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Abstract

Video large language models (Vid-LLMs) have
shown strong capabilities in understanding
video content. However, their reliance on
dense video token representations introduces
substantial memory and computational over-
head in both prefilling and decoding. To miti-
gate the information loss of recent video token
reduction methods and accelerate the decod-
ing stage of Vid-LLMs losslessly, we introduce
SPECVLM, a training-free speculative decod-
ing (SD) framework tailored for Vid-LLMs that
incorporates staged video token pruning. Build-
ing on our novel finding that the draft model’s
speculation exhibits low sensitivity to video
token pruning, SPECVLM prunes up to 90%
of video tokens to enable efficient speculation
without sacrificing accuracy. To achieve this,
we perform a two-stage pruning process: Stage
I selects highly informative tokens guided
by attention signals from the verifier (target
model), while Stage II prunes the remaining re-
dundant ones in a spatially uniform manner.
Extensive experiments on four video under-
standing benchmarks demonstrate the effec-
tiveness and robustness of SPECVLM, which
achieves up to 2.68× decoding speedup for
LLaVA-OneVision-72B and 2.11× speedup for
Qwen2.5-VL-32B. Code is available at https:
//github.com/zju-jiyicheng/SpecVLM.

1 Introduction

Video large language models (Vid-LLMs) (Li et al.,
2024a; Ahmed et al., 2025; Lin et al., 2024; Fang
et al., 2024) have demonstrated strong performance
in video comprehension. Most Vid-LLMs use a se-
quential visual representation, encoding sampled
frames into tens of thousands of video tokens along-
side language prompts to achieve high generation
performance. However, as long videos become
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Figure 1: Comparison of vanilla autoregressive decod-
ing, video token reduction, and our SPECVLM.

more common, this design introduces significant
memory and computational costs. For instance,
LLaVA-OneVision (Li et al., 2024a) processes each
video frame into 196 tokens, meaning a two-minute
video at 60 FPS would require more than 1 million
tokens by default without any reduction. The large
number of video tokens increases the sequence
length, resulting in quadratic attention overhead
during prefilling. During decoding, the autoregres-
sive nature of generation exacerbates the memory-
bound issue, as the growing key-value (KV) cache
must be loaded and stored in GPU memory along-
side model parameters, limiting scalability and in-
creasing latency (Lin et al., 2024).

Recent studies have proposed token pruning
strategies (Chen et al., 2024a; Liu et al., 2024; Xing
et al., 2025; Zhang et al., 2024b; Tao et al., 2025;
Shen et al., 2025; Huang et al., 2025) to mitigate
the rapidly growing overhead in storage, access,
and computation incurred by tons of visual tokens
(including image tokens and video tokens). These
methods typically exploit token redundancy and
importance variance, applying pruning during the
prefilling stage to reduce subsequent memory and
compute costs during decoding. However, by phys-
ically removing tokens from the input, they incur
inevitable information loss—especially problem-
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atic in video understanding tasks where rich spatial
and temporal cues are essential for maintaining
generation quality. In addition, they offer limited
decoding speedup due to repeated access to full
model parameters at each generation step.

Fortunately, speculative decoding (SD) offers a
promising solution to accelerate LLM decoding
without sacrificing quality (Leviathan et al., 2023)
by using a lightweight draft model to propose mul-
tiple draft tokens, which are then verified in par-
allel by a target model. However, deploying SD
for Vid-LLMs is challenging. First, autoregressive
draft models for LLMs (Du et al., 2024; Li et al.,
2024d,c) suffer from reduced efficiency in video
scenarios because they require linearly increasing
KV caches, which become the dominant bottleneck
as the length of the video grows. Second, the visual
context in video is relatively long and sparse, with
significant redundancy. While existing SD method-
ologies tailored for long-context scenarios (Sun
et al., 2024; Chen et al., 2025; Yang et al., 2025a)
are modality-unaware, they fail to exploit the heavy
redundancy and distinct attention patterns of video
tokens (detailed in Appendix D), leading to perfor-
mance degradation (see Section 4.3). These gaps
motivate us to perform video token pruning for the
draft model, thereby reducing its KV cache size
and enhancing speculation efficiency.

Building on the observation that draft model
speculation exhibits low sensitivity to random to-
ken pruning at low pruning ratios, we propose
SPECVLM, a training-free speculative decoding
framework tailored for Vid-LLMs. As illustrated
in Fig. 1, SPECVLM integrates staged video to-
ken pruning guided by verifier attention, extending
decoding speed gains to high pruning ratios while
preserving lossless generation quality. Specifically,
we utilize the attention guidance from the target
model, and distinguish highly informative video
tokens from redundant ones with low attention.
Subsequently, we preserve the highly informative
tokens following Top-P retention, while discarding
the low attention tokens through spatially uniform
reduction. By prefilling only the pruned video to-
kens, the draft model with memory-efficient KV
caches achieves enhancing speculation.

To summarize, our main contributions are:

(1) To the best of our knowledge, we are the first
to explore speculative decoding for lossless
acceleration in Vid-LLMs, and further identify
effective video token pruning as the silver bul-

let for the undesired slowdown in draft model
speculation caused by video token explosion.

(2) The surprising insensitivity of draft model
speculation to random video token pruning
at low pruning ratios sparks the emergence
of SPECVLM, a training-free speculative de-
coding framework with verifier-guided staged
video token pruning that pushes the perfor-
mance boundary under aggressive pruning.

