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Abstract

Redundancy of visual tokens in multi-modal
large language models (MLLMs) significantly
reduces their computational efficiency. Recent
approaches, such as resamplers and summa-
rizers, have sought to reduce the number of
visual tokens, but at the cost of visual rea-
soning ability. To address this, we propose
LEO-MINI, a novel MLLM that significantly
reduces the number of visual tokens and si-
multaneously boosts visual reasoning capabil-
ities. For efficiency, LEO-MINI incorporates
COTR, a novel token reduction module to con-
solidate a large number of visual tokens into
a smaller set of tokens, using the similarity
between visual tokens, text tokens, and a com-
pact learnable query. For effectiveness, to scale
up the model’s ability with minimal computa-
tional overhead, LEO-MINI employs MMOE,
a novel mixture of multi-modal experts module.
MMOE employs a set of LoRA experts with
a novel router to switch between them based
on the input text and visual tokens instead of
only using the input hidden state. MMOE also
includes a general LoRA expert that is always
activated to learn general knowledge for LLM
reasoning. For extracting richer visual features,
MMOE employs a set of vision experts trained
on diverse domain-specific data. To demon-
strate LEO-MINI’s improved efficiency and
performance, we evaluate it against existing
efficient MLLMs on various benchmark vision-
language tasks.

1 Introduction

The development of multi-modal large language
models (MLLMs) (Azadani et al., 2025; Shi et al.,
2024; Liu et al., 2024c; Zhang et al., 2025; Dai
et al., 2023; Lu et al., 2024; Wang et al., 2025a) has
been significantly advanced by aligning vision mod-
els (Fang et al., 2024c; Liu et al., 2022; Lee et al.,
2023) with large-scale pre-trained language models
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Figure 1: Performance overview of LEO-MINI-Llama3-
8B. a: Comparison between LEO-MINI (64 tokens)
and existing token reduction MLLMs , where LEO-
MINI outperforms all models. b: Comparison with other
MLLMs on 11 vision-language tasks using Llama3-8B
as the LLM. LEO-MINI achieves competitive perfor-
mance while using only 64 visual tokens.

(LLMs) (Llama Team, 2024; Chiang et al., 2023).
MLLMs, such as the LLaVA (Liu et al., 2024c,b),
BLIP (Dai et al., 2023), and InternVL (Chen et al.,
2024c), embed image patches into visual tokens
through a vision expert (Radford et al., 2021; Kir-
illov et al., 2023; Fang et al., 2024c). Then, those
visual tokens are input into the LLM for reason-
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ing. This has led to strong performance in image
and video understanding tasks (Fu et al., 2024; Liu
et al., 2024d; Li et al., 2024a; Hudson and Man-
ning, 2019; Lu et al., 2022; Yue et al., 2024; Li
et al., 2023; Kembhavi et al., 2016), bridging the
gap between vision and language models.

However, the substantial computational require-
ment of MLLMs presents a significant challenge
to their efficiency. In MLLMs, the LLM predom-
inantly drives computational costs, as the vision
expert is smaller in comparison. For example, the
commonly used vision expert, CLIP-L (Radford
et al., 2021), has 0.3 billion parameters, whereas
LLMs such as LLaMA (Llama Team, 2024) or Vi-
cuna (Chiang et al., 2023), have 7–8 billion and
13 billion parameters, respectively. While the vi-
sion expert is relatively lightweight, its output, i.e.,
the visual tokens, which is fed into the LLM along
with text instruction tokens, significantly increases
the computational overhead. For instance, CLIP-
L (Radford et al., 2021) encodes a single image
into 24 × 24 = 576 visual tokens, whereas tex-
tual instructions typically consist of fewer than 100
tokens. And this becomes more challenging in
high-resolution image understanding (Chen et al.,
2024c; Azadani et al., 2025) or video understand-
ing (Li et al., 2024b; Xu et al., 2016; Heilbron et al.,
2015), which requires either more visual tokens per
image or processing multiple images.

Reducing the number of visual tokens can thus
be an effective strategy for enhancing the efficiency
of MLLMs, either through training an efficient
compressor (Zhang et al., 2025; Li et al., 2024c) or
by using a training-free summarizer (Chen et al.,
2024a; Zhang et al., 2024; Wen et al., 2025a). In
this work, we focus on training-based methods.
Recent training-based approaches (Zhang et al.,
2025; Li et al., 2024c,d; Shang et al., 2024) reduce
the number of visual tokens by selecting only the
most informative ones (Chen et al., 2024a), rather
than using all visual tokens. Notably, LLaVA-
Mini (Zhang et al., 2025) achieves comparable per-
formance to the full LLaVA-1.5 (Liu et al., 2024b),
while using only a single visual token. However,
aggressively reducing visual tokens may result in
the loss of essential visual information, potentially
degrading the model’s performance.

To extract informative visual features with im-
proved efficiency, in this paper, we propose LEO-
MINI, a new MLLM that incorporates a novel con-
ditional token reduction module (COTR) for in-
creased efficiency and a novel mixture of multi-

modal experts (MMOE) module for greater effec-
tiveness.

Efficiency. As the number of visual tokens has
become a major bottleneck for MLLM efficiency,
LEO-MINI introduces COTR to reduce the num-
ber of tokens fed into the LLM. To focus on the
most informative visual tokens based on the input
instructions, COTR aggregates visual tokens into a
smaller set of consolidated tokens by their similar-
ity to both visual tokens from other vision experts
and text tokens. Moreover, a learnable query is em-
ployed to control the length of consolidated visual
tokens, which can be adjusted according to the task
or computational requirements. This significantly
reduces the number of visual tokens, leading to
improved training and inference efficiency.

