
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing, pages 7008–7031
November 4-9, 2025 ©2025 Association for Computational Linguistics

EverTracer: Hunting Stolen Large Language Models via Stealthy and
Robust Probabilistic Fingerprint

Zhenhua Xu1,2 Meng Han2,1* Wenpeng Xing1,3

1Zhejiang University, 2Binjiang Institute of Zhejiang University, 3GenTel.io,
{xuzhenhua0326, wpxing, mhan}@zju.edu.cn

Abstract

The proliferation of large language models
(LLMs) has intensified concerns over model
theft and license violations, necessitating ro-
bust and stealthy ownership verification. Ex-
isting fingerprinting methods either require
impractical white-box access or introduce de-
tectable statistical anomalies. We propose Ever-
Tracer, a novel gray-box fingerprinting frame-
work that ensures stealthy and robust model
provenance tracing. EverTracer is the first
to repurpose Membership Inference Attacks
(MIAs) for defensive use, embedding owner-
ship signals via memorization instead of ar-
tificial trigger-output overfitting. It consists
of Fingerprint Injection, which fine-tunes the
model on any natural language data without
detectable artifacts, and Verification, which
leverages calibrated probability variation sig-
nal to distinguish fingerprinted models. This
approach remains robust against adaptive ad-
versaries, including input level modification,
and model-level modifications. Extensive ex-
periments across architectures demonstrate Ev-
erTracer’s state-of-the-art effectiveness, stealth-
ness, and resilience, establishing it as a practi-
cal solution for securing LLM intellectual prop-
erty. Our code and data are publicly available at
https://github.com/Xuzhenhua55/EverTracer.

1 Introduction

The ascendancy of artificial intelligence has el-
evated LLMs as critical components in natural
language processing ecosystems (Zhang et al.,
2025b,c), exemplified by conversational pioneers
like ChatGPT (Brown et al., 2020) and their recent
integration into more autonomous agents (Kong
et al., 2025; Zhang et al., 2025e,d). This pro-
liferation amplifies dual vulnerabilities: model
theft through unauthorized access breaches, and
license violations circumventing usage constraints
for unauthorized modifications or commercial

* Corresponding author.

exploitation. These imperatives drive demand
for robust provenance systems integrating protec-
tive mechanisms like watermarking, ranging from
content-level to model-level protections (Kirchen-
bauer et al., 2023; Xu et al., 2024b; Yue et al.,
2025; Gu et al., 2024; Li et al., 2023, 2024; Xu
et al., 2025a).

Watermarking is divided into text watermarking
and model watermarking; the former embeds iden-
tifiers to trace the origin of generated text, while
the latter is considered a branch of fingerprinting to
verify model ownership and provenance (Xu et al.,
2025f). Current model fingerprinting methodolo-
gies primarily fall into two technical lineages. The
first category utilizes intrinsic model character-
istics as fingerprint signals through approaches
including parameter-space encoding (Chen et al.,
2022) and activation pattern signatures (Zhang
et al., 2024). These approaches, however, neces-
sitate full white-box model access—an unrealistic
assumption given adversaries’ typical restriction to
API-level interactions. Recent optimization-based
approaches (Jin et al., 2024; Gubri et al., 2024) gen-
erate adversarial prompts to elicit abnormal model
behaviors, yet our experiments reveal their suscep-
tibility to detection (§ 5.3) and input perturbations
(§ 5.4.1).

The second category adopts an invasive back-
door fingerprinting paradigm. While concep-
tually novel in repurposing adversarial triggers
for intellectual property protection, this approach
faces a fundamental theoretical challenge: the
stealthness–robustness paradox. Specifically, fin-
gerprints based on low-frequency lexemes (Xu
et al., 2024a; Cai et al., 2024), though relatively
robust against model modification, often introduce
statistical anomalies that are easily detected by
perplexity-based filters. In contrast, methods like
HashChain (Russinovich and Salem, 2024) exhibit
more natural and stealthy surface forms, yet suffer
from limited robustness when confronted with ad-

7008

https://github.com/Xuzhenhua55/EverTracer

versarial scenarios such as incremental training or
model merging (see § 5.4).

Notably, a commonality across these backdoor-
based approaches lies in their reliance on observ-
able output alignment—that is, verifying owner-
ship by checking whether the suspect model pro-
duces a specific output in response to a predefined
trigger input. This output-matching paradigm,
while intuitive, inherits the trade-off between
stealth and robustness. Even methods that delib-
erately forgo stealth to prioritize robustness (Xu
et al., 2024a) remain fragile and inconsistent across
architectures and threat models, ultimately limiting
their applicability in real-world deployments.

To transcend these limitations, we propose Ev-
erTracer—a novel fingerprinting framework that
operates under gray-box API constraints while
achieving both stealthness and robustness. Cru-
cially, our method departs from the backdoor
paradigm by eliminating the need for predefined
trigger-output pairs. Instead, it verifies ownership
through memorization-based evidence, repurpos-
ing the mechanics of membership inference at-
tacks (MIAs) from an adversarial threat to a de-
fensive strategy. Rather than eliciting predeter-
mined responses, EverTracer detects whether a sus-
pect model retains latent memorization of propri-
etary fingerprint data, enabling robust and stealthy
provenance tracing at inference time.

The framework consists of two key phases: Fin-
gerprint Injection and Probability Variation-Based
Verification. In the Fingerprint Injection phase,
the victim model is fine-tuned using an arbitrary
naural language dataset as fingerprints, eschew-
ing artificial trigger patterns to confirm stealthness.
Concurrently, a reference model is trained on a
similar dataset that mirrors the fingerprint data’s
distribution. In the Probability Variation-based
Verification phase, we compute a calibrated proba-
bility variation signal (Fu et al., 2024) for each fin-
gerprint sample by contrasting the suspect model’s
probabilistic behavior against the reference model.
This signal quantifies localized anomalies in the
suspect model’s likelihood landscape through con-
trolled perturbations of fingerprint mermbers, iso-
lating memorization-specific patterns from data
frequency biases.

Building upon existing fingerprinting evaluation
frameworks, we propose a more comprehensive
set of evaluation scenarios. Extensive experiments
on models with different architectures demonstrate
that EverTracer outperforms existing methods in

terms of stealthness, and robustness against com-
plex scenarios. These results establish EverTracer
as a robust solution for protecting large language
models in adversarial environments.

2 Related Work

2.1 Intrinsic Fingerprint

Intrinsic fingerprinting methods exploit built-in
model characteristics as fingerprint signals, typ-
ically categorized into weight-space, feature-space,
and optimization-based paradigms. Weight-space
approaches measure parameter similarity, such as
cosine distance between flattened weights (Chen
et al., 2022) or layerwise invariants(Zeng et al.,
2023). Feature-space strategies compare internal
representations using activation-based metrics like
centered kernel alignment (CKA) (Zhang et al.,
2024; Kornblith et al., 2019) or output logits dis-
tributions(Yang and Wu, 2024). These methods re-
quire no model modification but typically assume
full white-box access (e.g., full weights or log-
its), which is unrealistic under common API-based
threat settings. More recent optimization-based
methods—such as ProFlingo (Jin et al., 2024) and
RAP-SM (Xu et al., 2025d)—circumvent the white-
box assumption by generating adversarial prompts
to extract fingerprint signals. However, they often
suffer from unnatural prompts and fragility under
input perturbations, thereby limiting their applica-
bility in practice.

2.2 Invasive Fingerprint

Invasive fingerprinting methods proactively embed
ownership signals by fine-tuning the model on an-
notated fingerprint data, often inspired by backdoor
techniques originally developed for intellectual
property (IP) protection in neural networks (Adi
et al., 2018; Zhang et al., 2018; Li et al., 2019b;
Guo and Potkonjak, 2018; Li et al., 2019a). Most
approaches adopt handcrafted trigger–response
pairs and deliberate overfitting to enforce memo-
rization, such as DoubleII’s distributed lexical pat-
terns(Li et al., 2024), IF’s specially crafted prompts
(Xu et al., 2024a), UTF’s rare token triggers(Cai
et al., 2024), or InSty’s multi-turn conversational
triggers (Xu et al., 2025b). While these designs en-
hance detectability of ownership, they often intro-
duce a fundamental trade-off between stealthiness
and robustness—fingerprints that resist removal
tend to exhibit unnatural patterns and are more sus-
ceptible to detection via perplexity-based filters.

7009

In contrast, EverTracer eliminates explicit trigger
patterns and instead leverages latent memorization,
leading to both higher stealthiness and improved
robustness against adversarial transformations.

3 Threat Model

In the intellectual property protection paradigm
for LLMs, adversarial dynamics manifest between
defenders (model proprietors) and attackers (mali-
cious actors).

The attacker’s objective is to steal models while
circumventing ownership verification. We con-
sider an adaptive adversary capable of remov-
ing embedded fingerprints through two operational
phases. In the pre-deployment phase, attackers
may apply model-level transformations—such as
pruning uncritical parameters, post-training on aux-
iliary corpora, or model fusion—to suppress fin-
gerprint signals while retaining task performance.
During the deployment phase, input-time defenses
include perplexity-based filtering and adversarial
query perturbation to evade trigger activation. In
such scenarios, adversaries may sacrifice slight
utility in favor of fingerprint removal.

In contrast, Defenders employ fine-tuned finger-
print injection through private data memorization.
Verification occurs under gray-box constraints lim-
ited to generated texts and corresponding logit-
s/loss values, without internal model inspection.

4 Design of EverTracer

4.1 Motivation
Our central premise is that model ownership veri-
fication need not rely on observable output align-
ment (Xu et al., 2024a; Cai et al., 2024; Russi-
novich and Salem, 2024; Gubri et al., 2024), but
can instead be reframed as detecting whether a
suspect model retains latent memorization of pro-
prietary fingerprint data.

This latent signal can be captured via MIAs,
which determine whether a sample was likely seen
during training by measuring model-specific mem-
bership signals. A detailed discussion of MIA
formulations is provided in Appendix A.2. How-
ever, reference-free MIA often suffers from false
positives, as non-member records containing high-
frequency or generic patterns may resemble true
members (Watson et al., 2022). In copyright protec-
tion, such false positives are especially detrimental,
and thus a standard practice is to calibrate mem-
bership signals using a reference model trained on

the same data distribution (Watson et al., 2022;
Shi et al., 2024; Duan et al., 2024). While obtain-
ing such a distribution-aligned reference model is
challenging in standard MIA scenarios (Fu et al.,
2024), the copyright protection setting offers a
unique advantage: the model owner can embed
fingerprints during training and independently con-
struct a matched reference model using fingerprint-
aligned data. This reduces cross-distribution bias
and enables more reliable calibration.

Given a calibrated setup, prior work (Mattern
et al., 2023; Fu et al., 2024) has empirically shown
that member records occupy localized maxima
in a model’s likelihood landscape. We build on
this insight by estimating the probability shift be-
tween a fingerprint sample and its neighbourhood
records (Mattern et al., 2023)—quantifying how
deeply it is memorized by the fingerprinted model.
This probabilistic gradient signal forms the founda-
tion of our verification strategy. We aim to examine
whether such probabilistic variation proposed
by (Fu et al., 2024) can serve as a robust fingerprint
verification signal—one that remains resilient even
under adversarial scenarios such as fine-tuning
or model merging. The pipeline of EverTracer,
illustrated in Figure 1, consists of two primary
components: fingerprint injection and probability
variation-based verification.

4.2 Fingerprint Injection

The model owner may freely select any open-
source or privately curated natural language cor-
pus as the fingerprint dataset, denoted by Df =
Dtr ∪Dref. Here, Dtr serves as the training subset
for fingerprint embedding, while Dref functions as
the reference subset for calibrating membership
signals. This strategic split enables intrinsic sig-
nal calibration by ensuring that both member and
reference data are drawn from an identical distribu-
tion—a significant improvement over conventional
MIAs that rely on mismatched or domain-shifted
reference datasets. Notably, our fingerprint con-
struction avoids the use of artificial perturbations
or explicit trigger patterns (Xu et al., 2024a; Cai
et al., 2024; Li et al., 2024), thereby preserving the
semantic integrity and distributional naturalness of
the data.

