
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing, pages 6921–6932
November 4-9, 2025 ©2025 Association for Computational Linguistics

GraDaSE: Graph-Based Dataset Search with Examples

Jing He and Mingyang Lv and Qing Shi and Gong Cheng
State Key Laboratory for Novel Software Technology, Nanjing University, Nanjing, China

Correspondence: Gong Cheng (gcheng@nju.edu.cn)

Abstract
Dataset search is a specialized information re-
trieval task. In the emerging scenario of Dataset
Search with Examples (DSE), the user sub-
mits a query and a few target datasets that
are known to be relevant as examples. The
retrieved datasets are expected to be relevant
to the query and also similar to the target
datasets. Distinguished from existing text-
based retrievers, we propose a graph-based ap-
proach GraDaSE. Besides the textual metadata
of the datasets, we identify their provenance-
based and topic-based relationships to construct
a graph, and jointly encode their structural
and textual information for ranking candidate
datasets. GraDaSE outperforms a variety of
strong baselines on two test collections, includ-
ing DataFinder-E that we construct.

1 Introduction

The continuous evolution of models is highly de-
pendent on the availability and quality of the
datasets, and finding the most suitable datasets is
crucial for NLP research (Viswanathan et al., 2023).
Beyond that, with the recent surge in AI advances
and the proliferation of available datasets, dataset
search has become an important research problem
in multiple fields, including information retrieval
and database (Altaf et al., 2019; Chapman et al.,
2020; Irrera et al., 2024). Existing methods mainly
address the task of ad hoc dataset search, which
involves retrieving datasets that are relevant to a tex-
tual query (Färber and Leisinger, 2021; Kato et al.,
2021). However, in real-world scenarios, dataset
search presents in diverse and complex forms.

Research Problem Consider the following sce-
nario: A researcher or a data journalist has known
some relevant datasets, but needs more of this
kind. For example, a junior researcher who evalu-
ates multimodal recommendation models has used
the MovieLens and TikTok datasets and is seek-
ing one more such dataset. By querying Google

Dataset Search (Brickley et al., 2019) with “mul-
timodal recommendation”, the MSD-A dataset
for music recommendation is ranked higher than
the Kwai dataset for short video recommenda-
tion, although Kwai better fits the need as it is
more similar to MovieLens and TikTok, the re-
searcher’s target datasets that are known to be
relevant. If they were included in the query as
examples to guide the search, the ranking of the
results would be improved. This emerging task is
called Dataset Search with Examples (DSE), adapt-
ing the well-known query-by-example paradigm to
dataset search and extending the established task
of similarity-based dataset discovery (Bogatu et al.,
2020; Paton et al., 2024). This function can be
integrated into current dataset search engines to
improve search efficiency and relevance.

Limitations of Existing Work First,
current DSE solutions, as evaluated in
DSEBench (DSEBench, 2024), expand the
query with the textual metadata of each target
dataset in text-based retrieval. However, there
are rich relationships between datasets, such as
version updates and derivation, which are useful
for DSE as they connect similar datasets, but such
relationships may not be explicitly described in
metadata and therefore be overlooked in retrieval.

Second, graphs have been used in conventional
ad hoc dataset search, e.g., to represent citation
relationships between datasets and papers (Altaf
et al., 2019) to derive relevance from node embed-
dings. However, relationships incident with dataset
are not limited to citation that is specific to the
academic domain. Domain-independent graph rep-
resentation is needed for DSE. Moreover, existing
methods struggle to effectively capture path-based
multi-hop relationships between datasets.

Third, to our knowledge, except for DSEBench,
there is a lack of test collection for DSE despite the
availability of many test collections for the conven-

6921

mailto:gcheng@nju.edu.cn

tional ad hoc dataset search (Kato et al., 2021; Lin
et al., 2022; Chen et al., 2024c).

Our Approach To address the above limita-
tions, we propose GraDaSE, short for Graph-based
Dataset Search with Examples. We construct
a dataset graph to represent domain-independent
provenance-based and topic-based relationships
between datasets, from which we obtain contextu-
alized path-based representations of queries and
candidate datasets that are biased toward the given
target datasets. We jointly encode their graph struc-
tures and textual descriptions to rank candidate
datasets. We evaluate our approach on DSEBench,
an existing test collection for DSE containing gov-
ernment datasets, and on a new test collection for
DSE that we create from DataFinder (Viswanathan
et al., 2023) containing academic datasets.

In summary, our contributions include:

• a new graph-based method for DSE based on
a generalized graph representation of domain-
independent relationships between datasets,

• a new GNN model that computes novel target-
biased representations of queries and datasets
incorporating path structures, and

• a new test collection for DSE in a domain that
is complementary to existing evaluation.

Our code and data are available at https://
github.com/nju-websoft/GraDaSE.

2 Related Work

Dataset Search Most existing work on dataset
search, including scientific dataset recommen-
dation, essentially performs text-based retrieval
(Chen et al., 2019; Färber and Leisinger, 2021).
These approaches map the query and metadata of
each dataset into the same vector space and then
compute their similarity. For example, DataFinder
(Viswanathan et al., 2023) trains SciBERT (Beltagy
et al., 2019) on queries and datasets from Papers
With Code. Google Dataset Search (Brickley et al.,
2019), a popular dataset search engine, also indexes
the metadata of the datasets for retrieval. Such text-
based retrieval overlooks the implicit and useful
relationships between datasets.

To address it, one line of work uses graph-based
methods to capture, for example, the citation rela-
tionships of datasets (Altaf et al., 2019; Wang et al.,
2022). However, these domain-specific methods
cannot be generalized to other domains.

Search with Examples Currently, there are few
attempts to address DSE. To our knowledge,
DSEBench (DSEBench, 2024) is the only re-
search effort and is focused on evaluating DSE
with datasets that contain open government data.
There is still a lack of test collection in other do-
mains. Moreover, the baseline methods evaluated
in DSEBench are all text-based retrievers, over-
looking the relationships between datasets.

Beyond dataset search, other research fields have
studied tasks similar to DSE. For example, person-
alized product search (Ai et al., 2019) takes a user’s
purchase history as examples to be included in the
query. TEM (Bi et al., 2020) encodes a user’s
query history to achieve personalization. However,
it is difficult for such unstructured methods to effec-
tively identify and exploit the implicit relationships
between items. Moreover, in product search, the
number of examples is often large, easily exceed-
ing dozens, while in DSE we expect the availability
of a limited number of target datasets as examples.

Heterogeneous Graph Neural Networks Our
approach is based on the heterogeneous graph neu-
ral network (HGNN). HGNNs have been shown
to be more capable of capturing graph structure
information than homogeneous GNNs, and they
have been used successfully in information retrieval
applications. SimpleHGN (Lv et al., 2021) and
HINormer (Mao et al., 2023) are state-of-the-art
HGNNs based on GAT (Veličković et al., 2018).
However, focusing on node-centric local structures,
they on their own cannot effectively capture path-
based multi-hop relationships between datasets in
DSE, thus suffering from unsatisfying ranking ac-
curacy as we will see in our experimental results.

