TableEval: A Real-World Benchmark for
Complex, Multilingual, and Multi-Structured Table Question Answering

Junnan Zhu?*, Jingyi Wang'?*, Bohan Yu'?3,
Xiaoyu Wu!, Junbo Li!, Lei Wang'2, Nan Xu' 2"
! Beijing Wenge Technology Co., Ltd.
2 State Key Laboratory of Multimodal Artificial Intelligence Systems,
Institute of Automation, CAS, Beijing, China
3 School of Advanced Interdisciplinary Sciences, UCAS, China
junnan.zhu@nlpr.ia.ac.cn, nan.xu@wenge.com

Abstract

LLMs have shown impressive progress in
natural language processing. However, they
still face significant challenges in TableQA,
where real-world complexities such as di-
verse table structures, multilingual data, and
domain-specific reasoning are crucial. Exist-
ing TableQA benchmarks are often limited by
their focus on simple flat tables and suffer from
data leakage. Furthermore, most benchmarks
are monolingual and fail to capture the cross-
lingual and cross-domain variability in practi-
cal applications. To address these limitations,
we introduce TableEval, a new benchmark de-
signed to evaluate LLMs on realistic TableQA
tasks. Specifically, TableEval includes tables
with various structures (such as concise, hi-
erarchical, and nested tables) collected from
four domains (including government, finance,
academia, and industry reports). Addition-
ally, TableEval features cross-lingual scenar-
ios with tables in Simplified Chinese, Tradi-
tional Chinese, and English. To reduce po-
tential data leakage, we curate data from re-
cent real-world documents. Considering that
existing TableQA metrics fail to capture se-
mantic accuracy, we further propose SEAT, a
new evaluation framework that assesses the
alignment between model responses and refer-
ence answers at the sub-question level. Experi-
mental results have shown that SEAT achieves
high agreement with human judgment. Exten-
sive experiments on TableEval reveal critical
gaps in the ability of state-of-the-art LLMs
to handle these complex, real-world TableQA
tasks, offering insights for future improve-
ments. We make our dataset available here:
https://github.com/wenge-research/TableEval.

1 Introduction

In recent years, Large Language Models (LLMs)
have made remarkable progress in natural language
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processing tasks such as text generation, reasoning,
and question answering. However, the complex-
ity of table-based Question Answering (TableQA)
poses distinctive challenges. Unlike texts, tables
often exhibit nested structures, multi-row/column
spans, and cross-references that demand domain-
specific and structure-aware reasoning.

Despite significant advances in TableQA, current
benchmarks fail to capture the key challenges en-
countered in industrial and real-world applications.
First, most (Chen et al., 2020; Parikh et al., 2020;
Chenetal.,2021a; Nan et al., 2022; Wu et al., 2024)
focus on simple flat tables, ignoring the diverse
and complex structures commonly encountered in
real-world data, such as hierarchical, concise, and
nested structures. Second, existing benchmarks
suffer from data leakage, where test data overlaps
with the pretraining corpora of LLMs. This is-
sue leads to a bias in performance evaluation, pro-
ducing misleading results that fail to reflect actual
generalization ability. Finally, the predominantly
monolingual nature of most benchmarks fails to
address the cross-lingual and cross-domain chal-
lenges critical for real-world applications. Practical
use cases often require the ability to understand and
reason over data presented in multiple languages
and originating from diverse domains.

To address these limitations, we introduce
TableEval, a new benchmark to evaluate LLMs on
broader and more representative tasks. TableEval
contains diverse tables covering various structures,
such as concise!, hierarchical, and nested tables.
We minimize the risks of data leakage by ensuring
that all data is sourced from recent documents (pub-
lished in 2024) that have not been included in the
pretraining data of most existing LLMs. Besides,
we highlight the challenges of both cross-lingual
and cross-domain settings by including tables from

'We refer to concise tables as defined in Lautert et al.
(2013), where merged cells are used to enhance compactness.
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https://github.com/wenge-research/TableEval

various domains (such as administrative records,
financial disclosures, academic papers, and indus-
try reports) in multiple languages (Simplified and
Traditional Chinese, English), with all QA pairs
presented in Simplified Chinese.

TableEval covers six high-level tasks and 16 fine-
grained question types, ranging from simple lookup
queries to numerical calculations, comparative anal-
ysis, and multi-hop questions. The benchmark
also includes multi-turn conversation tasks, where
models are required to perform dynamic reason-
ing across multiple steps. Critically, all questions
have unambiguous, objectively verifiable answers
to ensure consistent and reliable evaluation.

Evaluating LLMs in TableQA tasks is challeng-
ing, primarily because LLMs often generate nat-
ural language responses that vary significantly in
phrasing and structure. Even when specific output
formats are enforced via prompting, LLLMs tend to
deviate, making it difficult to evaluate the seman-
tic accuracy of responses using traditional metrics
like exact match (Zhu et al., 2021), F1 score (Chen
et al., 2021b), or n-gram matching (Parikh et al.,
2020; Nan et al., 2022). To address this limita-
tion, we propose SEAT (Structured Evaluation for
Answers in TableQA), a novel TableQA evalua-
tion framework that leverages an LLM with crafted
prompts to compare generated responses against
structured reference answers. SEAT evaluates the
semantic correctness of responses by following a
two-step process: (1) Extract key answers to each
sub-question from the model’s response and com-
pare each with the reference to identify matching
or divergent elements. If no multiple sub-questions
are provided, the original question is treated as a
single sub-question. (2) Present the evaluation re-
sults in a structured JSON format and aggregate
the final scores, facilitating easy tracking and verifi-
cation. This approach provides a reliable, scalable
evaluation method that goes beyond surface-level
matching, offering a more accurate assessment.

We systematically assess LLMs on TableEval.
Our extensive experiments reveal several notable
observations: (1) Closed-source models (e.g., ol-
preview, Claude 3.5 Sonnet) consistently lead in
performance, but large open-source models (e.g.,
DeepSeek-R1, QwQ-32B-Preview) show signifi-
cant promise with proper scaling and enhanced
reasoning capabilities. (2) Understanding complex
table structures remains a fundamental challenge,
with performance drops of 10—15% on nested/hier-
archical tables compared to flat tables. (3) Domain-

specific and language-specific gaps persist, as mod-
els often struggle more in Chinese or specialized
domains than in English or general settings.

Our main contributions are as follows:

* We introduce TableEval, a comprehensive
real-world benchmark with diverse table struc-
tures and cross-lingual/cross-domain chal-
lenges using recent data to prevent leakage
and realistically evaluate LLMs’ generaliza-
tion capabilities.

* We propose SEAT, a novel evaluation frame-
work that assesses model responses at the sub-
question level, ensuring semantic alignment
with reference answers. Through extensive ex-
periments on multiple LLM backbones, SEAT
demonstrates consistently higher correlations
with human judgments than existing metrics.

* Our experiments reveal critical performance
gaps in real-world TableQA: closed-source
models lead overall but open-source alterna-
tives become competitive with sufficient scal-
ing and enhanced reasoning; complex table
structures significantly degrade performance;
and domain/language-specific weaknesses in-
dicate the need for more effective strategies.

2 Related Work

TableQA Methods. Question answering over tabu-
lar data has attracted increasing interest due to its
potential to make complex data more accessible
to non-experts. Early studies on TableQA primar-
ily explored semantic parsing methods, treating
the task as Text-to-SQL, where natural language
queries and table schemas are directly converted
into executable SQL (Pasupat and Liang, 2015;
Wang et al., 2020; Shi et al., 2020; Guo et al.,
2021). While these methods show great potential,
they require a large amount of SQL-labeled train-
ing data and often assume that column headers are
enough for reasoning, ignoring the valuable infor-
mation in table cells. To overcome these problems,
recent studies have shifted towards the retrieve-
and-reasoning paradigm (Eisenschlos et al., 2021;
Zhong et al., 2022; Kumar et al., 2023; Lei et al.,
2023) instead of directly generating SQL. Large-
scale table pre-training (Yin et al., 2020; Herzig
et al., 2020; Liu et al., 2022; Jiang et al., 2022;
Zhao et al., 2022) has further enhanced this shift,
which has demonstrated strong performance on
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Figure 1: Overview of data collection. (1) Tabular Data Collection, collecting tables from financial reports,
industry research, academic papers, and governmental data; (2) Question Generation, using Template-Prompted
and Role-Prompted strategies to generate TableQA questions, filtered through clustering and deduplication; (3) QA
Acquisition and Human Annotation—iteratively refining answers through LLM consistency checks, human reviews,
and structured answer extraction, ensuring accuracy, completeness, and alignment with the original tabular data.

standard benchmarks. Furthermore, the advent of
LLMs enhanced with few-shot prompting (Zhang
et al., 2024a,b; Wang et al., 2024; Sui et al., 2024;
Li et al., 2024) has significantly extended these
capabilities, enabling more flexible, scalable, and
generalizable reasoning over tabular data.