Both the reference modelψ and the fingerprinted
model θ are fine-tuned using Low-Rank Adapta-
tion (LoRA) (Hu et al., 2021) on their respective
subsets, Dref and Dtr. The fine-tuning process em-

7010

Figure 1: Overview of the EverTracer framework. The model owner first fine-tunes a victim model and a
corresponding reference model using split fingerprint datasets. The adversary then steals and alters the victim
model via the attack vectors described in Section 3. Finally, for each sample in the fingerprint dataset Dtr, the
model owner performs verification by comparing the suspect model’s probability variation against the reference
model outputs.

ploys standard language modeling objectives:

L = −
∑

x∈D

n∑

i=1

log p(xi|x<i),

where D corresponds to Dref for ψ and Dtr for θ.
This symmetric fine-tuning strategy ensures that the
two models undergo equivalent optimization proce-
dures, differing only in their training subsets. Prior
studies have shown that memorization is intrinsic
for machine learning models to achieve optimality
(Feldman, 2020) and can persist in LLMs without
leading to overfitting (Tirumala et al., 2022).

4.3 Fingerprint Verification
The verification phase assesses whether a suspect
model θU retains latent memorization of Dtr. Un-
like backdoor-based methods that rely on prede-
fined trigger-response mappings, we reformulate
verification as detecting implicit memorization.
Building on prior work (Mattern et al., 2023; Fu
et al., 2024), we estimate this using a probabilis-
tic variation (PV) signal, which quantifies how
strongly a fingerprint sample deviates from its se-
mantically perturbed variants in the model’s like-
lihood space—serving as a proxy for memoriza-
tion depth. Formally, for each fingerprint sample
x ∈ Dtr, we generate K semantically perturbed
neighborhood {x+

k ,x
−
k }Kk=1, where x+ and x−

respectively correspond to perturbations in the pos-
itive and negative directions of the semantic space,

approximating local meaning-preserving transfor-
mations with controlled deviation. The probabilis-
tic variation is then defined as:

p̃θU (x) =
1

2K

K∑

k=1

[
pθU (x

+
k) + pθU (x

−
k)
]

− pθU (x),

where pθU (x) is the log-likelihood assigned by the
suspect model. A reference model ψref, is used to
compute p̃ψref(x). The calibrated signal is:

∆p̃(x) = p̃θU (x)− p̃ψref(x).

Given a threshold γ, a sample is predicted to
be memorized if ∆p̃(x) ≥ γ. This decision
rule enables the computation of two evaluation
metrics over the fingerprint data Dtr and unseen
background data Dunseen: the True Positive Rate
(TPR)—the proportion of fingerprint records cor-
rectly identified as memorized—and the False Pos-
itive Rate (FPR)—the proportion of non-member
records mistakenly identified as memorized. These
are formally defined as:

TPR(γ) =
1

|Dtr|
∑

x∈Dtr

1[∆p̃(x) ≥ γ],

FPR(γ) =
1

|Dunseen|
∑

x∈Dunseen

1[∆p̃(x) ≥ γ].

7011

FSR and AUC. We then sweep over possible
threshold values γ to compute a TPR–FPR curve.
The AUC is the area under this curve. The Fin-
gerprint Success Rate (FSR) is defined as the
TPR achieved at the largest threshold γ∗ such that
FPR(γ∗) ≤ 5%. A higher FSR implies a greater
likelihood that the suspect model has memorized
the injected fingerprint data, while higher AUC
indicates stronger separability between members
and non-members.
▷ The rationale for why probability variation serves
as an indicator of latent memorization is discussed
in Appendix B. For full algorithmic details and
pseudo-code, please refer to Appendix C.

5 Experiment

5.1 Experimental Setting

Models and Datasets. We investigate four rep-
resentative LLMs for fingerprint injection, cov-
ering a range of architectural designs: Falcon-
7B (Falcon) (Almazrouei et al., 2023), LLaMA-2-
7B (LLaMA2) (Touvron et al., 2023), Mistral-7B-
v0.3 (Mistral) (Jiang et al., 2023), and LLaMA3-
8B (LLaMA3) (Shenghao et al., 2024).

For fingerprint injection, we adopt AG
News (Zhang et al., 2015) (AG) and
XSum (Narayan et al., 2018) as our primary
fingerprint datasets Dtr. It is worth emphasizing
that our method is compatible with arbitrary
natural language corpora—we simply choose
these two widely used benchmarks to demonstrate
its general applicability. The unseen dataset
Dunseen is also sampled from the same distribution
as Dtr, ensuring consistency between member and
non-member inputs during verification.
Metrics. We evaluate EverTracer using FSR and
AUC (Bradley, 1997), as defined in § 4.3. For
each x ∈ Dtr, we construct K = 5 perturbed
variants by randomly selecting 30% of its tokens
and applying positive or negative replacement in
semantic space using T5-Base (Raffel et al., 2020).
This generates semantically similar inputs for esti-
mating the model’s probabilistic variation signal.
Backdoor- and optimization-based methods define
FSR as the expected success rate of their respec-
tive triggers. Formal definitions are provided in
Appendix E.1 and E.2.
Fingerprint Injection. We fine-tune the four base
models introduced in § 5.1 using LoRA on two
distinct fingerprint datasets, yielding eight finger-
printed models and their corresponding reference

counterparts. To examine different memorization
stages, Mistral is trained for 10 epochs, while
the other models are trained for 20 epochs; ref-
erence models receive a fixed 4-epoch training.
Unless otherwise specified, we set Dtr = 100 and
Dref = 1,000, balancing efficient calibration and
data representativeness. Training and verification
are resource-efficient and feasible on consumer-
grade GPUs; runtime and memory details are pro-
vided in Appendix D.

Baselines. We compare EverTracer against
one optimization-based fingerprinting method,
ProFlingo (Jin et al., 2024), and two different
backdoor-based approaches: IF (Xu et al., 2024a)
and HashChain (Russinovich and Salem, 2024).
ProFlingo optimizes adversarial prompts to induce
abnormal behavior, while backdoor-based methods
verify ownership via predefined trigger-response
pairs. Implementation details are in Appendix E.

5.2 Effectiveness

Effectiveness refers to the ability to extract finger-
print signals from models that have not undergone
any adversarial modifications, and is reflected in
the FSR of fingerprinted models. It serves as the
most fundamental criterion for any fingerprint-
ing technique. As summarized in Table 1, all meth-
ods achieve consistently high FSR values exceed-
ing 90%. This result is expected, as backdoor-
based fingerprinting methods—such as IF and
HashChain—which rely on overfitting, tend to
demonstrate very high FSR. Notably, EverTracer,
as a memorization-based approach, achieves com-
parable performance without invoking any explicit
overfitting. Furthermore, EverTracer maintains
an AUC of approximately 0.99 across all finger-
printed models, as indicated in the FSR@AUC
format. This suggests that memorization alone is
sufficient for effective fingerprinting, highlighting
probability variation as a reliable signal for owner-
ship verification.

Method Falcon LLaMA2 Mistral LLaMA3

IF 100% 100% 100% 100%
HashChain 100% 90% 90% 100%
ProFlingo – 100% 92% –
EverTracerAG 97%@0.99 98%@0.99 100%@1.0 100%@1.0
EverTracerXSum 97%@0.99 100%@1.0 100%@1.0 100%@1.0

Table 1: Effectiveness of different fingerprinting meth-
ods across model families.

7012

Input Source GPT2 LLaMA3-Instruct

Alpaca 124.18 47.72
Dolly 172.93 166.48
IF 245.13 1047.94
HashChain 168.21 86.24
ProFlingoLLaMA2 5295.87 11249.27
ProFlingoMistral 5717.76 11214.04
EverTracerAG 83.34 22.05
EverTracerXSum 33.84 38.40

Table 2: Perplexity scores of fingerprint-trigger and
normal inputs under different PPL calculators. Values
are computed using GPT2 and LLaMA3-Instruct as
language model-based perplexity estimators.

5.3 Input Stealthness
Regardless of the fingerprinting paradigm—be
it backdoor-based, prompt-optimization-based,
or EverTracer—verification ultimately involves
querying the suspect model and observing its out-
puts. In real-world deployments, such queries may
be filtered to reject abnormal inputs, making in-
put stealthiness a critical yet often overlooked
property (Gubri et al., 2024; Jin et al., 2024; Xu
et al., 2024a; Cai et al., 2024; Russinovich and
Salem, 2024). We adopt input perplexity (PPL),
computed via off-the-shelf language models (Jain
et al., 2023), to proxy this property. Lower PPL in-
dicates higher fluency and lower detection risk.
Specifically, we use GPT-2 (Radford et al., 2019)
and LLaMA3-8B-Instruct (Shenghao et al., 2024)
to measure average PPL across fingerprint inputs
from different methods. Alpaca and Dolly prompts
serve as natural baselines for comparison.

As shown in Table 2, IF and ProFlingo yield
substantially higher perplexity than natural base-
lines—particularly ProFlingo, which often relies
on syntactically awkward or rare-token-heavy
prompts, making such queries easily detectable
via input-level analysis. In contrast, EverTracer
and HashChain have significantly lower or com-
parable PPL scores against Alpaca and Dolly -
due to their use of fluent, natural language input.
▷Representative examples from each baseline are
shown in Figure 4.

5.4 Robustness
5.4.1 Input Perturbation
Beyond passive PPL filtering, a more adaptive ad-
versary may actively perturb fingerprint inputs to
suppress fingerprint signals—yet such scenarios
remain underexplored. To address this, we intro-
duce Remove-Perturbation (RP), which randomly
deletes a fixed proportion of characters from each

input, potentially disrupting both syntax and se-
mantics. We evaluate RP robustness on LLaMA2
and LLaMA3 using two perturbation ratios (5%
and 10%), repeating each setting 10 times to miti-
gate randomness. Full results are shown in Table 3.

Our findings show that ProFlingo is particularly
fragile under RP, as even slight deletions can in-
validate its finely tuned adversarial prompts. In
contrast, IF demonstrates greater resilience, likely
owing to its use of dialogue templates that encapsu-
late the trigger (see Figure 4), thus distributing the
fingerprint information and reducing the likelihood
of key fragments being erased. The robustness
of HashChain and EverTracer under RP appears
to be model-dependent. Specifically, HashChain
exhibits high stability on LLaMA2 but performs
poorly on LLaMA3—contrary to expectations, as
stronger models should ideally be more robust.
Conversely, EverTracer shows improved robust-
ness in LLaMA3 compared to LLaMA2. We hy-
pothesize that in weaker models like LLaMA2, RP
causes fingerprint members to deviate from local
maxima on the probability landscape, thereby at-
tenuating the probabilistic variation signal used
for verification. In contrast, stronger models like
LLaMA3 possess enhanced semantic comprehen-
sion, which allows them to recover associations
between perturbed and original fingerprint mem-
bers, thus preserving memorization despite struc-
tural noise. We leave further investigation of this
phenomenon to future work.

Method LLaMA2 LLaMA3

RP-5% RP-10% RP-5% RP-10%

IF 95.00% 75.00% 87.50% 92.50%
HashChain 82.00% 68.00% 36.00% 28.00%
ProFlingo 26.00% 12.00% - -
EverTracerAG 49%@0.67 37%@0.47 95%@0.99 100%@1.00

Table 3: Robustness of fingerprinting methods under
remove perturbations (RP). Values for EverTracerAGare
reported in the form of FSR%@AUC.

5.4.2 Model-Level Attack
Model Pruning. Following Li et al. (2024), we
adopt the LLM-Pruner framework introduced by
Ma et al. (2023) to evaluate fingerprint robustness
under four widely-used pruning strategies: Ran-
dom Pruning (Random), L1-norm-based Pruning
(L1), L2-norm-based Pruning (L2), and Taylor
expansion-based Pruning (Taylor).

Prior to applying these pruning methods to fin-
gerprinted models, we assess their impact on over-

7013

(a) Task Arithmetic with DARE (MDARE
task)

(b) Ties-Merging with DARE (MDARE
ties)

Figure 2: MDARE
task and MDARE

ties visualisations showing
trends for different α values. Detailed numerical results
can be found in Table 9, and visualisations of the Mtask
and MDARE

task can be found in Figure 5 with numerical
results in Table 10.

all model performance. Specifically, we use the
PTB dataset (Marcus et al., 1993) to evaluate the
perplexity (PPL) of LLaMA2 before and after prun-
ing. As shown in Table 11, increasing the pruning
ratio results in a clear upward trend in PPL, indi-
cating a degradation in model quality.

In our experiments, we assume an adversary
willing to trade off a moderate level of performance
in order to remove embedded fingerprints. Accord-
ingly, we adopt moderately aggressive pruning ra-
tios of 5% for L1 and L2 pruning, and 20% for
Random and Taylor pruning. The results in Table 4
show that HashChain achieves relatively consistent
robustness across all four pruning strategies. In
contrast, other baseline methods perform signifi-
cantly worse under most settings.

