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Abstract

Large Reasoning Models (LRMs) show strong
System-2-style reasoning, but at the cost of
significant computational overhead. In con-
trast, efficient System-1-style Large Language
Models (LLMs) often struggle on complex
tasks. We identify a critical asymmetry be-
tween these two paradigms: LRMs can im-
plicitly self-distill their own reasoning, solving
hard problems with near System-1-style effi-
ciency while retaining superior performance.
LLMs, however, lack such deep internal modes
and collapse when forced to rely on their own
reasoning rather than imitating external traces.
This asymmetry explains why direct distillation
from strong LRMs to weaker LLMs often fails:
student models struggle to learn from LRMs’
overly complex explicit reasoning and gain lit-
tle from their overly compact implicit solu-
tions. To address this, we introduce a two-stage
curriculum distillation framework, which first
builds a robust internal problem-solving stu-
dent model and then teaches the student model
to externalize this latent knowledge as explicit
reasoning. On challenging mathematical bench-
marks, our method significantly outperforms
single-stage baselines, creating compact mod-
els with strong reasoning ability.

1 Introduction

Recent advances in language modeling have led
to the emergence of two distinct classes of mod-
els. While conventional Large Language Mod-
els (LLMs), such as DeepSeek-V3 (DeepSeek-AI
et al., 2025b), Llama3 (Grattafiori et al., 2024),
and Qwen2.5 (Qwen et al., 2025), have achieved
groundbreaking progress, they often fall short in
tasks requiring complex, multi-step reasoning like
mathematics, multi-hop question answering, and
program verification. This limitation has spurred
the development of an emergent class of Large
Reasoning Models (LRMs) (OpenAI et al., 2024;
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Anthropic, 2025; Comanici et al., 2025). The
distinction between these two archetypes is often
analogized to the dual-process theory of cognition:
LLMs are optimized for fast, intuitive responses
akin to System-1-style thinking, whereas LRMs
are engineered to externalize a slow and deliberate
thought process that mirrors System-2-style think-
ing. DeepSeek-R1 (DeepSeek-AI et al., 2025a),
training with innovative reinforcement learning
from verifiable rewards, has become the flagship
among LRMs due to its open-source accessibility
and superior performance.

While LRMs set new benchmarks on challeng-
ing tasks like mathematical problem solving (Seed
et al., 2025; MiniMax et al., 2025; Bercovich et al.,
2025), their deliberative process introduces signifi-
cant computational overhead. The verbose reason-
ing traces can lead to excessive inference times, a
phenomenon known as overthinking (Chen et al.,
2025), making them impractical for efficiency-
critical applications. Conversely, the System-1-
style speed of LLMs, though broadly useful, is
often insufficient for complex tasks where step-by-
step reasoning is essential for accuracy. This cre-
ates a fundamental trade-off: the analytical power
of System-2-style at the cost of efficiency, or the
speed of System-1-style at the risk of failure on
hard problems.

This paper investigates whether this trade-off
is fundamental, uncovering a critical asymmetry
between the two paradigms. Our empirical analy-
sis reveals that LRMs possess a deep and flexible
internal mode of the reasoning process, one that
can be modulated to balance performance and ef-
ficiency. By moderately pruning its thought pro-
cess, an LRM can achieve a more efficient, linear
style of reasoning. More strikingly, when com-
pelled to bypass explicit thought generation en-
tirely, it can implicitly self-distill its elaborate think-
ing, solving difficult problems with System-1-style
efficiency while still substantially outperforming its
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LLM counterpart. Standard LLMs, in contrast, lack
this modulatable internal mode. Our context titra-
tion experiments show that as problem difficulty
increases, their intrinsic problem-solving capabil-
ities collapse, making them reliant on extensive
external reasoning scaffolds. They function not as
autonomous reasoners, but as proficient completion
engines, adept at following a provided logical path
but unable to forge one on their own. This funda-
mental asymmetry explains why direct distillation
often fails: the LRM’s explicit reasoning trace is
too complex for a student model to imitate, while
its implicitly generated, dense solution provides an
insufficient learning signal.

To bridge this gap, we introduce a two-stage cur-
riculum distillation framework designed to transfer
an LRM’s sophisticated, dual-process capabilities
to a smaller student LLM. Our approach is inspired
by principles of effective learning, following a log-
ical progression from intuition to articulation. The
first stage instills a foundational internal mode by
training the student model on a curriculum mixing
standard LLM reasoning for simple problems with
the LRM’s dense, implicit solutions for the most
challenging ones. Once this latent problem-solving
apparatus is established, the second stage teaches
the student model to externalize this understand-
ing, training it on the LRM’s pruned, explicit rea-
soning traces for those same hard problems. This
method enables the student to first internalize a ro-
bust solution strategy and then learn to articulate it
effectively.