(3) Thorough experiments on four video under-
standing benchmarks show SPECVLM prunes
over 90% of video tokens for the draft model
while retaining nearly 90% of the speculation
accuracy, achieving up to 2.68× and 2.11×
lossless decoding speedup for the LLaVA-
OneVision and Qwen2.5-VL, respectively.

2 Preliminary Study

2.1 Naive Speculative Decoding for Vid-LLMs

Given a target model (verifier) Mt and a draft
model Md, let Tt and Td be the time for Mt and
Md to decode one token. For a predefined specula-
tion length γ, T γ

t is the time for the target model to
verify γ tokens in parallel. Then, the time for each
speculation decoding step is written as:

T γ
step = γ · Td + T γ

t . (1)

Let τ be the average accept length of all decoding
steps, the per token time of naive SD is given by:

T γ
token = T γ

step / τ. (2)

Hence, the speedup ratio is expressed as:

Speedup =
Tt

T γ
token

=
τ · Tt

γ · Td + T γ
t

= τ / (γ · Td

Tt
+

T γ
t

Tt
).

(3)

Eq. (3) reveals that the speedup ratio is affected
by (i) average accept length τ , (ii) draft to target
latency ratio Td/Tt, and (iii) verification to tar-
get latency ratio T γ

t /Tt, as described in previous
study (Chen et al., 2025). For a normal batch size,
T γ
t /Tt is close to 1 because the GPU parallelism

is not fully utilized and the bottleneck still lies in
memory bandwidth (Patterson, 2005). Therefore,
the speedup ratio primarily depends on (i) and (ii).

Ideally, a draft model should have low latency,
leading to a ratio Td/Tt ≪ 1. This condition is
usually satisfied for LLMs in short-context scenar-
ios by applying a parameter-efficient draft model.
However, for Vid-LLMs with long video input, the
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Figure 2: (a) Draft latency breakdown of LLaVA-OneVision-7B. Results are measured on a single NVIDIA A100
GPU by averaging the decoding time of 100 tokens. (b) Average accept length comparison on standard SD (Std.-SD).

latency bottleneck of the draft model shifts from the
parameter scale to the accumulated KV cache, as
illustrated in Fig. 2 (a). As the input length grows,
the expanding KV cache of the draft model leads to
increased draft latency, especially in the attention
layers where the entire KV cache is moved from
GPU’s high-bandwidth memory (HBM) to its on-
chip memory (SRAM) in each decoding step (Sun
et al., 2024). Hence, reducing the draft model KV
size is a straightforward way to cut down draft la-
tency and improve overall speedup for Vid-LLMs.

2.2 Speculation Sensitivity for Token Pruning
To reduce the draft model KV size, we incorpo-
rate video token pruning to shorten the video token
sequence prefilled by the draft model. However,
applying video token pruning may lead to a po-
tential loss of visual information, which would in
turn affect the accuracy of speculation. Concretely,
as the pruning ratio increases, SD achieves faster
speculation from the reduction in draft latency, but
at the cost of a decreasing average accept length τ (
(i) in Section 2.1). To tackle this trade-off, we aim
to address the following key question: Is the draft
model sensitive to video token pruning, i.e., can it
maintain a stable accept length when part of the
visual information is removed?

To investigate this question, we intuitively ap-
ply random token pruning for comparison with
naive SD policy incorporating tree drafting. We use
samples from the VideoDetailCaption (LMMs-Lab,
2024) benchmark and employ LLaVA-OneVision
to generate detailed captions of 256 tokens. We
report the result in terms of average accept length
τ as a direct measurement of speculation accuracy.

Our result in Fig. 2 (b) indicates that random
token pruning does not significantly compromise
the average accept length under low pruning ra-
tios (≤ 50%), and even leads to improvements at
certain pruning ratios. We attribute this to the ex-

cessive redundancy in long video input. Numerous
redundant tokens divert attention away from impor-
tant ones, and thus, moderate token removal may
yield a positive impact. Moreover, when visual in-
formation is entirely removed (100% pruning ratio),
we observe a significant drop in the speculation ac-
curacy and overall speedup, indicating that partial
retention of video tokens is a better choice. This
finding extends the previous work (Gagrani et al.,
2024), which suggests that the draft model may not
require visual context as input.

To summarize, our experiments demonstrate that
SD is not significantly sensitive to video token
pruning under low pruning ratios, which paves
the way for its application. More precisely, it al-
lows us to dramatically diminish the latency ra-
tio Td/Tt without greatly affecting average accept
length τ in Eq. (3), serving as an enhanced solution.

Although random pruning can serve as a de-
cent way to reduce the visual token number (Wen
et al., 2025), it suffers from a considerable drop
in the average accept length at high pruning ratios
(i.e., > 50%), as shown in Fig. 2 (b). We argue
that a more efficient and robust method is needed
due to the following reasons: (i) As video length
grows, methods under lower pruning ratios fail
to effectively mitigate the high cost of KV cache.
(ii) Random pruning is inherently stochastic and
context-agnostic, which provides no deterministic
lower bound on performance: with non-zero proba-
bility, it may discard all tokens corresponding to a
critical semantic element (e.g., object boundaries
or scene transitions in information-rich videos). To
address these issues, Section 3 introduces a new
video token pruning strategy that maintains a high
accept length τ across diverse pruning ratios.
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Figure 3: An overview of SPECVLM. In prefilling, the
target model guides the pruning of video tokens for
the draft model. In decoding, the draft model subse-
quently makes efficient speculation to accelerate the tar-
get model. The pruning process consists of two stages:
Top-P retention of highly informative tokens and spa-
tially uniform reduction of low-attention tokens.