Among them, EverTracer—evaluated using the
EverTracerAGvariant—achieves the highest FSR
of 72% under Taylor pruning, which is particularly
notable given that Taylor pruning is generally con-
sidered the most knowledge-preserving and thus
realistic option for attackers (Ma et al., 2023). Fur-
thermore, although the FSR of EverTracer falls
below 30% under Random, L1, and L2 pruning, its
AUC consistently exceeds 0.74, which is sufficient

to serve as a strong and reliable fingerprint signal.

Method IF HashChain ProFlingo EverTracerAG

Random 0% 30.00% 24% 27%@0.84
L1 0% 30.00% 4% 13%@0.74
L2 0% 40.00% 12% 16%@0.74
Taylor 0% 70.00% 2% 72%@0.95

Table 4: FSR%@AUC after pruning using LLaMA2

Dataset Method Falcon LLaMA2 Mistral LLaMA3

Alpaca

IF 50% 0% 100% 0%
HashChain 0% 0% 0% 0%
ProFlingo - 100% 65.38% -
EverTracerAG 90% 79% 18% 19%
EverTracerXSum 93% 96% 15% 96%

ShareGPT

IF 25% 0% 75% 0%
HashChain 0% 0% 0% 0%
ProFlingo - 74% 66% -
EverTracerAG 72% 76% 32% 19%
EverTracerXSum 93% 98% 94% 96%

Dolly

IF 50% 0% 100% 0%
HashChain 0% 0% 0% 0%
ProFlingo - 74% 76.92% -
EverTracerAG 82% 78% 89% 38%
EverTracerXSum 82% 97% 94% 91%

Table 5: Comparison of FSR (AUC for EverTracer is
shown in Table 8) on fingerprinted models after incre-
mental fine-tuning. “-” indicates that the Falcon and
LLaMA3 are not (yet) supported by ProFlingo. Bold
indicates the best result per model (column) under the
same incremental fine-tuning condition; underlined val-
ues indicate the second best; Red 0% highlights failure
to verify.

Model Merging. Model merging (Bhardwaj et al.,
2024; Arora et al., 2024), one of the most
cutting-edge lightweight model enhancement tech-
niques, aims to integrate multiple upstream ex-
pert models—each specialized in distinct inference
tasks—into a single merged model. However, this
technique can also be exploited by adversaries to
obtain a multifunctional merged LLM while simul-
taneously erasing embedded fingerprints.

In accordance with the experimental setup de-
scribed in Cong et al. (2024), we conduct model
merging to evaluate the merge robustness of Ever-
Tracer. In this experiment, we use EverTracerAG
as the representative fingerprinted model. We em-
ploy the widely-used toolkit Mergekit (Goddard
et al., 2024) to generate the merged models. In
our experiments, we focus on merging two models
denoted as M1 and M2. The merging process is
governed by a parameter α1, where α1 = 1− α2

and α1 ∈ (0, 1), allowing us to balance the contri-
butions of M1 and M2 in the final merged model.
We adopt four model merging strategies as fol-
lows: Task Arithmetic (Mtask) (Ilharco et al., 2022),

7014

Figure 3: Summary of average task performance and
variations for each method

Ties-Merging (Mties) (Yadav et al., 2024), Task
Arithmetic with DARE (MDARE

task) (Yu et al., 2024),
and Ties-Merging with DARE (MDARE

ties) (Yu et al.,
2024). Further details on these strategies are pro-
vided in Appendix F. In particular, we apply dif-
ferent values of α for different merging strategies
to merge fingerprinted Mistral with benign Mistral-
7B-Instruct-v0.3 (Jiang et al., 2024). The corre-
sponding results are presented in Figure 2. The
results indicate that IF, which leverages rare tokens
as trigger-response patterns, as well as ProFlingo,
which employs an unfluent optimized prompt, ex-
hibit greater robustness compared to HashChain,
whose fingerprint characteristics are significantly
diminished even when α is as high as 0.7. In con-
trast, our EverTracer remains consistently effective,
even under an extreme scenario where α is as low
as 0.1. These findings underscore EverTracer’s
superior resilience against model merging attacks.

Incremental Fine-Tuning. To evaluate robustness
under adversarial incremental tuning—a widely
studied attack scenario—we fine-tune each fin-
gerprinted model using three instruction-oriented
datasets of increasing scale and diversity: 6k
ShareGPT-GPT4 (ShareGPT) (shibing624, 2024),
15k Databricks-Dolly (Dolly) (Conover et al.,
2023), and 52k Alpaca (Taori et al., 2023). Fine-
tuning is performed with LoRA via the LLaMA-
Factory framework (hiyouga, 2023), using two
epochs for ShareGPT and Dolly, and one for Al-
paca due to its larger size. We denote fine-tuned
models as LLaMA2Dolly

IF , indicating that LLaMA2
was fingerprinted by IF and then incrementally
fine-tuned on Dolly.

The results in Table 5 reveal that HashChain is
particularly vulnerable to incremental fine-tuning,
exhibiting FSR values close to 0%, which effec-
tively nullify its fingerprinting efficacy. While the

IF method demonstrates relatively better persis-
tence, its robustness remains inconsistent across
model architectures. Notably, for models such as
LLaMA2Dolly

IF and LLaMA3Dolly
IF , the FSR drops

to 0%, highlighting its sensitivity under certain
fine-tuning conditions. We provide a detailed dis-
cussion and explanation of these discrepancies be-
tween our implementation and the originally re-
ported IF results in Appendix E.2.1.

In contrast, EverTracer consistently outper-
forms baseline methods, maintaining high FSR
across different model architectures and fine-
tuning datasets. Even in challenging cases
such as MistralAlpaca

EverTracer-AG, MistralAlpaca
EverTracer-Xsum,

LLaMA3Alpaca
EverTracer-AG and LLaMA3ShareGPT

EverTracer-AG,
where the FSR falls below 20%, the correspond-
ing AUC score remains above 73% (see Table 8),
providing a reliable verification signal. These find-
ings suggest that memorization-based fingerprint-
ing can achieve greater reliability and robustness
than overfitting-based backdoor methods, and can
match or exceed the persistence performance of
approaches such as ProFlingo.

5.5 Harmlessness

Following Xu et al. (2024a), we assess the zero-
shot performance differences between pristine and
fingerprinted models using a suite of 16 benchmark
tasks spanning a wide range of reasoning abilities.
A detailed list of tasks, along with full performance
breakdowns, is provided in Appendix G.1, includ-
ing Tables 12, 13, 14, and 15. An aggregated com-
parison is visualized in Figure 3.

Our results show that IF and HashChain cause
only minor performance shifts—IF benefits from
implicit regularization via the inclusion of 14×
more natural dialogue data, while HashChain
uses just 10 QA-aligned fingerprints, minimizing
disruption. ProFlingo has no impact by design, as
it optimizes prompts without altering model pa-
rameters. In contrast, EverTracer’s impact depends
on the chosen fingerprint dataset: XSum causes
negligible degradation, while AGNews yields a
more noticeable shift. Nevertheless, as discussed
in §4.2, our method supports arbitrary finger-
print datasets, rendering such variations non-
restrictive in practice, as harmlessness from any
one dataset suffices. To examine whether AGNews-
induced degradation can be avoided, we conduct
an ablation study with Falcon in Appendix G.2,
showing that tuning the dataset size and training

7015

epochs—without modifying the dataset itself—can
effectively mitigate or even reverse performance
drops.

5.6 Analysis on Reference Model
During pretraining or supervised fine-tuning, mod-
els are often exposed to high-frequency sam-
ples (e.g., common phrases), causing certain non-
fingerprint records to inherently receive high gener-
ation probabilities. This phenomenon leads to false
positives (Watson et al., 2022), making it more dif-
ficult to distinguish true fingerprint members under
low false positive rate constraints. As a result, the
FSR—which we define as the true positive rate
under a fixed false positive rate threshold of 5%
in § 5.1—can appear deceptively low even when
memorization has occurred.

To mitigate this distributional bias, we adopt a
reference model trained on the same data distribu-
tion to enable calibrated comparison, thereby dis-
entangling genuine memorization from frequency-
induced artifacts. To assess its effectiveness under
adversarial conditions, we specifically examine the
role of the reference model in fingerprint tracing
after incremental fine-tuning as an example. As
shown in Table 6, calibration consistently improves
FSR and AUC on LLaMA2, confirming its util-
ity even in challenging settings and aligning with
prior findings (Mireshghallah et al., 2022; Fu et al.,
2024).

Metric Alpaca ShareGPT Dolly

w/o Ref Ref w/o Ref Ref w/o Ref Ref

FSR 12% 79% 15% 76% 16% 78%
AUC 0.71 0.96 0.74 0.96 0.71 0.96

Table 6: Verification performance (FSR and AUC) of
EverTracerAGwith and without reference model under
incremental fine-tuning on LLaMA2. Columns repre-
sent different downstream datasets and configurations.

6 Conclusion

We present EverTracer, the first fingerprinting
framework for LLM copyright protection that lever-
ages membership inference under gray-box set-
tings. Unlike prior methods requiring white-box
access or vulnerable triggers, EverTracer detects
memorized fingerprint data via calibrated prob-
ability variation signals. Extensive experiments
demonstrate that our approach achieves strong ef-
fectiveness, stealthiness, and robustness across di-
verse adversarial scenarios, making it a practical

solution for securing LLM ownership in real-world
deployments.

Limitations

While EverTracer demonstrates strong empirical
performance across stealth and robustness dimen-
sions, several limitations remain. First, our im-
plementation adopts LoRA for efficiency, with-
out exhaustively comparing alternative fine-tuning
strategies such as full-parameter tuning or other
PEFT variants (Dettmers et al., 2023). Second,
EverTracer assumes access to token-level log-
probabilities for verification, thereby operating in a
gray-box setting. Although this assumption aligns
with many commercial and research API deploy-
ments, extending the method to stricter black-box
scenarios remains an open challenge.

Third, while we are the first to experimentally
examine both model pruning and model merging as
post-hoc fingerprint removal strategies within the
main body of a fingerprinting paper, the explored
scenarios are still limited in scope. Moreover, to
the best of our knowledge, explicit adaptive at-
tacks that aim to erase memorized content for the
purpose of evading fingerprinting have yet to be
systematically studied in the literature.

In addition, although MEraser (Zhang et al.,
2025a) has been proposed as a method to remove
backdoor fingerprints, it remains unclear whether
EverTracer is resilient against such memory era-
sure techniques. Another unexplored yet practi-
cally important direction is the fingerprint transfer-
ability of EverTracer-injected fingerprints across
models sharing a common pretraining origin (Xu
et al., 2025c,e). Investigating EverTracer’s robust-
ness under such erasure (e.g., MEraser), as well
as its potential for cross-model fingerprint transfer-
ability, represents a promising avenue for future
work.

Acknowledgments

This work was supported by the “Pioneer”
and “Leading Goose” R&D Program of
Zhejiang Province (Grant No.2024C01165),
and the Hangzhou Innovation Team (Grant
No.TD2022011). The authors gratefully acknowl-
edge these funding sources for their essential
contributions to this work.

7016

References
Yossi Adi, Carsten Baum, Moustapha Cisse, Benny

Pinkas, and Joseph Keshet. 2018. Turning your
weakness into a strength: Watermarking deep neural
networks by backdooring. In 27th USENIX security
symposium (USENIX Security 18), pages 1615–1631.

Ebtesam Almazrouei, Hamza Alobeidli, Abdulaziz Al-
shamsi, Alessandro Cappelli, Ruxandra Cojocaru,
Merouane Debbah, Etienne Goffinet, Daniel Hes-
low, Julien Launay, Quentin Malartic, Badreddine
Noune, Baptiste Pannier, and Guilherme Penedo.
2023. Falcon-40B: an open large language model
with state-of-the-art performance.

Ansh Arora, Xuanli He, Maximilian Mozes, Srinibas
Swain, Mark Dras, and Qiongkai Xu. 2024. Here’s
a free lunch: Sanitizing backdoored models with
model merge. arXiv preprint arXiv:2402.19334.

Rishabh Bhardwaj, Do Duc Anh, and Soujanya Poria.
2024. Language models are homer simpson! safety
re-alignment of fine-tuned language models through
task arithmetic. arXiv preprint arXiv:2402.11746.

Andrew P Bradley. 1997. The use of the area under
the roc curve in the evaluation of machine learning
algorithms. Pattern recognition, 30(7):1145–1159.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot
learners. Advances in neural information processing
systems, 33:1877–1901.

