selectively. Preprint,
arXiv:2412.17365.

Albert Q. Jiang, Alexandre Sablayrolles, Arthur Men-
sch, Chris Bamford, Devendra Singh Chaplot, Diego
de las Casas, Florian Bressand, Gianna Lengyel, Guil-
laume Lample, Lucile Saulnier, Lélio Renard Lavaud,
Marie-Anne Lachaux, Pierre Stock, Teven Le Scao,
Thibaut Lavril, Thomas Wang, Timothée Lacroix,
and William El Sayed. 2023. Mistral 7b. Preprint,
arXiv:2310.06825.

Jaehun Jung, Peter West, Liwei Jiang, Faeze Brahman,
Ximing Lu, Jillian Fisher, Taylor Sorensen, and Yejin
Choi. 2024. Impossible distillation for paraphras-
ing and summarization: How to make high-quality
lemonade out of small, low-quality model. In Pro-
ceedings of the 2024 Conference of the North Amer-
ican Chapter of the Association for Computational
Linguistics: Human Language Technologies (Volume
1: Long Papers), pages 4439—4454.

Zaid Khan, Elias Stengel-Eskin, Jaemin Cho, and Mohit
Bansal. 2025. Dataenvgym: Data generation agents
in teacher environments with student feedback. In
The Thirteenth International Conference on Learning
Representations.

Po-Nien Kung, Fan Yin, Di Wu, Kai-Wei Chang, and
Nanyun Peng. 2023. Active instruction tuning:
Improving cross-task generalization by training on
prompt sensitive tasks. In Proceedings of the 2023
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 1813-1829.

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying
Sheng, Lianmin Zheng, Cody Hao Yu, Joseph Gon-
zalez, Hao Zhang, and Ion Stoica. 2023. Efficient
memory management for large language model serv-
ing with pagedattention. In Proceedings of the 29th
symposium on operating systems principles, pages
611-626.

Hugo Laurengon, Lucile Saulnier, Thomas Wang,
Christopher Akiki, Albert Villanova del Moral, Teven
Le Scao, Leandro Von Werra, Chenghao Mou, Ed-
uardo Gonzilez Ponferrada, Huu Nguyen, et al. 2022.
The bigscience roots corpus: A 1.6 tb composite mul-
tilingual dataset. Advances in Neural Information
Processing Systems, 35:31809-31826.

Nicholas Lee, Thanakul Wattanawong, Sehoon Kim,
Karttikeya Mangalam, Sheng Shen, Gopala Anu-
manchipalli, Michael Mahoney, Kurt Keutzer, and
Amir Gholami. 2024. LIm2llm: Boosting llms with
novel iterative data enhancement. In Findings of the
Association for Computational Linguistics ACL 2024,
pages 6498-6526.

Haoran Li, Qingxiu Dong, Zhengyang Tang, Chaojun
Wang, Xingxing Zhang, Haoyang Huang, Shaohan
Huang, Xiaolong Huang, Zeqiang Huang, Dong-
dong Zhang, Yuxian Gu, Xin Cheng, Xun Wang, Si-
Qing Chen, Li Dong, Wei Lu, Zhifang Sui, Benyou
Wang, Wai Lam, and Furu Wei. 2025. Synthetic data
(almost) from scratch: Generalized instruction tun-
ing for language models. Transactions on Machine
Learning Research.

6880

https://github.com/open-compass/opencompass
https://github.com/open-compass/opencompass
https://arxiv.org/abs/2311.15653
https://arxiv.org/abs/2311.15653
https://doi.org/10.18653/v1/2025.acl-long.566
https://doi.org/10.18653/v1/2025.acl-long.566
https://doi.org/10.18653/v1/2025.acl-long.566
https://openreview.net/forum?id=d7KBjmI3GmQ
https://openreview.net/forum?id=d7KBjmI3GmQ
https://openreview.net/forum?id=7Bywt2mQsCe
https://openreview.net/forum?id=7Bywt2mQsCe
https://arxiv.org/abs/2412.17365
https://arxiv.org/abs/2412.17365
https://arxiv.org/abs/2310.06825
https://openreview.net/forum?id=00SnKBGTsz
https://openreview.net/forum?id=00SnKBGTsz
https://openreview.net/forum?id=PahnCreCxK
https://openreview.net/forum?id=PahnCreCxK
https://openreview.net/forum?id=PahnCreCxK

Ming Li, Lichang Chen, Jiuhai Chen, Shwai He, Ji-
uxiang Gu, and Tianyi Zhou. 2024a. Selective
reflection-tuning: Student-selected data recycling for
llm instruction-tuning. In Findings of the Associa-
tion for Computational Linguistics ACL 2024, pages
16189-16211.

Ming Li, Yong Zhang, Shwai He, Zhitao Li, Hongyu
Zhao, Jianzong Wang, Ning Cheng, and Tianyi Zhou.
2024b. Superfiltering: Weak-to-strong data filtering
for fast instruction-tuning. In Proceedings of the
62nd Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages
14255-14273.

Ming Li, Yong Zhang, Zhitao Li, Jiuhai Chen, Lichang
Chen, Ning Cheng, Jianzong Wang, Tianyi Zhou, and
Jing Xiao. 2024c. From quantity to quality: Boost-
ing llm performance with self-guided data selection
for instruction tuning. In Proceedings of the 2024
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies (Volume 1: Long Papers),
pages 7595-7628.