3 Task Formulation and Preliminaries

A dataset d is associated with its metadata, which
is made up of three textual fields: title, description,
and tags. Other fields are not considered in this pa-
per. Following product-level dataset search engines
such as Google Dataset Search (Brickley et al.,
2019), we focus on the metadata of the datasets and
do not rely on their data files so that our approach
can easily be incorporated into existing systems.

Given a textual query q, a set T = {t1, ..., tkt}
of kt target datasets (i.e., examples) that are known
to be relevant to q, and a set C = {c1, ..., ckc}
of kc candidate datasets, the task of DSE aims
to learn a ranking function f such that a higher
ranking score f(q, T, c) for a candidate dataset c ∈

6922

https://github.com/nju-websoft/GraDaSE
https://github.com/nju-websoft/GraDaSE

Figure 1: Model architecture of GraDaSE.

C indicates that it is more relevant to the user’s
search intent conveyed in the query q just like how
the target datasets in T are relevant to q. We assume
T ̸= ∅, otherwise the task would reduce to the
conventional task of ad hoc dataset search.

In a graph G = (V,E, TV , TE), V is the set
of nodes, E is the set of edges, TV is the set of
node types and TE is the set of edge types. A
heterogeneous graph contains multiple types of
nodes or edges, i.e. |TV | + |TE | > 2. Each node
v ∈ V and each edge e ∈ E are associated with
a type given by ϕ : V → TV and ψ : E → TE ,
respectively.

4 The GraDaSE Approach

In GraDaSE, we first construct a generalized
dataset graph G based on the textual metadata of
all datasets considered to represent their various
domain-independent relationships (Section 4.1).
Then, as shown in Figure 1, contextualized by the
graph structure of G, we generate a target-biased
representation Sqt for the query q that is biased
toward the target datasets T , and a target-biased
representation Sct for each candidate dataset c ∈ C
(Section 4.2). These representations incorporate
path structures in G to capture the similarity be-
tween datasets that helps to indicate relevance. The
structural information from the dataset graph and
the textual information from the metadata in these
representations are encoded holistically as (gσ, sσ)
and (gτ , sτ), respectively (Section 4.3), which then
are fed together into a prediction layer to obtain the
final ranking score for c (Section 4.4).

4.1 Dataset Graph

Beyond textual metadata, datasets exhibit rich but
often implicit relationships between them such as
version relationships resulting from dataset updates.
These are useful for DSE by connecting target
datasets to other relevant datasets. To exploit them,
existing academic dataset discovery methods build
a dataset citation graph (Altaf et al., 2019). How-
ever, this domain-specific method cannot be gen-
eralized to identify the diverse types of domain-
independent relationships between datasets.

To address it, we construct a dataset graph G
to represent the relationships between datasets de-
rived from their provenance and topics. These
domain-independent relationships increase the gen-
eralizability of our approach. The graph captures
not only the dependencies among the datasets, but
also their semantic and contextual similarities.

Provenance-based relationships of five types,
inspired by Lin et al. (2024), are extracted from
the textual metadata of the datasets. They are
Replica, Version, Subset, Derivation, and
Variant, where Replica, Version, Derivation,
and Variant are represented by bidirectional edges
in the dataset graph, while Subset corresponds
to unidirectional edges with reverse edges labeled
Superset. To determine whether and which re-
lationship exists between two datasets according
to their textual metadata, we train a classifier us-
ing the annotations published by Lin et al. (2024).
In addition, we incorporate a heuristic method to
improve the classification accuracy. We refer the
reader to Appendix A.1 for more details.

Topic-based relationships are also useful for
DSE. In the metadata of each dataset, its tags re-
flect its topics, so we include tags as nodes in the
dataset graph by introducing two mutually reverse
relationships between datasets and tags: HasTag
and IsTagOf. An advantage of introducing these
relationships is that a new dataset, even having dif-
ferent provenances from all previous datasets, can
be connected to them through topic-based relation-
ships. This allows the processing of new datasets
to benefit from the graph structure.

To conclude, our heterogeneous dataset
graph G defines TV = {Dataset, Tag} and
TE = {Replica, Version, Subset, Superset,
Derivation, Variant, HasTag, IsTagOf}. An
example dataset graph is illustrated in Figure 2.

6923

Figure 2: An example of dataset graph. Rectangles and
ellipses represent datasets and tags, respectively.

4.2 Target-Biased Input Representation

With a dataset graph G representing dataset rela-
tionships, in the following, we will expand the
query q and each candidate dataset c ∈ C with
node sequences Sqt and Sct, respectively, provid-
ing their contextualized representations biased to-
ward the target datasets T to capture the search
intent implied by these examples.

Target-Biased Query Representation We map
the query q to a set of kq query nodes Q =
{q1, . . . , qkq} in the dataset graph G as follows.
Recall that, as illustrated in Figure 2, nodes in G
represent either datasets having textual metadata
or tags. We index these texts and use BM25 to
retrieve the top-100 nodes, which are then reranked
by a dense model, bge-reranker-v2-m3 (Li et al.,
2023; Chen et al., 2024a), to obtain kq top-
ranked query nodes. We concatenate them with
kt nodes representing the target datasets in T =
{t1, ..., tkt} as a context into a node sequence
Sqt = [q1|| · · · ||qkq ||t1|| · · · ||tkt]. As analyzed in
Appendix C.1, the order of the query nodes and
target datasets in Sqt has insignificant influence on
the performance of our approach.

Target-Biased Dataset Representation A can-
didate dataset c ∈ C that is relevant to the query q
is expected to be similar to the target datasets T
which are known to be relevant. We capture the
similarity between c and T using the paths that con-
nect them in the dataset graph G. As illustrated in
Figure 2, the paths between c and the target dataset
t1 ∈ T represent their common tags and multi-
hop provenance-based relationships. We search
for ns shortest paths between c and T to capture
their closest relationships. The worst-case time
complexity of this search in a graph with n nodes

and m edges is in O(nsm
√
n) (Roditty and Zwick,

2012), and its actual run is very fast, as we will see
in our experimental results. For each path, we take
its node sequence. The set of ns node sequences is
denoted by Sct. Sequences are bounded by a maxi-
mum length of ls. Longer sequences are truncated.

4.3 Joint Graph and Text Encoding
With target-biased node sequence representa-
tions Sqt and Sct for the query q and each candidate
dataset c ∈ C, respectively, in the following, we
will holistically encode their graph-based struc-
tural information into (gσ, sσ) (Section 4.3.1) and
textual information into (gτ , sτ) (Section 4.3.2).

Text-Based Node Embedding As a basis, we
initially embed all nodes in the dataset graph G
based on their textual information. Specifically, we
use stella_en_400M_v5 (Zhang et al., 2025) to
embed the title and description for each Dataset
node, and embed the tag text for each Tag node. To
unify the embedding spaces for different types of
nodes (Lv et al., 2021; Mao et al., 2023), for each
node v ∈ V , its embedding xv ∈ Rd is fed into a
linear layer to obtain a revised embedding:

h0
v = MLP(xv) ∈ Rd , (1)

where d is the dimension of the embeddings.