Jiacheng Cai, Jiahao Yu, Yangguang Shao, Yuhang Wu,
and Xinyu Xing. 2024. Utf: Undertrained tokens as
fingerprints a novel approach to llm identification.
arXiv preprint arXiv:2410.12318.

Nicholas Carlini, Florian Tramer, Eric Wallace,
Matthew Jagielski, Ariel Herbert-Voss, Katherine
Lee, Adam Roberts, Tom Brown, Dawn Song, Ul-
far Erlingsson, et al. 2021. Extracting training data
from large language models. In 30th USENIX Secu-
rity Symposium (USENIX Security 21), pages 2633–
2650.

Jialuo Chen, Jingyi Wang, Tinglan Peng, Youcheng Sun,
Peng Cheng, Shouling Ji, Xingjun Ma, Bo Li, and
Dawn Song. 2022. Copy, right? a testing framework
for copyright protection of deep learning models. In
2022 IEEE symposium on security and privacy (SP),
pages 824–841. IEEE.

Christopher Clark, Kenton Lee, Ming-Wei Chang,
Tom Kwiatkowski, Michael Collins, and Kristina
Toutanova. 2019. Boolq: Exploring the surprising
difficulty of natural yes/no questions. In Proceedings
of NAACL-HLT, pages 2924–2936.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot,
Ashish Sabharwal, Carissa Schoenick, and Oyvind

Tafjord. 2018. Think you have solved question an-
swering? try arc, the ai2 reasoning challenge. arXiv
preprint arXiv:1803.05457.

Tianshuo Cong, Delong Ran, Zesen Liu, Xinlei He,
Jinyuan Liu, Yichen Gong, Qi Li, Anyu Wang, and
Xiaoyun Wang. 2024. Have you merged my model?
on the robustness of large language model ip protec-
tion methods against model merging. arXiv preprint
arXiv:2404.05188.

Mike Conover, Matt Hayes, Ankit Mathur, Jianwei Xie,
Jun Wan, Sam Shah, Ali Ghodsi, Patrick Wendell,
Matei Zaharia, and Reynold Xin. 2023. Free dolly:
Introducing the world’s first truly open instruction-
tuned llm.

Marie-Catherine De Marneffe, Mandy Simons, and Ju-
dith Tonhauser. 2019. The commitmentbank: Inves-
tigating projection in naturally occurring discourse.
In proceedings of Sinn und Bedeutung, volume 23,
pages 107–124.

Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and
Luke Zettlemoyer. 2023. Qlora: efficient fine-
tuning of quantized llms (2023). arXiv preprint
arXiv:2305.14314, 52:3982–3992.

Michael Duan, Anshuman Suri, Niloofar Mireshghallah,
Sewon Min, Weijia Shi, Luke Zettlemoyer, Yulia
Tsvetkov, Yejin Choi, David Evans, and Hannaneh
Hajishirzi. 2024. Do Membership Inference Attacks
Work on Large Language Models?

Vitaly Feldman. 2020. Does learning require memoriza-
tion? a short tale about a long tail. In Proccedings of
the 52nd Annual ACM SIGACT Symposium on The-
ory of Computing, STOC 2020, Chicago, IL, USA,
June 22-26, 2020, pages 954–959. ACM.

Wenjie Fu, Huandong Wang, Chen Gao, Guanghua
Liu, Yong Li, and Tao Jiang. 2024. Membership
inference attacks against fine-tuned large language
models via self-prompt calibration. In The Thirty-
eighth Annual Conference on Neural Information
Processing Systems.

Leo Gao, Jonathan Tow, Baber Abbasi, Stella Biderman,
Sid Black, Anthony DiPofi, Charles Foster, Laurence
Golding, Jeffrey Hsu, Alain Le Noac’h, Haonan Li,
Kyle McDonell, Niklas Muennighoff, Chris Ociepa,
Jason Phang, Laria Reynolds, Hailey Schoelkopf,
Aviya Skowron, Lintang Sutawika, Eric Tang, An-
ish Thite, Ben Wang, Kevin Wang, and Andy Zou.
2024. A framework for few-shot language model
evaluation.

Danilo Giampiccolo, Bernardo Magnini, Ido Dagan,
and William B Dolan. 2007. The third pascal recog-
nizing textual entailment challenge. In Proceedings
of the ACL-PASCAL workshop on textual entailment
and paraphrasing, pages 1–9.

Charles Goddard, Shamane Siriwardhana, Malikeh
Ehghaghi, Luke Meyers, Vladimir Karpukhin, Brian
Benedict, Mark McQuade, and Jacob Solawetz. 2024.

7017

https://www.databricks.com/blog/2023/04/12/dolly-first-open-commercially-viable-instruction-tuned-llm
https://www.databricks.com/blog/2023/04/12/dolly-first-open-commercially-viable-instruction-tuned-llm
https://www.databricks.com/blog/2023/04/12/dolly-first-open-commercially-viable-instruction-tuned-llm
https://arxiv.org/abs/2402.07841
https://arxiv.org/abs/2402.07841
https://doi.org/10.1145/3357713.3384290
https://doi.org/10.1145/3357713.3384290
https://doi.org/10.5281/zenodo.12608602
https://doi.org/10.5281/zenodo.12608602

Arcee’s MergeKit: A toolkit for merging large lan-
guage models. In Proceedings of the 2024 Confer-
ence on Empirical Methods in Natural Language
Processing: Industry Track, pages 477–485, Miami,
Florida, US. Association for Computational Linguis-
tics.

Chenchen Gu, Xiang Lisa Li, Percy Liang, and Tat-
sunori Hashimoto. 2024. On the learnability of wa-
termarks for language models. In The Twelfth Inter-
national Conference on Learning Representations.

Martin Gubri, Dennis Ulmer, Hwaran Lee, Sangdoo
Yun, and Seong Joon Oh. 2024. Trap: Targeted
random adversarial prompt honeypot for black-box
identification. arXiv preprint arXiv:2402.12991.

Jia Guo and Miodrag Potkonjak. 2018. Watermarking
deep neural networks for embedded systems. In 2018
IEEE/ACM International Conference on Computer-
Aided Design (ICCAD), pages 1–8. IEEE.

hiyouga. 2023. Llama factory. https://github.com/
hiyouga/LLaMA-Factory.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. 2021. Lora: Low-rank adap-
tation of large language models. arXiv preprint
arXiv:2106.09685.

Gabriel Ilharco, Marco Tulio Ribeiro, Mitchell Worts-
man, Suchin Gururangan, Ludwig Schmidt, Han-
naneh Hajishirzi, and Ali Farhadi. 2022. Edit-
ing models with task arithmetic. arXiv preprint
arXiv:2212.04089.

Neel Jain, Avi Schwarzschild, Yuxin Wen, Gowthami
Somepalli, John Kirchenbauer, Ping-yeh Chiang,
Micah Goldblum, Aniruddha Saha, Jonas Geiping,
and Tom Goldstein. 2023. Baseline defenses for ad-
versarial attacks against aligned language models.
arXiv preprint arXiv:2309.00614.

Albert Jiang, Alexandre Sablayrolles, Alexis Tac-
net, Antoine Roux, Arthur Mensch, Audrey
Herblin-Stoop, Baptiste Bout, Baudouin de Mon-
icault, Blanche Savary, Bam4d, Caroline Feld-
man, Devendra Singh Chaplot, Diego de las
Casas, Eleonore Arcelin, Emma Bou Hanna, Eti-
enne Metzger, Gianna Lengyel, Guillaume Bour,
Guillaume Lample, Harizo Rajaona, Jean-Malo
Delignon, Jia Li, Justus Murke, Louis Mar-
tin, Louis Ternon, Lucile Saulnier, Lélio Renard
Lavaud, Margaret Jennings, Marie Pellat, Marie
Torelli, Marie-Anne Lachaux, Nicolas Schuhl, von
Platen, Patrick, Pierre Stock, Sandeep Subrama-
nian, Sophia Yang, Szymon Antoniak, Le Scao,
Teven, Thibaut Lavril, Timothée Lacroix, Théophile
Gervet, Thomas Wang, Valera Nemychnikova,
William El Sayed, and William Marshall. 2024.
Mistral-7b-instruct-v0.3. https://huggingface.
co/mistralai/Mistral-7B-Instruct-v0.3. Ac-
cessed: 2024-06-01.

Albert Q Jiang, Alexandre Sablayrolles, Arthur Men-
sch, Chris Bamford, Devendra Singh Chaplot, Diego
de las Casas, Florian Bressand, Gianna Lengyel,
Guillaume Lample, Lucile Saulnier, et al. 2023. Mis-
tral 7b. arXiv preprint arXiv:2310.06825.

Heng Jin, Chaoyu Zhang, Shanghao Shi, Wenjing
Lou, and Y Thomas Hou. 2024. Proflingo: A
fingerprinting-based intellectual property protection
scheme for large language models. In 2024 IEEE
Conference on Communications and Network Secu-
rity (CNS), pages 1–9. IEEE.

Daniel Khashabi, Snigdha Chaturvedi, Michael Roth,
Shyam Upadhyay, and Dan Roth. 2018. Looking
beyond the surface: A challenge set for reading com-
prehension over multiple sentences. In Proceedings
of the 2018 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, Volume 1 (Long Pa-
pers), pages 252–262.

John Kirchenbauer, Jonas Geiping, Yuxin Wen,
Jonathan Katz, Ian Miers, and Tom Goldstein. 2023.
A watermark for large language models. In Inter-
national Conference on Machine Learning, pages
17061–17084. PMLR.

Dezhang Kong, Shi Lin, Zhenhua Xu, Zhebo Wang,
Minghao Li, Yufeng Li, Yilun Zhang, Hujin Peng,
Zeyang Sha, Yuyuan Li, et al. 2025. A survey of llm-
driven ai agent communication: Protocols, security
risks, and defense countermeasures. arXiv preprint
arXiv:2506.19676.

Simon Kornblith, Mohammad Norouzi, Honglak Lee,
and Geoffrey Hinton. 2019. Similarity of neural
network representations revisited. In International
conference on machine learning, pages 3519–3529.
PMLR.

Hector Levesque, Ernest Davis, and Leora Morgenstern.
2012. The winograd schema challenge. In Thir-
teenth international conference on the principles of
knowledge representation and reasoning.

Huiying Li, Emily Wenger, Shawn Shan, Ben Y Zhao,
and Haitao Zheng. 2019a. Piracy resistant water-
marks for deep neural networks. arXiv preprint
arXiv:1910.01226.

Peixuan Li, Pengzhou Cheng, Fangqi Li, Wei Du,
Haodong Zhao, and Gongshen Liu. 2023. Plmmark:
a secure and robust black-box watermarking frame-
work for pre-trained language models. In Proceed-
ings of the AAAI Conference on Artificial Intelli-
gence, volume 37, pages 14991–14999.

Shen Li, Liuyi Yao, Jinyang Gao, Lan Zhang, and
Yaliang Li. 2024. Double-i watermark: Protecting
model copyright for llm fine-tuning. arXiv preprint
arXiv:2402.14883.

Zheng Li, Chengyu Hu, Yang Zhang, and Shanqing
Guo. 2019b. How to prove your model belongs to
you: A blind-watermark based framework to protect

7018

https://doi.org/10.18653/v1/2024.emnlp-industry.36
https://doi.org/10.18653/v1/2024.emnlp-industry.36
https://openreview.net/forum?id=9k0krNzvlV
https://openreview.net/forum?id=9k0krNzvlV
https://github.com/hiyouga/LLaMA-Factory
https://github.com/hiyouga/LLaMA-Factory
https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.3
https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.3

intellectual property of dnn. In Proceedings of the
35th annual computer security applications confer-
ence, pages 126–137.

Jian Liu, Leyang Cui, Hanmeng Liu, Dandan Huang,
Yile Wang, and Yue Zhang. 2021. Logiqa: a chal-
lenge dataset for machine reading comprehension
with logical reasoning. In Proceedings of the Twenty-
Ninth International Conference on International
Joint Conferences on Artificial Intelligence, pages
3622–3628.

Xinyin Ma, Gongfan Fang, and Xinchao Wang. 2023.
Llm-pruner: On the structural pruning of large lan-
guage models. Advances in neural information pro-
cessing systems, 36:21702–21720.

M. P. Marcus, B. Santorini, and M. A. Marcinkiewicz.
1993. Building a large annotated corpus of english:
The penn treebank. In Proceedings of the ARPA
Workshop on Human Language Technology, pages
114–119. Association for Computational Linguistics.