Effectiveness. For a better understanding of vi-
sual features and improved reasoning ability, LEO-
MINI incorporates MMOE, a novel mixture of
multi-modal experts module consisting of MMOE-
LLM and MMOE-Vision. Instead of conducting a
full finetuning of the entire model after the pretrain-
ing, MMOE-LLM employs a mixture of LoRA
experts (Hu et al., 2022; Dou et al., 2024; Wu et al.,
2023; Tian et al., 2024) with a novel router and a
general expert. In contrast to previous work (Hu
et al., 2022; Dou et al., 2024; Wu et al., 2023; Tian
et al., 2024) whose routers only take the hidden
state as input to switch between experts, our router
takes the text tokens and the visual tokens as addi-
tional input. This facilitates more effective switch-
ing between different LoRA experts. The general
expert is continuously activated to learn general
knowledge. To extract more informative visual fea-
tures, MMOE-Vision incorporates multiple vision
experts (Radford et al., 2021; Kirillov et al., 2023;
Fang et al., 2024c), each trained on data from dif-
ferent domains. This boosts the model’s ability to
understand visual information, leading to improved
performance on vision-language tasks while main-
taining minimal computational overhead, as both
the vision experts and LoRA experts are substan-
tially smaller than the LLM.

Our contributions can be summarized as follows:

• We propose a new MLLM, LEO-MINI, that
incorporates a novel token reduction mod-
ule (COTR) to improve efficiency and a
novel mixture of multi-modal experts mod-
ule (MMOE) that increases effectiveness.

• To the best of our knowledge, COTR is the
first to exploit the similarity between visual
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tokens from multiple vision experts, text to-
kens, and a small learnable query to focus on
the most informative visual tokens.

• MMOE-LLM employs a novel router tak-
ing visual and text tokens as additional in-
put for better switching between different ex-
perts, with a general expert for learning gen-
eral knowledge. MMOE-Vision incorporates
multiple vision experts for rich visual feature
extraction.

• We demonstrate the effectiveness and im-
proved efficiency of LEO-MINI on various
vision-language tasks, as illustrated in Fig-
ure 1.

2 Related Work

Multi-modal large language models (MLLMs).
As a fundamental problem in multimodal learn-
ing (Fang et al., 2022, 2023, 2024b,a, 2025; Wang
et al., 2021, 2020a, 2023, 2020b, 2025b; Liu et al.,
2025; Wang and Shi, 2023; Li et al., 2023; Liu et al.,
2024d), visual understanding has been revolution-
ized by recent developments in large language mod-
els (LLMs). Advancements in LLMs have fueled
significant progress in MLLMs, enabling effective
cross-modal reasoning through modality fusion and
instruction following (Dai et al., 2023; Lin et al.,
2024b; Liu et al., 2024b; Li et al., 2024f; Liu et al.,
2024c). Early MLLMs struggled with complex vi-
sual understanding due to input resolution limits
and the inefficiencies of single vision encoders. To
address this, recent research has enhanced visual
experts (Chen et al., 2024c; Zhai et al., 2023), incor-
porated higher-resolution inputs (Li et al., 2024e;
Luo et al., 2024), and explored mixtures of vision
experts (Azadani et al., 2025; Lu et al., 2024; Kar
et al., 2024; Shi et al., 2024; Zong et al., 2024; Fan
et al., 2024). Despite the success of these meth-
ods, a major challenge remains: the efficiency of
MLLMs, as these approaches increase the number
of visual tokens, leading to higher computational
costs and scalability constraints.
Compressing visual tokens for MLLMs. The effi-
ciency of MLLMs is constrained by the LLM back-
bone’s context length, as high-resolution images
generate numerous vision tokens that quickly con-
sume available space and increase computational
cost. To address this challenge, recent methods
have focused on reducing the number of visual to-
kens through both training-free (Chen et al., 2024a;

Huang et al., 2024; Wen et al., 2025b) and training-
based (Zhang et al., 2025; Chen et al., 2024a; Li
et al., 2024d; Shang et al., 2024) token reduction
strategies. Focusing on training-based approaches,
some models aggregate tokens based on visual fea-
ture similarities (Shang et al., 2024) or high-low
resolution similarities (Li et al., 2024c), while oth-
ers use attention distillation (Ye et al., 2024). MQT-
LLaVA (Hu et al., 2024) employs a query trans-
former to process a random subset of latent query
tokens per step. However, direct compression may
lead to information loss. LLaMA-VID (Li et al.,
2024d) integrates text tokens as contextual informa-
tion and applies average pooling for efficient token
reduction. More recently, LLaVA-Mini (Zhang
et al., 2025) mitigates this by combining query-
based reduction with prefusion of visual and text
tokens.

Existing token reduction approaches (Zhang
et al., 2025; Li et al., 2024d; Hu et al., 2024) tend to
select tokens by a learnable query or saliency maps.
To the best of our knowledge, we propose the first
token reduction method that uses text tokens and
visual tokens from other visual experts as context
to perform attention and reduction over the current
vision expert’s tokens.
Mixture of Experts (MoE) in LLMs. MoE is a
model design that exploits multiple sparse experts
to process different parts of the input space (Ja-
cobs et al., 1991). Early works (Du et al., 2022;
Fedus et al., 2022) demonstrated that sparse expert
activation improves scalability and computational
efficiency. Existing MoE-based LLMs (Jiang et al.,
2024; Dai et al., 2024) typically incorporate MoE
by replacing standard feed-forward networks with
MoE layers, where each token is routed to a small
subset of experts. More recent research (Liu et al.,
2024a; Lin et al., 2024a; Zadouri et al., 2023; Wu
et al., 2024) explores integrating MoE with LoRA
to further reduce the parameter overhead of tradi-
tional MoE models. These methods make use of
LoRA’s ability to fine-tune only a small subset of
parameters (Wu et al., 2023; Dou et al., 2024; Chen
et al., 2024b), enabling efficient expert selection
and dynamic task adaptation.