3 SPECVLM: Enhancing Speculative
Decoding for Vid-LLMs

In this section, we introduce SPECVLM, an en-
hanced speculative decoding framework incorpo-
rated with video token pruning, as depicted in
Fig. 3. In Section 3.1, we study the attention pat-
tern of vision-language input, and present our target
model’s attention-guided token rating scheme. In
Section 3.2, we analyze the attention score distribu-
tion and propose a two-stage token pruning strategy
accordingly. Our method is simple yet effective,
and can be applied in a plug-and-play manner.

3.1 Attention-Guided Token Rating from
Target Model

To achieve accurate pruning, it is intuitive to pre-
serve the important video tokens related to the
query (e.g., the main subjects, actions, and back-
ground asked to describe). In previous studies,
token importance has been evaluated using criteria
such as [CLS] score (Shang et al., 2024), atten-
tion information from shallow layers (Chen et al.,
2024a), or attention maps from small VLMs (Shao
et al., 2025; Zhao et al., 2025). We argue that these
methods differ from ours in their focus during to-
ken pruning: while they aim to preserve output
quality of the original model, our objective is
to make the draft model’s output better aligned
with that of the target model.

Fig. 3 illustrates how SPECVLM leverages atten-
tion signals from the verifier (target model) to guide
video token pruning for the draft model. The re-
sulting compact KV cache enables the draft model
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Figure 4: Attention map from LLaVA-OneVision-72B
on an input comprising video tokens sampled from four
frames in VideoDetailCaption and a language prompt.

to perform efficient speculation, accelerating the
target Vid-LLM. This design offers key advantages:
(i) the target model, being more powerful and struc-
turally similar to the draft, provides more accurate
attention signals; (ii) allowing the draft model to
“see” where the target model attends helps improve
alignment; and (iii) from a latency perspective, the
design adds minimal overhead, as target attention
is computed regardless of speculation, and the draft
only processes the pruned visual input.

To extract accurate attention signals from the
target model, we follow previous work (Tu et al.,
2025; Li et al., 2025b,a) to study the attention
pattern of vision-language input (see Fig. 4). By
obtaining the full attention matrix, we observe a
clear modality boundary emerging along the query
dimension as Tu et al. (2025) described. In par-
ticular, video tokens attend to other video tokens
densely while language tokens only pay attention to
a few video tokens with high concentration, which
reflects strong specificity. Moreover, the tokens
generated during decoding are language tokens be-
low the modality boundary, where attention pat-
terns exhibit similarity. Based on the above obser-
vations, we extract language-to-video attention
scores from the target model as guidance to rank
video tokens for pruning.

Specifically, we take the query-dimensional part
of the language modality QL together with the key-
dimensional part of the vision modality KV , and
the guidance matrix G is defined by:

G = Attention(QL,KV ) = Mi,j ,

and (i, j) ∈ {L, V }, (4)

where L and V denote the language token set and
video token set, respectively. Their cardinality are
represented by ∥L∥ and ∥V ∥. Next, we rate video
tokens based on the average attention score they
received in G. The scores A are computed to guide
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Figure 5: Long-tailed distribution of attention scores.

token pruning, with formulation:

A = {aj}, where aj =
1

∥L∥

i<∥L∥∑

i=0

Gi,j . (5)

This operation is performed by averaging across all
layers and heads to obtain a holistic assessment.

3.2 Two-Stage Token Pruning for Draft Model
Given an input video token set V and a pruning
ratio r, our goal is to prune redundant tokens and
retain informative ones for the draft model, guided
by the attention scores A. Notably, we observe
that the attention scores in A follow a long-tailed
distribution, as shown in Fig. 5. This distribution
reveals two key insights: (i) A minority of video to-
kens (10%) accounts for of the total attention large
percentage of attention scores (over 50%), which
makes their importance stand out compared to other
tokens. (ii) The rest of the attention is amortized
across the remaining 90% of tokens, making it dif-
ficult for the model to differentiate among them,
as their attention scores are uniformly low. We
attribute this to the high redundancy among video
tokens—most carry limited semantic value, yet col-
lectively consume a significant share of attention
due to their volume. This observation motivates a
binary perspective in our pruning strategy.

Stage I: Top-P Retention of Highly Informative
Tokens. To preserve highly influential video to-
kens, SPECVLM applies Top-P filtering to con-
struct a candidate set whose cumulative attention
scores exceed a threshold λr (λr ∈ [0, 1]), deter-
mined through a single offline evaluation on a small
calibration set with no overlap with the test set 2.
This selection scheme enables dynamic adjustment
of the token number for different queries, and en-
sures that sufficient visual information is retained.
Concretely, for a given pruning ratio r, we first sort
A, and then repeatedly add tokens to the retention

2Model-level selection of λr is detailed in Appendix A.

set VR, until the proportion of their accumulated
attention score reaches the predefined threshold λr:

VR = argmax
c

A, where

c = min



c′

∣∣∣∣∣∣

i<c′∑

i=0

ai ≥ λr

i<∥V ∥∑

i=0

ai



 .