TableQA Benchmarks. While TableQA solu-
tions continue to advance, existing benchmarks
have yet to fully catch up with this progress. Early
benchmarks like WQA (Pasupat and Liang, 2015),
SQA (Iyyer et al., 2017), and TabFact (Chen et al.,
2020) use HTML tables from Wikipedia, focus-
ing on cell retrieval and extraction tasks with rela-
tively simple table structures. To address more
complex reasoning, later benchmarks introduce
greater diversity and difficulty. Datasets such as
ToTTo (Parikh et al., 2020), OTTQA (Chen et al.,
2021a), and FeTaQA (Nan et al., 2022) require gen-
erating answers beyond the table content, while
numeric-focused datasets like FinQA (Chen et al.,
2021b) and AIT-QA (Katsis et al., 2022) empha-
size computational reasoning in financial contexts.
Additionally, logical expression-based benchmarks
like Spider (Yu et al., 2018) and Bird (Li et al.,

2023) incorporate structured logical reasoning for
handling intricate, logic-driven queries. However,
existing benchmarks have the following limitations.
Most focus on simple flat table structures, ignoring
the hierarchical and nested structures encountered
in the real world. Another challenge is data leak-
age, where overlaps between test data and pretrain-
ing corpora lead to biased evaluation. Addition-
ally, most benchmarks are monolingual, lacking the
cross-lingual and cross-domain diversity required
for real-world applicability.

Therefore, we introduce a comprehensive bench-
mark that covers various table structures, supports
multiple languages, and spans diverse real-world
tasks and question types. It offers a more accu-
rate evaluation of TableQA systems. We compare
TableEval with existing benchmarks in Table 1.

3 Construction of TableEval

3.1 Task Formulation

Given a table T', which may be presented in com-
plex structures such as hierarchical, nested, or oth-
ers, and a corresponding natural language question
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Dataset Flat men:}“cu] Hierarchical Nested ~ Multi-Source
Bodies Headers

Table
Language

QA
Language

Data Multi-turn Table Structure

Information  Numerical Reasonin.
‘ 2 Analysis  Conversation ~ Understanding

Retrieval Analysis

WTQ (Pasupat and Liang, 2015) v/ X X X X EN EN v v X X X X
SQA (lyyer et al., 2017) v X X X X EN EN X X X X v X
TabFact (Chen et al., 2020) 4 X X X X EN EN x X X 4 X X
FinQA (Chen et al., 2021b) v X X X X EN EN X v X X X X
TAT-QA (Zhu et al., 2021) v X X X X EN EN v v X X X X
OTT-QA (Chen et al., 2021a) 4 X X X X EN EN - - v -

FeTaQA (Nan et al., 2022) v X X X X EN EN v - - -

AIT-QA (Katsis et al., 2022) v X 4 X X EN EN v v X X X X
IM-TQA (Zheng et al., 2023b) v v 4 X v ZH ZH v X X X X X
TableBench (Wu et al., 2024) v X X X v EN EN v v v v X X
TableEval (Ours) v v v v v EN/ZH/ZH-HK ZH v v v v v v

Table 1: Comparison of TableEval with other TableQA datasets.

@ related to T', the objective is to generate an ac-
curate natural language answer A. Unlike existing
TableQA tasks that require varied output formats
based on the task type, our benchmark standard-
izes the output to natural language responses to
precisely assess the comprehensive TableQA capa-
bilities of LLMs. This approach accommodates var-
ious task types within diverse real-world industrial
scenarios, including information retrieval, numeri-
cal analysis, table reasoning, data analysis, multi-
turn dialogue, and understanding of table structures.
By supporting complex table structures and diverse
data sources, our benchmark ensures that LLMs are
evaluated on their ability to understand, interpret,
and interact with intricate table data consistently
and effectively using natural language.

3.2 Dataset Construction

Tabular Data Collection. To reduce the risk of
data leakage and ensure our dataset accurately re-
flects current TableQA challenges, we exclusively
collect documents published in 2024. We select
four document types to capture a broad coverage of
industrial and academic contexts: (i) financial re-
ports and company announcements, (ii) industry/s-
tock research reports, (iii) academic papers, and (iv)
governmental data. These materials are sourced
from publicly available authoritative channels to
ensure completeness and legal compliance. Specif-
ically, we collect financial documents and com-
pany announcements from the Shenzhen Stock Ex-
change?, industry/stock research reports from East-
money Securities®, academic papers from arXiv*
and the China National Knowledge Infrastructure?,
and governmental data from the National Bureau
of Statistics®. During the selection, we maintain a
balanced distribution of document types to avoid
the dataset being biased towards any single source.

After collecting PDFs (and a limited number

Zhttp://www.szse.cn/disclosure/listed/notice/index.html
3https://data.eastmoney.com/report/

*https://arxiv.org

Shttps://www.cnki.net
Shttps://www.stats.gov.cn/sj/zxfb/

of HTML pages), we use parsing tools designed
explicitly for PDF and HTML formats to extract
tables into Excel worksheets, yielding 29,241 ta-
bles. To keep critical contextual information, we ap-
ply heuristic rules (see Figure 14 and Algorithm 1
in Appendix for details) to capture any adjacent
text snippets near the tables, such as table captions
or explanatory notes, so that the semantic context
essential for question answering remains. Subse-
quently, three graduate students with finance and
statistics backgrounds review the Excel files to cor-
rect parsing errors and ensure the table structures
align accurately with the original PDFs. Each table
is converted to Markdown format after reviewing.
We provide an experiment on the impact of table
format in Appendix B.3.

Next, annotators assign each table to one of
seven categories: vertical, horizontal, matrix, con-
cise, hierarchical, nested, and others. Finally, we
sample 617 tables by considering factors such as ta-
ble size, source, content length, and structural type.
This sampling approach ensures a diverse yet bal-
anced tabular dataset for benchmarking TableQA.

Question Generation. Based on the verified
tables, we generate questions using two strategies,
each designed to produce diverse questions.

Template-Prompted Strategy. We design prompt
templates to guide GPT-4o0 in creating questions for
various TableQA tasks, including simple lookups,
numerical analysis, table size detection, and multi-
hop inferences. The template structure and a cu-
rated seed pool of examples help guide GPT-40 to
generate high-quality questions specific to differ-
ent task types. However, these generated questions
sometimes mirror the examples in the seed pool,
limiting the question diversity.

Role-Prompted Strategy. To address the lack
of diversity in questions, we simulate role-based
scenarios that focus on different aspects of tabu-
lar data, such as those of investors, market ana-
lysts, and domain experts. Investors might inquire
about liquidity or financial stability, while analysts
could be more concerned with product strategies
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Figure 2: Task distribution of our TableEval.

and market trends. To ensure consistency with
the task types in the Template-Prompted Strategy,
we prompt GPT-40 to categorize each generated
question into a predefined task type (e.g., simple
lookups, numerical analysis). This approach better
reflects actual usage contexts yet finds it challeng-
ing to produce highly complex or long-tail queries
beyond typical stakeholder interests.

Combining both strategies, we obtain an exten-
sive collection of QA pairs associated with multi-
ple user perspectives and table formats. However,
the automatically generated answers are often con-
cise and lack detailed reasoning. Therefore, we
only keep the generated questions. Additionally,
questions often show an uneven distribution of task
types due to two primary factors. First, the struc-
ture of the tables imposes inherent limitations on
the complexity of the questions that can be gen-
erated. Second, while the role-prompted strategy
uses role-driven scenarios to create questions, pre-
dicting the types of questions in advance remains
challenging. For example, flat, horizontally ori-
ented tables typically generate simple fact-based
questions, such as “What is the price of X?”’. In con-
trast, hierarchical tables, which can represent more
complex relationships, are better suited for support-
ing multi-step inferential or aggregative questions.

We use K-means clustering within each task for
sampling and deduplication to enhance question
diversity and ensure a balanced task distribution.
For each task, we set the expected number of QA
pairs as the number of clusters. Specifically, we
use BGE-M3 (Chen et al., 2024) to obtain question
embeddings and cluster them by similarity, retain-
ing only one representative query per cluster. This
process yields 34,161 distinct QA pairs. Among
these, 5,422 pairs (spanning 16 tasks) are selected

Flat
V H M
#Table 166 6 69 243 99 13 21

Hier. Conc. Nested Oth.

Type

Table 2: Table Structure-wise Statistics. V, H, M, Hier,
Conc, and Nested represent vertical, horizontal, matrix,
hierarchical, concise, and nested table types.

as candidates for the final test set, with the remain-
der serving as the candidate training set.

QA Acquisition and Human Annotation. Hu-
man annotation is essential for ensuring accuracy
and consistency in our final question-answer pairs.
Initially, we employ GPT-40 to generate free-text
answers, supplemented by outputs from multiple
additional LLMs. Our annotation team consists
of six graduate students with finance and statistics
backgrounds, trained on comprehensive guidelines
covering task categorization, question decomposi-
tion, and structured answer formats.

First-stage annotation focuses on quality con-
trol and accuracy verification. Annotators review
each QA pair according to four principles: elim-
inating ambiguous or impractical questions, ver-
ifying relevance to the underlying table content,
correcting inaccuracies in LLM-generated answers,
and filtering out overly simple questions (those cor-
rectly answered by all LLMs with brief responses).
Two independent annotators review each pair, with
team discussions to resolve any inconsistencies, fol-
lowed by expert sampling reviews. If acceptance
rates drop below 90% during sampling review, we
initiate additional human verification.

Second-stage annotation employs a structured
answer extraction process that determines whether
original questions require decomposition into sub-
questions and extracts JSON-formatted answers
from annotated responses. This stage filters redun-
dant and low-relevance information from natural
language responses, refining answer content to im-
prove comparison accuracy. The JSON-formatted
answers undergo two rounds of human verification
and one round of expert review to ensure accuracy
and consistency with the original table data and
question context. The comprehensive annotation
process averaged approximately $2.5 per sample.