In contrast to existing LoRA-based MoEs, which
select experts based on the hidden state, our pro-
posed MMOE-LLM employs a novel routing net-
work that takes visual tokens and textual instruc-
tions as additional inputs, enabling expert selection
based on multi-modal input. Moreover, MMOE-
LLM employs a general expert to learn general
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Figure 2: The overview of the proposed LEO-MINI.
LEO-MINI is designed with MMOE (Section 3.3) to
enhance visual comprehension and COTR (Section 3.2)
to reduce the number of visual tokens for efficiency.

knowledge.

3 Methodology

In Section 3.1, we introduce the overall framework
of LEO-MINI. In Section 3.2, we present our
proposed token reduction module, COTR, which
consolidates a large number of visual tokens into
a smaller, more informative set. Finally, in Sec-
tion 3.3, we introduce our mixture of multi-modal
experts module, MMOE, which is designed to en-
hance the efficiency of fine-tuning MLLMs while
preserving their strong performance.

3.1 Architecture
The overall architecture of LEO-MINI is presented
in Figure 2. It follows the general design (vision
expert-projector-LLM) of existing MLLMs (Shi
et al., 2024; Azadani et al., 2025; Zhang et al.,
2025), while incorporating a mixture of multi-
modal experts and a visual feature compression
module.

Specifically, MMOE introduces multiple vision
experts, each of which is trained on a domain-
specific vision task to extract diverse and infor-
mative visual features from the input image. These
experts embed the input image into a group of vi-
sual tokens

{
Ii ∈ RNV

i ×dVi

}
i∈[m]

, where m is the

number of vision experts, NV
i is the number of

visual tokens generated by the i-th vision expert,
and dVi is the feature dimension.

Visual feature compression is then applied to the
group of visual tokens {Ii}i∈[m]. First, as the visual
tokens generated by different vision experts have
different lengths, i.e., {NV

i }i∈[m], the COTR mod-

Attention Maps

Consolidated
Visual
Tokens

Visual
Tokens

Query

Visual Tokens by 
Other Experts Text Tokens

Figure 3: The overview of the proposed COTR. The
COTR module takes a group of visual tokens, a learn-
able query, and text tokens as input, and outputs a con-
solidated group of visual tokens to reduce the number
of visual tokens.

ule (Section 3.2) projects them into a group of con-
solidated visual tokens

{
Īi ∈ RNV ×dVi

}
i∈[m]

with

the same length of NV . NV is much smaller than∑
i∈[m]N

V
i , significantly reducing the number of

visual tokens for efficiency. Then, the consolidated
visual tokens are concatenated channel-wise to
form the concatenated visual tokens Ī ∈ RNV ×dV ,
where dV =

∑
i∈[m] d

V
i .

After that, a visual projector is applied to project
the concatenated visual token Ī to have the same
dimension with the language model input, result-
ing in Ĩ ∈ RNV ×dLLM , where dLLM is the feature
dimension of the LLM’s input.

An LLM fLLM(·) then takes the visual tokens
Ĩ and the textual instruction tokens T as input to
generate the instruction-following response Y =
{yi}i∈[L] as,

p(Y |Ĩ , T ) =
L∏

i=1

p(yi|Ĩ , T, y<i), (1)

where L is the length of the response, and y<i is
the previous tokens of yi.

3.2 Conditional Token Reduction (COTR)
The COTR module, illustrated in Figure 3, is a
query-based module that takes a group of visual to-
kens {Ii}i∈[m], text tokens T , and a group of query
tokens {Qi ∈ RNV ×dVi }i∈[m] as input, and outputs
a group of consolidated visual tokens {Īi}i∈[m].
Specifically, for the visual tokens Ii generated by
the i-th vision expert, the COTR module computes
an attention score αi ∈ RNV ×NV

i using the query
token Qi ∈ RNV ×dVi , text tokens T , the visual
tokens from other vision experts {Ij}j∈[m]\{i}, and
the visual token Ii, as

sQUERY
i =Q̂iÎ

⊤
i ∈ RNV ×NV

i , (2)
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Figure 4: The overview of the proposed MMOE-LLM for LLM finetuning. MMOE (language) consists of a set of
LoRA experts and a routing network that selects the appropriate expert based on the input visual tokens and textual
instructions. Moreover, a general expert is employed to learn the general knowledge and improve the robustness of
the model.

sSELF
i =1ÎiÎ

⊤
i ∈ R1×NV

i , (3)

sCROSS
i =

∑

j∈[m]\{i}
Îj Î

⊤
i ∈ R1×NV

i , (4)

sTEXT
i =1T̂ Î⊤i ∈ R1×NV

i , (5)

αi =
softmax(sQUERY

i + sSELF
i + sCROSS

i + sTEXT
i )√

dVi

,

(6)

where Q̂i, Îi,∀i ∈ [m], and T̂ denote the query
token, visual tokens, and text tokens projected by
learnable linear projections, respectively. The term
1 is a vector of ones used to compute the self-
attention score. The attention score αi is then used
to compute the consolidated visual tokens Īi as,

Īi = αiIi ∈ RNV ×dVi . (7)

In this way, redundant visual tokens are aggregated
into a compact set of consolidated visual tokens
which significantly improves the efficiency. The
length of the query tokens can be adjusted to con-
trol the number of visual tokens according to the
specific task requirements. Moreover, as we use
four different similarities, COTR can capture the
complex relationships between multiple sources of
features, leading to more informative consolidated
visual tokens.

Finally, the consolidated visual tokens
{
Īi
}
i∈[m]

are concatenated channel-wise to form the con-
catenated visual tokens Ī ∈ RNV ×dV , where
dV =

∑
i∈[m] d

V
i . These concatenated tokens are

then projected using a vision projector to have the
same dimension as the LLM input size, resulting
in Ĩ ∈ RNV ×dLLM .