(6)

Stage II: Spatially Uniform Reduction of Low
Attention Tokens. To handle tokens with uni-
formly low attention, we exploit the spatial redun-
dancy of video context. As mentioned above, the
subtle variations in attention scores make it diffi-
cult to distinguish between tokens in the “tail” part
in Fig. 5. In Section 4.3, we empirically prove
that continuing Top-P retention for these tokens
would lead to suboptimal performance. Instead, we
leverage the spatial continuity and strong local sim-
ilarity inherent in video tokens, and select tokens
to preserve at a fixed spatial interval I , where:

I =
∥V ∥ − ∥VR∥
(1− r)∥V ∥ . (7)

This operation is performed uniformly in space
on the remaining token set V \ VR. Given that spa-
tially adjacent video tokens are often highly similar,
their partial removal incurs minimal visual infor-
mation loss. Concurrently, retaining them at fixed
spatial intervals allows the spatial structure to be ef-
fectively preserved. For a comprehensive study, we
compare our spatially uniform reduction method
with other temporal redundancy-based methods in
Section 4.3, and find that spatial redundancy tends
to be more significant in our SD setting. We ana-
lyze this phenomenon in Section 4.3, and choose
to design our approach at the spatial level. Even-
tually, the tokens chosen in this step are collected
as set VU , which is merged with VR to form the
final retention set of video tokens VR ∪ VU . The
draft model is then prefilled using video tokens
in VR ∪ VU along with language prompts, with a
KV cache reduced to 1− r of its original size and
maximal preservation of video information.

Bonus: Seamless Tree Attention Integration.
SPECVLM integrates tree attention by adopting
the static tree structure from EAGLE (Li et al.,
2024d), implemented via a specialized attention
mask3. The draft model generates multiple can-
didate tokens to form a draft tree, which are then
verified in parallel by the target model. This design

3Tree structure is detailed in Appendix B.
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Setup Method VideoDetailedCaption MVBench MVLU LongVideoBench

τ Tokens/s Speedup τ Tokens/s Speedup τ Tokens/s Speedup τ Tokens/s Speedup

Std.-SD
72B-7B

Vanilla - 2.94 - - 2.93 - - 3.03 - - 2.75 -
SD-Tree 3.68 6.12 2.08× 3.63 5.91 2.02× 3.30 5.75 1.90× 3.57 5.51 2.00×
SD-Rand 3.19 7.36 2.50× 3.32 6.75 2.30× 2.83 6.03 1.99× 3.14 6.73 2.45×
SPECVLM 3.48 7.88 2.68× 3.40 6.87 2.35× 2.97 6.06 2.00× 3.33 7.04 2.56×

Self-SD
7B-7B

Vanilla - 13.31 - - 12.36 - - 11.82 - - 13.55 -
SD-Tree 4.50 11.25 0.85× 4.52 10.66 0.86× 4.54 10.30 0.87× 4.50 12.10 0.89×
SD-Rand 3.81 15.73 1.18× 3.93 15.99 1.29× 3.64 13.97 1.18× 3.59 16.83 1.24×
SPECVLM 3.98 16.74 1.26× 4.06 16.47 1.33× 3.70 14.62 1.24× 3.84 17.63 1.30×

Table 1: Average accepted length τ , decoding speed (tokens/s), and speedup of LLaVA-OneVision series on
VideoDetailedCaption, MVBench, MVLU, and LongVideoBench. “Vanilla” refers to vanilla autoregressive
decoding while “SD-Tree” denotes speculative decoding with draft trees. “SD-Rand” denotes SD-Tree incorporated
with random token pruning. By default, r = 90%.

Setup Method VideoDetailedCaption MVBench LongVideoBench

τ Tokens/s Speedup τ Tokens/s Speedup τ Tokens/s Speedup

Std.-SD
32B-7B

Vanilla - 4.88 - - 5.50 - - 4.91 -
SD-Tree 3.27 6.83 1.40× 3.18 7.56 1.37× 3.24 6.82 1.39×
SD-Rand 3.21 9.93 2.03× 3.17 10.13 1.84× 3.23 10.20 2.08×
SPECVLM 3.23 9.99 2.05× 3.18 10.17 1.85× 3.28 10.35 2.11×

Self-SD
7B-7B

Vanilla - 10.41 - - 12.28 - - 9.63 -
SD-Tree 4.38 8.65 0.83× 4.31 10.02 0.82× 4.17 7.82 0.81×
SD-Rand 3.75 15.08 1.44× 3.89 16.72 1.36× 3.77 14.49 1.50×
SPECVLM 3.83 15.59 1.50× 3.92 16.80 1.37× 3.84 15.33 1.59×

Table 2: Average accepted length τ , decoding speed, and speedup of Qwen2.5-VL series on VideoDetailedCaption,
MVBench, and LongVideoBench (the sampling protocol of MVLU is incompatible). By default, r = 90%.

improves decoding speed by enabling more tokens
to be accepted per forward pass.

4 Experiments

Target and Draft Models. We select two widely
used Vid-LLM series: LLaVA-OneVision (Li et al.,
2024a) and Qwen2.5-VL (Ahmed et al., 2025).
Two representative SD settings are employed. (i)
Standard Speculative Decoding (Std.-SD): using
a smaller Vid-LLM from the same model series as
the draft model. (ii) Self-Speculative Decoding
(Self-SD): using the model with original param-
eters and pruned KV cache as draft model. This
setting avoids introducing additional models, al-
lowing the acceleration gains to come solely from
video token pruning, which can serve as a more
general solution. We do not introduce a training
process for the draft model as the major bottleneck
is KV caches rather than model parameters, which
aligns with Chen et al. (2025); Yang et al. (2025a).