Xian Li, Ping Yu, Chunting Zhou, Timo Schick, Omer
Levy, Luke Zettlemoyer, Jason E Weston, and Mike
Lewis. 2024d. Self-alignment with instruction back-
translation. In The Twelfth International Conference
on Learning Representations.

Yunshui Li, Binyuan Hui, Xiaobo Xia, Jiaxi Yang, Min
Yang, Lei Zhang, Shuzheng Si, Ling-Hao Chen, Jun-
hao Liu, Tongliang Liu, et al. 2024e. One-shot learn-
ing as instruction data prospector for large language
models. In Proceedings of the 62nd Annual Meet-
ing of the Association for Computational Linguistics

(Volume 1: Long Papers), pages 4586—4601.

Zhuochun Li, Yuelyu Ji, Rui Meng, and Daqing He.
2024f. Learning from committee: Reasoning distil-
lation from a mixture of teachers with peer-review.
Preprint, arXiv:2410.03663.

Yiming Liang, Ge Zhang, Xingwei Qu, Tianyu Zheng,
Xeron Du, Jiawei Guo, Zhenzhu Yang, Jiaheng Liu,
Chenghua Lin, Lei Ma, Stephen Huang, and Jiajun
Zhang. 2025. I-SHEEP: Self-alignment of LLM
from scratch through an iterative self-enhancement
paradigm. In Scaling Self-Improving Foundation
Models without Human Supervision.

Ruibo Liu, Jerry Wei, Fangyu Liu, Chenglei Si, Yanzhe
Zhang, Jinmeng Rao, Steven Zheng, Daiyi Peng, Diyi
Yang, Denny Zhou, and Andrew M. Dai. 2024a. Best
practices and lessons learned on synthetic data. In
First Conference on Language Modeling.

Wei Liu, Weihao Zeng, Keqing He, Yong Jiang, and
Junxian He. 2024b. What makes good data for align-
ment? a comprehensive study of automatic data se-
lection in instruction tuning. In The Tvelfth Interna-
tional Conference on Learning Representations.

Xiao Liu, Xuanyu Lei, Shengyuan Wang, Yue Huang,
Andrew Feng, Bosi Wen, Jiale Cheng, Pei Ke, Yi-
fan Xu, Weng Lam Tam, et al. 2024c. Alignbench:
Benchmarking chinese alignment of large language
models. In Proceedings of the 62nd Annual Meet-
ing of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 11621-11640.

Keming Lu, Hongyi Yuan, Zheng Yuan, Runji Lin, Jun-
yang Lin, Chuangi Tan, Chang Zhou, and Jingren
Zhou. 2024. #instag: Instruction tagging for analyz-
ing supervised fine-tuning of large language models.
In The Twelfth International Conference on Learning
Representations.

Maosongcao Maosongcao, Taolin Zhang, Mo Li, Chuyu
Zhang, Yunxin Liu, Conghui He, Haodong Duan,
Songyang Zhang, and Kai Chen. 2025. Condor: En-
hance llm alignment with knowledge-driven data syn-
thesis and refinement. In Proceedings of the 63rd
Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 22392—
22412.

Subhabrata Mukherjee, Arindam Mitra, Ganesh Jawa-
har, Sahaj Agarwal, Hamid Palangi, and Ahmed
Awadallah. 2023. Orca: Progressive learning from
complex explanation traces of gpt-4. Preprint,
arXiv:2306.02707.

Chansung Park, Juyong Jiang, Fan Wang, Sayak Paul,
and Jing Tang. 2024. Llamaduo: Llmops pipeline for
seamless migration from service llms to small-scale
local llms. Preprint, arXiv:2408.13467.

Ajay Patel, Colin Raffel, and Chris Callison-Burch.
2024. Datadreamer: A tool for synthetic data genera-
tion and reproducible 1lm workflows. In Proceedings
of the 62nd Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 3781-3799.

Baolin Peng, Chunyuan Li, Pengcheng He, Michel Gal-
ley, and Jianfeng Gao. 2023. Instruction tuning with
gpt-4. arXiv preprint arXiv:2304.03277.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J Liu. 2020. Exploring the lim-
its of transfer learning with a unified text-to-text
transformer. Journal of machine learning research,

21(140):1-67.

David Rein, Betty Li Hou, Asa Cooper Stickland, Jack-
son Petty, Richard Yuanzhe Pang, Julien Dirani, Ju-
lian Michael, and Samuel R Bowman. 2024. Gpqa:
A graduate-level google-proof q&a benchmark. In
First Conference on Language Modeling.

Gene Ruebsamen. 2023. GitHub - gu-
rurise/AlpacaDataCleaned: Alpaca dataset from
Stanford, cleaned and curated — github.com. https:
//github.com/gururise/AlpacaDataCleaned.