3.3 Mixture of Multi-modal Experts (MMOE)
Our mixture of multi-modal experts module,
MMOE, incorporates multiple vision experts to

boost visual understanding and multiple LoRA lan-
guage experts to enhance reasoning. MMOE com-
prises MMOE-Vision and MMOE-LLM.
Effective visual comprehension (MMOE-
Vision). As described in Section 3.1, drawing
inspiration from previous work (Shi et al., 2024;
Azadani et al., 2025), visual tokens are generated
by multiple vision experts, each extracting
informative features from different perspectives to
enrich visual understanding.
Effective reasoning ability (MMOE-LLM). To
ensure efficient training with minimal computa-
tional overhead, we introduce MMOE for LLM
tuning, following the mixture of LoRA experts (Hu
et al., 2022), as shown in Figure 4. The vanilla
mixture of LoRA experts consists of a set of ex-
perts (Dou et al., 2024; Tian et al., 2024), i.e.,
{fE

i (·)}i∈[E], and a routing network f ROUTING(·)
that outputs the routing probability R ∈ RE taking
the hidden state as input, where E is the number
of experts. Then, based on the routing probability,
only the top-1 expert will be activated.

Different from the vanilla version, the routing
network in MMOE-LLM takes the visual tokens
Ĩ , the textual instruction tokens T , and the hidden
state x as the input to compute the routing probabil-
ity R = softmax(f ROUTING(Ĩ , T, x)) ∈ RE , which
facilitates better switching between the experts.
Moreover, MMOE-LLM also employs a general
expert fE

GEN(·) to capture the general knowledge
and improve the overall robustness of the model.

We select k experts with the highest routing prob-
abilities, i.e., E′ = Topk(R), and compute the out-
put of the MMOE-LLM as,

MMOE-LLM = fE
GEN(x) +

∑

i∈E′
fE
i (x)/k . (8)

With the original linear layer fORI(·), the final
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Model
# of General OCR Knowledge

Visual Tokens MMEP MMBench SEEDI GQA VizWiz TextVQA SQA POPE MMMU

VoCo-LLaMA (Ye et al., 2024) 1 1323.3 58.8 53.7 57.0 - - 65.4 81.4 -
LLaMA-VID (Li et al., 2024d) 2 - - - 55.5 - 49.0 67.7 83.1 -
PruMerge (Shang et al., 2024) 32 1350.3 60.9 - - - 56.0 72.0 76.3 -
MQT-LLaVA (Hu et al., 2024) 64 1464.3 63.5 - 60.0 51.5 - 67.0 83.6 34.4
Token-Packer (Li et al., 2024c) 64 - 64.1 - 61.1 50.7 - - 86.3 -
LLaVA-Mini (Zhang et al., 2025) 64 1476.8 67.5 60.2 61.8 58.5 59.1 69.7 85.3 -

LEO-MINI-Vicuna-7B 64 1542.6 67.8 73.2 64.0 51.4 70.1 73.3 90.0 34.1
LEO-MINI-Llama-8B 64 1583.0 77.0 75.8 64.5 69.3 75.1 84.5 90.3 38.8

Table 1: Comparison to token reduction methods on general, OCR, and knowledge-based tasks. Best in Bold.
Second best in Underline.

Model MMEP SEEDI GQA SQA MMMU POPE AI2D TextVQA ChartQA OCRBench

LEO-MINI (64 tokens) 1583 75.8 64.5 84.5 38.8 90.3 75.7 75.1 80.5 62.4

w/ 1 visual token 1565 74.6 64.2 83.6 37.7 89.0 74.5 73.5 80.0 61.7
w/ 16 visual token 1577 75.4 64.4 84.3 38.2 90.1 75.4 74.2 80.2 62.6
w/ 256 visual token 1584 76.1 64.2 85.5 39.0 90.7 75.5 75.5 80.5 63.0

w/ 1.8m SFT data 1548 76.6 64.1 85.9 39.4 90.3 77.9 75.7 80.9 63.1

Table 2: Ablation studies of LEO-MINI. We explore the impact of the number of visual tokens, the amount of
training data, and the MMOE. Numbers in green indicate the performance is improved compared to LEO-MINI (64
tokens).

output is computed as,

fORI(x)︸ ︷︷ ︸
Original Linear

+ fE
GEN(x)︸ ︷︷ ︸

General Expert

+
∑

i∈E′
fE
i (x)/k

︸ ︷︷ ︸
Selected Experts

. (9)

4 Experiments

4.1 Implementations and Benchmarks

Models. We use Vicuna-v1.5-7B (Chiang et al.,
2023) and Llama3-8B (Llama Team, 2024) as
the LLM. For vision experts, we follow the gen-
eral design of EAGLE (Shi et al., 2024) and use
CLIP (Radford et al., 2021), ConvNeXt (Liu et al.,
2022), Pix2Struct (Lee et al., 2023) and EVA-
02 (Fang et al., 2024c) for LEO-MINI-Llama-8B.
Similarly, we add another vision expert SAM (Kir-
illov et al., 2023) for LEO-MINI-Vicuna-7B. The
visual projector is a 2-layer MLP with the GELU
activation function (Hendrycks and Gimpel, 2023).
MMOE-LLM is only applied to the MLP in each
block of the LLM. We use 3 experts for MMOE-
LLM with k = 1 and 1 general expert being consis-
tently activated. Each expert is a LoRA block (Hu
et al., 2022) with rank of 16. The routing network is
a 2-layer MLP with the GELU activation function.

More details on training and evaluation are de-
ferred to the Appendix.