Tasks and Benchmarks. Since SPECVLM
mainly focuses on the acceleration during decoding,
we evaluate its performance in video captioning
and video description tasks, which require generat-
ing long text paragraphs. The benchmarks we use
include VideoDetailCaption (LMMs-Lab, 2024),
MVBench (Li et al., 2024b), MVLU (Zhou et al.,

2025a), and LongVideoBench (Wu et al., 2024).
Experimental details are elaborated in Appendix A.

Metrics. We assess the acceleration effects using:
(i) decoding speed and wall time speedup ratio
relative to vanilla autoregressive decoding, and (ii)
average accept length τ , which directly reflects
the speculation accuracy. Output quality is not
evaluated since our method is lossless.

4.1 Main Result

We evaluate the efficiency of different baselines
in Tables 1 and 2. For LLaVA-OneVision series,
SPECVLM achieves a speedup ratio up to 2.68×
and 1.33× under Std.-Sd and Self-SD, respectively.
For Qwen2.5-VL series, up to 2.11× and 1.59×
speedup are attained accordingly. The default prun-
ing ratio is set to 90% to maximally reduce the
KV cache size. Still, we include experiments on
different pruning ratios in Section 4.2. The case
study and computation breakdown of SPECVLM
are elaborated in Appendices C and F.

Token pruning significantly enhances the per-
formance of speculative decoding. Compared
to vanilla autoregressive decoding, SD-Tree yields
a basic speedup through the draft-and-verify pro-
cess. When incorporated with video token prun-
ing, the speedup ratio is largely boosted due to
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Figure 6: Average accepted length across different baselines as pruning ratios scale up.
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Figure 7: (a) SPECVLM vs. window-based methods. (b) Spatial vs. temporal redundancy-based methods.0.0 0.2 0.4 0.6 0.8 1.0
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Figure 8: Change in average accepted length (∆) of the full SPECVLM and its ablated variants.

the utilization of an enhanced draft model with
reduced KV cache. For Std.-SD, video token prun-
ing improves decoding speed by 29% and 43%
for LLaVA-OneVision-72B and Qwen2.5-VL-32B
on VideoDetailCaption compared to SD-Tree. For
Self-SD, video token pruning facilitates a 1.24×
to 1.33× speedup for LLaVA-OneVision-7B and
a 1.37× to 1.59× speedup for Qwen2.5-VL-7B.
Additionally, we further note that the influence of
video token pruning would become even greater as
the video length increases, which can be inferred
from the trend revealed in Fig. 2 (a).

SPECVLM shows superior performance across
various datasets and model architectures. Ta-
bles 1 and 2 illustrate that SPECVLM outper-
forms random token pruning under a high prun-
ing ratio. On VideoDetailCaption, the average ac-
cept length τ of LLaVA-OneVision-7B using our
method drops by only 5% under 90% video to-

ken reduction, which is 40% of the degradation
observed with SD-Rand. For Qwen2.5-VL series
and on other datasets, although the sensitivity to
pruning is lower, our method consistently demon-
strates higher speculation accuracy to varying de-
grees. Moreover, a higher value of average accept
length τ in SPECVLM also implies a higher the-
oretical upper bound on overall speedup, demon-
strating the potential of our method to be integrated
with other draft model optimization techniques.

4.2 Scaling Law for Pruning Ratio
For a comprehensive study, we conduct the exper-
iments across a wide spectrum of pruning ratios
as shown in Fig. 6, in which SPECVLM achieves
a consistently higher speculation accuracy. More-
over, as the pruning ratio increases, the gap be-
tween SPECVLM and random token pruning grad-
ually widens, demonstrating the effectiveness of
SPECVLM under high pruning ratios.
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Decoding Step 0 1 2 3 4 5 6 7 8 9 Avg (First 10 Steps) Avg (All Steps)

Average Accepted Length 4.3 3.1 3.7 3.4 3.7 2.95 3.6 3.6 2.5 3.1 3.39 3.48

Table 3: Average accepted length vs. decoding steps.

4.3 Ablation Study

Necessity of Attention Guidance. Here, we
compare our method against attention-agnostic
pruning to validate the necessity of attention guid-
ance. We adopt a window-based approach com-
monly similar to StreamingLLM cache (Xiao et al.,
2024), which retains initial and trailing language to-
kens along with video tokens within a fixed window.
Specifically, we place the window over the front,
middle, and end portions of the video tokens, retain-
ing a fixed number of tokens according to the prun-
ing ratio. Fig. 7 (a) shows that our attention-based
method (SD-Attention, i.e., SPECVLM without
Stage II) outperforms window-based approaches by
enabling finer-grained token selection and higher
speculation accuracy under a fixed KV budget.

Impact of Top-P Informative Token Retention.
To verify the effectiveness of our Top-P informative
token retention strategy, we adopt uniform pruning
in space without the guidance of the attention sig-
nal, as depicted in Fig. 8. In most cases, preserving
highly informative tokens improves average accept
length. For LLaVA-OneVision / Self-SD 7B-7B, an
outlier appears on MVBench, which we attribute to
numerous repetitive action sequences in its subset,
resulting in more pronounced spatial redundancy.

Impact of Spatially Uniform Token Reduction.
Similarly, we remove the second stage of our prun-
ing strategy in Fig. 8 to study the effect of spa-
tially uniform token reduction. The variant of rely-
ing solely on attention signals for token retention
suffers from indistinguishability issues in the uni-
formly low-attention area and leads to the loss of
structural information and a drop in speculation ac-
curacy, further supporting our observation in Fig. 5.