Li Shen, Yan Sun, Zhiyuan Yu, Liang Ding, Xinmei
Tian, and Dacheng Tao. 2024. On efficient training of

6881

https://openreview.net/forum?id=1oijHJBRsT
https://openreview.net/forum?id=1oijHJBRsT
https://arxiv.org/abs/2410.03663
https://arxiv.org/abs/2410.03663
https://openreview.net/forum?id=QwhUNXXXNc
https://openreview.net/forum?id=QwhUNXXXNc
https://openreview.net/forum?id=QwhUNXXXNc
https://openreview.net/forum?id=OJaWBhh61C
https://openreview.net/forum?id=OJaWBhh61C
https://openreview.net/forum?id=BTKAeLqLMw
https://openreview.net/forum?id=BTKAeLqLMw
https://openreview.net/forum?id=BTKAeLqLMw
https://openreview.net/forum?id=pszewhybU9
https://openreview.net/forum?id=pszewhybU9
https://arxiv.org/abs/2306.02707
https://arxiv.org/abs/2306.02707
https://arxiv.org/abs/2408.13467
https://arxiv.org/abs/2408.13467
https://arxiv.org/abs/2408.13467
https://github.com/gururise/AlpacaDataCleaned
https://github.com/gururise/AlpacaDataCleaned

large-scale deep learning models. ACM Computing
Surveys, 57(3):1-36.

Shivchander Sudalairaj, Abhishek Bhandwaldar, Aldo
Pareja, Kai Xu, David D. Cox, and Akash Srivas-
tava. 2024. Lab: Large-scale alignment for chatbots.
Preprint, arXiv:2403.01081.

Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann
Dubois, Xuechen Li, Carlos Guestrin, Percy Liang,
and Tatsunori B. Hashimoto. 2023. Stanford alpaca:
An instruction-following llama model. https://
github.com/tatsu-lab/stanford_alpaca.

Laurens Van der Maaten and Geoffrey Hinton. 2008.
Visualizing data using t-sne. Journal of machine
learning research, 9(11).

Ruida Wang, Wangchunshu Zhou, and Mrinmaya
Sachan. 2023a. Let’s synthesize step by step: It-
erative dataset synthesis with large language models
by extrapolating errors from small models. In Find-
ings of the Association for Computational Linguistics:

EMNLP 2023, pages 11817-11831.

Yizhong Wang, Yeganeh Kordi, Swaroop Mishra, Alisa
Liu, Noah A Smith, Daniel Khashabi, and Hannaneh
Hajishirzi. 2023b. Self-instruct: Aligning language
models with self-generated instructions. In Proceed-
ings of the 61st Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 13484-13508.

Jason Wei and Kai Zou. 2019. Eda: Easy data augmenta-
tion techniques for boosting performance on text clas-
sification tasks. In Proceedings of the 2019 Confer-
ence on Empirical Methods in Natural Language Pro-
cessing and the 9th International Joint Conference
on Natural Language Processing (EMNLP-1JCNLP),
pages 6382—6388.

John Wieting and Kevin Gimpel. 2018. Paranmt-50m:
Pushing the limits of paraphrastic sentence embed-
dings with millions of machine translations. In Pro-
ceedings of the 56th Annual Meeting of the Associa-
tion for Computational Linguistics (Volume 1: Long
Papers), pages 451-462.

Can Xu, Qingfeng Sun, Kai Zheng, Xiubo Geng,
Pu Zhao, Jiazhan Feng, Chongyang Tao, Qingwei
Lin, and Daxin Jiang. 2024. WizardLM: Empow-
ering large pre-trained language models to follow
complex instructions. In The Twelfth International
Conference on Learning Representations.

Yang Xu, Yongqiang Yao, Yufan Huang, Mengnan Qi,
Maoquan Wang, Bin Gu, and Neel Sundaresan. 2023.
Rethinking the instruction quality: Lift is what you
need. Preprint, arXiv:2312.11508.

Zhangchen Xu, Fengqing Jiang, Luyao Niu, Yun-
tian Deng, Radha Poovendran, Yejin Choi, and
Bill Yuchen Lin. 2025. Magpie: Alignment data
synthesis from scratch by prompting aligned LLMs
with nothing. In The Thirteenth International Con-
ference on Learning Representations.

Zhaojian Yu, Xin Zhang, Ning Shang, Yangyu Huang,
Can Xu, Yishujie Zhao, Wenxiang Hu, and Qiufeng
Yin. 2024. Wavecoder: Widespread and versatile
enhancement for code large language models by in-
struction tuning. In Proceedings of the 62nd Annual
Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), pages 5140-5153.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali
Farhadi, and Yejin Choi. 2019. Hellaswag: Can a
machine really finish your sentence? In Proceedings
of the 57th Annual Meeting of the Association for
Computational Linguistics, pages 4791-4800.

Weihao Zeng, Can Xu, Yingxiu Zhao, Jian-Guang Lou,
and Weizhu Chen. 2024. Automatic instruction
evolving for large language models. In Proceed-
ings of the 2024 Conference on Empirical Methods
in Natural Language Processing, pages 6998-7018.

Hao Zhao, Maksym Andriushchenko, Francesco Croce,
and Nicolas Flammarion. 2024a. Long is more for
alignment: a simple but tough-to-beat baseline for
instruction fine-tuning. In Proceedings of the 41st In-
ternational Conference on Machine Learning, pages

60674-60703.

Yingxiu Zhao, Bowen Yu, Binyuan Hui, Haiyang Yu,
Minghao Li, Fei Huang, Nevin L Zhang, and Yongbin
Li. 2024b. Tree-instruct: A preliminary study of the
intrinsic relationship between complexity and align-
ment. In Proceedings of the 2024 Joint International
Conference on Computational Linguistics, Language
Resources and Evaluation (LREC-COLING 2024),
pages 16776-16789.