Second-stage annotation employs a structured
answer extraction process. We use LLMs to de-
termine if the original question needs to be de-
composed into sub-questions and to extract JSON-
formatted answers from the annotated responses.
This process filters redundant and low-relevance
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Figure 3: Overview of Our SEAT evaluation method.

information from natural language responses, re-
fining the answer content to improve comparison
accuracy. The resulting JSON-formatted answers
then undergo two rounds of human verification
and one round of expert review to ensure accuracy
and consistency with the original table data and
question context. The comprehensive annotation
process averaged approximately $2.5 per sample.

3.3 Dataset Statistics

We present the task and table structure distributions
of our dataset in Figure 2 and Table 2, respectively.
Our dataset comprises six main task categories,
further divided into 16 subcategories, covering real-
world scenarios such as simple and conversational
retrieval, reasoning, numerical and data analysis,
and table structure understanding. It includes 2,325
QA pairs, spanning Simplified Chinese, Traditional
Chinese (Hong Kong), and English tables. See
more details in Table 7 and Table 8.

Our dataset provides comprehensive coverage
of various domain-specific subtasks, supporting a
more fine-grained evaluation of cross-domain capa-
bilities. For financial reports, we include subtasks
such as financial metric retrieval, ratio and indica-
tor trend analysis, and cross-period comparisons.
Industry research reports encompass subtasks like
industry performance comparison and financial in-
dicator ranking. Academic papers contain experi-
mental result queries and definition lookups. Gov-
ernment data includes price change calculations

and industry growth rate queries.

4 Evaluation Method for TableQA

Evaluating LLMs in TableQA is challenging be-
cause natural language responses can vary widely
in phrasing and structure. Existing methods often
use exact match (Zhu et al., 2021), F1-score (Chen
et al., 2021b), or n-gram-matching (Parikh et al.,
2020; Nan et al., 2022) metrics. However, these ap-
proaches often fail to assess the accuracy of LLM-
generated responses effectively. To solve this prob-
lem, we propose a simple and effective evaluation
framework, SEAT (Structured Evaluation for An-
swers in TableQA), that leverages an LLM with
crafted prompts to compare generated responses
with structured reference answers.

As shown in Figure 3, SEAT follows a structured
process to evaluate the accuracy and relevance of
model-generated responses, guided by the original
question and a corresponding JSON-formatted ref-
erence answer. SEAT consists of two steps: (1)
Extract key answers to each sub-question from the
model’s final response, compare each with the ref-
erence answers to identify matching or divergent
elements, and label each extracted answer as“true”
or “false” based on its alignment with the reference.
(2) Present the evaluation results in a JSON for-
mat, including the original question, the model’s
response, and the evaluation record for each answer
to facilitate tracking and verification. Compute the
overall F1 for each QA pair by averaging the F1
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scores across all sub-questions. For multi-turn con-
versational QA, first compute the average F1 for
each turn, then average across all turns to obtain
the final F1 score for the QA session.

Specifically, given a model-generated answer A
and a reference answer R, both in natural language,
SEAT converts them into structured forms and eval-
uates their alignment in a single step. It uses an
LLM guided by a specific prompt (see Figure 12),
which can be formalized as:

Jeval = Text2Json(A, R) (1)

where Text2Json instructs the LLM to parse both
A and R. The LLM is prompted to first extract key
answer components from A corresponding to the
question, then compare these components against
the information in R to determine their correctness
(labeling each as "true" or "false"). The final output,
Jeval, 1s a single JSON object that contains the struc-
tured representations of both answers alongside
the correctness judgments for each sub-question.
Precision, recall, and the F1 score are then calcu-
lated from this structured output. This integrated
approach ensures that the semantic comparison is
directly tied to the structuring process, providing a
robust and consistent evaluation.

5 Experiment

5.1 Experimental Setup

We evaluate 19 models, ranging from 7B to 671B
parameters, to assess their performance on TableE-
val. The evaluated models include open-source
and closed-source models to comprehensively com-
pare different model architectures and capabilities.
For open-source models, we evaluate Qwen2.5-
Instruct series (Qwen et al., 2025): Qwen2.5-
7B-Instruct, Qwen2.5-14B-Instruct, Qwen2.5-32B-
Instruct, Qwen2.5-72B-Instruct; Qwen2.5-Coder-
Instruct-32B (Hui et al., 2024); QwQ-32B-
Preview; DeepSeek series (DeepSeek-Al et al.,
2024): DeepSeek-V2-Lite-Chat (16B), DeepSeek-
Coder-V2-Lite-Instruct (16B), DeepSeek-V2.5-
1210 (236B), DeepSeek-V3 (671B), DeepSeek-
R1 (671B) (DeepSeek-Al et al., 2025); glm-4-
9b-Chat (9B) (GLM et al., 2024); Llama-3 se-
ries (Grattafiori et al., 2024): Llama-3.1-8B-
Instruct, Llama-3.3-70B-Instruct. For closed-
source models, we evaluate qwen-max-2024-09-19,
Claude 3.5 sonnet-20241022, GPT-40-mini-2024-
07-18, GPT-40-2024-11-20 (OpenAl et al., 2024),
and ol-preview. We set the temperature to O and

Metric r p T
Fl1 1776 1222 1014
ROUGE-L 6132 .6030 .4988
GPT4o .8673 .8792 7733
LLM-as-a-judge Qwen-2.5-72B .7080 .7333 .6592
Llama-3.3-70B .8052 .8311 .7214
GPT4o 9373 9346 .9062
SEAT Qwen-2.5-72B  .8257 .8137 .7726
Llama-3.3-70B .8410 .8359 .8214

Table 3: Correlation with human scores, measured with
Pearson r, Spearman p, and Kendall 7 coefficients. We
evaluate SEAT with different LLM backbones. LLM-
as-a-judge (Zheng et al., 2023a) prompts GPT-40 to
provide a 1-10 rating for evaluation.

use a fixed seed (42) to make the model’s output
more deterministic. For models that do not allow
the configuration of parameters (e.g., temperature
or seed), we use their default settings.

To obtain detailed, interpretable, and structured
responses for each question in the TableQA task,
we conducted comparative experiments based on
Chain-of-Thought (CoT) prompting (Wei et al.,
2022). The specific CoT prompt used in our experi-
ments are shown in the Figure 13, which align with
those in previous studies (Zheng et al., 2024; Deng
et al., 2024; Zhang et al., 2024c).

5.2 Effectiveness of SEAT

To assess the effectiveness of SEAT, we analyze the
correlation between SEAT and human scores. An-
notators rate model responses from 1 to 10 based
on reference quality. We collect ratings for 5%
randomly selected samples and evaluate the corre-
lation using three metrics: 1) Pearson correlation
coefficient (), 2) Spearman rank coefficient (p),
and 3) Kendall rank coefficient (7). As shown in
Table 3, SEAT consistently achieves higher corre-
lations with human judgments than existing met-
rics (F1 and ROUGE-L) and the LLM-as-a-judge.
When using GPT-40 as the backbone, SEAT attains
the highest agreement with human judgments. This
improvement over the direct rating approach (LLM-
as-a-judge) remains significant across all tested
backbones, including Qwen-2.5-72B and Llama-
3.3-70B, demonstrating SEAT’s robustness.

5.3 Main Results

Table 4 reports how well each LLM handles six
main tasks in TableEval: Information Retrieval, Nu-
merical Analysis, Reasoning, Data Analysis, Multi-
turn Conversation, and Table Structure Under-
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Model Size Av Information Numerical Reasonin Data Multi-turn Table Structure
B) Retrieval Analysis g Analysis Conversation  Understanding
Qwen2.5-7B-Instruct 7 59.60 69.23 64.29 59.38 69.71 68.67 26.35
Llama-3.1-8B-Instruct 8 49.26 67.40 53.35 48.82 57.06 53.15 15.76
glm-4-9b-chat 9 53.61 66.19 51.09 55.09 62.47 64.36 22.44
Qwen?2.5-14B-Instruct 14 70.02 84.72 78.93 68.65 75.06 75.05 37.72
DeepSeek-V2-Lite-Chat 16  36.75 48.52 35.43 35.97 51.80 41.61 7.15
DeepSeek-Coder-V2-Lite-Instruct 16 48.30 60.40 56.39 50.03 51.51 50.62 20.83
QwQ-32B-Preview 32 78.14 89.33 85.75 81.37 71.69 82.15 58.53
Qwen2.5-32B-Instruct 32 7550 86.32 84.10 76.09 77.60 82.25 46.61
Qwen?2.5-Coder-32B-Instruct 32 70.75 79.82 77.00 73.03 76.33 74.89 43.44
Llama-3.3-70B-Instruct 70 7294 87.42 76.70 73.38 81.27 80.62 38.24
Qwen?2.5-72B-Instruct 72 74.23 82.68 81.53 74.85 78.94 81.90 45.50
DeepSeek-V2.5-1210 236 73.27 87.41 79.10 71.49 77.97 78.72 44.94
DeepSeek-V3 671  77.95 91.20 82.61 81.72 77.45 85.83 48.89
DeepSeek-R1 671  82.46 90.15 88.56 87.91 77.79 78.29 72.05
qwen-max-2024-09-19 N/A 7334 84.42 81.35 72.64 78.09 80.18 43.35
Claude-3-5-sonnet-20241022 N/A  83.32 89.62 91.06 85.76 84.01 87.94 61.51
gpt-40-mini-2024-07-18 N/A 6847 82.64 76.15 73.13 70.70 73.66 34.56
gpt-40-2024-11-20 N/A  78.79 88.24 86.00 83.05 81.47 83.20 50.79
ol-preview N/A 8343 88.30 87.08 82.88 77.839 83.38 81.03