4.2 Main Results

We compare our LEO-MINI with several state-of-
the-art token reduction MLLMs (table 1). LEO-
MINI outperforms all the token reduction MLLMs
on all tasks. Specifically, LEO-MINI with Llama3-
8B achieves 1583.0 on MME (perception), 77.0
on MMBench, 75.8 on SeedBench, 64.5 on GQA,
69.3 on VizWiz, 75.1 on TextVQA, 84.5 on SQA,
90.3 on POPE, and 38.8 on MMMU, outperforming
the best baseline by a large margin. This demon-
strates the effectiveness of LEO-MINI in improv-
ing the performance of MLLMs on various tasks.
Moreover, LEO-MINI with Vicuna-7B also outper-
forms the best baseline on all tasks except for GQA
and MMMU, showing the generalization ability of
LEO-MINI with different LLMs.

4.3 Ablation Studies

In this section, we conduct ablation studies to an-
alyze the effectiveness of different components in
LEO-MINI, the number of visual tokens, and the
amount of SFT data using LEO-MINI-Llama-8B.
Ablations using other token reduction modules and
MoE are presented in the Appendix.
Is 1 visual token enough for MLLMs? To under-
stand whether 1 visual token is enough for repre-
senting the visual information, we conduct the ex-
periments and present the results in Table 2. LEO-
MINI with 1 visual token (NV = 1) shows a slight
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Figure 5: Visualization of the expert choice using LEO-MINI-Llama-8B on TextVQA, ScienceQA, and GQA. Best
viewed in color. “E” refers to Experts.

decrease across some metrics compared to LEO-
MINI with 64 tokens, which is reasonable. For ex-
ample, in the MMEP , the score dropped from 1583
to 1565, and in SEEDI , the performance slightly
decreased from 75.8 to 75.6. Similarly, in the do-
mains of GQA and SQA, the scores decrease from
64.5 to 64.2 and 84.5 to 83.6, respectively. This
trend continues across other evaluated areas such
as MMMU, POPE, AI2D, TextVQA, ChartQA,
and OCRBench. While the use of only 1 visual
token consistently leads to lower performance, it
greatly improves model’s efficiency as shown in
Table 4. To further understand how increasing the
number of visual tokens impacts the performance,
we conduct experiments with 16 and 256 visual
tokens. The results show that the performance on
most of the benchmarks is improved as the number
of visual tokens increases. This is reasonable as
more visual tokens can provide more detailed vi-
sual information to the model, which can help the
model to better understand the visual information.
However, we also observe that the performance on
some benchmarks is slightly decreased, e.g., AI2D,
which might be due to the overfitting issue.

Will more training data help on summarizing
the visual information? To understand the impact
of the amount of training data on the performance,
we conduct the experiment with EAGLE-1.8M SFT
data (Shi et al., 2024) in Table 2 with 64 tokens.
The results show that the performance is improved
on most of the benchmarks, i.e., SeedBenchI, SQA,
MMU, POPE, AI2D, TextVQA, ChartQA, and
OCRBench. For example, the performance on
SeedBenchImage is improved from 75.8 to 76.6, and
the performance on SQA is improved from 84.5 to
85.9. This indicates that more training data leads
to better performance.

How does MMOE-LLM switch between dif-
ferent LORA experts? We visualize the expert

choice in fig. 5 with GQA (General), TextVQA
(OCR), and SQA (Knowledge). We observe that
the model effectively switches between different
LoRA experts based on the input data. For exam-
ple, in the SQA task, the model mainly activates
expert 2 at layer 0, while for TextVQA and GQA,
the model evenly activates three experts. When it
comes to the final layer, such as layer 29, the model
evenly activates experts 0 and 1 for TextVQA and
GQA, while for SQA, the model mainly activates
expert 1, respectively. This indicates that MMOE-
LLM effectively utilizes the multi-modal input in-
structions to switch between different experts. We
also compare the expert choice between LEO-
MINI and the vanilla MoE. Results are presented
in Appendix A.3.

4.4 How Does LEO-MINI Compare to
General MLLMs?

We also compare LEO-MINI to general and MoVE-
based MLLMs (Table 3). With Vicuna-7B, LEO-
MINI outperforms all the general and MoVE-
based MLLMs on MME, POPE, AI2D, and OCR-
Bench by 15, 1.2, 2.6, and 2.7 points, respec-
tively, with only 64 visual tokens. LEO-MINI

with Vicuna-7B also achieves the second best per-
formance on SeedBenchI , SQA, and TextVQA.
On the other side, with Llama3-8B, LEO-MINI

achieves stronger performance as it outperforms
all the general and MoVE-based MLLMs on MM-
Bench, SQA, and CharQA by 1.1, 0.2, and 0.4
points, respectively, while reducing the number of
visual tokens by 97.77% compared to LLaVA-NeXt
and Mini-Gemeni-HD. Moreover, compared to
the general MLLMs, LEO-MINI with Llama3-8B
achieves comparable performance on other bench-
mark datasets as the discrepancy is marginal.
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LLM Model # V tokens MMEP MMBench SEEDI GQA SQA MMMU POPE AI2D VizWiz TextVQA DocVQA ChartQA OCRBench
V

ic
un

a-
7B

&
Q

w
en

-7
B

InstructBLIP (Dai et al., 2023) 32 - - - 49.2 60.5 - - - 34.5 50.1 - - -
LLaVA-1.5 (Liu et al., 2024b) 576 1511 64.3 66.1 62.0 66.8 - 85.9 - 50.0 58.2 - -
LLaVA-NeXt (Liu et al., 2024c) 2880 1519 - - 64.2 70.1 35.1 - 66.6 57.6 64.9 74.4 54.8 -
InternVL (Chen et al., 2024c) 1792 1525 64.3 - 62.9 - - 86.4 - 52.5 57.0 - - -
VILA (Lin et al., 2024b) 576 1533 68.9 61.1 62.3 68.2 - 85.5 - 57.8 64.4 - - -
Monkey (Li et al., 2024f) 256 - - - 60.7 69.4 - - 62.6 61.2 67.6 66.5 65.1 -