Yaowei Zheng, Richong Zhang, Junhao Zhang, YeYan-
han YeYanhan, and Zheyan Luo. 2024. Llamafactory:
Unified efficient fine-tuning of 100+ language mod-
els. In Proceedings of the 62nd Annual Meeting of
the Association for Computational Linguistics (Vol-
ume 3: System Demonstrations), pages 400—410.

Chunting Zhou, Pengfei Liu, Puxin Xu, Srinivasan Iyer,
Jiao Sun, Yuning Mao, Xuezhe Ma, Avia Efrat, Ping
Yu, Lili Yu, et al. 2023a. Lima: Less is more for
alignment. Advances in Neural Information Process-
ing Systems, 36:55006-55021.

Daquan Zhou, Kai Wang, Jianyang Gu, Xiangyu Peng,
Dongze Lian, Yifan Zhang, Yang You, and Jiashi
Feng. 2023b. Dataset quantization. In Proceedings
of the IEEE/CVF International Conference on Com-
puter Vision, pages 17205-17216.

Haotian Zhou, Tingkai Liu, Qianli Ma, Yufeng Zhang,
Jianbo Yuan, Pengfei Liu, Yang You, and Hongxia
Yang. 2025. Davir: Data selection via implicit re-
ward for large language models. In Proceedings
of the 63rd Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 9220-9237.

Jeffrey Zhou, Tianjian Lu, Swaroop Mishra, Siddhartha
Brahma, Sujoy Basu, Yi Luan, Denny Zhou, and
Le Hou. 2023c. Instruction-following evaluation for
large language models. Preprint, arXiv:2311.07911.

6882

https://arxiv.org/abs/2403.01081
https://github.com/tatsu-lab/stanford_alpaca
https://github.com/tatsu-lab/stanford_alpaca
https://openreview.net/forum?id=CfXh93NDgH
https://openreview.net/forum?id=CfXh93NDgH
https://openreview.net/forum?id=CfXh93NDgH
https://arxiv.org/abs/2312.11508
https://arxiv.org/abs/2312.11508
https://openreview.net/forum?id=Pnk7vMbznK
https://openreview.net/forum?id=Pnk7vMbznK
https://openreview.net/forum?id=Pnk7vMbznK
https://arxiv.org/abs/2311.07911
https://arxiv.org/abs/2311.07911

A Computational Cost Analysis

We analyzed the computational cost of Middo’s
optimization stages on 7B parameter models
(LLaMA-3.1-8B, Mistral-7B-v0.3) using 50k-100k
sample datasets (Alpaca, Alpaca-4o-mini, Wiz-
ardLM) on 8 x NVIDIA A100 GPUs.

Each optimization iteration, encompassing data
selection via loss patterns, embedding cluster dy-
namics, and self-alignment scores, followed by
refinement, typically completes in under 30 min-
utes. This efficiency is largely due to the paralleliz-
able nature of the diagnostic modules and the use
of acceleration techniques: CUDA for neighbor
computation in Embedding Cluster Dynamics and
vLLM (Kwon et al., 2023) for batched inference
during Self-alignment Score calculation. Table 4
provides a detailed time breakdown per component,
underscoring Middo’s practical efficiency.

B Hyperparameters Analysis

B.1 The Impact of Neighbor Number

We also explore how the number of neighbors &
used in the Embedding Cluster Dynamics affects
the overall performance of Middo. By varying
the number of neighbors, we analyze its impact
on dataset diversity and model performance. Ta-
ble Spresents the results of this analysis. We find
that the optimal number of neighbors is k£ = 2,
which achieves the best balance between diversity
and performance. This setting ensures that the
dataset is sufficiently expanded to enhance model
generalization while avoiding excessive noise that
may degrade performance.

B.2 The Impact of Iterations

As shown in Figure 7, we tested the number of
iterations on the Alpaca dataset and found that the
model’s performance significantly declined after
the third iteration. Therefore, we chose to optimize
each dataset for three iterations. This optimal num-
ber is not necessarily fixed and may vary depending
on the threshold of each iteration.

B.3 The Impact of Thresholds

The amount of data selected for refinement by each
module (Loss Patterns (Complexity), Embedding
Cluster Dynamics (Diversity), and Self-alignment
Scores (Quality)) is governed by dynamic thresh-
olds 7 = u + mo, where i and o are the mean
and standard deviation of the respective signal val-
ues (loss, diversity score, quality score) across the

Average Score

w w w w w
N ® o © ©
wl o o o w

w
N
=)

1 2 3 4
Iteration

Figure 7: Performance trends on the Alpaca dataset
across different iterations. The model’s performance
peaks at three iterations and declines thereafter.

dataset. The multiplier m is a key hyperparameter
that controls the stringency of these thresholds.

Our approach to setting m is guided by empirical
analysis aimed at optimizing refinement effective-
ness. Initial experiments (detailed in Section 5.3,
Figure 3) indicated that refining a total unique pro-
portion of approximately 10 — 20% of the dataset
in the first iteration yields substantial performance
improvements.

To determine appropriate m values for each
module, we conducted a sensitivity analysis, pre-
sented in Table 7. This table shows how differ-
ent combinations of m for complexity, diversity,
and quality impact the total percentage of unique
data selected for refinement and the resulting av-
erage model performance on benchmarks. The
m values are varied (e.g., in 0.5 increments) for
each signal, and combinations are chosen to target
the 10-20% total selected data range. As shown,
performance peaks when the selected data propor-
tion falls within this empirically determined opti-
mal range. For instance, the combination yielding
14.88% selected data achieved the best average
score of 43.23. When multiple m combinations
meet the 10 — 20% criterion, we select those with
the smallest absolute m values (representing the
mildest effective thresholds) that achieve this target,
balancing refinement impact with efficiency.