Table 4: Performance of LLMs on TableEval. We report the F1 score calculated by our SEAT. Bold values indicate
the best result within each category. Avg denotes the overall score.

standing, along with the average score. Larger mod-
els generally perform better, with closed-source
models like Claude 3.5 Sonnet, GPT-40, and ol-
preview often leading the rankings. ol-preview
achieves the highest average score (83.43%), while
Claude 3.5 Sonnet performs comparably (83.32%).
Both perform well in complex tasks such as reason-
ing and data analysis, which require deep reason-
ing and domain knowledge. Among open-source
models, DeepSeek-R1 shows strong, complex rea-
soning abilities and performs best in reasoning,
numerical analysis, and table structure understand-
ing. Qwen2.5-14B-Instruct significantly improves
over its 7B version, demonstrating the benefits of
increased parameters. Scaling up to 32B further
enhances overall performance, with models like
QwQ-32B-Preview and Qwen2.5-32B-Instruct im-
proving across most metrics. However, even these
large models still struggle with table structure un-
derstanding, suggesting that specialized training
is necessary for tasks requiring layout compre-
hension. The significant gap between top closed-
source LLMs and mid-sized open-source ones un-
derscores the advantages that closed-source models
may have, potentially through specialized training
strategies, proprietary datasets, or more computa-
tional resources.

Structure-aspect Performance. Figure 4 (See
Table 12 for details) depicts the performance of
different LLMs across different table structures,
including vertical, horizontal, matrix, and more
complex concise, hierarchical, and nested struc-
tures. Closed-source models generally demonstrate
more balanced and superior performance. GPT-40,

Vertical

Horizontal Others

251210

Matri
" Nested

Hierarchical

Concise

Figure 4: Performance of LLMs across table structures.

Claude, and ol-preview outperform across differ-
ent table structures, demonstrating their strong ca-
pabilities. However, specific open-source models
can be highly competitive in specific structures. For
example, DeepSeek R1 performs particularly well
on hierarchical and others table structures. Besides,
all models, whether open or closed, face more sig-
nificant challenges with nested and hierarchical
tables compared to simpler formats, underscoring
the ongoing difficulty in structure-aware compre-
hension and structured reasoning.
Language-aspect Performance. Table 5 depicts
the performance of different LLMs across tables in
Simplified Chinese, Traditional Chinese, and En-
glish. Closed-source models demonstrate strong
multilingual capabilities, maintaining high and con-
sistent accuracy across these languages. Claude 3.5
Sonnet and o1-preview consistently achieve the top
performance. A notable trend is a model’s develop-
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Model Size ZH ZH-HK EN

Qwen?2.5-7B-Instruct 7 61.98 61.62 63.67
Llama-3.1-8B-Instruct 8 53.24 52.48 54.66
glm-4-9b-chat 9 55.77 55.19 55.30
Qwen2.5-14B-Instruct 14 72.00 74.49 76.96
DeepSeek-V2-Lite-Chat 16 40.56 43.97 38.09
DeepSeek-Coder-V2-Lite-Instruct 16 51.32 51.66 50.66
QwQ-32B-Preview 32 78.55 76.40 81.62
Qwen?2.5-32B-Instruct 32 76.99 78.43 78.84
Qwen?2.5-Coder-32B-Instruct 32 73.03 70.12 75.70
Llama-3.3-70B-Instruct 70 75.52 77.13 76.79
Qwen2.5-72B-Instruct 72 76.16 74.51 77.68
DeepSeek-V2.5-1210 236 75.51 78.15 77.31
DeepSeek-V3 671 78.20 79.69 81.60
DeepSeek-R1 671 83.46 82.27 84.86
qwen-max-2024-09-19 N/A 74.94 78.36 76.88
Claude-3-5-sonnet-20241022 N/A 84.50 83.84 85.34
gpt-40-mini-2024-07-18 N/A 69.64 73.80 72.17
gpt-40-2024-11-20 N/A 80.14 79.73 82.75
ol-preview N/A 82.69 82.85 86.41

Table 5: Language-aspect performance.

ment background’s influence on language strengths.
Models trained in large Chinese corpora, such as
the Qwen series and DeepSeek-R1, tend to perform
best in English, followed by Simplified Chinese,
with Traditional Chinese ranking lowest. In con-
trast, models primarily trained in English often
achieve their highest accuracy in English or Tradi-
tional Chinese, while Simplified Chinese tends to
perform worse.

Domain-aspect Performance. Table 6 shows
the performance of different LLMs across tables in
finance, government, paper, and report domains.
Larger models consistently outperform smaller
ones across all four domains. Smaller models show
more significant performance variation, struggling
in specific areas, whereas larger models remain
more stable, indicating more substantial generaliza-
tion across diverse tabular data. The results show
that Finance and Government data are more chal-
lenging, as smaller models tend to have greater
performance fluctuations. On the other hand, Paper
and Report tasks are handled more steadily, sug-
gesting structured data complexity varies by field.

Key Insights and Observations. (1) Closed-
Source Models Lead, but Open-Source Models
Show Promise. Closed-source models (e.g., Claude
3.5 Sonnet, GPT-40, ol-preview) consistently
achieve top-tier performance across tasks, table
structures, languages, and domains, benefiting
from specialized training resources. However,
large-scale open-source models (e.g., DeepSeek-
R1, QwQ-32B-Preview) can be highly competitive
with test-time scaling, indicating that open mod-
els have the potential to reduce the gap on com-
plex TableQA with continued improvements. (2)
Table Structure Understanding Remains a Chal-
lenge. Both closed- and open-source models strug-

Model Size Finance Government Paper Report
Qwen2.5-7B-Instruct 7 62.69 60.44 63.60 60.94
Llama-3.1-8B-Instruct 8 5347 49.04 55.87 52.63
glm-4-9b-chat 9 55.49 54.42 54.94 57.10
Qwen2.5-14B-Instruct 14 73.11 73.32 74.90 73.55
DeepSeek-V2-Lite-Chat 16 43.02 34.84 38.71 40.57
DeepSeek-Coder-V2-Lite-Instruct 16 50.88 46.14 50.76 55.23
QwQ-32B-Preview 32 7771 79.24 80.09 79.97
Qwen2.5-32B-Instruct 32 77.30 74.56 79.68 77.64
Qwen2.5-Coder-32B-Instruct 32 71.65 72.28 76.19 73.06
Llama-3.3-70B-Instruct 70 76.43 70.77 76.93 77.23
Qwen2.5-72B-Instruct 72 73.71 76.20 78.90 78.32
DeepSeek-V2.5-1210 236 77.31 74.85 75.30 76.86
DeepSeek-V3 671 79.03 79.73 79.45 79.57
DeepSeek-R1 671 81.30 90.13 84.86 83.48
qwen-max-2024-09-19 N/A 76.19 75.57 75.78 76.27
Claude-3-5-sonnet-20241022 N/A 82.75 86.18 86.61 85.08
gpt-40-mini-2024-07-18 N/A 71.34 68.37 70.79 71.96
gpt-40-2024-11-20 N/A 79.63 81.29 83.18 79.57
ol-preview N/A 82.85 86.36 84.34 83.06

Table 6: Domain-aspect performance.

gle with complex table structures, particularly
nested and hierarchical structures. Performance
drops of 10-15% are observed compared to simple
structures (flat tables), highlighting the importance
of future research on explicit table structures or
structure-aware encoding methods. (3) Domain
and Language-Specific Performance Gaps. Open-
source models like DeepSeek-R1 perform strongly
in specific domains, such as government data, while
closed-source models demonstrate strong cross-
domain adaptability. Similarly, language-aspect
evaluation shows that while models often perform
well in English, their performance declines in Sim-
plified or Traditional Chinese. These findings sug-
gest that domain-specific of language-specific train-
ing strategies should be explored.

6 Conclusion

We introduce TableEval, a real-world benchmark
that fills a critical gap in evaluating LLMs on
TableQA by featuring various table structures, lan-
guages, and domains. By curating recently pub-
lished tables, TableEval minimizes data leakage
and provides a more accurate evaluation of LLMs.
Experimental results show that while closed-source
models generally perform better, well-scaled and
fine-tuned open-source models remain competitive.
However, both struggle with complex table struc-
tures like nested or hierarchical ones, leading to a
10-15% performance drop. Additionally, models
still face challenges with domain-specific and cross-
lingual understanding. Besides, our SEAT evalua-
tion method assesses answers structurally, ensuring
semantic accuracy where traditional exact-match
and n-gram matching metrics fall short and achiev-
ing high consistency with human judgments. We
believe TableEval and SEAT will advance research
in structure-aware approaches, multilingual repre-
sentation, and domain adaptation for TableQA.