MoVE-based MLLMs
LLaVA-HR (Luo et al., 2024) 1024 1554 - 64.2 64.2 65.1 - 87.6 - 48.7 67.1 - -
Brave-X5 (Kar et al., 2024) 160 - - - 52.7 - 87.6 - 54.2 - - - -
Mini-Gemini (Li et al., 2024e) 576 1523 65.8 - 64.5 71.1 36.1 - - - 65.2 - - -
Mousi-X3 (Fan et al., 2024) 576 - 66.8 66.0 63.3 70.2 - 87.3 - - 58.0 - - -
LEO (Azadani et al., 2025) 512 - 72.9 72.2 64.8 78.5 36.4 88.0 69.6 57.9 68.8 80.1 71.0 -
DeepSeek-VL (Lu et al., 2024) 576 - 73.2 70.4 - - 36.6 88.1 - - - - - 45.6
Eagle-X5 (Shi et al., 2024) 1024 1528 68.4 73.9 64.9 69.8 36.3 88.8 - 54.4 71.2 78.6 67.8 52.9

LEO-MINI-Vicuna-7B 64 (↓ 97.77%) 1543 67.8 73.2 64.0 73.3 34.1 90.0 72.2 51.4 70.1 75.3 66.8 55.6

L
la

m
a-

8B

Cambrian-1 (Tong et al., 2024) 576 1547 75.9 74.7 64.6 80.4 42.7 - 73.0 - 71.7 77.8 73.3 62.4
LLaVA-NeXT (Liu et al., 2024c) 2880 1604 72.5 72.7 65.2 72.8 41.7 - 71.6 - 64.6 72.8 69.5 49.0

MoVE-based MLLMs
Mini-Gemini-HD (Li et al., 2024e) 2880 1606 72.7 73.2 64.5 75.1 37.3 - 73.5 - 70.2 74.6 59.1 47.7
Eagle-X4-Plus (Shi et al., 2024) 1024 1559 75.9 76.3 64.9 84.3 43.4 - 76.1 - 77.1 86.6 80.1 62.6

LEO-MINI-Llama-8B 64 (↓ 97.77%) 1583 77.0 75.8 64.5 84.5 38.8 90.3 75.7 69.3 75.1 86.3 80.5 62.4

Table 3: Comparison to general and MoVE (mixture of vision experts)-based MLLMs. Best in Bold. Second best in
Underline.

D
oc

um
en

t V
Q

A
O

C
R

M
at

h 
an

d 
ac

co
un

tin
g

Sc
ie

nc
e

Figure 6: Qualitative results across four vision-language tasks demonstrating LEO-MINI’s detailed visual un-
derstanding. The images are taken from TextVQA (Singh et al., 2019), DocVQA (Mathew et al., 2021), and
MMMU (Yue et al., 2024).

4.5 Qualitative Analysis

To understand the detailed visual understanding of
LEO-MINI, we conduct a case study for qualitative
analysis on four vision-language tasks (Singh et al.,
2019; Mathew et al., 2021; Yue et al., 2024) as
shown in Figure 6. We use LEO-MINI-Llama3-8B
with 64 tokens.

Though the model only takes 64 visual tokens,
LEO-MINI performs effectively in capturing vi-
sual details, such as accurately identifying the num-
bers and small book title in OCR. Moreover, LEO-
MINI is able to understand the order and count
numbers, as for document VQA, LEO-MINI pre-
cisely finds the correct results. For science and
math questions, LEO-MINI also shows incredible
reasoning ability. For science, LEO-MINI can ef-
fectively translate the computation diagram into
mathematical equations. For math and accounting,
LEO-MINI successfully finds the true expression
and does calculations correctly.

4.6 Efficiency Analysis

To understand how efficient LEO-MINI is, we
compare the number of visual tokens, FLOPs, and
CUDA processing time of LEO-MINI with other
We also compare LEO-MINI to MLLMs (Liu et al.,
2024c; Shi et al., 2024; Tong et al., 2024) using
Llama3-8B. Specifically, we use Pytorch Profiler to
measure the FLOPs, CUDA time, and GPU mem-
ory usage using the figure and “What is shown in
this image?” as input. We use one A6000 GPU
with 48 GB memory to inference the models.

The comparison is shown in Table 4. LEO-
MINI with Llama3-8B is 97.77% more efficient in
terms of visual tokens, 63.83% in terms of FLOPs,
and 90.69% in terms of CUDA time compared to
LLaVA-Next. Moreover, as shown in Figure 1,
LEO-MINI outperforms LLaVA-Next by 6% on
average performance with only 64 visual tokens.
Even compared to the most powerful MLLM with
similar performance, i.e., Eagle-X4-Plus, LEO-
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Models # of VT FLOPs (T) CUDA Time (s) GPU Memory (GB)

LLaVA-Next (Liu et al., 2024c) 2880 45.5 7.037 14.74
Eagle-X4-Plus (Shi et al., 2024) 1024 29.4 2.073 20.10

LEO-MINI-Llama-8B 1 13.7 0.593 19.28
LEO-MINI-Llama-8B 64 16.4 0.655 19.34
∆ ↓ 97.77% ↓ 63.83% ↓ 90.69%

Table 4: Efficiency analysis of LEO-MINI and other
MLLMs using Llama3-8B. “VT” represents visual to-
kens. ∆ indicates the difference between LEO-MINI
and LLaVA-Next.

MINI is 93.75% more efficient in terms of visual
tokens, 44.10% for FLOPs, and 68.40% for CUDA
time. More excitingly and importantly, LEO-MINI

with only 1 token achieves comparable perfor-
mance to the state-of-the-art MLLMs with thou-
sands of visual tokens with faster inference time
and lower computational cost in terms of FLOPs.