The actual data sizes selected in each iteration
for the experiments reported in the main paper,
using m values derived from this sensitivity anal-
ysis (e.g., targeting the 15% mark initially), are
detailed in Table 6. As the model’s performance
improves over subsequent iterations, the amount of
data flagged by these fixed m thresholds naturally
decreases due to shifts in the signal distributions
(p and o). This adaptive selection aligns with our
observation that early training phases benefit from

6883

Method Component Time (Single A100 GPU) Time (8 x A100 GPUs, Data Parallelism)

< 10 minutes
< 10 minutes (CUDA acceleration)
< 10 minutes (vLLM acceleration)

< 50 minutes
< 40 minutes + neighbor computation time
< 1 hour per metric (6 metrics)

Loss patterns
Embedding cluster dynamics
Self-alignment scores

Table 4: Approximate overhead time cost of Middo’s optimization components per iteration. Timings are reported
for processing datasets in the range of 50k-100k samples.

k IFEval GSMS8K MATH HumanEval MBPP Hellaswag ARC-c Average
1 43.59 38.74 9.20 35.98 39.8 48.59 17.17 333
2 5156 43.21 10.72 40.85 41.00 57.47 12.12 35.72
3 40.82 40.49 9.50 32.32 39.20 59.72 8.59 32.95

Table 5: Impact of the number of neighbors (k) in the Embedding Cluster Dynamics on Middo performance. The
table shows the performance across various benchmarks for different values of k, indicating that k = 2 yields the

best overall average score.

Dataset iteration loss neighbor self total
LLaMA-3.1-8B
init m=1 m=-1 m=-15 52,002
Alpaca iterl 1,180 1,924 1,159 53,939
iter2 299 1,853 108 55,811
iter3 242 1,822 381 57,636
init m=20 m=—-1 m=-0.5 52,002
Alpaca iterl 5,684 8,032 4,145 60,865
40-mini iter2 611 2291 876 63,184
iter3 472 2127 661 65,324
init m=1 m=-15 m=-2 70,000
Wizard iterl 3,585 3,585 2,690 73,642
iter2 959 3,341 1,016 76,993
iter3 751 3414 420 80,419
Mistral-7B-v0.3
init m=05 m=-2 m=—-1 52,002
Alpaca iterl 2,418 2,111 2,367 54,131
iter2 1,985 2,091 932 56,268
iter3 1,788 1,982 352 58,348
init m=1 m=-2 m=-25 52,002
Alpaca iterl 1,407 7,691 1,499 59,696
40-mini iter2 1,278 9,116 1,045 68,874
iter3 1,346 2,487 661 74,036
init m=1 m=-15 m=-1.5 70,000
Wizard iterl 5,637 5,709 5,258 76,429
iter2 3,558 5,999 6,310 82,501
iter3 3,885 6,229 3,767 89,178

Table 6: Data Size Details Across Iterative Refinement.
For each dataset, the table lists the number of samples
selected by the three components—I/oss (Loss Patterns),
neighbor (Embedding Cluster Dynamics), and self (Self-
alignment Scores). During each iteration, along with the
total data size after refinement. The init row represents
the original dataset size and the threshold controlling
hyperparameter m corresponding to each component.

addressing a broader set of initial complexities and
diversities, while later stages refine more nuanced
aspects.

We do not place excessive emphasis on the im-
provements brought about by differences in data

Complexity Diversity Quality Total Selected Percentage Performance
m=0 m=-1 m=-15 15.8k 30.45% 41.81
m=0.5 m=-15 m=-15 7.7 14.88% 43.23
m =1 m=-2 m=-15 4.3k 8.20% 41.96
m=15 m=-25 m=-15 2.6k 5.09% 41.55
m=2 m= -3 m=—4 1.3k 2.44% 40.87
m=3 m=-35 m=-10 0.5k 0.92% 39.64
m =4 m=-4 m=-12 0.1k 0.26% 38.69

Table 7: Sensitivity analysis for the threshold multiplier
m on the Alpaca dataset (first iteration). The table shows
the impact of varying m for complexity, diversity, and
quality modules on the total unique data selected (sum
and percentage) and the average model performance
(mean score across benchmarks).

volume, so our selection may not necessarily be
optimal.

C Experimental Details

C.1 Instruction Fine-tune Dataset

We evaluate Middo on three general instruction
fine-tuning datasets.

 Alpaca (Taori et al., 2023): consists of 52,002
instruction-response pairs generated by Stan-
ford University using the self-instruct (Wang
et al., 2023b) method based on OpenAl’s text-
davinci-003. This dataset is designed for fine-
tuning dialogue models similar to ChatGPT
to achieve efficient instruction-following ca-
pabilities.

* Alpaca-4o-mini: to evaluate performance on
a higher-quality response dataset, we gener-
ated responses for all Alpaca instructions us-
ing GPT-40 mini, creating the Alpaca-40-mini
dataset.

* WizardLM (Xu et al., 2024): 70K data gen-
erated based on Evol-Instruct, which aims

6884

to generate more complex instruction data
through a recursive evolutionary approach in
order to improve the model’s reasoning and
instruction comprehension.

C.2 Models

We primarily conducted experiments on LLaMA
3.1-8B, and additionally performed extra experi-
ments on Mistral 7B-v0.3.