4.4 Exploration of Diverse Pruning Criteria

Inspired by recent work (Tao et al., 2025; Shen
et al., 2025) that explores temporal redundancy, we
aim to address the question: Can pruning based
on temporal redundancy offer greater benefits? To
this end, we compare the following baselines:

(1) SD-Uniform: SD with uniform pruning based
on token positions within the spatial layout.

(2) SD-Frame: SD with full-frame dropping at
regular temporal intervals.

(3) SD-FastVID: Frame-level pruning based on
Top-K similarity of consecutive frame transi-
tions, following FastVID (Shen et al., 2025).

(4) SD-DyCoke: Token-level temporal merging
adapted from DyCoke (Tao et al., 2025).

Fig. 7 (b) suggests that temporal redundancy-
based methods consistently underperform com-
pared to spatially uniform pruning (our fo-
cus)—and even random pruning—within the SD
framework. We believe this indicates that the draft
model benefits from retaining the overall tempo-
ral structure and distribution of camera shots to
achieve better alignment, while some spatial infor-
mation is more redundant in this context.

4.5 Impact of Decoding Steps
To validate the effectiveness of our method in se-
lectively preserving visual information to enhance
speculation accuracy, we performed experiments
on the average acceptance length vs. decoding
steps using LLaVA-OneVision-72B/7B with a 90%
pruning ratio setting on VideoDetailCaption. We
averaged the performance over 50 instances for
evaluation. The results are presented in Table 3,
from which we can conclude: (i) The average
accept length of the initial steps does not signif-
icantly differ from the average across all steps.
The average for the first 10 decoding steps (3.39)
is not notably lower than the overall average (3.48),
and there is no significant upward trend within the
first 10 steps. We attribute this to the fact that each
decoding step benefits from the visual information
retained during the prefill stage, allowing for a rel-
atively high speculation accuracy from the outset.
(ii) The first decoding step, in fact, exhibits a sig-
nificantly higher average accepted length. This
is likely because the beginning of the generation
often follows a fixed sentence structure, making it
easier to speculate.

5 Related Work

5.1 Speculative Decoding
Speculative Decoding for LLMs. Speculative
decoding is shown to be an effective approach to
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accelerate LLMs while maintaining the original
output distribution. It relies on two key processes:
efficient drafting and parallel verification. Initial
explorations (Leviathan et al., 2023; Guo et al.,
2023; Kim et al., 2023; Xia et al., 2023) attempt to
use existing small LLMs as draft models to ensure
reliable speculation. Self-speculative methods (Xia
et al., 2025; Zhang et al., 2024a; Song et al., 2025)
use partial layers of the original model to gener-
ate predictions, without introducing extra models.
Recent advancements (Cai et al., 2024; Li et al.,
2024d; Du et al., 2024) focus on enhancing the
efficiency of the drafting stage. These works at-
tain high acceleration ratios through a specially
trained draft model with reduced latency. Mean-
while, tree-based speculation methods (Li et al.,
2024c,d; Miao et al., 2024) are proposed to boost
the average accept length, by predicting multiple
candidates and forming draft trees. Among the
aforementioned draft models, the success of the
previous state-of-the-art EAGLE method (Li et al.,
2024c) highlights the autoregressive structure as a
key factor in improving the accuracy of the specu-
lation. However, autoregressive draft models need
to maintain their own KV caches, which introduces
additional memory overhead when faced with long
video input.

Long-Context Speculative Decoding. Long-
context speculative decoding methodologies (Sun
et al., 2024; Chen et al., 2025; Yang et al., 2025a)
are specially developed to mitigate the substantial
overhead of KV cache. Specifically, TriForce (Sun
et al., 2024) introduces a hierarchical speculation
to tackle the two bottlenecks of model weights
and KV cache. MagicDec (Chen et al., 2025) re-
assesses the trade-off between throughput and la-
tency. LongSpec (Yang et al., 2025a) proposes
a memory-efficient draft model with a constant
memory footprint. Appendix D elaborates on the
reasons why these methods are not suitable for Vid-
LLMs.

5.2 Visual Token Reduction

Compared to information-dense text, visual tokens
often exhibit high redundancy, making token reduc-
tion an effective way to reduce computational and
memory overhead. Recent studies largely focus on
training-free visual token reduction methods based
on token importance and redundancy. FastV (Chen
et al., 2024a) selects important visual tokens after
layer 2 using attention scores of MLLMs. While

SparseVLM (Zhang et al., 2024b) evaluates the
visual relevance of text tokens and performs prun-
ing based on the attention scores of a subset of
text tokens. VisionZip (Yang et al., 2025b) re-
duces visual redundancy in the vision encoders.
DART (Wen et al., 2025) prunes tokens based on its
duplication with other tokens. Currently, video to-
ken reduction draws increasing attention due to the
high volume of video tokens. DyCoke (Tao et al.,
2025) performs token merging across frames and
reduces KV cache dynamically. PrunVID (Huang
et al., 2025) identifies static and dynamic tokens
across frames, and selectively prunes visual fea-
tures relevant to question tokens. FastVID (Shen
et al., 2025) partitions frames into segments and
introduces a density-based token pruning strategy.
VidCom2 (Liu et al., 2025) dynamically adjusts
compression intensity based on frame uniqueness.
Notably, recent Tang et al. (2025) applies temporal
processing during video sampling by performing
key frame extraction, whereas ours prunes visual
tokens post-encoder, making the two methods or-
thogonal.