7134



7 Limitations

We conclude the limitations of our study as follows:
(1) Despite efforts to source heterogeneous tables
(including concise, hierarchical, and nested struc-
tures), real-world data includes many other layouts
(such as highly irregular formats or image-based ta-
bles), that are not fully captured in our benchmark.
(2) Our dataset primarily presents questions in Sim-
plified Chinese, while we include table content in
Simplified Chinese, Traditional Chinese, and En-
glish. Deeper investigations into fully multilingual
TableQA scenarios are still needed.
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A Dataset Construction Details

Task Type Question Category Count
Information | Simple Lookup | 369
Retrieval | Conditional Lookup | 239
|  Grouped Lookup | 29
Numerical | Sorting | 223
Analysis | Statistics | 103
| Numerical Calculation | 220
Reasoning | Multi-hop Question | 138
|  Causal Analysis | 73
Data | Comparative Analysis | 139
Analysis | Trend Analysis | 54
| Anomaly Detection | 45
| Correlation Judgement | 78
| Rejection | 298
hégltl-turn Ellipsis or Reference 31
ialogue
Table Structure | Table Size Detection | 153

Understanding | Merged Cell Detection | 133
| 2,325

Total

Table 7: Task Types and Question Categories

Language #Table #QA Pairs
ZH-CN 364 1,331
ZH-HK 114 406

EN 139 588
Total 617 2,325

Table 8: TableEval Language-wise Statistics.

A.1 Multi-answer Consistency Checking

To enhance the quality of data annotation, we lever-
age GPT-40, DeepSeek 2.5, and Qwen 2.5-72B-
Instruct to generate annotated answers for all ques-
tions. A consistency check is then performed on
these annotations, with the results serving as guid-
ance for subsequent human check. To this end,
we propose an LLLM-based consistency-checking
method that rigorously evaluates the alignment of
answer content (prompt can be found in Figure 7).
This method assesses semantic matching, expres-
sion style, core information, and the complete con-
sistency of table content. Any semantic conflicts,
redundant details, or incomplete matches identi-
fied in the answers are considered inconsistencies
during the evaluation process.
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Task r p T

Information Retrieval 0.9687 09141 0.9046
Numerical Analysis 0.8509 0.8330 0.8163
Reasoning 1.0000  1.0000  1.0000
Data Analysis 0.8972 0.8871 0.8361
Multi-turn Conversation 1.0000  1.0000 1.0000
Table Structure Understanding  0.9957  0.9957  0.9951

Table 9: Task-specific correlation of SEAT with hu-
man scores, measured with Pearson 7, Spearman p, and
Kendall 7 coefficients, using GPT-40 as backbone.

Semantic Analysis. The core information in all
three answers is compared individually to ensure
there are no semantic differences in their expres-
sions. Variations in phrasing, wording, or inconsis-
tencies in described details will make the answers
considered inconsistent.

Redundancy Check. If any answer contains
unnecessary explanations or repeated content that
unnecessarily increases the length, it will also be
considered inconsistent.

A.2 Structured Answer Extraction

We use GPT-4o to extract structured answers from
LLM-generated responses. This method aims to
precisely extract the content corresponding to the
question from the answer text, which is then used
for subsequent model evaluation. It follows the fol-
lowing rules to ensure the accuracy of the extracted
answers in terms of values, format, and content.
We show the prompt in Figure 10.

Multi-part Question Processing. The original
question should be decomposed into a list of sub-
questions when it contains multiple sub-questions.

Single Question Processing. For a single ques-
tion, keep the answer to that question without un-
necessary decomposition, ensuring a concise and
clear response.

Answer Extraction. Our goal is to extract con-
cise final answers for each sub-question to ensure
an accurate evaluation of all models’ natural lan-
guage responses. Additionally, we have two spe-
cific requirements: (a) During the answer extrac-
tion process, the original format of numerical val-
ues, including percentage signs, units, commas,
and scientific notation, must be strictly kept, en-
suring the precision of the extracted answers. (b)
If the answer text contains ambiguity, errors, or
incomplete information, the answer will be labeled
as “Reference Answer Incorrect”, helping the user
understand the potential uncertainty of the answer.

Domain T P T
financial reports and 09575 09295  0.8967
company announcements

industry/stock research reports  0.9605 0.9642  0.9516
academic papers 0.8794 0.8777 0.8470
governmental data 0.9973  0.9982  0.9962

Table 10: Domain-specific correlation of SEAT with
human scores, measured with Pearson r, Spearman p,
and Kendall 7 coefficients, using GPT-40 as backbone.

B Additional Experimental Analysis

B.1 Robustness of SEAT

To provide a more detailed analysis of SEAT’s ef-
fectiveness across different contexts, we further
categorize our main experimental results (Table 3)
by task type and domain. This analysis aims to
determine whether SEAT maintains consistent cor-
relation with human judgments regardless of the
specific nature of the TableQA task or the domain
from which the tables originate. Rather than con-
ducting separate experiments, we classify our ex-
isting evaluation data according to six distinct task
types and four domains to examine SEAT’s robust-
ness across these dimensions.

Task-Specific Robustness. Table 9 presents the
correlation between SEAT and human judgments
across six task types in TableEval, using GPT-40
as the evaluation backbone. The results demon-
strate SEAT’s high consistency across varied task
complexities. For reasoning and multi-turn con-
versation tasks, SEAT achieves perfect correlation
with human judgments, indicating that the struc-
tured evaluation approach is particularly effective
for complex, multi-step reasoning processes. Infor-
mation retrieval and table structure understanding
tasks also show very high correlations (Pearson val-
ues of 0.9687 and 0.9957 respectively), suggesting
SEAT accurately captures the quality of responses
for these fundamental TableQA capabilities.

Notably, while numerical analysis and data anal-
ysis tasks show slightly lower correlation coeffi-
cients (Pearson values of 0.8509 and 0.8972 respec-
tively), these values remain substantially higher
than those achieved by traditional metrics as shown
in our main results. This slight decrease in corre-
lation for quantitative tasks may reflect the inher-
ent complexity of evaluating numerical reasoning,
where small computational errors can lead to sig-
nificant discrepancies in final answers. Neverthe-
less, the consistently high correlation values across
all task types demonstrate SEAT’s robustness as
an evaluation framework regardless of the specific
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Model Size  AVG | Information Retrival | Numerical Analysis | Reasoning | Data Analysis | Conversation | Table Structure Understanding
Simple Condition ~Grouped | Sorting  Statistics ~ Calculation | Multi-hop AC"' dﬁ;i C‘[‘;‘;ﬁf}’j:’f‘ A::j;‘fh S&T{ﬁ f:’ﬁ;‘;"“ Rejection Rilllilr):LZe T[;‘:s:jl"]f "}i‘tf:ﬁlgﬁn
B e § 56 Tom  dos  oln s Soa  sie e 3 eiws Ge w1 s som  sas aiw by
w25 148 nstruct I 705i 8520  Sid0 S BoR  6ees  Teds  ehes  Toos  sod 122 2 e oe 7305 65 o)
DeepSeek-V2-Lite-Chat 16 39.09 55.97 39.18 3073 27.08 33.01 45.02 3597 39.29 62.19 63.09 33.02 55.54 49.83 41.61 9.48 442
DeepSeek-Coder-V2-Lite-Instruct 16 49.40 66.51 50.46 64.25 51.74 55.02 61.75 50.03 49.15 60.18 58.85 3751 4253 5117 50.62 2745 13.20
QwQ-32B-Preview 32 77.17 88.07 91.22 89.75 9235 79.94 81.76 81.37 67.32 87.95 75.34 73.12 64.64 66.15 82.15 77.12 36.47
Qwen2.5-32B-Instruct 32 75.18 86.41 86.84 80.90 90.49 79.43 79.82 76.09 69.84 79.73 71.70 66.44 76.73 80.42 8225 67.32 2243
der- 32 7134 7872 80.46 88.62 86.20 69.90 71.01 73.03 60.78 79.25 76.19 67.17 69.29 82.03 74.89 6275 21.06
a-3 0B- 70 73.67 89.39 84.86 83.39 80.08 75.90 73.65 7338 73.97 81.91 84.02 64.33 73.36 86.90 80.62 60.13 12.87
Qwen2.! B-Instruct 72 74.80 8031 86.35 82.70 88.63 67.38 80.97 74.85 68.95 85.21 85.83 7222 73.10 79.76 81.90 60.78 2792
DeepSeek-V2.5-1210 236 73.60 9132 81.08 89.81 7791 73.71 82.83 71.49 63.67 80.86 86.81 62.88 66.00 83.94 78.72 63.73 2284
DeepSeek-V3 671 77.03 9284 88.72 90.70 82.49 78.33 84.73 81.72 65.00 86.63 85.75 67.17 69.91 78.24 85.83 6797 26.44
DeepSeek-R1 671  80.14  87.26 93.85 96.37 90.49 86.43 87.59 87.91 65.69 76.44 77.50 59.77 65.41 87.39 78.29 86.60 55.30
N/A 7349 84.72 84.76 77.60 84.94 75.41 80.50 72.64 69.96 82.17 74.66 65.88 78.36 80.58 80.18 63.40 20.12
N/A  81.69 89.00 90.23 92.59 9557 89.00 87.46 85.76 69.55 87.56 75 ‘)f 68.97 74.81 92.05 87.94 78.10 4243
NA TRoi 8 S 141 S10 sers sy sa0s g2 w26 7o v 706 sl w0 G 3406
ol-preview N/A 8203 87.98 88.52 90.57 92.93 84.80 82.21 82.88 71.45 85.64 85.79 60.46 78.40 76.93 83.38 90.52 70.03
Table 11: Performance of LLMs on 16 TableQA sub-tasks.
Model Size  Vertical Horizontal Matrix Concise Hierarchical Nested Others
Qwen2.5-7B-Instruct 7 66.26 66.10 64.97 57.12 61.65 53.04 61.07
Llama-3.1-8B-Instruct 8 59.24 59.95 54.09 52.34 50.23 37.30 48.83
glm-4-9b-chat 9 57.95 58.86 60.76 53.53 53.03 56.36 57.64
Qwen2.5-14B-Instruct 14 74.38 72.86 76.36 73.34 72.93 70.91 72.70
DeepSeek-V2-Lite-Chat 16 43.05 22.81 39.48 38.49 40.08 34.46 44.10
DeepSeek-Coder-V2-Lite-Instruct 16 53.90 57.48 52.11 48.35 50.08 43.95 54.43
QwQ-32B-Preview 32 79.67 78.86 78.35 77.11 79.81 68.05 80.07
Qwen2.5-32B-Instruct 32 80.99 75.05 79.60 75.81 76.59 71.53 71.26
Qwen2.5-Coder-32B-Instruct 32 76.10 78.19 79.10 71.78 70.55 68.47 70.33
Llama-3.3-70B-Instruct 70 80.54 77.43 78.15 75.53 73.11 65.83 72.94
Qwen2.5-72B-Instruct 72 77.77 86.10 83.13 72.42 75.27 63.43 80.03
DeepSeek-V2.5-1210 236 78.69 73.43 81.94 73.21 75.31 74.28 74.34
DeepSeek-V3 671 82.96 78.76 82.26 76.68 78.24 73.13 70.57
DeepSeek-R1 671 85.83 81.10 83.00 84.86 81.59 72.96 85.69
qwen-max-2024-09-19 N/A 78.68 66.76 80.74 73.75 75.66 68.86 65.29
Claude-3-5-sonnet-20241022 N/A 86.61 74.43 87.59 84.77 83.03 71.05 84.27
gpt-40-mini-2024-07-18 N/A 74.82 67.10 73.38 67.80 69.97 64.11 65.55
gpt-40-2024-11-20 N/A 85.59 95.24 81.13 76.76 78.70 74.17 79.97
ol-preview N/A 84.96 77.00 83.81 84.40 82.71 75.46 83.60