* LLaMA 3.1-8B (Dubey et al., 2024): LLaMA
3.1-8B is a large language model released by
Meta, featuring 8 billion (8B) parameters. It
is part of the LLaMA (Large Language Model
Meta Al) series, focusing on efficient reason-
ing and text generation capabilities. LLaMA
3.1-8B excels in code generation, language
understanding, and conversational tasks, opti-
mizing inference speed and training efficiency,
making it suitable for research, commercial
applications, and Al studies.

* Mistral 7B-v0.3 (Jiang et al., 2023): Mistral
7B-v0.3 is an open-source language model
developed by Mistral Al, featuring 7 billion
parameters. It is optimized based on the Trans-
former architecture, emphasizing efficiency
and multitasking capabilities. Compared to
earlier versions, this model shows improve-
ments in coding, mathematics, and reasoning
tasks, making it suitable for chatbots, pro-
gramming assistance, and natural language
processing tasks. Mistral 7B-v0.3 incorpo-
rates feedback from the open-source commu-
nity to enhance inference efficiency, deliver-
ing high performance with reduced computa-
tional resources.

C.3 Benchmarks

We assess model performance on general knowl-
edge, mathematical problem-solving, code genera-
tion and commonsense reasoning benchmarks.

e IFEval (Instruction Following Evalua-
tion) (Zhou et al., 2023c): a benchmark
dataset designed to assess the instruction-
following capabilities of large models. It en-
compasses various tasks, including general
knowledge question answering, commonsense
reasoning, and mathematical reasoning, aim-
ing to measure the understanding and accu-
racy of language models when executing com-
plex instructions.

6885

* MMLU (Massive Multitask Language Un-
derstanding) (Hendrycks et al., 2021b): a
large-scale, multi-task language understand-
ing benchmark that covers 57 subjects, testing
models on their knowledge and reasoning abil-
ities across fields such as history, law, math-
ematics, and medicine. It serves as a signifi-
cant indicator of general artificial intelligence
knowledge levels.

« GSMS8K (Grade School Math 8K) (Cobbe
et al., 2021): a dataset specifically created
for solving mathematical problems, contain-
ing approximately 8,500 elementary school
math questions that primarily focus on basic
arithmetic, logical reasoning, and text compre-
hension skills. This dataset is used to evaluate
models’ mathematical computation and rea-
soning abilities.

* MATH (Hendrycks et al., 2021a): consists
of math competition problems from middle
school and college levels, covering areas such
as algebra, geometry, number theory, and cal-
culus. This dataset is more challenging than
GSMBSK and is primarily used to assess mod-
els’ performance on advanced mathematical
reasoning tasks.

* HumanEval (Chen et al., 2021): a dataset for
evaluating code generation capabilities, fea-
turing a series of Python programming prob-
lems, each with a clear function signature and
test cases. This dataset is commonly used to
measure Al performance in automated code
generation and programming tasks.

* MBPP (Mostly Basic Programming Prob-
lems) (Austin et al.,, 2021): a benchmark
dataset for code generation, containing 1,000
basic programming questions that cover data
structures, algorithms, and logical reasoning.
It is suitable for assessing Al capabilities in
fundamental programming tasks.

* Hellaswag (Zellers et al., 2019): a benchmark
dataset for commonsense reasoning, consist-
ing of a series of incomplete sentences that
require models to select the most reasonable
ending. This dataset tests models’ contextual
understanding and reasoning abilities by de-
signing misleading options.

* GPQA (Graduate-Level Google-Proof
Q&A) (Rein et al.,, 2024): a challenging
dataset designed to evaluate the capabilities
of LLMs and scalable oversight mechanisms.
Let me provide more details about it.

C.4 Baselines

We compare Middo with both existing data selec-
tion and data augmentation methods on the Alpaca
dataset.

Data Selection Methods.

* Alpaca-clean (Ruebsamen, 2023): a cleaned
version of the Alpaca dataset that removes
low-quality samples and duplicates, aiming to
improve the overall quality of the dataset.

* Superfiltering (Li et al., 2024b): using
smaller, weaker language models (such as
GPT-2) as data filters to compute IFD allows
for the selection of high-quality instruction
tuning data.

* Long (Zhao et al., 2024a): directly select the
1,000 samples with the longest responses as
training data.

» AlpaGasus (Chen et al., 2024): utilize pow-
erful LLMs (such as ChatGPT) to automati-
cally assess the sample quality in the Alpaca
dataset and filter out high-quality data to en-
hance model training effectiveness.

Data Augmentation Methods.

* Alpaca-GPT4 (Peng et al., 2023): a data aug-
mentation method that uses GPT-4 to generate
additional training data for the Alpaca dataset.

* I-SHEEP (Liang et al., 2025): a data aug-
mentation method that uses a self-supervised
learning approach to generate additional train-
ing data for the Alpaca dataset.

* WizardLM (Xu et al., 2024): 70K data gen-
erated based on Evol-Instruct, which aims
to generate more complex instruction data
through a recursive evolutionary approach in
order to improve the model’s reasoning and
instruction comprehension.