Our contributions are threefold. First, we em-
pirically characterize the distinct reasoning mecha-
nisms of LRMs and LLMs, identifying the LRM’s
novel capacity for implicit self-distillation. Sec-
ond, we diagnose the failure modes of single-stage
distillation, attributing them to the fundamental
mismatch in complexity and density between the
teacher’s reasoning and the student’s learning ca-
pacity. Third, we propose and validate our curricu-
lum distillation framework, demonstrating that it
significantly outperforms single-stage baselines on
challenging mathematical benchmarks. Our work
yields compact models that inherit the sophisticated
reasoning of leading LRMs, effectively bridging
the divide between System-1-style and System-2-
style models.

2 Related Work

2.1 Large Reasoning Models

Recent Large Reasoning Models (LRMs) are distin-
guished by their reliance on sophisticated reason-
ing techniques that generate extended, structured
thought processes (OpenAI et al., 2024; DeepSeek-
AI et al., 2025a; Team, 2025). At test-time, these
capabilities are typically realized through two dis-
tinct computational approaches.

Sequential reasoning. This approach involves
generating a comprehensive chain-of-thought that
incorporates reflection and verification within a sin-
gle forward pass. Instilling these capabilities often
requires intensive training paradigms, such as rein-
forcement learning from process-based feedback or
iterative self-improvement (Zelikman et al., 2022;
Lambert et al., 2025). DeepSeek-R1 leverages an
innovative technique, reinforcement learning from
verifiable rewards, to unlock the reasoning capabil-
ities of models without any supervised data.

Parallel reasoning. This strategy involves gener-
ating and subsequently aggregating multiple so-
lution candidates, including techniques such as
Best-of-N sampling and search-guided methods
like Monte Carlo Tree Search (MCTS) (Snell et al.,
2024; Brown et al., 2024). In these methods, nu-
merous reasoning paths are explored, evaluated,
and then consolidated using search algorithms or
external verification mechanisms.

2.2 Reasoning Efficiency

A widely observed issue with LRMs is the over-
thinking problem (Chen et al., 2025), where models
engage in unnecessarily complex or redundant rea-
soning, leading to significant computational over-
head and increased inference latency. To address
this, recent research has focused on improving rea-
soning efficiency, aiming to teach LLMs to gener-
ate more concise reasoning without compromising
performance.

Adaptive Reasoning. This approach enables the
model to dynamically adjust its reasoning depth
and length according to the complexity of the prob-
lem. For instance, Jiang et al. (2025) introduce
Hybrid Group Policy Optimization to train a model
that can adaptively select between long-chain and
short-chain reasoning paths. Drawing inspiration
from cognitive science, Cheng et al. (2025) incorpo-
rate special fast and slow thinking tokens, allowing
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the model to dynamically switch between rapid, in-
tuitive responses and more deliberate, step-by-step
analysis.

Early Exit. This strategy involves terminating
the reasoning process once a confident answer is
reached. The core challenge is determining the op-
timal moment to stop. Qiao et al. (2025) propose
a confidence injection technique that inserts high-
confidence phrases into the model’s reasoning. By
monitoring the confidence level, generation can be
halted once it surpasses a predefined threshold. A
more direct method, elastic-reasoning (Xu et al.,
2025), imposes a strict token budget on the rea-
soning process and forcibly concludes it when the
allocation is exhausted.

3 Probing the Interchangeability of
Reasoning Paradigms

In this section, we examine the behavior of LLMs
and LRMs under non-default reasoning paradigms.

3.1 Evaluating LRM Behavior Across
Reasoning Paradigms

We construct an experimental framework to evalu-
ate the performance of LRMs under several distinct
paradigms designed to elicit different reasoning
modes.

3.1.1 Reasoning Paradigms
Think. This is the standard operational mode for
LRMs, wherein the model generates a sequence
of intermediate reasoning steps before concluding
with a final solution. This paradigm is intended
to mimic a deliberative, System-2-style cognitive
process.

NoRethink. The widely observed overthinking
problem (Chen et al., 2025) refers to the tendency
of LRMs to engage in redundant self-reflection
and verification. To counteract this, the NoRe-
think paradigm enforces a more linear reasoning
process, discouraging loops or branches. This is
implemented during inference by prohibiting the
generation of specific keywords known to trigger
self-correction, a technique similar to that of Wang
et al. (2025). By forbidding the following words,
we compel the model to be a more efficient and
concise thinker:

["alternatively", "another", "but",
"hmm", "verify", "wait"]↪→

NoThink. In this experimental condition, we
compel the LRMs to bypass explicit, step-by-
step reasoning and produce an immediate solution.
This is achieved by prepending the prompt with
a non-informative thought template, adapted from
Ma et al. (2025), thereby simulating an intuitive,
System-1-style response:

<think> Okay, I think I have finished
thinking. </think>↪→

Instruct. This condition serves as a crucial base-
line, representing the performance of the under-
lying LLM from which the LRM is derived. In
this paradigm, the base LLM, which has not been
specialized for advanced reasoning, is prompted to
generate a standard chain-of-thought solution.