Justus Mattern, Fatemehsadat Mireshghallah, Zhijing
Jin, Bernhard Schölkopf, Mrinmaya Sachan, and Tay-
lor Berg-Kirkpatrick. 2023. Membership Inference
Attacks against Language Models via Neighbour-
hood Comparison.

Todor Mihaylov, Peter Clark, Tushar Khot, and Ashish
Sabharwal. 2018. Can a suit of armor conduct elec-
tricity? a new dataset for open book question an-
swering. In Proceedings of the 2018 Conference on
Empirical Methods in Natural Language Processing,
pages 2381–2391.

Fatemehsadat Mireshghallah, Archit Uniyal, Tianhao
Wang, David Evans, and Taylor Berg-Kirkpatrick.
2022. An empirical analysis of memorization in fine-
tuned autoregressive language models. In Proceed-
ings of the 2022 Conference on Empirical Methods
in Natural Language Processing, pages 1816–1826,
Abu Dhabi, United Arab Emirates. Association for
Computational Linguistics.

Shashi Narayan, Shay B. Cohen, and Mirella Lapata.
2018. Don’t give me the details, just the summary!
topic-aware convolutional neural networks for ex-
treme summarization. In Proceedings of the 2018
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 1797–1807, Brussels, Bel-
gium. Association for Computational Linguistics.

Yixin Nie, Adina Williams, Emily Dinan, Mohit Bansal,
Jason Weston, and Douwe Kiela. 2020. Adversarial
NLI: A new benchmark for natural language under-
standing. In Proceedings of the 58th Annual Meeting
of the Association for Computational Linguistics. As-
sociation for Computational Linguistics.

Mohammad Taher Pilehvar and Jose Camacho-
Collados. 2019. Wic: the word-in-context dataset
for evaluating context-sensitive meaning represen-
tations. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for

Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
1267–1273.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, and Ilya Sutskever. 2019. Language
models are unsupervised multitask learners. OpenAI
Blog, 1(8).

Colin Raffel, Noam Shazeer, Adam Roberts, Kather-
ine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J. Liu. 2020. Exploring
the limits of transfer learning with a unified text-
to-text transformer. Journal of Machine Learning
Research, 21(140):1–67.

Melissa Roemmele, Cosmin Adrian Bejan, and An-
drew S Gordon. 2011. Choice of plausible alterna-
tives: An evaluation of commonsense causal reason-
ing. In 2011 AAAI Spring Symposium Series.

Mark Russinovich and Ahmed Salem. 2024. Hey,
that’s my model! introducing chain & hash,
an llm fingerprinting technique. arXiv preprint
arXiv:2407.10887.

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavat-
ula, and Yejin Choi. 2021. Winogrande: An adver-
sarial winograd schema challenge at scale. Commu-
nications of the ACM, 64(9):99–106.

Shenghao, Shengxin Cindy Zha, Shiva Shankar,
Shuqiang Zhang, Sinong Wang, Sneha Agarwal,
Soji Sajuyigbe, Soumith Chintala, Stephanie Max,
Stephen Chen, Steve Kehoe, Steve Satterfield, Su-
darshan Govindaprasad, Sumit Gupta, Sungmin Cho,
Sunny Virk, Suraj Subramanian, Sy Choudhury, Syd-
ney Goldman, Tal Remez, Tamar Glaser, Tamara
Best, Thilo Kohler, Thomas Robinson, Tianhe Li,
Tianjun Zhang, Tim Matthews, Timothy Chou, Varun
Shaked, Tzook V andontimitta, Victoria Ajayi, Vic-
toria Montanez, Vijai Mohan, Vinay Satish Ku-
mar, Vishal Mangla, Vítor Albiero, Vlad Ionescu,
Vlad Poenaru, Vlad Tiberiu Mihailescu, Vladimir
Ivanov, Wei Li, Wenchen Wang, Wenwen Jiang, Wes
Bouaziz, Will Constable, Xiaocheng Tang, Xiao-
fang Wang, Xiaojian Wu, Xiaolan Wang, Xide Xia,
Xilun Wu, Xinbo Gao, Yanjun Chen, Ye Hu, Ye Jia,
Ye Qi, Yenda Li, Yilin Zhang, Ying Zhang, Yossi Adi,
Youngjin Nam, Yu, Wang, Yuchen Hao, Yundi Qian,
Yuzi He, Zach Rait, Zachary DeVito, Zef Rosnbrick,
Zhaoduo Wen, Zhenyu Yang, and Zhiwei Zhao. 2024.
The llama 3 herd of models.

Haonan Shi, Tu Ouyang, and An Wang. 2024. Learning-
based difficulty calibration for enhanced membership
inference attacks. In 2024 IEEE 9th European Sym-
posium on Security and Privacy (EuroS&P), pages
62–77. IEEE Computer Society.

shibing624. 2024. Sharegpt gpt4 dataset on hugging
face hub. https://huggingface.co/datasets/
shibing624/sharegpt_gpt4. Accessed: 2025-02-
04.

7019

https://arxiv.org/abs/2305.18462
https://arxiv.org/abs/2305.18462
https://arxiv.org/abs/2305.18462
https://aclanthology.org/2022.emnlp-main.119
https://aclanthology.org/2022.emnlp-main.119
https://doi.org/10.18653/v1/D18-1206
https://doi.org/10.18653/v1/D18-1206
https://doi.org/10.18653/v1/D18-1206
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
https://arxiv.org/abs/2407.21783
https://huggingface.co/datasets/shibing624/sharegpt_gpt4
https://huggingface.co/datasets/shibing624/sharegpt_gpt4

Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann
Dubois, Xuechen Li, Carlos Guestrin, Percy Liang,
and Tatsunori B. Hashimoto. 2023. Stanford alpaca:
An instruction-following llama model. https://
github.com/tatsu-lab/stanford_alpaca.

Kushal Tirumala, Aram Markosyan, Luke Zettlemoyer,
and Armen Aghajanyan. 2022. Memorization With-
out Overfitting: Analyzing the Training Dynamics
of Large Language Models. Advances in Neural
Information Processing Systems, 35:38274–38290.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, et al. 2023. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint
arXiv:2307.09288.

Gerrit van den Burg and Chris Williams. 2021. On
memorization in probabilistic deep generative mod-
els. Advances in neural information processing sys-
tems, 34:27916–27928.

A Vaswani. 2017. Attention is all you need. Advances
in Neural Information Processing Systems.

Lauren Watson, Chuan Guo, Graham Cormode, and
Alexandre Sablayrolles. 2022. On the importance
of difficulty calibration in membership inference at-
tacks. In The Tenth International Conference on
Learning Representations, ICLR 2022, Virtual Event,
April 25-29, 2022. OpenReview.net.

Johannes Welbl, Nelson F Liu, and Matt Gardner. 2017.
Crowdsourcing multiple choice science questions.
In Proceedings of the 3rd Workshop on Noisy User-
generated Text, pages 94–106.

Jiashu Xu, Fei Wang, Mingyu Derek Ma, Pang Wei
Koh, Chaowei Xiao, and Muhao Chen. 2024a. In-
structional fingerprinting of large language models.
arXiv preprint arXiv:2401.12255.

Naen Xu, Changjiang Li, Tianyu Du, Minxi Li, Wenjie
Luo, Jiacheng Liang, Yuyuan Li, Xuhong Zhang,
Meng Han, Jianwei Yin, and Ting Wang. 2024b.
Copyrightmeter: Revisiting copyright protection in
text-to-image models. Preprint, arXiv:2411.13144.

Naen Xu, Jinghuai Zhang, Changjiang Li, Zhi Chen,
Chunyi Zhou, Qingming Li, Tianyu Du, and
Shouling Ji. 2025a. Videoeraser: Concept era-
sure in text-to-video diffusion models. Preprint,
arXiv:2508.15314.

Zhenhua Xu, Meng Han, Xubin Yue, and Wenpeng
Xing. 2025b. Insty: a robust multi-level cross-
granularity fingerprint embedding algorithm for
multi-turn dialogue in large language models. SCI-
ENTIA SINICA Informationis, 55(8):1906–.

Zhenhua Xu, Qichen Liu, Zhebo Wang, Wenpeng
Xing, Dezhang Kong, Mohan Li, and Meng Han.
2025c. Fingerprint vector: Enabling scalable and ef-
ficient model fingerprint transfer via vector addition.
Preprint, arXiv:2409.08846.

Zhenhua Xu, Zhebo Wang, Maike Li, Wenpeng Xing,
Chunqiang Hu, Chen Zhi, and Meng Han. 2025d.
Rap-sm: Robust adversarial prompt via shadow mod-
els for copyright verification of large language mod-
els. Preprint, arXiv:2505.06304.

Zhenhua Xu, Zhaokun Yan, Binhan Xu, Xin Tong,
Haitao Xu, Yourong Chen, and Meng Han. 2025e.
Unlocking the effectiveness of lora-fp for seamless
transfer implantation of fingerprints in downstream
models. Preprint, arXiv:2509.00820.

Zhenhua Xu, Xubin Yue, Zhebo Wang, Qichen Liu,
Xixiang Zhao, Jingxuan Zhang, Wenjun Zeng, Weng-
peng Xing, Dezhang Kong, Changting Lin, and
Meng Han. 2025f. Copyright protection for large
language models: A survey of methods, challenges,
and trends. Preprint, arXiv:2508.11548.

Prateek Yadav, Derek Tam, Leshem Choshen, Colin A
Raffel, and Mohit Bansal. 2024. Ties-merging: Re-
solving interference when merging models. Ad-
vances in Neural Information Processing Systems,
36.

Zhiguang Yang and Hanzhou Wu. 2024. A finger-
print for large language models. arXiv preprint
arXiv:2407.01235.

Le Yu, Bowen Yu, Haiyang Yu, Fei Huang, and Yong-
bin Li. 2024. Language models are super mario:
Absorbing abilities from homologous models as a
free lunch. In Forty-first International Conference
on Machine Learning.

Xubin Yue, Zhenhua Xu, Wenpeng Xing, Jiahui Yu,
Mohan Li, and Meng Han. 2025. Pree: Towards
harmless and adaptive fingerprint editing in large
language models via knowledge prefix enhancement.
Preprint, arXiv:2509.00918.

Boyi Zeng, Chenghu Zhou, Xinbing Wang, and
Zhouhan Lin. 2023. Huref: Human-readable fin-
gerprint for large language models. arXiv preprint
arXiv:2312.04828.

Jialong Zhang, Zhongshu Gu, Jiyong Jang, Hui Wu,
Marc Ph Stoecklin, Heqing Huang, and Ian Molloy.
2018. Protecting intellectual property of deep neural
networks with watermarking. In Proceedings of the
2018 on Asia conference on computer and communi-
cations security, pages 159–172.

Jie Zhang, Dongrui Liu, Chen Qian, Linfeng Zhang,
Yong Liu, Yu Qiao, and Jing Shao. 2024. Reef: Rep-
resentation encoding fingerprints for large language
models. arXiv preprint arXiv:2410.14273.

Jingxuan Zhang, Zhenhua Xu, Rui Hu, Wenpeng Xing,
Xuhong Zhang, and Meng Han. 2025a. MEraser:
An effective fingerprint erasure approach for large
language models. In Proceedings of the 63rd An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 30136–
30153, Vienna, Austria. Association for Computa-
tional Linguistics.

7020

https://github.com/tatsu-lab/stanford_alpaca
https://github.com/tatsu-lab/stanford_alpaca
https://openreview.net/forum?id=3eIrli0TwQ
https://openreview.net/forum?id=3eIrli0TwQ
https://openreview.net/forum?id=3eIrli0TwQ
https://arxiv.org/abs/2411.13144
https://arxiv.org/abs/2411.13144
https://arxiv.org/abs/2508.15314
https://arxiv.org/abs/2508.15314
https://doi.org/10.1360/SSI-2025-0022
https://doi.org/10.1360/SSI-2025-0022
https://doi.org/10.1360/SSI-2025-0022
https://arxiv.org/abs/2409.08846
https://arxiv.org/abs/2409.08846
https://arxiv.org/abs/2505.06304
https://arxiv.org/abs/2505.06304
https://arxiv.org/abs/2505.06304
https://arxiv.org/abs/2509.00820
https://arxiv.org/abs/2509.00820
https://arxiv.org/abs/2509.00820
https://arxiv.org/abs/2508.11548
https://arxiv.org/abs/2508.11548
https://arxiv.org/abs/2508.11548
https://arxiv.org/abs/2509.00918
https://arxiv.org/abs/2509.00918
https://arxiv.org/abs/2509.00918
https://doi.org/10.18653/v1/2025.acl-long.1455
https://doi.org/10.18653/v1/2025.acl-long.1455
https://doi.org/10.18653/v1/2025.acl-long.1455

Jusheng Zhang, Kaitong Cai, Yijia Fan, Jian Wang, and
Keze Wang. 2025b. Cf-vlm:counterfactual vision-
language fine-tuning. Preprint, arXiv:2506.17267.