Hyperparameter Value
LLaMA-3.1-8B
Learning Rate 2x107°
Number of Epochs 1
Number of Devices 8
Per-device Batch Size 4
Gradient Accumulation Steps 8
Learning Rate Scheduler cosine
Warmup Ratio 0.03
Max Sequence Length 4096
Mistral-7B-v0.3
Learning Rate 1x1073
Number of Epochs 1
Number of Devices 8
Per-device Batch Size 4
Gradient Accumulation Steps 8
Learning Rate Scheduler cosine
Warmup Ratio 0.03
Max Sequence Length 4096

Table 8: Hyperparameters used for fine-tuning.

C.5 Hyperparameters

Fine-tune. For LLaMA-3.1-8B, we follow the
Alpaca GitHub repository', setting the batch size
to 32, the learning rate to 2 x 10~°, and the warmup
ratio to 0.03. For Mistral-7B-v(.3, we adjust the
learning rate to 1 x 1075, as per official recommen-
dations®. All the hyperparameters are detailed in
Table 8.

Data Synthetic. We use the OpenAl API to gen-
erate data by GPT-40-mini, setting both tempera-
ture and top_p to 1.0 to guarantee diversity.

Evaluation. All benchmarks are conducted in
zero-shot and we conducted the tests using the
default configuration of OpenCompass. All the
hyperparameters are detailed in Table 9.

All experiments are conducted on 8 x NVIDIA
Tesla A100 GPUs about 50 GPU hours.

D Self-alignment Scores

We provide detailed self-alignment score evolution
across iterations on the Alpaca, Alpaca-40-mini,
and WizardLM datasets in Figure 8. These figures
illustrate the dynamic evolution of self-alignment

1https: //github.com/tatsu-lab/stanford_alpaca
2https: //docs.mistral.ai/capabilities/
finetuning

6886

https://github.com/tatsu-lab/stanford_alpaca
https://docs.mistral.ai/capabilities/finetuning
https://docs.mistral.ai/capabilities/finetuning

17 [=1 Turn1 3 Turn 1 5 3 Turn 1
15.0 =1 Turn 2 25 = Turn2 = Turn2
Turn 3 Turn 3 1 Turn 3
12.5 20 ‘
& &
2 = =3
100 215 2 ‘
& 75 a [,
] 10 | ‘
5.0 ‘ ‘ |
s]
25 H 5 | i ! | ‘ [ﬂ\
| A | 8 BN 4
o A A . . Aa) NALR S
6.5 7.0 7.5 8.5 9.0 9.5 7.00 7.25 7.50 7.75 8.00 8.25 850 875 9.00 6.0 6.5 7.0 7.5 8.5 9.0 9.5 10.0
Self Alignment Score Self Alignment Score Self Alignment Score
(a) Alpaca dataset. (b) Alpaca-40-mini dataset. (c) WizardLM dataset.

Figure 8: Self-alignment score evolution across iterations. The x-axis represents the self-alignment scores, while the
y-axis shows the density of data points.

Hyperparameter Value

Pass@n n=1
Presence Penalty 0.0
Frequency Penalty 0.0
Repetition Penalty 1.0

Temperature 0.0
Top_p 1.0
Top_k -1
Min_p 0.0
Max Tokens 4096
Min Tokens 0

Table 9: Hyperparameters used for evaluation.

scores across iterations, highlighting the continu-
ous improvement in dataset quality and alignment
with model capabilities.

E Case Study

6887

Self-Alignment Instruction Score Prompt Template

We would like to request your feedback on the {dimension} of the prompt displayed below.

Prompt:
Give three tips for staying healthy.

Please rate according to the {dimension} of the prompt to evaluate {explanations}. Each prompt is scored
on a scale of 0 to 10, with higher scores indicating higher {dimension}. Try to avoid scoring a full 10. Give
your rating number first, then give a explanation of your rating.

\e——

Self-Alignment Instruction Score Dimensions and Explanations

noon

"factuality": "whether the information provided in the prompt is accurate and based on reliable facts and
data",

"clarity": "whether the prompt is clear and understandable, and whether it uses concise language and
structure"”,

"completeness": "whether the prompt provides sufficient information and details".

\cssssss———

Instruction Clarity Score Example

7. The prompt is clear and understandable, but it could be more concise.

Figure 9: Self-Alignment instruction score example.

Self-Alignment Response Score Prompt Template

We would like to request your feedback on the {dimension} of the prompt displayed below.

Prompt:
What are the three primary colors?

Response:
The three primary colors are red, blue, and yellow.

Please rate according to the {dimension} of the response to evaluate {explain}. Each response is scored on
a scale of 0 to 10, with higher scores indicating higher {dimension}. Try to avoid scoring a full 10. Give
your rating number first, then give a explanation of your rating.

Self-Alignment Response Score Dimensions and Explanations

non

"factuality": "whether the information provided in the response is accurate and based on reliable facts and
data",

"clarity": "whether the response is clear and understandable, and whether it uses concise language and
structure",

"completeness": "whether the response provides sufficient information and details".

-—
Response Clarity Score Example

8.5. The response is clear and understandable, but it could be more concise.

\.

Figure 10: Self-Alignment response score example.

6888

Complexity Optimization Prompt Template

You are a powerful LLM with the task to simplify the given #Prompt# for weaker open source LLMs (e.g.
LLaMA, Qwen). Since the original #Prompt# is hard for them to handle, you need to rewrite it into a
simpler version that these weaker LLMs can handle or learn from more easily. Follow the steps below
carefully.

Step 1: Read the #Prompt# in detail. Suggest possible methods to make this prompt easier for weaker
LLMs to handle or learn from, then list these methods as your #Methods List#.