Table 12: Structure-aspect performance.

TableQA function being assessed.

Domain-Specific Robustness. Table 10 ex-
tends our analysis to examine SEAT’s performance
across four domains from which tabular data orig-
inate. The results reveal SEAT’s consistent effec-
tiveness across various subject matters. Govern-
mental data shows the highest correlation, likely
due to the structured and standardized nature of
such information. Both financial reports/company
announcements and industry/stock research reports
domains also demonstrate very high correlations
(Pearson values of 0.9575 and 0.9605 respectively),
indicating SEAT effectively evaluates responses in
domains with specific terminology and numerical
components.

Academic papers represent the most challeng-
ing domain, though the correlation values remain
strong. This slight decrease may be attributed to
the complexity and diversity of academic content,
which often contains specialized vocabulary, com-
plex methodology descriptions, and multi-faceted
findings that can be challenging to evaluate in a
structured format. Despite this relative difference,
the consistently high correlation across all domains

confirms that SEAT maintains its effectiveness re-
gardless of the subject matter or data source.

These comprehensive experiments across both
task types and domains provide strong evidence for
SEAT’s robustness as an evaluation framework.

B.2 Performance on Sub-tasks

Table 11 provides a more granular evaluation of
each model’s performance across 16 sub-tasks, of-
fering more profound insight into LLMs’ specific
strengths and weaknesses. These sub-tasks include
broader categories of information retrieval, numer-
ical analysis, reasoning, data analysis, multi-turn
conversation, and table structure understanding,
each targeting a unique aspect of TableQA.

It can be found in the information retrieval sub-
tasks (simple, condition, and grouped lookups)
that larger or more specialized models (partic-
ularly DeepSeek-R1, Claude 3.5 sonnet, GPT-
40, and QwQ-32B-Preview) consistently achieve
the highest performance. QwQ-32B-Preview and
DeepSeek-R1 better handle more complex filter-
ing (condition, grouped), suggesting that the en-
hanced reasoning capabilities help manage varied
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Model A Information Numerical R . Data Multi-turn Table Structure
ode Ve Retrival Analysis easoning Analysis Conversation Understanding
HTML
gpt-40-2024-11-20 81.09 89.98 87.26 80.92 79.80 75.65 72.95
Qwen2.5-14B-Instruct ~ 72.51 80.93 79.85 73.21 73.17 75.37 52.56
Llama-3.1-8B-Instruct  53.19 70.28 53.32 50.52 56.86 56.87 31.32
Latex
gpt-40-2024-11-20 81.04 88.00 86.19 83.04 80.66 82.95 65.38
Qwen2.5-14B-Instruct ~ 72.67 82.66 81.10 72.56 73.19 76.83 49.69
Llama-3.1-8B-Instruct  54.16 69.51 56.90 52.77 56.85 59.10 29.84
Markdown
gpt-40-2024-11-20 78.79 88.24 86.00 83.05 81.47 83.20 50.79
Qwen2.5-14B-Instruct ~ 70.02 84.72 78.93 68.65 75.06 75.05 37.72
Llama-3.1-8B-Instruct  49.26 67.40 53.35 48.82 57.06 53.15 15.76

Table 13: Performance of LLMs on TableEval with different table formats.

data partitions. A similar pattern is shown in nu-
merical analysis (sorting, statistics, calculation),
with Claude 3.5 sonnet exceeding 95% on sorting
and DeepSeek-R1 exceeding 86% on statistics and
calculation. This performance indicates that large
model sizes and specialized data or method-specific
fine-tuning can improve arithmetic-driven tasks.

For reasoning, we focus on multi-hop ques-
tions requiring chained inference across table cells.
DeepSeek-R1 achieves a top score of 87.91%, fol-
lowed by closed-source models such as Claude 3.5
sonnet and GPT-4o, highlighting the benefits of size
and specialized training. Smaller open-source mod-
els (e.g., glm-4-9b-chat, DeepSeek-V2-Lite-Chat)
fall behind, reflecting the complexity of multi-hop
inference towards small-scale models.

Data analysis includes six sub-tasks (causal anal-
ysis, comparative analysis, trend analysis, anomaly
detection, correlation judgment, and rejection).
These tasks require higher-level inference and do-
main knowledge, and the results reveal significant
performance spread across models. For example,
Llama-3.3-70B-Instruct achieves high scores in
causal and trend analysis, while QwQ-32B-Preview
achieves one of the highest scores on anomaly
detection. Conversely, ol-preview demonstrates
strong correlation judgment (78.40%), and Claude
3.5 sonnet outperforms all other models on re-
jection (92.05%), reflecting its robustness when
queries demand domain knowledge or interpreta-
tion of numeric relationships. The difference in
these data analysis tasks suggests that even lead-
ing LLMs specialize differently, implying oppor-
tunities for method-level customizations to boost
performance on specific analytical tasks.

In the ellipsis/reference sub-task, Claude 3.5 son-
net achieves the best (87.94%), followed closely

by DeepSeek-V3. Large-scale open-source mod-
els (e.g., Llama-3.3-70B-Instruct, Qwen2.5-72B-
Instruct) also obtain high scores, yet they still fall
behind top closed-source systems, demonstrating
the benefit of extensive multi-turn dialogue training
data in proprietary setups.

Finally, table structure understanding is as-
sessed via table size detection and merged cell
detection, which reflect the ability to parse and
interpret structural details. While some models per-
form well on table size detection (led by ol-preview
at 90.52%), performance on merged cell detection
drops significantly; no model exceeds 70.03%, also
achieved by ol-preview. This large gap highlights
the challenge of complex structural tasks, where
even advanced LLMs struggle to accurately capture
and interpret non-trivial table structures (layouts)
or spanning cell configurations.

Overall, the fine-grained results demonstrate the
multi-dimensional capability of LLMs in tabular
data. Although large models dominate most cate-
gories, tasks such as merged cell detection or ad-
vanced data analysis remain challenging. These
observations highlight the importance of structure-
aware designs, targeted fine-tuning for analytical
tasks, and more elaborate training on real-world
tables (particularly those with nested or merged
cells). By bridging these gaps, LLMs will be better
equipped to handle the broad tasks of TableQA.

B.3 Impact of Table Format

We conduct an experiment to explore the impact of
table format on LLM performance by converting
tables to LaTeX, HTML, and Markdown formats.
We report the main results and the fine-grained
results of 3 LLMs on Table 13 and Table 14.