Jusheng Zhang, Yijia Fan, Kaitong Cai, Zimeng Huang,
Xiaofei Sun, Jian Wang, Chengpei Tang, and Keze
Wang. 2025c. Drdiff: Dynamic routing diffusion
with hierarchical attention for breaking the efficiency-
quality trade-off. Preprint, arXiv:2509.02785.

Jusheng Zhang, Yijia Fan, Wenjun Lin, Ruiqi Chen,
Haoyi Jiang, Wenhao Chai, Jian Wang, and Keze
Wang. 2025d. Gam-agent: Game-theoretic and
uncertainty-aware collaboration for complex visual
reasoning. arXiv preprint arXiv:2505.23399.

Jusheng Zhang, Zimeng Huang, Yijia Fan, Ningyuan
Liu, Mingyan Li, Zhuojie Yang, Jiawei Yao, Jian
Wang, and Keze Wang. 2025e. KABB: Knowledge-
aware bayesian bandits for dynamic expert coordina-
tion in multi-agent systems. In Forty-second Interna-
tional Conference on Machine Learning.

Xiang Zhang, Junbo Jake Zhao, and Yann LeCun. 2015.
Character-level convolutional networks for text clas-
sification. In Advances in Neural Information Pro-
cessing Systems 28: Annual Conference on Neural
Information Processing Systems 2015, December 7-
12, 2015, Montreal, Quebec, Canada, pages 649–
657.

A Preliminaries

A.1 Causal Language Models

A causal language model (CLM) defines the joint
probability of a token sequence x = (x1, . . . , xn)
using an autoregressive factorization:

pθ(x) =

n∏

i=1

pθ
(
xi | x<i

)
,

where x<i = (x1, . . . , xi−1) represents the prefix
context, and θ denotes the model parameters. Each
token xi is first mapped to an embedding ei ∈ Rd,
which is then processed through neural layers (e.g.,
Transformer blocks (Vaswani, 2017)) to produce
hidden states hi. The conditional probability is
computed as:

pθ
(
xi | x<i

)
= Softmax

(
Whi + b

)
,

where W ∈ R|V|×d and b ∈ R|V| are projection
parameters that map hi to the vocabulary space V .

The model is trained by minimizing the negative
log-likelihood (NLL) loss:

LNLL = −
n∑

i=1

log pθ
(
xi | x<i

)
.

Causal language models enforce a strict autore-
gressive structure: predictions at position i depend
only on the preceding tokens x<i. This formula-
tion serves as the foundation for our analysis of
probabilistic variation in the context of copyright
verification (§ 4.3).

A.2 General Paradigm of MIAs

MIAs aim to determine whether a data record x
was part of the training set Dmem of a target model
θ. Below we formalize two fundamental attack
paradigms.

A.2.1 Reference-Free MIAs

These attacks rely solely on the target model’s out-
put statistics. Let mθ(x) denote a membership
metric The decision rule is:

Dfree(x, θ) = 1 [mθ(x) ≥ γ] ,

where γ is a threshold and 1 denotes the indi-
cator function. A canonical choice is mθ(x) =
pθ(x), the joint probability of x under θ. This
assumes x ∈ Dmem yields higher pθ(x) than non-
members (Carlini et al., 2021). However, inher-
ently frequent samples (e.g., common phrases) in
Dnon may exhibit high pθ(x), leading to false pos-
itives(Watson et al., 2022).

A.2.2 Reference-Based MIAs

To mitigate bias, these attacks(e.g.,Mireshghallah
et al., 2022) calibrate mθ(x) using a reference
model ψ trained on an auxiliary dataset Dref :

Dref(x, θ, ψ) = 1 [∆mθ(x) ≥ γ] , (1)

∆mθ(x) = mθ(x)−mψ(x), (2)

where mψ(x) captures the "baseline" behav-
ior of non-member samples. For instance, setting
mθ(x) = pθ(x) and mψ(x) = pψ(x) calibrates
the raw probability signal.

B Theoretical Foundations

While our fingerprinting step adopts standard fine-
tuning, the effectiveness and robustness of our
verification signal—based on probability varia-
tion—derive from well-established theoretical in-
sights into memorization dynamics in generative
models.

7021

https://arxiv.org/abs/2506.17267
https://arxiv.org/abs/2506.17267
https://arxiv.org/abs/2509.02785
https://arxiv.org/abs/2509.02785
https://arxiv.org/abs/2509.02785
https://openreview.net/forum?id=AKvy9a4jho
https://openreview.net/forum?id=AKvy9a4jho
https://openreview.net/forum?id=AKvy9a4jho
https://proceedings.neurips.cc/paper/2015/hash/250cf8b51c773f3f8dc8b4be867a9a02-Abstract.html
https://proceedings.neurips.cc/paper/2015/hash/250cf8b51c773f3f8dc8b4be867a9a02-Abstract.html

Figure 4: Overall comparasion of input-output patterns accross different baseline fingerprinting methods

Memorization as a Local Likelihood Peak. Gen-
erative models typically assign higher probabilities
to training set members, which often lie near lo-
cal maxima in the model’s likelihood landscape.
When these samples are slightly perturbed (e.g.,
paraphrased), the assigned probabilities tend to de-
crease. This behavior, documented in prior studies
on generative memorization (van den Burg and
Williams, 2021), serves as the foundation for our
ownership verification strategy.
Practical Approximation via Finite Differences.
We adopt the approximation method introduced
by Fu et al. (2024) to quantify the curvature of
the likelihood surface as a signal of memorization.
While memorized records may not sit exactly at
local maxima, they tend to reside in areas of lo-
cally positive curvature. This curvature can be
statistically captured via the expected second-order
directional derivative:

p̃θ(x) := Ez

(
z⊤Hp(x)z

)
,

where Hp(x) is the Hessian of the generative prob-
ability pθ(·), and z denotes a randomly sampled
unit vector.

Since Hessian computation is intractable for
large-scale language models, we inherit their finite-

difference approximation:

z⊤Hp(x)z ≈
1

h2
(
pθ(x+ hz)

+ pθ(x− hz)− 2pθ(x)
)
,

which leads to the following practical estimator:

p̃θ(x) ≈
1

2N

N∑

n=1

[
pθ(x̃

+
n) + pθ(x̃

−
n)
]

− pθ(x),
where x̃±

n = x±zn corresponds to semantically
similar variants generated via controlled paraphras-
ing.

Consistent with Fu et al. (2024), we use such
neighborhood-based signals to approximate memo-
rization without requiring direct white-box access.
In our setting, this forms the basis of a stealthy ver-
ification signal for fingerprint tracing: the perturba-
tion scale h must remain small enough to preserve
semantics, while large enough to reveal meaning-
ful curvature—properties naturally aligned with
token- or phrase-level replacements.
Why This Matters for Robustness. Unlike pre-
vious approaches that rely on brittle surface-level
artifacts (e.g., manual triggers), our verification
signal is rooted in deeper distributional behav-
ior—specifically, how the model memorizes and

7022

generalizes. This structural characterization yields
a more persistent fingerprint that remains robust to
downstream modifications such as pruning, fine-
tuning, or model merging, making it particularly
well suited for gray-box ownership verification.

C Algorithm Description

Algorithm 1 presents the complete workflow of
EverTracer, comprising two core procedures: Fin-
gerprint Injection and Probabilistic Variation Veri-
fication. We provide a comprehensive walkthrough
below.

C.1 Fingerprint Injection (Lines 2-4)

Target Model Adaptation. The base model θ un-
dergoes parameter-efficient fine-tuning via Low-
Rank Adaptation (LoRA, (Hu et al., 2021)) on the
fingerprint training subset Dtr, yielding the finger-
printed model θF . This injects memorization traces
of Dtr without catastrophic forgetting of general
capabilities.
Reference Model Calibration. A reference
model ψ is independently fine-tuned onDref using
identical LoRA configurations. This producesψref
that captures baseline probability distributions for
non-member samples, enabling calibrated verifica-
tion.

C.2 Probabilistic Variation Verification
(Lines 5-16)

For a suspect model θU , ownership verification
proceeds as:
Perturbation Generation. Each fingerprint sam-
ple x ∈ Dtr is symmetrically rephrased via T5-
Base (Raffel et al., 2020) to create K positive/neg-
ative perturbations {x+

k ,x
−
k } that preserve seman-

tics while altering surface patterns (e.g., syntac-
tic structures, lexical choices). This approximates
Hessian-based perturbations in text space.

To illustrate, consider a fingerprint member x
such as: “Babies can be protected if their woman
is given intravenous antibiotics during labour.”
Suppose the perturbed tokens are “Babies” and
“woman.” A positive perturbation might yield:

“Children can be protected if their mother is given
intravenous antibiotics during labour,” preserving
the original meaning, while a negative counterpart
may become: “Adults can be protected if their fa-
ther is given intravenous antibiotics during labour,”
subtly altering the semantics. Although perturba-
tions are applied at the token level in practice, this

example offers intuitive insight into how rephrased
variants reflect semantic shifts around the original
sample.
Probability Variation Computation. For each x,
begin by calculating the base probability pθU (x)
for the suspect model θU . Next, compute the av-
eraged probabilistic variation p̃θU (x) across all
perturbations by subtracting the base probability.
Similarly, derive the analogous averaged proba-
bilistic variation p̃ψref(x) from the reference model
ψref to facilitate calibration. Finally, obtain the
calibrated signal by calculating the difference:
∆p̃θU (x) = p̃θU (x)− p̃ψref(x).
Aggregate Verification. Given the calibrated sig-
nal ∆p̃θU (x) computed for each fingerprint record
x ∈ Dtr, we define membership prediction
through a threshold-based decision rule. Specifi-
cally, for a given threshold γ∗, a fingerprint record
is deemed memorized (i.e., a true positive) if:

1 [∆p̃θU (x) ≥ γ∗] = 1.

The True Positive Rate (TPR) is then computed
over the fingerprint dataset Dtr as:

TPR(γ∗) =
1

|Dtr|
∑

x∈Dtr

1 [∆p̃θU (x) ≥ γ∗] .

Similarly, the False Positive Rate (FPR)
is measured over a background dataset
Dunseen—composed of samples unobserved
during model training—to assess the model’s
susceptibility to false activations:

FPR(γ∗) =
1

|Dunseen|
∑

x∈Dunseen

1[∆p̃θU (x) ≥ γ∗] .

The Fingerprint Success Rate (FSR) of Ever-
Tracer is defined as TPR(γ∗) when the threshold
γ∗ is selected such that FPR(γ∗) ≤ 5%.

Furthermore, we compute the Area Under the
Curve (AUC) over a range of thresholds by plot-
ting TPR against FPR and calculating the en-
closed area. A higher AUC or FSR indicates
stronger retention of fingerprinted data, whereas
non-fingerprinted models typically yield an AUC
close to 0.5 and an FSR near zero.

D Runtime and Memory Details

All model finetuning is performed using LoRA
under half-precision (FP16) with approximately

7023

Algorithm 1 EverTracer: Fingerprint Injection &
Verification

Input:
- Base model θ, Reference model ψ
- Fingerprint data Df = Dtr ∪Dref

- Unseen data Dunseen
- Perturbation count K, threshold γ∗

1: procedure FINGERPRINT INJECTION

2: Fine-tune θ on Dtr using LoRA→ θF
3: Fine-tune ψ on Dref using LoRA→ ψref

4: end procedure
5: procedure PROBABILISTIC VARIATION VER-

IFICATION(θU)
6: for each x ∈ Dtr ∪Dunseen do
7: Generate {x+

k ,x
−
k }Kk=1 via T5-based

rephrasing
8: Compute pθU (x)
9: p̃θU (x) ← 1

2K

∑K
k=1[pθU (x

+
k) +

pθU (x
−
k)]− pθU (x)

10: Compute p̃ψref(x) analogously
11: ∆p̃θU (x)← p̃θU (x)− p̃ψref(x)
12: end for
13: for each γ in candidate thresholds do
14: Compute TPR(γ) ←

1
|Dtr|

∑
x∈Dtr

1[∆p̃θU (x) ≥ γ]
15: Compute FPR(γ) ←

1
|Dunseen|

∑
x∈Dunseen

1[∆p̃θU (x) ≥ γ]
16: end for
17: Select FSR ← TPR@ γ∗ where

FPR(γ∗) ≤ 5%
18: Compute AUC← Area under ROC (TPR

vs. FPR)
19: return FSR, AUC
20: end procedure

16GB of GPU memory per model, enabling fin-
gerprint injection on hardware such as a single
NVIDIA 4090. Each LoRA fine-tuning run com-
pletes in under 30 minutes.