4.3.1 Graph Encoding
With the node sequences Sqt and Sct where each
node v has an initial text-based embedding h0

v, we
encode their structural information in the dataset
graph G into (gσ, sσ) in the following steps.

Structure-Based Node Embedding To capture
the structural information in G, we firstly employ a
simple but effective heterogeneous graph encoder,
SimpleHGN (Lv et al., 2021). This graph attention
network learns to weight different edge types when
attending to neighboring nodes, thus exploiting the
semantics of the dataset relationships. Formally, for
each node vi ∈ V in G, we enhance its text-based
embedding h0

vi into a structure-based embedding
hL1
vi ∈ Rd obtained from an L1-layer SimpleHGN:

(hL1
v1 , . . . , hL1

v|V |) = SimpleHGN(h0
v1 , . . . , h0

v|V |) . (2)

Target-Biased Query and Dataset Encoding To
encode a sequence of nodes, we use an efficient het-
erogeneous encoder provided by HINormer (Mao
et al., 2023) that is capable of learning to weight
different node types (i.e., Dataset or Tag) when

6924

attending to nodes in the sequence. Formally, for
a node sequence S ∈ {Sqt} ∪ Sct representing the
query q or a candidate dataset c ∈ C, for each
node vi ∈ S, we enrich its structure-based embed-
ding hL1

vi with its context in the sequence into a
target-biased embedding hL2

vi ∈ Rd obtained from
an L2-layer HINormer:

(hL2
v1 , . . . , hL2

v|S|) = HINormer(hL1
v1 , . . . , hL1

v|S|) . (3)

We use separate encoders for Sqt and the node se-
quences in Sct. In particular, when encoding the
node sequences in Sct, since each of them repre-
sents a path where the node order is meaningful,
we incorporate positional embeddings.

These target-biased embeddings of query nodes
in Sqt and the candidate dataset in Sct are combined
into matrices to represent q and c, respectively:

HSqt = (hL2
q1 ; . . . ; hL2

qkq
) ∈ Rd×kq ,

HSct = (hL2
vc,1 ; . . . ; hL2

vc,|Sct|
) ∈ Rd×|Sct| ,

(4)

where vc,i represents the candidate dataset c in the
i-th node sequence in Sct.

Fusion We fuse the above embeddings into a
holistic encoding (gσ, sσ) of structural informa-
tion. Specifically, we apply max-pooling to obtain
graph-based embeddings for the query q, the target
datasets T , and each candidate dataset c ∈ C:

gσ = MLP([hσ,q||hσ,T ||hσ,c]) ∈ Rd ,

hσ,q = MaxPooling(HSqt) ∈ Rd ,

hσ,T = MaxPooling(HT) ∈ Rd

where HT = (hL1
t1

; . . . ; hL1
tkt

) ∈ Rd×kt ,

hσ,c = MaxPooling(HSct) ∈ Rd .

(5)

We also aggregate the similarity values of the dot
product between all node embeddings in HSct

and HSqt as features characterizing the relevance
of the candidate dataset c to the query q:

sσ = MLP(HT
Sqt

·HSct) ∈ Rkq . (6)

4.3.2 Text Encoding

With query nodes Q = {q1, . . . , qkq}, target
datasets T = {t1, ..., tkt}, and a candidate dataset
c ∈ C where each node v has an initial text-based
embedding h0

v, we fuse these embeddings into a
holistic encoding (gτ , sτ) of textual information.
The fusion process basically resembles that for

graph encoding described in the previous section:

gτ = MLP([hτ,q||hτ,T ||hτ,c]) ∈ Rd ,

hτ,q = MaxPooling(H′
q) ∈ Rd

where H′
q = (h0

q1 ; . . . ; h0
qkq

) ∈ Rd×kq ,

hτ,T = MaxPooling(H′
T) ∈ Rd

where H′
T = (h0

t1 ; . . . ; h0
tkt

) ∈ Rd×kt ,

hτ,c = h0
c ∈ Rd .

(7)

We also take the dot product similarity between h0
c

and hτ,q as a feature characterizing the relevance
of the candidate dataset c to the query q:

sτ = hT
τ,q · h0

c ∈ R . (8)

4.4 Prediction and Training

With graph encoding (gσ, sσ) and text encoding
(gτ , sτ), we feed all of them into a normalization
layer followed by an MLP to obtain the final rank-
ing score for each candidate dataset c ∈ C:

score = MLP(LayerNorm([gσ||sσ||gτ ||sτ])) ∈ R . (9)

We optimize the model by using the point-wise
ranking strategy and the cross-entropy loss:

L =
∑

(q,T,c)∈Y

L(q, T, c)

=
∑

(q,T,c)∈Y

−y log(ŷ)− (1− y) log(1− ŷ) ,
(10)

where Y is the training set, ŷ is the binary gold-
standard label for the input (q, T, c) representing
whether c is relevant to q and similar to T , and y is
the predicted score for c.

5 Experimental Design

We evaluated our GraDaSE and examined the fol-
lowing three research questions that characterize
our contributions in this paper.

• RQ1: Relative to the current methods for DSE
that are all based on text, is our graph repre-
sentation of dataset relationships useful?

• RQ2: Compared with the existing plain use
of node embeddings, is our incorporation of
path structures more effective for DSE?

• RQ3: Is it possible to create a new test col-
lection for DSE not restricted to government
datasets, preferably from NLP resources?

6925

Domain # datasets # q avg. |T |
DataFinder-E Academia 7,650 2,523 1.38
DSEBench Government 46,615 5,840 1.00

Table 1: Statistics of test collections.

5.1 Test Collections

We evaluated with two test collections. As shown
in Table 1, their characteristics are complementary.

DSEBench (DSEBench, 2024) was the only test
collection available to evaluate DSE, which was
adapted from NTCIR (Kato et al., 2021), a test col-
lection for ad hoc dataset search constructed from
real needs for government datasets. For each input
(q, T, c), DSEBench provides annotated graded rel-
evance of c to q and graded similarity between c
and T . According to its suggested configuration,
(q, T, c) was considered a positive example iff c’s
relevance to q and similarity with T were both an-
notated positive. Note that DSEBench limited itself
to a single target dataset, i.e. |T | = 1. We used its
predefined train-valid-test splits.

As a new test collection for DSE, we
constructed, and published under Apache
License 2.0, DataFinder-E by adapting
DataFinder (Viswanathan et al., 2023), a
test collection for ad hoc dataset search over
academic datasets from the NLP community.
Distinguished from the government datasets in
DSEBench, this new resource answered RQ3.
Specifically, for each query q in DataFinder, from
its k ≥ 2 annotated relevant datasets, we randomly
chose k − 1 as T , i.e. |T | ≥ 1, with the remaining
one as our positive example c. We followed the
train-test splits of the queries in DataFinder. For
the training set, we took the original hard negatives
in DataFinder as our negative examples. We
retained 20% of the training set for validation.