5 Conclusion

In this paper, to address the redundancy of visual
tokens in MLLMs, we propose a novel MLLM,
LEO-MINI, that significantly reduces the number
of visual tokens while boosting visual reasoning
capabilities. LEO-MINI incorporates a novel token
reduction module, COTR, to consolidate a large
number of visual tokens into a smaller set of to-
kens, using the similarity between visual tokens,
text tokens, and a compact learnable query. How-
ever, simply reducing the number of visual tokens
leads to an information loss. To avoid the loss and
boost the visual comprehension ability with mini-
mal computational overhead, LEO-MINI employs
a novel mixture of multi-modal experts module,
MMOE, that includes a set of language (LoRA)
experts and a set of vision experts trained on di-
verse domain-specific data. For better switching
between different LoRA experts, MMOE employs
a new router that takes the text and visual tokens
as additional inputs. MMOE also includes a gen-
eral LoRA expert that is always activated to learn
general knowledge. We evaluate LEO-MINI on
various vision-and-language tasks, showcasing its
potential for practical applications with improved
efficiency and performance compared.

6 Limitations

First, the proposed COTR needs training. Introduc-
ing a training-free token reduction module might
be a promising direction. Second, the proposed
MMOE is designed to be efficient and scalable,
but it may not be optimal for all tasks. For vision
experts, due to the computational limitations, we

use a fixed set of experts. It would be interesting
to explore more vision experts from a wide range
of domains and introduce more advanced expert se-
lection mechanisms, such as dynamic vision expert
routing. Last, due to the computational limitations,
we did not test the efficiency of LEO-MINI using
bigger LLMs with 13B or 67B parameters.

7 Potential Risks

LEO-MINI is an MLLM that can be used for vari-
ous tasks, including visual question answering, im-
age captioning, and document understanding. How-
ever, as an inherent risk of (multi-modal) LLMs,
LEO-MINI may generate biased or harmful con-
tent, especially when the query data contains sen-
sitive information. We recommend that users care-
fully review the generated content and apply appro-
priate filters to mitigate potential risks.
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A Experiments

A.1 Benchmark Datasets

We evaluate our method on the following bench-
mark datasets: MME (Fu et al., 2024), MM-
Bench (Liu et al., 2024d), Seed-Bench (Li et al.,
2024a), GQA (Hudson and Manning, 2019),
SQA (Lu et al., 2022), MMMU (Yue et al.,
2024), POPE (Li et al., 2023), AI2D (Kemb-
havi et al., 2016), VizWiz (Gurari et al., 2018),
TextVQA (Singh et al., 2019), DocVQA (Mathew
et al., 2021), ChartQA (Masry et al., 2022), and
OCRBench (Liu et al., 2024e).

MME (Fu et al., 2024). The MME benchmark
is designed to rigorously evaluate a model’s percep-
tual and cognitive abilities through 14 subtasks. It
employs carefully constructed instruction-answer
pairs and concise instructions to minimize data
leakage and ensure fair evaluation. This setup pro-
vides a robust measure of a model’s performance
across various tasks.

MMBench (Liu et al., 2024d). MMBench of-
fers a hierarchical evaluation framework, categoriz-
ing model capabilities into three levels. The first
level (L-1) focuses on perception and reasoning.
The second level (L-2) expands this to six sub-
abilities, while the third level (L-3) further refines
these into 20 specific dimensions. This structured
approach allows for a nuanced and comprehensive
assessment of a model’s multifaceted abilities.

Seed-Bench (Li et al., 2024a). SEED-Bench
consists of 19K multiple-choice questions with ac-
curate human annotations, covering 12 evaluation
dimensions including both the spatial and temporal
understanding.

GQA (Hudson and Manning, 2019). GQA is
structured around three core components: scene
graphs, questions, and images. It includes not only
the images themselves but also detailed spatial fea-
tures and object-level attributes. The questions are
crafted to assess a model’s ability to comprehend
visual scenes and perform reasoning tasks based on
the image content.

ScienceQA (Lu et al., 2022). ScienceQA spans
a wide array of domains, including natural, lan-
guage, and social sciences. Questions are hierarchi-
cally categorized into 26 topics, 127 categories, and
379 skills, providing a diverse and comprehensive
testbed for evaluating multimodal understanding,
multi-step reasoning, and interpretability.

MMMU (Yue et al., 2024). MMMU includes
11.5K meticulously collected multimodal questions

from college exams, quizzes, and textbooks, cov-
ering six core disciplines: Art & Design, Business,
Science, Health & Medicine, Humanities & Social
Science, and Tech & Engineering. These questions
span 30 subjects and 183 subfields, comprising 30
highly heterogeneous image types, such as charts,
diagrams, maps, tables, music sheets, and chemical
structures.

POPE (Li et al., 2023). POPE is tailored to
assess object hallucination in models. It presents
a series of binary questions about the presence of
objects in images, using accuracy, recall, precision,
and F1 score as metrics. This approach offers a
precise evaluation of hallucination levels under dif-
ferent sampling strategies.

AI2D (Kembhavi et al., 2016). AI2D is a
dataset of over 5000 grade school science diagrams
with over 150000 rich annotations, their ground
truth syntactic parses, and more than 15000 corre-
sponding multiple choice questions.

VizWiz (Gurari et al., 2018). VizWiz consists
of over 31,000 visual questions originating from
blind people who each took a picture using a mobile
phone and recorded a spoken question about it,
together with 10 crowdsourced answers per visual
question.

TextVQA (Singh et al., 2019). TextVQA em-
phasizes the integration of textual information
within images. It evaluates a model’s proficiency
in reading and reasoning about text embedded in
visual content, requiring both visual and textual
comprehension to answer questions accurately.

DocVQA (Mathew et al., 2021). DocVQA con-
sists of 50,000 questions defined on 12,000+ docu-
ment images.

ChartQA (Masry et al., 2022). CharQA is
a large benchmark covering 9.6K human-written
questions as well as 23.1K questions generated
from human-written chart summaries.