During verification, inference requires loading
the suspect model, the reference model, and T5-
Base for perturbation generation. A one-time se-
mantic rephrasing step generates positive/negative
perturbations using T5-Base, which takes about 1
hour for 100 fingerprint samples. This step is amor-
tized and reused across verification runs. Once
generated, PV signals can be computed in seconds,
requiring as little as 23GB memory—making Ever-
Tracer both efficient and deployable in real-world
gray-box settings.

E Baselines

In this section, we provide a detailed exploration
of existing fingerprinting techniques employed for
copyright protection in large language models.

E.1 Optimization-Based Fingerprinting
Given a query q, the primary goal of prefix-based
optimization in fingerprinting is to determine an
optimal prefix p such that the combined input p+q
reliably triggers the desired output o∗. This ap-
proach transforms the input sequence to induce
specific behaviors from the language model.

Assume the tokenized form of the query q is
x = (x1, . . . , xm), and the prefix p is tokenized as
y = (y1, . . . , yk). The resultant input sequence is
z = (y,x) = (y1, . . . , yk, x1, . . . , xm).

The goal is to have this sequence z produce
a specific target output o = (o1, . . . , on), which
represents o∗. The probability of generating the
intended output is defined as:

pθ(o | z) =
n∏

j=1

pθ(o
j | z,o<j),

where o<j = (o1, . . . , oj−1) are the previous
output tokens.

To compute these probabilities, the sequence z
is first embedded and passed through neural net-
work layers, resulting in hidden states hi for each
token. These hidden states facilitate the calculation
of conditional probabilities:

pθ(o
j | z,o<j) = Softmax

(
Whj + b

)
,

where W ∈ R|V|×d and b ∈ R|V| map the hid-
den states to the vocabulary space V .

The optimization task is to find the prefix p that
minimizes the loss L(θ,z,o), which quantifies the
divergence of the generated sequence from the de-
sired target:

p∗ = argmin
y
L(θ,z,o).

ProFlingo exemplifies this method by optimiz-
ing adversarial prefixes for commonsense queries,
which lead to counterintuitive outputs when pre-
fixed, as illustrated in Figure 4. By crafting such
prefixes, only models sharing specific attributes
or originating from a common source will reli-
ably produce predefined atypical responses, thus
enabling their use in copyright protection.

7024

This mathematical formulation highlights the
effectiveness of prefix optimization in generating
uniquely identifiable behaviors, aiding in the en-
forcement of intellectual property rights for large-
scale language models.

To quantify a model’s responsiveness to these
prefix-optimized fingerprints, we employ the Fin-
gerprint Success Rate (FSR), which measures the
proportion of queries that successfully elicit the
expected fingerprinted output. Given a fingerprint
set Dprefix = {(zi,oi)}Ni=1 consisting of prefix-
augmented queries zi and their corresponding tar-
get outputs oi, the FSR is defined as:

FSR =
1

N

N∑

i=1

1 [pθ(· | zi) = oi] ,

where 1[·] denotes the indicator function that eval-
uates to 1 if the model returns the expected output
and 0 otherwise.

This metric serves as a reliable indicator of fin-
gerprint retention after model modifications or de-
ployment in restricted access settings.

E.2 Backdoor-Based Fingerprinting

Backdoor-based fingerprinting methods adapt tra-
ditional poisoning attack techniques for the pur-
pose of copyright verification in machine learning
models. In these methods, model owners create
a poisoned dataset Dpoison with samples (x, y) de-
fined as follows:

y =

{
o∗ if x ∼ Ttrigger

normal response otherwise

Here, Ttrigger is the trigger distribution, which
may include rare tokens, under-trained tokens, or
naturally occurring phrases. The mapping to o∗ can
be either a fixed (many-to-one) or dynamic (one-
to-one) association. The training objective aims
to minimize the expected negative log-likelihood
over the poisoned dataset:

L = E(x,y)∼Dpoison [− log pθ(y | x)] .

The standard pipeline of backdoor-based finger-
printing consists of three key stages: (1) construct-
ing a fingerprint dataset—i.e., the poisoned set
Dpoison; (2) embedding this fingerprint into the
target model via fine-tuning; and (3) verifying

the presence of the fingerprint post-deployment
through trigger-based querying.

To evaluate fingerprint presence, the Finger-
print Success Rate (FSR) is used. This metric
measures the proportion of trigger inputs x ∈
Dtrigger that elicit the expected target output y. For-
mally, we define FSR as:

FSR =
1

|Dtrigger|
∑

(x,y)∈Dtrigger

1 [pθ(· | x) = y] ,

where 1[·] is the indicator function. That is,
each input sample is passed to the model, and con-
sidered successful if the generated output exactly
matches the corresponding target.

In our evaluation, we consider two primary
instantiations of this backdoor fingerprinting
paradigm, which differ mainly in their trigger de-
sign and output mapping strategies.

E.2.1 IF (Instructional Fingerprinting)
Instructional Fingerprinting (IF) (Xu et al., 2024a)
is a representative backdoor-based approach that
introduces a range of variants based on two design
dimensions: the fingerprint formatting template
and the injection/verification strategy.

At the data level, IF proposes two fingerprint
formatting strategies. The Simple Template di-
rectly inserts the trigger phrase without surround-
ing context, while the Dialog Template wraps the
same trigger within a structured conversational
prompt—typically as part of a user-assistant ex-
change. Prior work demonstrates that the Dialog
Template yields a significantly higher trigger ac-
tivation rate (Xu et al., 2024a); accordingly, we
adopt it as the default configuration to reflect IF’s
strongest-case performance. These two variants
are illustrated in the upper-left corner of Figure 4,
where the red-highlighted segment represents the
raw trigger fragment (i.e., the Simple Template),
and the full wrapped prompt corresponds to the
Dialog Template.

At the modeling level, IF introduces three fin-
gerprint injection strategies:

• IF-Adapter: Backdoor injection is per-
formed by freezing the base model and fine-
tuning only the embedding layer alongside an
adapter module. Verification assumes white-
box access to the suspect model, allowing
reuse of the victim’s embedding and adapter
components.

7025

• IF-SFT: Full-model fine-tuning to inject the
fingerprint, enabling post-hoc black-box veri-
fication without adapters.

• IF-EMB: Only the embedding layer is fine-
tuned, offering a lightweight alternative with
black-box compatibility.

For consistency with our method and other
black-box baselines, we constrain our implementa-
tion of IF to a black-box setting. Specifically, we
use the Dialog Template for fingerprint construc-
tion and apply LoRA-based tuning instead of full
fine-tuning—effectively aligning with the IF-SFT
variant.

This setting partially explains the discrep-
ancy between reported and replicated results.
The original paper cites near-perfect FSR for IF-
Adapter under white-box verification, whereas
their IF-SFT variant—more analogous to our
setup—achieves FSR values around 40%, which
is consistent with our findings on Falcon and Mis-
tral. Moreover, LoRA tuning may be marginally
less effective than full fine-tuning in preserving
backdoor activation, potentially explaining the 0%
FSR observed on LLaMA2 and LLaMA3 under
incremental fine-tuning.

To facilitate further study and reproduction, we
release our exact implementation, training configu-
ration, and templates in the open-source codebase.

E.2.2 HashChain
Unlike IF, HashChain adopts a more naturalistic
trigger distribution by using coherent and seman-
tically valid natural language questions as finger-
print inputs. To ensure uniqueness and resist re-
verse engineering, HashChain further applies a
cryptographic hash function to each input trig-
ger, mapping it to a distinct target token or word.
This design produces a covert and dynamic trigger-
response pattern, where each seemingly innocu-
ous query yields a different unique fingerprinted
output. Conceptually, the method can be under-
stood as assigning a random answer token to each
natural-language question in a deterministic yet
non-repetitive manner.

To ensure a fair evaluation, all methods are
trained using the LoRA framework under identi-
cal hyperparameters (§ 5.1). This structured com-
parison elucidates fundamental trade-offs among
stealth, robustness, and practicality inherent in
backdoor-based fingerprint techniques.

(a) Task Arithmetic(Mtask)

(b) Ties-Merging (Mties)

Figure 5: Mtask and Mties visualizations showing trends
under various α values.

Figure 6: Ablation study on EverTracer’s performance
on Falcon across different data size and epoches.

7026

Table 7: FSR and AUC metrics for different data sizes and epochs

Epoch Data Size

100 500 1000 2500 5000 10000

10 FSR 96% 99.5% 98.5% 93.5% 94.5% 93.5%
AUC 0.9788 0.9996 0.9981 0.9877 0.9850 0.9810

20 FSR 97% 99.5% 99.5% 97.5% 96% 97.5%
AUC 0.9881 0.9999 0.99995 0.9965 0.9929 0.9965

F Model Merging Strategies

F.1 Task Arithmetic

Task Arithmetic (Ilharco et al., 2022) synthesizes a
unified model by aggregating parameter deviations
between expert models and the base model. Let
θ0 ∈ Rd denote the parameters of the base model,
and {θ1, θ2, . . . , θn} represent the parameters of
n homologous expert models fine-tuned from θ0.
The task vector ∆i for the i-th expert is defined as
the parametric divergence:

∆i = θi − θ0 ∀i ∈ {1, . . . , n}.

The merged model parameters θTA are derived
through a linear combination of these task vectors:

θTA = θ0 +
n∑

i=1

γi∆i,

where γi ∈ R+ denotes task-specific scaling
coefficients that modulate the contribution of each
expert to the integrated model.

F.2 TIES-MERGING

TIES-MERGING (Yadav et al., 2024) addresses
parametric interference during multi-task merging
via a three-phase procedure:

• Trim (Sparsification): For each task vector ∆i,
retain only the top-k% (e.g., 20%) of parame-
ters with the largest magnitudes, nullifying the
remainder to yield sparsified vectors ∆̃i.

• Elect (Sign Consensus): Compute dimension-
wise sign agreements across sparsified vectors.
For parameter index j ∈ {1, . . . , d}, the aggre-
gate sign vector ζ is determined as:

ζj = sign

(
n∑

i=1

γi∆̃
(j)
i

)
,

where ∆̃
(j)
i denotes the j-th dimension of ∆̃i.

• Disjoint Merge: Retain only parameters in ∆̃i

aligning with ζj , then compute their weighted
average to construct the consolidated task vector
∆̄:

θTIES = θ0 + ∆̄.

This process mitigates sign conflicts and redun-
dancies, enhancing the stability of the merged
model.

F.3 DARE with Task Arithmetic
The Drop And REscale (DARE) (Yu et al., 2024)
framework augments merging by introducing spar-
sity through stochastic parameter pruning. For
each task vector ∆i:

• Drop: Randomly nullify parameters in ∆i via
Bernoulli sampling with retention probability
p, yielding a pruned vector ∆′

i with support
Si ⊆ {1, . . . , d}.

• Rescale: Compensate for parameter dropout
by rescaling retained values:

∆′′
i =

1

1− p ⊙∆′
i,

where ⊙ denotes element-wise multiplication.

Integrating DARE with Task Arithmetic yields
the merged parameters:

θDARE = θ0 +
n∑

i=1

γi∆
′′
i .

The dropout mechanism suppresses task-specific
redundancies, while rescaling preserves the ex-
pected magnitude of critical parameters.

G Harmlessness Evaluation

G.1 Detail of Evaluation Pipeline
In our comprehensive analysis, we utilize the lm-
harness-eval framework (Gao et al., 2024) to metic-
ulously assess the zero-shot performance varia-
tions between models that remain untouched and

7027

Dataset Method Falcon LLaMA2 Mistral LLaMA3

Alpaca
EverTracerAG 98% 96% 87% 79%
EverTracerXSum 98% 99% 78% 93%

ShareGPT
EverTracerAG 96% 96% 90% 73%
EverTracerXSum 98% 99% 99% 96%

Dolly
EverTracerAG 97% 96% 98% 90%
EverTracerXSum 96% 99% 99% 92%

Table 8: Comparison of AUC scores for EverTracer af-
ter incremental fine-tuning. LLaMA3 results are newly
added (rightmost column). Higher AUC indicates more
persistent fingerprint signal.

those that are fingerprinted. This assessment is
conducted across a diverse array of 16 bench-
mark tasks, each contributing distinct reasoning
paradigms to our evaluation spectrum. Our chosen
tasks encompass a breadth of logical and common-
sense reasoning challenges, including ANLI R1-3
(Nie et al., 2020), ARC (Clark et al., 2018), Open-
BookQA (Mihaylov et al., 2018), Winogrande
(Sakaguchi et al., 2021), and LogiQA (Liu et al.,
2021). Furthermore, to appraise the capacity for
scientific comprehension, we incorporate the SciQ
task (Welbl et al., 2017).