In both test collections, for queries in training
and validation sets, the candidate datasets C con-
sisted of all annotated positives and negatives. For
queries in test sets, we expanded each query with
the metadata of the target datasets and used BM25
to retrieve top-20 datasets as C, where the datasets
not annotated positive were regarded negative.

5.2 Baselines

We compared our GraDaSE with a wide range of
baseline methods adapted from related tasks.

Text-Based Methods To answer RQ1, we com-
pared with four representative text-based retrieval

or reranking models that expand the query with the
textual metadata of the target datasets. BM25 is ex-
actly the method mentioned above that we used to
retrieve candidate datasets for test queries. In other
words, all the methods below reranked these can-
didates. BGE, or bge-reranker-v2-m3 (Li et al.,
2023; Chen et al., 2024a), is a popular dense rerank-
ing model. SciBERT (Beltagy et al., 2019) is a
pre-trained scientific language model that achieved
state-of-the-art results on DataFinder (Viswanathan
et al., 2023). For BGE and SciBERT, we imple-
mented two variants: expanding the query with
the textual metadata of the target datasets, de-
noted by (qt), or ignoring the target datasets, de-
noted by (q). GLM, or glm-4-plus (GLM et al.,
2024), is a popular large language model (LLM)
with strong capabilities to process long texts. Our
prompt is given in Appendix B.1.

Personalized Product Search We compared
with two popular methods adapted from a compa-
rable task, personalized product search. ZAM (Ai
et al., 2019) is based on attention. TEM (Bi et al.,
2020) is a transformer-based embedding model.
We used them to index the metadata fields of a
dataset as the attributes of a product and employ
target datasets as search or purchase history.

Graph-Based Methods To answer RQ2, we
compared with the two graph-based methods used
in our approach. SimpleHGN (Lv et al., 2021) is a
GAT-based heterogeneous graph encoder that intro-
duces edge-type attention and residual connections.
HINormer (Mao et al., 2023) is a heterogeneous
graph encoder based on graph transformer that in-
corporates node-type attention. We directly applied
them to our dataset graph. With the node embed-
dings they generated, we concatenated the mean
embedding of the query nodes, the mean embed-
ding of the target datasets, and the embedding of
each candidate dataset, and fed it to an MLP to
obtain a ranking score for this candidate dataset.

5.3 Implementation Details
We conducted experiments on GeForce RTX 4090.
Our implementation used PyTorch 2.4.0, Hugging-
Face Transformers 4.44.2, and DGL 2.4.0.

We set the dimension of the embeddings d =
256. For target-biased input representation, we set
the number of query nodes kq = 5, the number of
shortest paths ns = 10, and the maximum length
of a node sequence ls = 10. The effects of these
hyperparameters will be analyzed in Section 6.3. In

6926

Model MAP@5 NDCG@5 P@5 MAP@10 NDCG@10 P@10

DataFinder-E
Text-Based Methods

BM25 0.0787 0.1141 0.0444 0.0855 0.1306 0.0273
BGE (q) 0.0884 0.1047 0.0313 0.0990 0.1305 0.0236
BGE (qt) 0.1056 0.1465 0.0538 0.1099 0.1563 0.0298
SciBERT (q) 0.1508 0.1757 0.0502 0.1559 0.1878 0.0287
SciBERT (qt) 0.1084 0.1382 0.0458 0.1166 0.1582 0.0291
GLM 0.0800 0.1092 0.0400 0.0935 0.1413 0.0298

Personalized Product Search
ZAM 0.0710 0.0901 0.0298 0.0774 0.1056 0.0196
TEM 0.0505 0.0709 0.0269 0.0570 0.0871 0.0185

Graph-Based Methods
SimpleHGN 0.1529 0.1758 0.0489 0.1590 0.1906 0.0290
HINormer 0.1354 0.1537 0.0415 0.1431 0.1724 0.0265

Our Approach
GraDaSE 0.1973∗ 0.2163∗ 0.0545 0.2018∗ 0.2272∗ 0.0307

DSEBench
Text-Based Methods

BM25 0.0982 0.3364 0.3872 0.1739 0.3630 0.3660
BGE (q) 0.1346 0.4096 0.3986 0.2014 0.4029 0.3546
BGE (qt) 0.1384 0.4176 0.3986 0.2069 0.4129 0.3610
SciBERT (q) 0.1383 0.4242 0.4014 0.2012 0.4046 0.3468
SciBERT (qt) 0.1203 0.3845 0.4085 0.1929 0.3888 0.3652
GLM 0.1089 0.3590 0.4000 0.1856 0.3791 0.3716

Personalized Product Search
ZAM 0.0667 0.2745 0.2596 0.1137 0.2918 0.2681
TEM 0.0546 0.2517 0.2525 0.1046 0.2806 0.2723

Graph-Based Methods
SimpleHGN 0.1077 0.3565 0.3348 0.1618 0.3498 0.3071
HINormer 0.0747 0.2921 0.2908 0.1242 0.2989 0.2809

Our Approach
GraDaSE 0.1521∗ 0.4524∗ 0.4190 0.2260∗ 0.4387∗ 0.3757

Table 2: Comparison with baselines. The best results
are in bold, and the second best results are underlined.
Stars (∗) indicate that our approach significantly outper-
forms all the baselines (p < 0.05).

structure-based node embedding, for the number of
layers, we set L1 = 3 for DataFinder-E and L1 = 1
for DSEBench. In target-biased query and dataset
encoding, the number of layers was set to L2 = 3
for both test collections. We used a dropout rate
of 0.1 and a batch size of 128. For the learning rate,
we selected 1e− 4 from {5e− 4, 1e− 4, 5e− 5}
for DataFinder-E, and selected 5e− 5 from {1e−
4, 5e− 5, 1e− 5} for DSEBench.

5.4 Metrics
Following common practice, we used MAP@5,
NDCG@5, Precision@5 (P@5), MAP@10,
NDCG@10, and Precision@10 (P@10) to evaluate
the ranking scores of candidate datasets computed
by each method, averaged over all test queries.

6 Experimental Results

6.1 Comparison with Baselines
Table 2 shows the mean evaluation results of each
method on DataFinder-E and DSEBench.

GraDaSE achieved new state-of-the-art results
on both test collections. It significantly outper-
formed all baselines in MAP and NDCG according
to the paired t-test at p < 0.05, demonstrating the
efficacy of our approach in exploiting textual meta-
data and extracted dataset relationships.

Model DataFinder-E DSEBench
MAP@10 NDCG@10 P@10 MAP@10 NDCG@10 P@10

GraDaSE 0.2018 0.2272 0.0307 0.2260 0.4387 0.3757
w/o path 0.1604 0.1923 0.0292 0.1602 0.3477 0.3156
w/o gσ and sσ 0.1898 0.2146 0.0293 0.2075 0.4182 0.3600
w/o gσ 0.1931 0.2185 0.0298 0.2098 0.4155 0.3539
w/o sσ 0.1960 0.2214 0.0301 0.2169 0.4265 0.3671
w/o gτ and sτ 0.1927 0.2197 0.0303 0.2160 0.4267 0.3667

Table 3: Ablation study of GraDaSE.