We find that all three models achieve approx-
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Model AvG | Information Retrival |

Numerical Analysis

Data Analysis

| Conversation | Table Structure Understanding

Simple  Condition ~ Grouped | Sorting ~ Statistics ~ Calculation

Causal
Analysis

Trend

Anomaly  Correlation
Analysis  Detection  Judgement

Rejection

Ellipsis/
Reference

Merged Cell
Detection

HTML

gpt-40-2024-11-20 80.29  90.10 89.20 94.94 91.86

81.63

63.84
62.05
63.16

Latex

70.04
58.25
55.88

Markdown

Qwen2.5-14B-Instruct ~ 71.87  79.60 82.73 83.07 85.37 77.44
Llama-3.1-8B-Instruct  54.98  71.30 68.66 70.75 54.83 53.93
gpt-40-2024-11-20 79.51  87.66 88.54 87.82 92.76 80.15
Qwen2.5-14B-Instruct ~ 72.42  82.88 82.03 85.19 85.17 78.93
Llama-3.1-8B-Instruct 5498  71.18 67.32 66.46 59.40 55.48
gpt-40-2024-11-20 78.21 89.59 86.26 87.42 88.10 86.74 83.53 83.05
Qwen2.5-14B-Instruct ~ 70.54  85.20 84.40 81.39 85.98 68.94 76.46 68.65
Llama-3.1-8B-Instruct  51.76  70.31 62.58 70.18 53.55 50.49 54.49 48.82

76.94 63.36 70.96 75.65 74.78
74.94 65.09 60.97 75.37 3294
71.44 39.67 53.05 56.87 19.34
79.03 63.94 72,51 82.95 59.93
80.36 64.61 61.67 76.83 32.67
69.56 42.63 49.84 59.10 10.27
88.26 75.07 67.32 75.96 85.31 83.20 65.34 34.06
80.19 72.24 60.24 69.68 78.06 75.05 56.54 15.57
61.85 63.91 39.17 55.24 56.72 53.15 21.57 8.86

Table 14: Performance of LLMs on 16 sub-tasks with different table formats.

Model Av Information Numerical Reasonin Data Multi-turn ~ Table Structure
g Retrival Analysis g Analysis Conversation Understanding
gpt-40-mini-2024-07-18 68.47 82.64 76.15 73.13 70.70 73.66 34.56
Qwen2.5-7B-Instruct (fine-tuned)  66.19 80.06 61.71 58.73 70.56 70.92 55.16
glm-4-9b-chat (fine-tuned) 57.62 76.32 48.57 45.28 66.67 62.60 46.30
Llama-3.1-8B-Instruct (fine-tuned) 63.83 79.88 60.09 53.31 68.84 71.71 49.18
Qwen2.5-7B-Instruct 59.60 69.23 64.29 59.38 69.71 68.67 26.35
glm-4-9b-chat 53.61 66.19 51.09 55.09 62.47 64.36 22.44
Llama-3.1-8B-Instruct 49.26 67.40 53.35 48.82 57.06 53.15 15.76

Table 15: Performance of fine-tuned LLLMs on TableEval.

imately 2 percentage points higher F1 scores on
HTML and Latex formats than Markdown. We
further look into Table 14: the main improvement
comes from the table structure understanding task,
where all models significantly improve F1 scores.
Specifically, GPT-40 shows a 22.16% and 14.59%
increase in F1 scores on HTML and LaTeX tables,
respectively, compared to Markdown. The improve-
ment is even more significant for Llama-3.1-8B-
Instruct, with nearly double the performance gain.

In sub-task evaluations, all models exhibit
around a 2 X improvement in merged cell detection
on HTML tables. Additionally, in table size detec-
tion, all models show varying degrees of progress.
These results indicate that structured table formats
(HTML and LaTeX) significantly enhance the mod-
els’ ability to understand table structures, leading
to improved TableQA performance.

B.4 Impact of Fine-tuning

We initially obtained 34,161 distinct questions,
from which 2,325 were selected as the final dataset
(§3.2). Based on the remaining questions, we ap-
plied the QA acquisition process described in §3.2
to generate QA pairs. These pairs undergo a con-
sistency check but do not undergo a human review.
Finally, we select 16,844 QA pairs for LLM fine-
tuning. The results are presented in Table 15.

Our experimental results demonstrate that fine-
tuning significantly enhances the TableQA capa-
bilities of LLMs. Even small-scale LLMs can
achieve comparable performance with GPT-4o-
mini after fine-tuning. Specifically, the fine-tuned
Qwen2.5-7B-Instruct and Llama-3.1-8B-Instruct

achieved notable improvements, particularly in ta-
ble structure understanding, where they even out-
perform GPT-4o0-mini. These results suggest that
fine-tuning with task-specific data can help models
develop a more structured understanding of tables.

Despite these advancements, challenges remain,
particularly in numerical reasoning and complex
analytical tasks, where even the fine-tuned mod-
els still fall behind. While information retrieval
and data analysis have improved, the ability to per-
form deep numerical computations and multi-step
reasoning over structured tables continues to be a
key limitation. These findings indicate that further
research is needed to enhance models’ structured
reasoning abilities, potentially through structure-
aware training, hybrid retrieval-based approaches,
or integration with external knowledge sources.

Overall, our study highlights the importance of
fine-tuning for improving TableQA performance,
demonstrating that with sufficient task-specific
adaptation, small-scale open-source LLMs can
achieve competitive results against stronger pro-
prietary baselines. In the future work, we can focus
on refining structured comprehension and enhanc-
ing numerical reasoning

C Prompts

Prompt (Role-prompted Strategy.)

B P B 3 & identity , fii I f& T —
{3 source , Al J% H AT BE $E i BF Lk R B2
PRERAT IR NFAE IR, S0 T R A A3
B, FFRBENAER . REXHES ARG
o AT

uestion answer

Figure 5: Prompt in role-prompted strategy.
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Prompt (multi-hop questions)

fE55:

T/J\E—A"?lkﬂﬁigfgﬁj\*ﬁ‘?% IR BT
ﬁ%mﬁﬁeﬂj generate num A #I%EE]DE@

(multi hop uestion) , fE} % BRI KA 0] %
FHEEE AE T HIEOE - ?ﬂEI'ﬂiﬁﬁ%ﬁL%Aiﬁﬁ?ﬁ
FA RS HERAER -

Z%%MEW@&, B RN SR ERIR T HE (R

%,
FEHRRBANATS%E TS, HERENAE
FHFEEFZEE: data ;
FERILAR soNt& =t -
AR ER

Z bR R

few shot text

Fi:
table

Figure 6: Prompt for multi-hop questions in template-

prompted strategy.

Prompt (Consistency Check)

HRE LT R =AER, ARX=PER
REENE LR —2 . MRERZAFEE LT
58 NLEITUR B M E 2 LR RIE L, 154
Wi A—8; BNHEA —2 -

FEARTEIE T ARSI -
ot (BRI =DBERONE S, GEN
,Hi%ly‘\\ FIERME BRI 18R BFEAE

- ERTILAR- ]
%m (—% ~—%]
BN
[
uestion
%% H

answer
%% H
answer
%% H

answer

Figure 7: Consistency Check prompt.

Prompt (Ambiguity Detection)

£%5
TEIRIE T RBAERIOCRTREE, FIWZL S

B BFELL BN

1B SCBIABN AR A R AR AR £ AR A 2K
BN L B ZETCIERE RS -

Ei’)ulﬂw_ )R ) 5 2R A R T A T L
s Hjﬁﬁﬂzﬁﬁiﬁ?ﬂiﬂﬂ’]#%ﬁ M LA N AEA
253

BRAH: SEANEESEZURNNE, BEF
L PATRERE SR, B M LAY 4 9 ik — A
RIEE R -

TEREHCHR R S

0T (R IRIA S S~ RER - VAT B RN
A A FEAT 4017

Eo G|

e

context

BRI
answer text
[

uestion

Figure 8: Ambiguity Detection prompt.

Prompt (Template-prompted Strategy)

55
IR *ETELJ?%K% ¥ (ERER . ZHER. o
HEW . HF . St BEWE . FRS T X
T BEHSHT - FHERN - AERPERINT . JEE
ZRAE] PREMESRE NP0, 40
MR E SR -

ERIRSE HATE BRI 2 VLR, REMFAG
FRHESR

[ RIS WG 3T FH P B 55 AT R ] A (el

R B R TR EAR R B RIS B IREE R, B
AR L -

(25 ik ‘
R, EM BB AR, T
FAER T E - SR B E . E EE A
TR ICTE CET R

P REETE (IR ST . %
B) WEHECES TR, SRS A -
SMTEN]. AR T BT R T IR -
HEFF . ARARAEE N 20 e OB T HE P sk
R SRR N TL AR LA
Yeit KEER R EORUR A (T AT, R R
R . o
M E T e e C R K
BRRORE R, LI B BAAR . Xt
BRI OEC A £ RB  T

FLRAHT: MR Z AR RATANT, Foembs
FEAT E TR AR, SUBRRERE 4 R (L
BEIERRH . BRBEEA S BIES, MREBR
i A AT PR
SEHAMT: RPN S MRS - M5 LA
Z MR REANE, EE R E A -
BT W SRS TR R,
KIS - ‘
SRR SR BRSO
Pﬁ%ﬁ%%:%%ﬁﬁﬁ%W§,%éﬂu@%ﬁ
8T -

TEE: PURTEZRAR N A TCIE R ) (AR -

ZRINE . N RBANEHTZRANE, RFER
HMEZA A, T RS E— K, HEE X
HIEELFEL -

EHRE LUR AR SO EM, ZRIFER

R REANE 225k B T3

[i] R

ER

%5

[i]

ER

eSSl

[] R [ [
ER TR LR
KAl BRNE

k.
table

Figure 9: QA generation prompt in template-prompted
strategy.
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Prompt (QA type classification)

PP SRS - FRIE SR, KR KR DI K

; B2 — o MBARDHIE RRBHIER], HHH
Prompt (Structured answer extraction) E .