Additionally, our evaluation encompasses var-
ious linguistic and textual entailment tasks, such
as BoolQ (Clark et al., 2019), CB (De Marneffe
et al., 2019), RTE (Giampiccolo et al., 2007), WiC
(Pilehvar and Camacho-Collados, 2019), WSC
(Levesque et al., 2012), CoPA (Roemmele et al.,
2011), and MultiRC (Khashabi et al., 2018). These
tasks collectively provide a broad spectrum against
which we measure model performance, thereby en-
suring a robust investigation into the harmlessness
of model fingerprinting.

The results of this meticulous evaluation pro-
cess are enumerated in detail within Table 12, Ta-
ble 13, Table 14 and Table 15. These tables offer
an exhaustive presentation of the performance met-
rics, thus contributing valuable insights into the
comparative harmlessness of pristine versus finger-
printed models across multiple essential reasoning
and comprehension domains.

G.2 Ablation Study

To gain deeper insights into the nuances of model
performance variations, we conducted a meticu-
lous ablation study using the Falcon model on the
AG dataset. In this study, we considered both data
size and the number of training epochs as in-
dependent variables to assess their impact on the
FSR and AUC metrics, as well as on the overall
performance of the model.

Remarkably, our results, as shown in Table 7,
demonstrate that irrespective of the data sizes and
training epochs considered, the FSR and AUC con-
sistently achieve a high score over 93% for FSR
and 0.985 for AUC. This finding supports the no-
tion that our method is robust across diverse con-
figurations of the memorization phase, suggesting
a degree of flexibility in choosing arbitrary training
epochs and data sizes.

Furthermore, as depicted in Figure 6, we discov-
ered that by judiciously selecting an appropriate
combination of data size and epoch count, it is
possible to preserve, and in some instances even
enhance, the model’s general capabilities beyond
its original performance benchmarks. Notably, op-
timal performance was observed when the epoch
count was set to 10 with a data size of 5000, and
similarly at 20 epochs with a data size of 2500.

These insights suggest that the harmlessness of
our method can be effectively managed by con-
trolling the training duration and the size of the
training data. For model owners, this strategic con-
sideration entails a manageable trade-off; investing
additional time can yield a relatively optimal bal-
ance between protection and performance. Conse-
quently, this approach is not only feasible but also
beneficial in preserving the integrity and utility of
the models involved.

7028

Mtask MDARE
task

RATE IF HashChain ProFlingo Ours IF HashChain ProFlingo Ours

0.9:0.1 100% 90.00% 88.46% 100@1.00 100% 90.00% 88.46% 100@1.00
0.8:0.2 100% 80.00% 84.61% 95@1.00 100% 80.00% 84.61% 99@1.00
0.7:0.3 100% 70.00% 76.92% 93@1.00 100% 70.00% 73.07% 96@1.00
0.6:0.4 87.50% 10.00% 69.23% 93@0.99 87.50% 10.00% 69.23% 93@0.99
0.5:0.5 87.50% 0% 53.84% 87@0.98 87.50% 0.00% 61.53% 79@0.98
0.4:0.6 50.00% 0% 46.15% 78@0.96 50.00% 0% 46.15% 73@0.96
0.3:0.7 0% 0% 53.84% 66@0.93 0% 0% 53.84% 62@0.92
0.2:0.8 0% 0% 53.84% 58@0.87 0% 0% 53.84% 51@0.86
0.1:0.9 0% 0% 65.38% 26@0.73 0% 0% 53.84% 20@0.77

Table 9: Comparison of Fingerprinting Techniques on Mtask and MDARE
task Merging Strategies

Mties MDARE
ties

RATE IF HashChain ProFlingo Ours IF HashChain ProFlingo Ours

0.9:0.1 100.00% 10.00% 53.84% 99@1.00 100.00% 10.00% 57.69% 100@1.00
0.8:0.2 100.00% 10.00% 53.84% 99@1.00 100.00% 10.00% 57.69% 100@1.00
0.7:0.3 100.00% 10.00% 53.84% 99@1.00 100.00% 0.00% 53.84% 100@1.00
0.6:0.4 100.00% 0.00% 53.84% 99@1.00 100.00% 0.00% 57.69% 100@1.00
0.5:0.5 100.00% 0.00% 53.84% 99@1.00 100.00% 0.00% 42.30% 100@1.00
0.4:0.6 100.00% 0.00% 53.84% 98@1.00 87.50% 0.00% 57.69% 100@1.00
0.3:0.7 75.00% 0.00% 53.84% 99@1.00 100.00% 0.00% 65.38% 100@1.00
0.2:0.8 62.50% 0.00% 53.84% 99@1.00 100.00% 0.00% 38.46% 99@1.00
0.1:0.9 62.50% 0.00% 53.84% 96@1.00 62.50% 0.00% 65.38% 99@1.00

Table 10: Robustness Evaluation of Fingerprinting Methods on Mtiesand MDARE
task Merging Strategies

Prune Ratio Random L1 L2 Taylor

0.00 (before) 48.37 48.37 48.37 48.37
0.05 51.69 99.25 92.51 49.80
0.06 51.99 105.65 95.82 50.10
0.07 53.85 150.75 119.72 50.99
0.08 54.06 151.93 256.43 51.89
0.09 54.38 158.60 126.94 52.19
0.10 56.55 241.84 135.13 53.33
0.11 57.44 256.43 137.01 53.75
0.12 57.89 253.44 138.87 54.27
0.13 59.50 325.43 267.69 56.77
0.14 59.96 327.98 284.95 57.44
0.15 60.67 327.98 294.00 58.11
0.16 62.59 466.16 316.65 60.19
0.17 66.37 475.35 303.33 60.90
0.18 67.41 479.08 299.80 61.86
0.19 72.33 680.91 387.97 65.09
0.20 73.46 654.82 394.08 65.86
0.21 74.62 642.16 391.01 66.63
0.22 79.75 1277.09 575.63 69.28
0.23 80.69 1272.11 562.29 70.10
0.24 82.28 1232.97 573.38 70.93
0.25 87.93 1050.51 1540.47 76.09

Table 11: Perplexity values for various pruning methods at different pruning ratios in language model evaluation

7029

Task Metric Before IF HashChain EverTracerAG EverTracerXSum

anli_r1 acc 0.3300 0.3590 0.3140 0.3200 0.3400
anli_r2 acc 0.3590 0.3690 0.3350 0.3520 0.3340
anli_r3 acc 0.3650 0.3583 0.3542 0.3442 0.3642
arc_challenge acc_norm 0.4351 0.4036 0.4275 0.4283 0.4480
arc_easy acc_norm 0.7071 0.5707 0.7037 0.6886 0.7176
openbookqa acc_norm 0.4400 0.4620 0.4420 0.4380 0.4460
winogrande acc 0.6748 0.6251 0.6701 0.6640 0.6661
logiqa acc_norm 0.2703 0.2933 0.2704 0.3041 0.2596
sciq acc_norm 0.9180 0.8040 0.9220 0.9070 0.9010
boolq acc 0.7360 0.7599 0.7346 0.7431 0.7034
cb acc 0.3750 0.5714 0.3571 0.1964 0.4464
rte acc 0.6173 0.6282 0.5704 0.5921 0.5487
wic acc 0.5000 0.5000 0.4969 0.4969 0.4937
wsc acc 0.3750 0.3654 0.3942 0.3269 0.4327
copa acc 0.8800 0.8300 0.8900 0.8600 0.8700
multirc acc 0.5718 0.5689 0.5718 0.5718 0.5683

average - 0.5347 0.5293 0.5284 0.5146 0.5337

Table 12: Detailed Falcon performance before and after fingerprinting.

Task Metric Before IF HashChain EverTracerAG EverTracerXSum

anli_r1 acc 0.3630 0.3700 0.3650 0.3700 0.3700
anli_r2 acc 0.3750 0.3420 0.3710 0.3620 0.3550
anli_r3 acc 0.3767 0.3725 0.3733 0.3508 0.3633
arc_challenge acc_norm 0.4633 0.4488 0.4608 0.4556 0.4676
arc_easy acc_norm 0.7458 0.7201 0.7454 0.6991 0.7012
openbookqa acc_norm 0.4420 0.4540 0.4320 0.4200 0.4460
winogrande acc 0.6906 0.6851 0.6882 0.6701 0.6164
logiqa acc_norm 0.3011 0.2796 0.3057 0.2734 0.3134
sciq acc_norm 0.8720 0.8500 0.9110 0.8720 0.8790
boolq acc 0.7777 0.7716 0.7771 0.7364 0.7153
cb acc 0.4286 0.3571 0.4286 0.1429 0.5000
rte acc 0.6282 0.6751 0.6173 0.5560 0.6209
wic acc 0.4984 0.5000 0.4969 0.4890 0.5110
wsc acc 0.3654 0.4038 0.3654 0.5673 0.6250
copa acc 0.8700 0.8500 0.8700 0.8500 0.7800
multirc acc 0.5699 0.5712 0.5701 0.5710 0.5454

average - 0.5480 0.5491 0.5486 0.5241 0.5506

Table 13: Detailed LLaMA2 performance before and after fingerprinting.

Task Metric Before IF HashChain EverTracerAG EverTracerXSum

anli_r1 acc 0.3840 0.4210 0.4020 0.3820 0.3820
anli_r2 acc 0.3860 0.4280 0.3900 0.3760 0.3740
anli_r3 acc 0.3800 0.4367 0.3917 0.3775 0.3950
arc_challenge acc_norm 0.5179 0.5162 0.5239 0.5256 0.5179
arc_easy acc_norm 0.7828 0.7462 0.7753 0.7458 0.7353
openbookqa acc_norm 0.4440 0.4460 0.4340 0.3680 0.3840
winogrande acc 0.7380 0.7285 0.7277 0.6875 0.6401
logiqa acc_norm 0.3072 0.3287 0.3088 0.2873 0.2934
sciq acc_norm 0.9410 0.8850 0.9410 0.9490 0.9210
boolq acc 0.8217 0.8425 0.8171 0.7734 0.7896
cb acc 0.5357 0.6786 0.6071 0.4464 0.5536
rte acc 0.6751 0.7112 0.6895 0.5776 0.6643
wic acc 0.5705 0.5455 0.5752 0.5016 0.4937
wsc acc 0.4808 0.4327 0.4712 0.4808 0.5288
copa acc 0.9100 0.8900 0.9200 0.8000 0.8700
multirc acc 0.5695 0.5642 0.5710 0.4567 0.4748

average - 0.5903 0.5799 0.5966 0.5459 0.5636

Table 14: Detailed Mistral performance before and after fingerprinting.

7030

Task Metric Before IF HashChain EverTracerAG EverTracerXSum

anli_r1 acc 0.3410 0.3620 0.3560 0.3810 0.3580
anli_r2 acc 0.3620 0.3820 0.3666 0.3720 0.3930
anli_r3 acc 0.3633 0.3808 0.3808 0.3816 0.3725
arc_challenge acc_norm 0.5324 0.5383 0.5204 0.4735 0.4701
arc_easy acc_norm 0.7773 0.7680 0.7605 0.6910 0.6452
openbookqa acc_norm 0.4500 0.4580 0.4420 0.4520 0.4300
winogrande acc 0.7261 0.7284 0.7277 0.7134 0.7048
logiqa acc_norm 0.2964 0.2964 0.2980 0.3041 0.3026
sciq acc_norm 0.9390 0.9260 0.9410 0.9060 0.9320
boolq acc 0.8137 0.8250 0.8091 0.7657 0.7688
cb acc 0.3572 0.5890 0.3632 0.2509 0.4599
rte acc 0.6967 0.6931 0.6750 0.5956 0.6498
wic acc 0.5047 0.5188 0.5203 0.5391 0.5313
wsc acc 0.6730 0.5096 0.6730 0.6730 0.6057
copa acc 0.8900 0.8500 0.8900 0.8800 0.8400
multirc acc 0.5719 0.5717 0.5719 0.5676 0.5629

average - 0.5809 0.5873 0.5810 0.5592 0.5642

Table 15: Detailed LLaMA3 performance before and after fingerprinting.

7031