OCRBench (Liu et al., 2024e). OCRBench is a
comprehensive benchmark for evaluating the OCR
capabilities of multi-modal language models across
five key tasks: text recognition, scene text-centric
and document-oriented VQA, key information ex-
traction, and handwritten mathematical expression
recognition.

A.2 Training Details
The training of LEO-MINI consists of three stages,
as shown in Table 6. Stage 1: Warming up for
the visual projector. This stage pre-trains the vi-
sual projector while keeping the LLM and vision
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Token Reduction MoE MMEP SEEDI GQA SQA MMMU POPE AI2D TextVQA ChartQA OCRBench

COTR MMOE-Vision + MMOE-LLM 1583 75.8 64.5 84.5 38.8 90.3 75.7 75.1 80.5 62.4

MQT MMOE-Vision + MMOE-LLM 1537 75.3 64.4 84.2 37.0 90.4 75.3 74.2 80.4 61.6
MQT - 1435 - 61.6 67.6 34.8 84.4 - - - -

COTR MMOE-Vision + LoRA-MoE 1521 75.3 64.5 83.4 38.2 90.3 75.4 74.0 80.0 61.7

Table 5: Ablation study on the effectiveness of COTR and MMOE-LLM. We use Llama3-8B as the backbone.
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Figure 7: Visualization of the expert choice using LEO-MINI-Llama-8B on TextVQA, ScienceQA, and GQA. Best
viewed in color.

Stage 1 Stage 2 Stage 3

LLM
Visual Experts
Visual Projector

COTR - -
MMOE-LLM - -

Table 6: The training stages of LEO-MINI. COTR and
MMOE-LLM are added and fine-tuned in the third stage,
while the LLM and vision experts (MMOE-Vision) re-
main frozen.

experts frozen. The LLM and vision experts are
initialized from the base models, while the vision
projector is randomly initialized. Stage 2: Super-
vised fine-tuning. In this stage, we fine-tune the
entire model, including the LLM, vision experts,
and visual projector. Stage 3: Supervised fine-
tuning for reducing the number of visual tokens.
In this stage, we introduce COTR to the model and
perform LoRA fine-tuning (MMOE-LLM) for effi-
ciency. Specifically, COTR and MMOE-LLM are
randomly initialized and fine-tuned, while the LLM
and vision experts remain frozen. To avoid the risk
of routing collapse (Shazeer et al., 2017), we em-
ploy a balanced loss for MMOE with a hyperparam-
eter λ = 0.05, following previous works (Shazeer
et al., 2017; Tian et al., 2024).

LEO-MINI uses the same training data as
LLaVA-v1.5 (Liu et al., 2024b) in stage 3 with
665K instruction data. For stage 1 and stage 2, we
follow the same data as EAGLE (Shi et al., 2024).
The training was conducted on 8 A6000 GPUs (48
GB) using DeepSpeed’s Zero2 strategy (Rajbhan-

dari et al., 2020).
We expect the model to learn a comprehensive

understanding of the input images in the first two
stages, and then in the third stage, the model is
guided to focus on the most important information
for improved efficiency.

A.3 Ablation Studies

How do other token reduction methods work?
To understand how our proposed token reduction
module, i.e., COTR, works, we compare it with a
representative token reduction method, i.e., MQT-
LLaVA (Hu et al., 2024), as shown in Table 5, while
keeping the MMOE unchanged. The results show
that COTR outperforms MQT on most benchmarks,
demonstrating the effectiveness of our proposed
method. Moreover, compared to MQT-LLaVA (the
third row), MMOE improves the performance of
MQT-LLaVA on most benchmarks, showing the
importance of introducing multiple experts for ex-
tracting informative tokens.
How does MMOE-LLM improve the perfor-
mance? We conduct an ablation study to inves-
tigate the effectiveness of MMOE-LLM in Ta-
ble 5. Results show that MMOE-LLM signifi-
cantly improves the performance on most bench-
marks, compared to the baseline with MMOE-
Vision and LoRA-MoE (Wu et al., 2023). MMOE-
LLM improves performance by 62, 0.5, 1.1, 0.6,
0.3, 1.1, 0.5, and 0.7 on MMEP , SEEDBenchI ,
SQA, MMMU, AI2D, TextVQA, ChartQA, and
OCRBench, respectively. This demonstrates the
effectiveness of MMOE-LLM in better switching
between different experts to better understand vi-
sual information.
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Figure 8: Visualization of the expert choice using LEO-MINI-Llama-8B on TextVQA, ScienceQA, and GQA
compared to the vanilla MoE. Best viewed in color.
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Figure 9: Visualization of the expert choice using the vanilla MoE on TextVQA, ScienceQA, and GQA. Best viewed
in color.

How does MMOE-LLM switch between differ-
ent LORA experts (full results)? The full results
are presented in Figure 7. The visualization shows
that MMOE-LLM can effectively switch between
different experts to better understand visual infor-
mation. We notice that for some layers, such as
layers 0, 3, 5, 6, 23, 25, 29, and 31, MMOE-LLM
selects different experts for different benchmarks,
while for some layers, such as layers 1, 2, 17, and
27, the model selects the similar experts for dif-
ferent benchmarks. This demonstrates the effec-
tiveness of MMOE-LLM in better understanding
visual information by switching between different
experts.
How does MMOE-LLM switch between dif-
ferent LORA experts compared to the vanilla
MoE? To understand how MMOE-LLM switches
using the additional visual and input signals, we
compare it with the vanilla MoE in Figure 8. The
full routing results of the vanilla MoE are shown
in Figure 9, while the results of MMOE-LLM are
shown in Figure 7. The results show that at differ-
ent layers, MMOE-LLM shows different experct
preferences for different benchmarks, while the
vanilla MoE shows similar expert preferences for
different benchmarks.
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