TIge K5l

) LT 2 46 2 2% 1 TR U 190 L35 A L 5L 1) 7 ) EHE. SN R—FREEA FRIOER, T
B, HRIES % ERRIUNE ARERIRA SR, R 25 PS8 - 609 B B2 D\ 70 v R B 28 5K
BAELL SONE RILER . LI 2AIIA: PAS BAIRERE . R . PA—Z5 MR R A A %
RGP =0l . 2l S EOEERT MERE
B b (] & 2 A F I kT, FAI—?  ( KGEE . A

53T 80 E RN | ) I KRR (v S
ISR F kTS5« EARAIA K, BRER LT RB) NRAEHORA TR, IR T 55 A 2L
SCRD TR . T AR 55 A R G AL e S e e
BAYE(Z A HEE LT SO . /TWJ/\ 3| lﬁﬁﬁ%ﬁ%gﬁﬁﬁ BT HBETHFT
R RTINS R B — S
Syl el X - SR ARIBIEE T BN BRI T ARG
NSRS F AR« BB LS AR - i 1 BB A E R 5 B
MRRIEEIG G 7L A RTESRE, B WS Rl A AN B B T b

LA S ] B B 7 R B1 F mo R T Tl

HEPF: RIS IN F R RSB,

BB RN FERAM - BME - BLBEEILBMER. T
WREENEOIER: BTG M, W2 mzxggﬁﬁﬁgm%ziﬁm@ﬂ%wg%;
ﬁ%ﬁgﬁﬁﬂﬁﬂﬂﬁﬁgiﬁﬁg,%ﬁﬁﬁ A RIEBTE  ER EME LS
e et G b gt i 3
&,Qﬁﬁﬁ%ﬁﬁﬁﬁﬁ\ﬁﬁ\%ggg?ﬁ H%ﬁf%%@ﬁ%%ﬁﬁﬁﬁﬁmwﬁ,m%&
BALE TGS BFRFERE . R A BREOBCEEHR L ST . Rl . AT LR
ggg@&%gﬁa,MRﬁ@zWﬁmwmaw %&ﬁﬁ%&?m%:ﬁﬁﬁﬂﬂﬁ%&%ﬂjﬁ
ERE o I
m%%%%%ﬁﬁﬁﬁ\ﬁXﬁﬁ%Emﬁﬁ, BUEV I RGBS GREEN, 5
BAEZEE  SEERER. FEANRE . §%Egﬁ§§ﬁ%%ﬁ§%E%§%Qﬁﬁﬁg
FHYME « PALE S A ~ IR ~
- o %, R . BUBASRANEEIRLD? (GHE
~nﬁm%$%ﬁTm FAME) R : ETRR A o (8 T e b
EREMTUELS? GTEZH)
R LRI ¥ 5 RIS R % A R T [
A8 EATFAEEEA A R

b

. RETELSERARZEET IILAES? (B
Segiit, WEAT) R - A ATIERR E
ARG T, R B B i BOR Y 7

| IATIEEEGREE RHGIEZD? (RELMF, REEH)
o RER RBER RRE B ST, MR IR 0% R AT 007, e
B OBAER SER S0 B PR AN, SR R 2

EEHEE . BESES 2 MRS, TTRY
K e AT AN E MEMERE o Ry - A w] F 4 A R
K EERENF R B 47 (FHIEKANE
JREE) R . BT B I E A AR LR A R
K2 (PPAERNARE R

J b 7] 7 XA R E RS - X5 IRl
(a1 45 ] Z AW ERBAACE, EEREEEDT . _E - &
uestion JAETE R RS 2 LR A AR (L2 oRf -
@EsEd| KLY . FRRBENRE TEREDT?

HEEDHT: W RS T RRRE R ORI, Kk

ST KRR R - R . AFIHIEF RETE
EESED) i, BRHANE? Rl . REEECR A LR RN
TR o RS RAT 42
EELTH SRR IRBIEEE TR R EEN T AR .

Ul ) fln: BRLLI E A28 B8 BT 1 SRSk
. . . VARG RBORHE BIFN BRI, #%
Figure 10: Structured answer extraction prompt. F P T B 2 ]

Figure 11: QA type classification prompt used in role-
prompted strategy.
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Prompt (Evaluation)

HiF
A 0 [ 5 R R BB B R
B, BT

PR B R
EALARMERIEE ) RAELE | BIONES%
BERPRTFRE, NWKERBE HA S48 HRIE
A [R] A BB E RBE EI A o R B L B AL
K~ BRI RSN .
%o EL IR HE AR S i B 2 AT 4D e U B B Y
K, NSZRBEEZEHF RN —EE, NEFRSH
MNEREE . AFENRHEM . AT55%%E
RAPRNFEZERAN N, AMAFER -
KHHIRE: KRR KRS 5555 RZ—xt
b, 3PN AR TARE
EIRER (false) : WIRARAZHIMT —
BER, FHXEERSSBERTLIEN MU
ZRAHMRAEE (RRER—-DEEPHIE, M2
FPRETERERER) |, NHAENES.
EWER (true) . MRZFEESESEER
H—EREV—HEmEE, MNIE-
EE: BONKEREEFIREAERE

. HEEMMNE true B false PRZE, BRED
BRI -
o Ll e
[m] 51 3%
11— 113}
SBER ER R
” KT | & KB [E] Ko [E]
B BEIEH true false
11— =13}
SHEER ER
Rl ERs KA & KEEE
% KA EE S EES
RBIEH  false true false false
SHEER
reference answer
KRR [

Prompt (CoT inference)

You are a helpful assistant. You should
think step-by-step and provide a
detailed and helpful response.

A : {context}

[l A : {question}
Infomation Retrivial, Sorting, Statistics,

Multi-hop , Data Analysis (Except Rejection),
Conversation,

1A : {question}iF &+t H 4& Rt iT AL 32,
LAY, RERL, EAN, REA
{20 %, GHEOEBIANAN, F5EEFY
WEANERAOE, KRG RIETHLR,

Rejection

LA : {context}

1A : {question} e F LA N &Lk B A%
AL, AR .

S A: {context}

Table Size Detection

AL : {question} A AT FIHKEHEFESE
sk, A% A YA TFISON#& K 4ir th Table Size
Detection: {"47%k": 174, "714": 7%,

L A-: {context} Merged Cell Detection
[ : {question}F 4k &J £ LA & &4k k, %A L TISON
A Kbk, left_topk mE&FEAMMAELARIMZE,
right_bottom& =& % TAEMI & T A& 5142 E, cell value® &
HETANE, PIA A E AT
[
{

"left_top": [],

"right_bottom": [],

"cell_value": ""

}

]
FERAESFEAMUNALE RS KRB LT .
. J

| [Dreches s Figure 13: CoT prompt in inference. The prompt varies

depending on the tasks, with the text in red representing
the tasks corresponding to each

Figure 12: Evaluation prompt in SEAT.
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Window Size: 5
Context Character: 300

[ table text ][

S

df
‘ PDF Parsing
figure

] [ caption ]

(L ine

] [ text ] [ figure caption ]

Field

‘ Get Context

" . [ figure ][ table text ] Stop‘x,
' e % figure caption
' : Figure. Example | Jeesi— y
i Table. Exampl et | v
. e bapple (e )
> 1 1 C H
o) 1 [ ] R v
,.7/ ! ! Text Above Table
Figure. Example : : '
U a
Table. Exampl t pward
able. bxample
> Search Table. Example
——>[ table text
Downward
Search
Ef i~ Table. Example ':
1
| Figure. Example2 ' Text Below Table
1
1

|:I |

I H H

[ ~ 1 H
v R B
| @ . :V[ figure || title ]
| rm B | m[ 4]fgu % Stop
i_text caption J |

Figure 14: Overv

iew of Heuristic Rules for Table Context Extraction.
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Algorithm 1 Heuristic Rules for Table Context Extraction
Input:

» L: PDF layout analysis results, a list of elements, including layout type and textual content.
* w: Window range for context extraction, expressed as the number of paragraphs or layout blocks.
* x: Character count limit for the extracted context.

Output:

» T: A set of tables, each table augmented with its extracted upward and downward context.

1: procedure EXTRACTTABLECONTEXT(L, w, K)
2: T < LocateTables(L) > Identify all tables in the layout
3: for each Table T' € T do
4: Cuwp +— 1] > Initialize upward context
5: Clown < 0 > Initialize downward context
> Upward Context Search
6: for each Window w in TraverseUpward(T’, w) do
7: if IsHeader(w) then
8: Cyp < ExtractText(w,T)
9: break
10: else if IsNonTextContent(w) then
11: Cyp  ExtractTextBelow(w)
12: break
13: else if CharCountExceeded(Cyp, x) then
14: break
15: else if WindowRangeExceeded(w) then
16: break
17: end if
18: SkipIrrelevantContent(w)
19: end for
> Downward Context Search
20: for each Window w in TraverseDownward(T', w) do
21: if IsHeader(w) then
22: Caown < ExtractText(T,w)
23: break
24 else if IsNonTextContent(w) then
25: Claown <— ExtractTextAbove(w)
26: break
27: else if CharCountExceeded(Cown, %) then
28: break
29: else if WindowRangeExceeded(w) then
30: break
31: end if
32: SkipIrrelevantContent(w)
33: end for
34 CombineContext(T, Cup, Caown)
35: end for
36: return 7 > Return tables with augmented context

37: end procedure

38: function LOCATETABLES(L)

39: return ElementsOfType(L, “Table”)
40: end function
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