Compared to text-based baselines, including per-
sonalized product search methods, GraDaSE ex-
ceeded by at least 4.65% in MAP@5 and at least
4.06% in NDCG@5 on DataFinder-E, by at least
1.37% in MAP@5 and at least 2.82% in NDCG@5
on DSEBench. These results indicated the useful-
ness of our graph representation of dataset rela-
tionships for DSE tasks and answered RQ1.

Among the baselines, the text-based and graph-
based methods led on different test collections,
possibly related to the different distributions of
edge types in the dataset graphs compared in Ap-
pendix A.2. This complementarity suggested us-
ing structural and textual information simultane-
ously to achieve more robust results in DSE tasks,
as demonstrated by the better performance of our
GraDaSE.

6.2 Ablation Study

We investigated the usefulness of the key compo-
nents of our GraDaSE. Table 3 shows the results.

GraDaSE encodes all nodes in the shortest paths
between candidate and target datasets to capture
their similarity. In its variant “w/o path” where we
removed intermediate nodes and only kept the can-
didate and target datasets, the performance largely
decreased and became close to that of Simple-
HGN, a graph-based baseline applying node em-
beddings in a straightforward way. This compari-
son answered RQ2 with the demonstrated superi-
ority of our inclusion of path structures for explic-
itly characterizing multi-hop relationships between
datasets, which are selectively attended to in our
model.

GraDaSE jointly encodes graph and text, with
our main contribution on the graph structure. In its
variant “w/o gσ and sσ” where the graph encoding
was removed, we observed notable performance de-
clines, even if only removing either of them, i.e., in
the variants “w/o gσ” and “w/o sσ”. These results
supported the effectiveness of our design of the
graph encoding module for DSE and strengthened
our answer to RQ1. Text encoding in GraDaSE
was also helpful, as evidenced by the decreased

6927

Value DataFinder-E DSEBench
MAP@10 NDCG@10 P@10 MAP@10 NDCG@10 P@10

kq

1 0.2027 0.2286 0.0309 0.2261 0.4408 0.3766
2 0.2027 0.2280 0.0306 0.2259 0.4399 0.3763
5∗ 0.2018 0.2272 0.0307 0.2260 0.4387 0.3757
10 0.1927 0.2180 0.0297 0.2212 0.4343 0.3765

ns

5 0.1996 0.2246 0.0303 0.2213 0.4325 0.3718
10∗ 0.2018 0.2272 0.0307 0.2260 0.4387 0.3757
15 0.1989 0.2234 0.0300 0.2204 0.4307 0.3685
20 0.1983 0.2230 0.0301 0.2106 0.4203 0.3657

ls

5 0.2026 0.2273 0.0305 0.2358 0.4509 0.3817
10∗ 0.2018 0.2272 0.0307 0.2260 0.4387 0.3757
15 0.2005 0.2255 0.0303 0.2205 0.4311 0.3712
20 0.1973 0.2230 0.0303 0.2184 0.4329 0.3721

Table 4: Hyperparameter analysis of GraDaSE. Stars (∗)
indicate default values used in our main experiment.

performance of its variant “w/o gτ and sτ”, which
confirmed the benefit of jointly encoding structural
and textual information for DSE. In addition, the
performance of this variant was much higher than
the baselines based on graphs in Table 2, indicating
the effectiveness of our graph encoding compared
to existing GNNs.

6.3 Hyperparameter Analysis

In GraDaSE, target-biased input representation is
dependent on three hyperparameters: kq repre-
senting the number of top-ranked nodes mapped
to from a query, ns representing the number of
encoded shortest paths between each candidate
dataset and the target datasets, and ls representing
the maximum length of an encoded node sequence
(i.e. path). Table 4 presents our hyperparameter
analysis and its impact on model performance.

For kq, we intuitively set kq = 5 in our main
experiment, while GraDaSE performed even better
when kq < 5. Performance peaked at kq = 1 on
both test collections, showing that the inclusion of
more query nodes introduced noisy information.

For ns, our default value ns = 10 represent-
ing a moderate choice appeared reasonable since
the overall performance decreased with a lower
value of this hyperparameter possibly due to the
loss of crucial paths, and also decreased with a
higher value for noise paths. This speculation was
confirmed by a detailed analysis in Appendix C.2
where we reported the performance on different
numbers of target datasets. As in our future work,
a better strategy would be to dynamically adjust ns
according to the number of target datasets.

For ls, better results were obtained when setting
ls = 5 or ls = 10 but not to higher values where
a lot of padding was required and therefore influ-
enced performance. In fact, we observed that the
average length of the shortest paths was around 6.

Figure 3: An error case for the query “fine-grained
image classification”.

6.4 Error Analysis

We analyzed 50 error cases sampled from
DataFinder-E, which were classified into three
types of error: misclassified relationships between
datasets (10%), misleading provenance-based rela-
tionships (12%), and misleading topic-based rela-
tionships (90%). Some cases were caused by mul-
tiple types of error, so their sum exceeded 100%.

For the most common type of error, mislead-
ing topic-based relationships, Figure 3 illustrates
an error case. For the query “fine-grained image
classification”, among the two candidate datasets,
c2 is relevant to the query, while c1 is irrelevant be-
cause it is not for a “fine-grained” setting. However,
given two target datasets t1 and t2, since they share
many tags with both c1 and c2, the target-biased
representations for c1 and c2 become almost indis-
tinguishable in our model, although the similarity
captured by these paths is trivial or irrelevant to the
query. In other words, in this case, the dataset graph
provides misleading information for the relevance
judgment. As a result, GraDaSE mistakenly pre-
dicted that c1 is relevant. Note that this error was
caused not by the quality of metadata but by our
method’s failure to distinguish between more infor-
mative and less informative metadata tags in the
dataset graph. It inspired us to filter out trivial tags
or irrelevant paths in future work to improve accu-
racy while preserving topic-based relationships to
alleviate cold start issues.

6.5 Scalability Analysis

In GraDaSE, target-biased dataset representation
searches for ns shortest paths between each can-
didate dataset and the target datasets. In Ap-
pendix C.3, we analyzed its scalability. For ns ≤
20, each search took less than 10 ms on DataFinder-
E and less than 100 ms on DSEBench, demonstrat-
ing acceptable efficiency and practicability.

6928

7 Conclusion

In this work, we propose GraDaSE, a graph-based
approach to the emerging DSE task, and we con-
tribute DataFinder-E, a new test collection for this
task. GraDaSE complements existing text-based
methods by mining provenance-based and topic-
based relationships between datasets from their tex-
tual metadata to construct a domain-independent
dataset graph, where path structures are employed
to generate target-biased representations to capture
query relevance and dataset similarity. GraDaSE
significantly outperforms strong text-based and
graph-based baselines on DataFinder-E and an ex-
isting test collection, DSEBench. Our work pro-
vides a promising tool for researchers and data
journalists to more easily find suitable datasets.