Step 2: Create a comprehensive plan to simplify the #Prompt# using several methods from your #Methods
List#. Present your plan in a clear, step-by-step format.

Step 3: Execute your plan to rewrite the #Prompt# into a simpler, more learnable version. You can change
scenarios, contexts, or settings as needed. Your goal is to ensure that weaker LLMs learn from this prompt,
rather than just memorizing an answer.

Step 4: Finally, review your rewritten version for any problems. Present only the #Final Rewritten Prompt#,
without any additional explanation.

Please respond strictly in the following format:

Step 1 #Methods List#:

Step 2 #Plan#:

Step 3 #Rewritten Prompt#:

Step 4 #Final Rewritten Prompt#:

Overly Hard Data Example

Find the mode of the following set of numbers: 23, 16, 22, 19, 24, 21

Optimize Steps

Step 1 #Methods List#:

1. Simplify the language used in the prompt.

2. Break down the instructions into simpler steps.
3. Provide examples to clarify the concept of mode.
4. Use smaller numbers or more relatable contexts.
5. Ask the question in a more direct manner.

Step 2 #Plan#:

1. Change complex terminology like “mode” to a more descriptive explanation.

2. Use a familiar context, like favorite fruits or animals.

3. Clearly outline the steps needed to find the most common number, potentially using a smaller set.
4. Offer a simple example to illustrate the mode calculation.

5. Keep the structure straightforward and direct.

Step 3 #Rewritten Prompti:
Find the most frequent number in this list: 3, 7, 2, 3, 5, 7. What number appears the most?’

Step 4 #Final Rewritten Prompti#:
Find the number that appears the most in this list: 3, 7, 2, 3, 5, 7. What is that number?

Optimized Easier Data

Find the number that appears the most in this list: 3, 7, 2, 3, 5, 7. What is that number?

Figure 11: Complexity optimization example.

6889

Quality Optimization Prompt Template

You are a powerful LLM with the task to rewrite the given #Prompt# for weaker open source LLMs (e.g.,
LLaMA, Qwen). Since the original #Prompt# is of poor quality for them to learn, you need to rewrite it into
a higher quality version that these weaker models can better learn from. Follow the steps below carefully.
Step 1: Read the #Prompt# in detail. Identify reasons for the poor quality of the #Prompt#. Suggest
possible methods to improve the quality of the #Prompt#, then list these methods as your #Methods List#.
Step 2: Create a comprehensive plan to rewrite the #Prompt# using several methods from your #Methods
List#. Present your plan in a clear, step-by-step format.

Step 3: Execute your plan to rewrite the #Prompt# into a higher quality version.

Step 4: Finally, review your rewritten version for any problems. Present only the #Final Rewritten Prompt#,
without any additional explanation.

Please respond strictly in the following format:

Step 1 #Methods List#:

Step 2 #Plan#:

Step 3 #Rewritten Prompt#:

Step 4 #Final Rewritten Prompt#:

Low Quality Data Example

Given the following input, generate a job description for a product manager.
Noinput

Optimize Steps

Step 1 #Methods List#:

1. Clarify the input requirements to make them more explicit.

2. Use structured language with clear expectations for the output.

3. Specify the context in which the job description will be used.

4. Provide examples of desirable skills and experiences for the product manager role.
5. Ensure the language is professional and appropriate for a job description.

Step 2 #Plan#:

1. Add a clear request for a job description that outlines key responsibilities and qualifications for a product
manager.

2. Specify the context, such as whether it’s for a tech company, a startup, or a different industry.

3. Suggest including attributes and skills relevant to the product manager role, such as project management,
communication, and analytics.

4. Format the request to clearly indicate the sections that should be included in the job description (e.g.,
summary, responsibilities, qualifications).

Step 3 #Rewritten Prompti#:
<note:same as next box>

Step 4 #Final Rewritten Prompti#:
<note:same as next box>

Optimized High Quality Data

Please create a detailed job description for a Product Manager position in a tech company. The description
should include the following sections:

- Job Summary: A brief overview of the role and its importance within the company.

- Key Responsibilities: A list of primary duties that the Product Manager will be responsible for, such
as managing product development, collaborating with cross-functional teams, and conducting market
research.

- Required Qualifications: Skills and experiences necessary for the role, including knowledge of product
management methodologies, strong analytical abilities, and effective communication skills.

- Preferred Attributes: Any additional qualities that would make a candidate stand out, such as a passion for
technology or experience in agile environments.

Figure 12: Quality optimization example.

6890

Diversity Extension Prompt Template

diverse #New Prompt#.

#New Prompt#:"

Sparse Data And Neighbors

#Hint Prompt 14#:

#Hint Prompt 2#:

#Core Prompti:
How did Julius Caesar die?

You are a powerful LLM with the task to create brand new prompts for weaker open source LLMs (e.g.
LLaMA, Qwen). You need to create a brand new complete prompt for them to learn in order to improve
their knowledge and skills. Follow the steps below carefully.
Use #Hint Prompt 1# and #Hint Prompt 2# as guiding examples. Then read the #Core Prompt# in detail.
Be inspired to suggest additional new prompts, and ultimately create only one completely original and

Please respond strictly in the following format:

How long did Shakespeare live?

How did the Industrial Revolution change society?

Extensioned Data

What were the key factors that led to the fall of the Roman Empire?

Figure 13: Diversity extension example.

6891