6 Conclusion

We propose SPECVLM, the first training-free spec-
ulative decoding framework tailored for accelerat-
ing video LLMs. Building on the low speculation
sensitivity to token pruning, SPECVLM leverages
verifier-guided attention to remove redundant video
tokens, significantly reducing the draft model’s
KV cache without compromising generation qual-
ity. SPECVLM achieves up to 2.68× speedup on
LLaVA-OneVision-72B and 2.11× on Qwen2.5-
VL-32B across multiple video understanding tasks.
We hope our work inspires further research on
latency-efficient Vid-LLM reasoning from a token
sparsity perspective and believe SPECVLM will
serve as a valuable tool for the community to enable
efficient video comprehension.
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8 Ethical Considerations

All experiments in this work are conducted using
open-source datasets and models. Our research
focuses solely on improving inference efficiency
and does not involve any sensitive data, human
subjects, or commercial use 4 5 6 7.

9 Limitation

While our enhanced speculative decoding frame-
work brings clear benefits for accelerating Vid-
LLMs, there are a few limitations to consider. First,
our method is primarily applicable to resource-
constrained long-video scenarios, where memory
bandwidth becomes the dominant bottleneck. Sec-
ond, we introduce an additional draft model during
inference. Although its computational overhead
is relatively small compared to the target model
(or can be avoided using the Self-SD setting), the
choice of the draft model requires careful consid-
eration to achieve optimal speedup. Moreover, to
avoid introducing training as an additional variable,
we use an existing Vid-LLM as the draft model
without further fine-tuning. This design choice im-
poses certain constraints on the maximum achiev-
able acceleration. Nevertheless, our method has the
potential to be seamlessly integrated with smaller
and faster draft models, as it only requires a one-
time pruning of the draft model’s KV cache during
the prefilling stage. As the technology for training
lightweight Vid-LLMs is still in its early stages and
lacks suitable candidates, we believe future work
can explore more draft model optimization tech-
niques (Li et al., 2024d; Du et al., 2024) to address
this limitation.
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A Experimental Details

Task and Benchamark Details. Since
SPECVLM mainly focuses on the lossless acceler-
ation during the decoding stage, we select video
captioning and video description as our tasks,
which require the model to summarize and describe
the video by understanding detailed subjects and
actions, and involve generating relatively long text
paragraphs. Unlike conventional video question
answering (VQA), we prompt the model to gener-
ate a description rich in visual information instead
of direct answer selection. We sample videos
from mainstream video understanding benchmarks,
including VideoDetailCaption (LMMs-Lab, 2024),
MVBench (Li et al., 2024b), MVLU (Zhou
et al., 2025a), and LongVideoBench (Wu et al.,
2024), to ensure a comprehensive coverage of
different durations and varying scenarios. For
each benchmark, 50 instances are randomly
sampled. For LLaVA-OneVision-72B and LLaVA-
OneVision-7B, we uniformly sample 64 and 128
frames to generate a 196 × 64 and 196 × 128
video token input, respectively. For Qwen2.5-VL
series, we adjust the FPS to generate input of
comparable length.

Implementation Details. All experiments are im-
plemented on 8 NVIDIA A100 GPUs. We utilize
the default attention implementation of LLaVA-
OneVision (scaled-dot-product-attention (Vaswani
et al., 2017)), and output the attention scores using
its Python implementation when required. Given
each query, the target model is employed to gener-
ate 256 tokens following greedy decoding. When
video tokens are pruned, we remove the correspond-
ing video features based on the pruning ratio r.
During evaluation, the default pruning ratio r is
set to 90%, based on the low sensitivity property
validated in Section 2.2. The hyperparameter λr is
determined at the model level through a single of-
fline evaluation on a small calibration set consisting
of 2–4 randomly sampled instances per task (with
no overlap with the test set). In Tables 1 and 2, we
set λr to 0.4 and 0.5, respectively.

B Impact of Tree Attention

As illustrated in Table 4, using a tree structure for
drafting and verification greatly enhances the aver-
age accept length by validating multiple candidates
in a single forward. When incorporated with tree
attention, SPECVLM achieves a higher specula-

Method τ

SD-Chain 3.12
SD-Tree 3.68

SPECVLM-Chain 2.79
SPECVLM 3.48

Table 4: Average accept length τ . “*-Chain” refers to
a sequential drafting process without a tree structure.
Results are tested using LLaVA-OneVision-72B / 7B on
VideoDetailCaption. By default, r = 90%.

Operation Vanilla SPECVLM

Target Model Prefilling 24.01 24.01
Target Model Decoding 87.03 32.47
Draft Model Prefilling - 0.82
Video Token Pruning - 0.06

Latency 111.04 57.36

Table 5: Inference time breakdown (s) of LLaVA-
OneVision-72B / 7B. Output length is set to 256.

: Draft Candidates

input

Figure 9: The draft tree structure of SPECVLM.

tion accuracy. The draft tree structure adopted in
SPECVLM is depicted as Fig. 9. The chosen tree
structure is motivated by the intuition that candi-
date tokens with higher probabilities merit deeper
and wider expansion, whereas low-probability to-
kens should not be further explored.

C Breakdown of Computation

Apart from accelerating the decoding stage of target
Vid-LLMs, SPECVLM introduces minimal over-
head in the pruning process, as illustrated in Table 5.
Owing to video token pruning, the prefill length of
the draft model is substantially reduced, and the
additional prefilling time becomes negligible com-
pared to target model inference time. In this work,
we significantly reduce the target model’s decoding
time—a level of efficiency that cannot be achieved
by prior methods relying solely on token reduction.
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D Why is Long-context SD Technologies
Not Suitable for Vid-LLMs?