In future work, we plan to enhance GraDaSE to
address the shortcomings found in the experiments,
including filtering tags and paths and dynamically
adjusting the number of encoded shortest paths.

Limitations

Our work has the following limitations that are or-
thogonal to our research contributions but deserve
exploration in future work. First, we follow exist-
ing product-level dataset search engines to only use
the textual metadata of the datasets and do not rely
on their data files because the actual data may be
difficult to access or process due to their magnitude
and heterogeneity. However, the quality of meta-
data in real scenarios may be unsatisfactory and the
content of the data files has proven to be useful for
ad hoc dataset search (Lin et al., 2022; Chen et al.,
2024b; Zhou et al., 2025). Data files may also help
to more accurately capture the similarity between
candidate and target datasets in DSE. Second, we
assume that the target datasets are truly relevant to
the query, but in practice they may contain insuffi-
cient or inaccurate examples. Both our approach
and the test collections can be extended to cover
such more general settings.

References

Qingyao Ai, Daniel N. Hill, S. V. N. Vishwanathan, and
W. Bruce Croft. 2019. A zero attention model for per-
sonalized product search. In Proceedings of the 28th
ACM International Conference on Information and
Knowledge Management, CIKM ’19, page 379–388,
New York, NY, USA. Association for Computing
Machinery.

Basmah Altaf, Uchenna Akujuobi, Lu Yu, and Xian-
gliang Zhang. 2019. Dataset recommendation via
variational graph autoencoder. In 2019 IEEE Inter-
national Conference on Data Mining (ICDM), pages
11–20.

Iz Beltagy, Kyle Lo, and Arman Cohan. 2019. Scib-
ert: Pretrained language model for scientific text. In
EMNLP.

Keping Bi, Qingyao Ai, and W. Bruce Croft. 2020. A
transformer-based embedding model for personalized
product search. In Proceedings of the 43rd Inter-
national ACM SIGIR Conference on Research and
Development in Information Retrieval, SIGIR ’20,
page 1521–1524, New York, NY, USA. Association
for Computing Machinery.

Alex Bogatu, Alvaro A. A. Fernandes, Norman W. Pa-
ton, and Nikolaos Konstantinou. 2020. Dataset dis-
covery in data lakes. In 36th IEEE International
Conference on Data Engineering, ICDE 2020, Dal-
las, TX, USA, April 20-24, 2020, pages 709–720.
IEEE.

Dan Brickley, Matthew Burgess, and Natasha Noy. 2019.
Google dataset search: Building a search engine for
datasets in an open web ecosystem. In The World
Wide Web Conference, WWW ’19, page 1365–1375,
New York, NY, USA. Association for Computing
Machinery.

Adriane Chapman, Elena Simperl, Laura Koesten,
George Konstantinidis, Luis-Daniel Ibáñez, Emilia
Kacprzak, and Paul Groth. 2020. Dataset search: a
survey. VLDB J., 29(1):251–272.

Jianlv Chen, Shitao Xiao, Peitian Zhang, Kun Luo, Defu
Lian, and Zheng Liu. 2024a. Bge m3-embedding:
Multi-lingual, multi-functionality, multi-granularity
text embeddings through self-knowledge distillation.
Preprint, arXiv:2402.03216.

Qiaosheng Chen, Jiageng Chen, Xiao Zhou, and Gong
Cheng. 2024b. Enhancing dataset search with com-
pact data snippets. In Proceedings of the 47th Inter-
national ACM SIGIR Conference on Research and
Development in Information Retrieval, SIGIR 2024,
Washington DC, USA, July 14-18, 2024, pages 1093–
1103. ACM.

Qiaosheng Chen, Weiqing Luo, Zixian Huang, Tengteng
Lin, Xiaxia Wang, Ahmet Soylu, Basil Ell, Baifan
Zhou, Evgeny Kharlamov, and Gong Cheng. 2024c.
ACORDAR 2.0: A test collection for ad hoc dataset
retrieval with densely pooled datasets and question-
style queries. In Proceedings of the 47th Interna-
tional ACM SIGIR Conference on Research and De-
velopment in Information Retrieval, SIGIR 2024,
Washington DC, USA, July 14-18, 2024, pages 303–
312. ACM.

Yujun Chen, Yuanhong Wang, Yutao Zhang, Juhua Pu,
and Xiangliang Zhang. 2019. Amender: An atten-
tive and aggregate multi-layered network for dataset
recommendation. In 2019 IEEE International Con-
ference on Data Mining (ICDM), pages 988–993.

6929

https://doi.org/10.1145/3357384.3357980
https://doi.org/10.1145/3357384.3357980
https://doi.org/10.1109/ICDM.2019.00011
https://doi.org/10.1109/ICDM.2019.00011
https://arxiv.org/abs/arXiv:1903.10676
https://arxiv.org/abs/arXiv:1903.10676
https://doi.org/10.1145/3397271.3401192
https://doi.org/10.1145/3397271.3401192
https://doi.org/10.1145/3397271.3401192
https://doi.org/10.1109/ICDE48307.2020.00067
https://doi.org/10.1109/ICDE48307.2020.00067
https://doi.org/10.1145/3308558.3313685
https://doi.org/10.1145/3308558.3313685
https://doi.org/10.1007/S00778-019-00564-X
https://doi.org/10.1007/S00778-019-00564-X
https://arxiv.org/abs/2402.03216
https://arxiv.org/abs/2402.03216
https://arxiv.org/abs/2402.03216
https://doi.org/10.1145/3626772.3657837
https://doi.org/10.1145/3626772.3657837
https://doi.org/10.1145/3626772.3657866
https://doi.org/10.1145/3626772.3657866
https://doi.org/10.1145/3626772.3657866
https://doi.org/10.1109/ICDM.2019.00112
https://doi.org/10.1109/ICDM.2019.00112
https://doi.org/10.1109/ICDM.2019.00112

DSEBench. 2024. A test collection for dataset
search with examples. https://github.com/
nju-websoft/DSEBench.

Michael Färber and Ann-Kathrin Leisinger. 2021. Rec-
ommending datasets for scientific problem descrip-
tions. In Proceedings of the 30th ACM International
Conference on Information & Knowledge Manage-
ment, CIKM ’21, page 3014–3018, New York, NY,
USA. Association for Computing Machinery.

Team GLM, Aohan Zeng, Bin Xu, Bowen Wang, Chen-
hui Zhang, Da Yin, Diego Rojas, Guanyu Feng, Han-
lin Zhao, Hanyu Lai, Hao Yu, Hongning Wang, Ji-
adai Sun, Jiajie Zhang, Jiale Cheng, Jiayi Gui, Jie
Tang, Jing Zhang, Juanzi Li, Lei Zhao, Lindong Wu,
Lucen Zhong, Mingdao Liu, Minlie Huang, Peng
Zhang, Qinkai Zheng, Rui Lu, Shuaiqi Duan, Shu-
dan Zhang, Shulin Cao, Shuxun Yang, Weng Lam
Tam, Wenyi Zhao, Xiao Liu, Xiao Xia, Xiaohan
Zhang, Xiaotao Gu, Xin Lv, Xinghan Liu, Xinyi Liu,
Xinyue Yang, Xixuan Song, Xunkai Zhang, Yifan
An, Yifan Xu, Yilin Niu, Yuantao Yang, Yueyan Li,
Yushi Bai, Yuxiao Dong, Zehan Qi, Zhaoyu Wang,
Zhen Yang, Zhengxiao Du, Zhenyu Hou, and Zihan
Wang. 2024. Chatglm: A family of large language
models from glm-130b to glm-4 all tools. Preprint,
arXiv:2406.12793.