As mentioned earlier in Section 5, long-context
SD techniques are designed to address the KV
cache bottleneck of conventional SD, combined
with KV cache sparsification techniques (Feng
et al., 2025a,b; Xiao et al., 2024). To this end,
they employ StreamingLLM caches (Xiao et al.,
2024) or sliding window caches for the draft model
to manage the KV cache budget. However, the
lack of awareness of the visual modality prevents
these methods from effectively operating on video
tokens. On the one hand, video tokens exhibit
substantial redundancy, with a large portion being
repetitive or highly similar—unlike discrete lan-
guage tokens. On the other hand, there exists a dis-
tinct attention pattern between language and video
tokens, as illustrated in Fig. 4, making modality-
aware methods better suited to exploit this property.
If StreamingLLM-style caches or sliding windows
are applied naively, the draft model can only attend
to a small portion of the uncompressed visual con-
tent, thereby failing to capture the overall semantics
of the video.

E Discussion on Smaller Draft Model

In this section, we discuss the effectiveness of
SPECVLM in a smaller draft model scenario. Al-
though the minimum draft model used in our ex-
periment is 7b, we believe our method still has
benefits for smaller draft models from the follow-
ing two perspectives. (i) SpecVLM prunes re-
dundant video tokens at inference time, reduc-
ing the training cost and architectural complex-
ity of high-quality small draft models for video
understanding. Existing small draft models for
LLMs like EAGLE do not support long-context
input sequences. Training small draft models to
match the context length of Vid-LLMs would re-
quire massive computation, and it remains question-
able whether these small models can achieve the
same accuracy at video input context lengths (Sun
et al., 2024). Therefore, reducing the input length
of the small draft model through our video token
pruning strategy allows it to perform efficient spec-
ulation without the need for costly long-context
training. (ii) For smaller draft models, the over-
head caused by input length still persists. To sim-
ulate a scenario similar to EAGLE, we tested the
latency of a single layer of the LLaVA-OneVision-
0.5B model at varying input lengths. Latency is

Input Sequence Length (K) 1 4 8 16 32 48

Draft Latency (ms) 1.0 1.16 1.46 2.08 3.29 4.53

Table 6: Layer latency variation of smaller draft model
with growing input sequence length.

calculated on average of 100 decoded tokens on a
single Nvidia A100 GPU. The results in Table 6
show that the latency of the small draft model
increases significantly with input length, eventu-
ally becoming multiple times larger than the orig-
inal. Given the increasing trend of video inputs
(e.g., Long video input with million-level video to-
kens (Chen et al., 2024b) ), the additional draft over-
head from the KV Cache would gradually under-
mine the lightweight nature of smaller draft models.
In other words, combining draft models with token
pruning still provides a performance benefit. In
future work, we will investigate memory- and data-
efficient training strategies for Vid-LLMs (Li et al.,
2024d; Hu et al., 2022; Zhang et al., 2025b,c), with
the goal of constructing more optimized draft mod-
els that remain effective in memory-constrained
devices (Zhou et al., 2025b) and scalable to multi-
tenant settings (Zhang et al., 2025a).

F Case Study

Two illustrative examples are presented in Figs. 10
and 11. The target model performs verification
using the original video tokens, ensuring lossless
input. Meanwhile, the draft model relies on a 90%
pruned version of the video tokens, allowing for
efficient yet accurate speculation by retaining es-
sential visual cues and maintaining a coherent un-
derstanding of the overall video structure.
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Please provide a detailed description of the video, focusing on the main subjects, their actions, and the 

background scenes.

Target Model:

Draft Model:

The video takes place in a lively barbershop, where a child is seated in a barber chair, draped in a blue cape 
adorned with colorful cartoon characters. The child is wearing sandals and appears relaxed, occasionally looking 
around. A barber, dressed in a black apron, is diligently working on the child's hair, using a comb and scissors to 
ensure a precise cut. The background features a large mirror reflecting the barbershop's interior, which includes 
various hair care products and tools neatly arranged on the counter. The walls are decorated with posters and 
signs, adding to the vibrant atmosphere of the barbershop. Throughout the video, the barber continues to work 
on the child's hair, maintaining a steady and focused demeanor …

User:

Output:

LLaVA-OneVision-72B / 7B

Figure 10: Visualization of SPECVLM on VideoDetailCaption using LLaVA-OneVision-72B / 7B.

Please provide a detailed description of the video, focusing on the main subjects, their actions, and the 

background scenes.

Target Model:

Draft Model:

### Video Description 
The video takes place in a modern, well-lit kitchen with a casual and professional atmosphere. The setting 
includes white cabinets, a stainless steel sink, and various kitchen appliances, such as a coffee maker and a 
toaster. The room is bright, with natural light streaming in from windows, and the overall environment suggests 
a comfortable and functional space, likely used for cooking or food preparation. 
#### Main Subjects: 
1. The Man in the Kitchen: - He is wearing a black polo shirt, a beige cap, and a red and green plaid apron. His 
attire suggests he is either a chef or someone who is comfortable in a kitchen setting. - He is the primary focus 
of the video, actively engaged in preparing a drink or cocktail. 
2. The Counter …

User:

Output:

Qwen2.5-VL-32B / 7B

Figure 11: Visualization of SPECVLM on VideoDetailCaption using Qwen2.5-VL-32B / 7B.
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