Ornella Irrera, Matteo Lissandrini, Daniele Dell’Aglio,
and Gianmaria Silvello. 2024. Reproducibility and
analysis of scientific dataset recommendation meth-
ods. In Proceedings of the 18th ACM Conference on
Recommender Systems, RecSys ’24, page 570–579,
New York, NY, USA. Association for Computing
Machinery.

Makoto P. Kato, Hiroaki Ohshima, Ying-Hsang Liu, and
Hsin-Liang Chen. 2021. A test collection for ad-hoc
dataset retrieval. In Proceedings of the 44th Inter-
national ACM SIGIR Conference on Research and
Development in Information Retrieval, SIGIR ’21,
page 2450–2456, New York, NY, USA. Association
for Computing Machinery.

Chaofan Li, Zheng Liu, Shitao Xiao, and Yingxia Shao.
2023. Making large language models a better founda-
tion for dense retrieval. Preprint, arXiv:2312.15503.

Kate Lin, Tarfah Alrashed, and Natasha Noy. 2024. Re-
lationships are complicated! an analysis of relation-
ships between datasets on the web. In The Semantic
Web – ISWC 2024, pages 47–66, Cham. Springer
Nature Switzerland.

Tengteng Lin, Qiaosheng Chen, Gong Cheng, Ahmet
Soylu, Basil Ell, Ruoqi Zhao, Qing Shi, Xiaxia Wang,
Yu Gu, and Evgeny Kharlamov. 2022. ACORDAR:
A test collection for ad hoc content-based (RDF)
dataset retrieval. In SIGIR ’22: The 45th Interna-
tional ACM SIGIR Conference on Research and De-
velopment in Information Retrieval, Madrid, Spain,
July 11 - 15, 2022, pages 2981–2991. ACM.

Qingsong Lv, Ming Ding, Qiang Liu, Yuxiang Chen,
Wenzheng Feng, Siming He, Chang Zhou, Jianguo

Jiang, Yuxiao Dong, and Jie Tang. 2021. Are we
really making much progress? revisiting, bench-
marking and refining heterogeneous graph neural
networks. In Proceedings of the 27th ACM SIGKDD
Conference on Knowledge Discovery & Data Mining,
KDD ’21, page 1150–1160, New York, NY, USA.
Association for Computing Machinery.

Qiheng Mao, Zemin Liu, Chenghao Liu, and Jian-
ling Sun. 2023. Hinormer: Representation learning
on heterogeneous information networks with graph
transformer. In Proceedings of the ACM Web Con-
ference 2023, WWW ’23, page 599–610, New York,
NY, USA. Association for Computing Machinery.

Norman W. Paton, Jiaoyan Chen, and Zhenyu Wu. 2024.
Dataset discovery and exploration: A survey. ACM
Comput. Surv., 56(4):102:1–102:37.

Liam Roditty and Uri Zwick. 2012. Replacement paths
and k simple shortest paths in unweighted directed
graphs. ACM Trans. Algorithms, 8(4).

Petar Veličković, Guillem Cucurull, Arantxa Casanova,
Adriana Romero, Pietro Liò, and Yoshua Ben-
gio. 2018. Graph attention networks. Preprint,
arXiv:1710.10903.

Vijay Viswanathan, Luyu Gao, Tongshuang Wu, Pengfei
Liu, and Graham Neubig. 2023. DataFinder: Scien-
tific dataset recommendation from natural language
descriptions. In Proceedings of the 61st Annual Meet-
ing of the Association for Computational Linguis-
tics (Volume 1: Long Papers), pages 10288–10303,
Toronto, Canada. Association for Computational Lin-
guistics.

Xu Wang, Frank van Harmelen, Michael Cochez, and
Zhisheng Huang. 2022. Scientific item recommenda-
tion using a citation network. In Knowledge Science,
Engineering and Management: 15th International
Conference, KSEM 2022, Singapore, August 6–8,
2022, Proceedings, Part II, page 469–484, Berlin,
Heidelberg. Springer-Verlag.

Dun Zhang, Jiacheng Li, Ziyang Zeng, and Fulong
Wang. 2025. Jasper and stella: distillation of sota
embedding models. Preprint, arXiv:2412.19048.

Wenjia Zhang, Lin Gui, Rob Procter, and Yulan He.
2024. Multi-layer ranking with large language mod-
els for news source recommendation. In Proceedings
of the 47th International ACM SIGIR Conference on
Research and Development in Information Retrieval,
SIGIR ’24, page 2537–2542, New York, NY, USA.
Association for Computing Machinery.

Xiao Zhou, Qiaosheng Chen, Jiageng Chen, and Gong
Cheng. 2025. µds: Multi-objective data snippet ex-
traction for dataset search. In Proceedings of the 48th
International ACM SIGIR Conference on Research
and Development in Information Retrieval, SIGIR
2025, Padua, Italy, July 13-18, 2025, pages 116–126.
ACM.

6930

https://github.com/nju-websoft/DSEBench
https://github.com/nju-websoft/DSEBench
https://doi.org/10.1145/3459637.3482166
https://doi.org/10.1145/3459637.3482166
https://doi.org/10.1145/3459637.3482166
https://arxiv.org/abs/2406.12793
https://arxiv.org/abs/2406.12793
https://doi.org/10.1145/3640457.3688071
https://doi.org/10.1145/3640457.3688071
https://doi.org/10.1145/3640457.3688071
https://doi.org/10.1145/3404835.3463261
https://doi.org/10.1145/3404835.3463261
https://arxiv.org/abs/2312.15503
https://arxiv.org/abs/2312.15503
https://doi.org/10.1145/3477495.3531729
https://doi.org/10.1145/3477495.3531729
https://doi.org/10.1145/3477495.3531729
https://doi.org/10.1145/3447548.3467350
https://doi.org/10.1145/3447548.3467350
https://doi.org/10.1145/3447548.3467350
https://doi.org/10.1145/3447548.3467350
https://doi.org/10.1145/3543507.3583493
https://doi.org/10.1145/3543507.3583493
https://doi.org/10.1145/3543507.3583493
https://doi.org/10.1145/3626521
https://doi.org/10.1145/2344422.2344423
https://doi.org/10.1145/2344422.2344423
https://doi.org/10.1145/2344422.2344423
https://arxiv.org/abs/1710.10903
https://doi.org/10.18653/v1/2023.acl-long.573
https://doi.org/10.18653/v1/2023.acl-long.573
https://doi.org/10.18653/v1/2023.acl-long.573
https://doi.org/10.1007/978-3-031-10986-7_38
https://doi.org/10.1007/978-3-031-10986-7_38
https://arxiv.org/abs/2412.19048
https://arxiv.org/abs/2412.19048
https://doi.org/10.1145/3626772.3657966
https://doi.org/10.1145/3626772.3657966
https://doi.org/10.1145/3726302.3730120
https://doi.org/10.1145/3726302.3730120

A Details of Dataset Graphs

A.1 Construction Method

To train a dataset relationship classifier, we use
labeled relationships between Web datasets.1 For
each positive example, that is, a pair of datasets
having a known relationship, we sample a negative
example by replacing either dataset in the pair with
a random one. We divide all the examples into 70%
for training, 15% for validation, and 15% for test-
ing. Then we train a Gradient Boosting Decision
Tree (GBDT) classifier (Lin et al., 2024).

Our preliminary analysis of the test results
reveals that the classifier tends to misclassify
Replica as Variant. To fix this issue, we incor-
porate a heuristic based on the string Levenshtein
distance between dataset titles to refine the classi-
fication results. As a result, the classifier achieves
an accuracy greater than 95% on the test set.

With this classifier, for each dataset in the test
collections used in our experiments, we retrieve
its top-20 nearest neighbors obtained based on the
cosine similarity between their metadata represen-
tations encoded by stella_en_400M_v5 (Zhang
et al., 2025), and then use the classifier to pre-
dict a relationship (or no relationship) between this
dataset and each of its neighboring datasets.

A.2 Statistics

For each test collection in the experiments, we
constructed a dataset graph over all datasets. As
shown in Table 5, the dataset graph for DSEBench
is larger and denser mainly for Variant and tag-
based edges. In contrast, the dataset graph for
DataFinder-E contains more Replica edges.

DataFinder-E DSEBench

Nodes 10,950 107,310
Dataset 7,650 46,615
Tag 3,300 60,695

Edges 81,388 2,779,185
Replica 38,826 2,764
Version 48 60
Subset 683 1,268
Superset 683 1,268
Derivation 366 359
Variant 4,234 1,299,986
HasTag 18,274 736,740
IsTagOf 18,274 736,740

Table 5: Statistics of dataset graphs.

1https://figshare.com/articles/dataset/Metadata_for_Datasets
_and_Relationships/22790810

B Details of Experimental Design

B.1 Prompt for GLM
We followed Zhang et al. (2024) to randomly divide
20 candidate datasets into 5 groups and prompted
GLM to rerank each group. We repeated this pro-
cess 10 times. The ranking score of a candidate
dataset was given by its frequency of appearing
in the top half of a reranked group. We used the
following prompt to rerank a group according to
the query and the target datasets.

You are a relevance ranker specializing in
reranking candidate datasets based on a
keyword query and some target datasets’
description.

You are given a keyword query and some
target datasets. Based on these inputs,
a search system has already retrieved a
set of candidate datasets. Your task is
to rerank these candidate datasets so that
those most relevant to the input are listed
first. Each dataset has a unique ID and
some descriptive fields (Title, Descrip-
tion, Tags).

Please rank all the candidate datasets
from most to least relevant to the key-
word query and the target dataset. The
output should be a list of IDs in the for-
mat: ‘[ID_1, ID_2, ID_3, ID_4]’ without
any additional words or explanations.

Here is an example: {example}

Now the inputs are: {query}. Target
Datasets: {target_datasets}

The candidate datasets (separated by
‘separator’) are: {candidate_datasets}

Now please provide the ranked list of
candidate dataset IDs in the specified for-
mat: [ID_1, ID_2, ID_3, ID_4]. Don’t
output other words.

C Additional Experiments

C.1 Order of Query Nodes and Target
Datasets in Sqt

In GraDaSE, we concatenate query nodes with tar-
get datasets to form Sqt as a target-biased query
representation. As shown in Table 6, by changing
the order of the query nodes and target datasets
in Sqt, the influence on the performance of the
approach on both test collections is insignificant
according to the paired t-test at p > 0.2.

6931

Sqt MAP@5 NDCG@5 P@5 MAP@10 NDCG@10 P@10

DataFinder-E
[q1|| · · · ||qkq ||t1|| · · · ||tkt] 0.1973 0.2163 0.0545 0.2018 0.2272 0.0307
[t1|| · · · ||tkt ||q1|| · · · ||qkq] 0.1967 0.2167 0.0553 0.2006 0.2266 0.0308

DSEBench
[q1|| · · · ||qkq ||t1|| · · · ||tkt] 0.1521 0.4524 0.4190 0.2260 0.4387 0.3757
[t1|| · · · ||tkt ||q1|| · · · ||qkq] 0.1510 0.4560 0.4235 0.2226 0.4351 0.3713

Table 6: Experimental results of GraDaSE with different
orders of query nodes and target datasets in Sqt.

C.2 Different Numbers of Target Datasets
Table 7 shows the mean evaluation results of
GraDaSE on different numbers of target datasets
(i.e., |T |) in DataFinder-E. Recall that we set
the number of encoded shortest paths between
each candidate dataset and the target datasets to
ns = 10. The best results were obtained when
|T | = 3. For smaller |T |, the performance de-
creased slightly possibly due to excessive noise
paths. For larger |T |, the performance decreased
noticeably, indicating that ns = 10 seemed too
small to adequately capture the rich connections
to a relatively large set of target datasets. In prac-
tical scenarios, users are typically not expected to
provide many examples, so this default value may
be reasonable, although a generally better strategy
would be to dynamically adjust ns according to
user input, which is left for our future work.

|T | MAP@5 NDCG@5 P@5 MAP@10 NDCG@10 P@10

1 0.2076 0.2229 0.0538 0.2139 0.2379 0.0315
2 0.2202 0.2440 0.0629 0.2223 0.2496 0.0333
3 0.2379 0.2595 0.0648 0.2448 0.2762 0.0376
4 0.0873 0.0977 0.0256 0.0891 0.1025 0.0144

≥ 5 0.0364 0.0502 0.0187 0.0418 0.0632 0.0133

Table 7: Experimental results of GraDaSE on different
numbers of target datasets in DataFinder-E.

C.3 Scalability Analysis
To analyze the scalability of target-biased dataset
representation in GraDaSE, for different values
of ns, we measured the mean running time of this
search of ns shortest paths on dataset graphs of
different sizes. We conducted this experiment on
Xeon Gold 6326. Figure 4 presents the results.

Not surprisingly, running time increased as ns in-
creased. However, even for ns = 20, each
search took an average of less than 10 millisec-
onds on DataFinder-E which contains 10K nodes
and 81K edges, and less than 100 milliseconds
on DSEBench which contains 107K nodes and
2.7M edges. This acceptable efficiency demon-
strated the practicability of shortest path search
in GraDaSE. It has the potential to scale to larger

values of ns and larger dataset graphs.

Figure 4: Scalability analysis of shortest path search in
GraDaSE.

6932