3.1.2 Experiments
Experimental Setup. We evaluate the math-
ematical problem-solving capabilities of the
DeepSeek-R1-Distill-Qwen model family at
three scales: 7B, 14B, and 32B. These models
are distilled from DeepSeek-R1 (DeepSeek-AI
et al., 2025a) and are based on Qwen2.5 and
Qwen2.5-Math (Qwen et al., 2025; Yang et al.,
2024). For our Instruct baseline, we use the
corresponding instruction-tuned versions of these
base models: Qwen2.5-14B/32B-Instruct and
Qwen2.5-Math-7B-Instruct. The evaluation is
conducted on the MATH dataset (Hendrycks et al.,
2021), which consists of 7,500 problems catego-
rized into five difficulty levels. For each problem,
we generate four solutions using a temperature of
0.6 and a top-p of 0.95, reporting both Pass@1 and
total token usage.

Main Results. Our analysis, illustrated in Fig-
ure 1, reveals several consistent and significant
trends across all evaluated model scales. These
findings underscore a clear trade-off between rea-
soning paradigms, performance, and computational
cost. We summarize the key conclusions below.

Explicit Reasoning Yields Peak Performance
at High Cost. The Think paradigm consistently
achieves the highest Pass@1 accuracy across all
difficulty levels. This result validates the effective-
ness of generating explicit, intermediate reasoning
steps. This superior performance, however, en-
tails the highest token consumption, which scales
sharply with problem difficulty, demonstrating the
significant computational overhead of deliberative
reasoning.
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Figure 1: Performance comparison across reasoning paradigms and model scales. The top row presents Pass@1
scores and token consumption for the Think, NoRethink, NoThink, and Instruct conditions across five difficulty
levels. The bottom row provides a differential analysis, illustrating the performance gaps and corresponding
token consumption differences between paradigms. Results are shown for 7B, 14B, and 32B models evaluated on
mathematical reasoning tasks of increasing complexity.

Internalized Reasoning Surpasses Instruction
Following on Complex Problems. At the other end
of the spectrum, the Instruct and NoThink condi-
tions are the most token-efficient. While their per-
formance is nearly identical on low-difficulty prob-
lems, a significant divergence emerges as task com-
plexity increases. The NoThink paradigm progres-
sively outperforms the Instruct baseline on harder
problems, establishing a performance gap of up to
7 percentage points. Notably, this substantial accu-
racy gain is achieved with only a marginal increase
in token usage, suggesting that the LRM’s internal-
ized reasoning capability is more effective than the
base LLM’s standard chain-of-thought process.

Restricted Reasoning Offers a Balanced Trade-
off. The NoRethink paradigm consistently occupies
an intermediate position in both performance and
efficiency. By precluding self-correction, it strikes
a more favorable balance between the high accu-
racy of Think and the token efficiency of NoThink.
This demonstrates that pruning the reasoning pro-
cess can effectively mitigate computational costs
while retaining a majority of the performance ben-
efits of a full thought process.

In essence, our findings reveal a clear trade-off
between reasoning depth and efficiency. While
Think achieves peak accuracy through costly delib-
eration, NoRethink proves that pruning this process
yields a balanced outcome. Most importantly, No-
Think confirms the LRM’s fundamental value by
showcasing its superior and efficient internalized
reasoning capability.

3.2 Quantifying LLM Reliance on External
Reasoning Scaffolds

In stark contrast to an LRM’s ability to internalize
reasoning, a standard LLM’s capacity for System-
2-style thinking appears heavily dependent on ex-
ternal guidance. To probe the extent of this depen-
dency, we design a context titration experiment to
quantify an LLM’s reliance on explicit thinking
processes.

Experimental Setup. Our experiment begins by
sampling problems from the MATH dataset, strati-
fied into two groups: Low Difficulty (Level 1,2,3)
and High Difficulty (Level 4,5). The source of the
external reasoning scaffold for each problem is
a complete, successful solution generated by an
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Figure 2: A scatter plot illustrating the relationship
between the fraction of context provided to an LLM
(Context Ratio) and the relative length of its generated
solution (Generation Ratio).

LRM under the Think paradigm. We first segment
this LRM trace into a sequence of discrete logical
units, where each unit represents a self-contained
conceptual or computational step (e.g., defining
a subgoal, deriving an intermediate result). The
process is iterative: we provide the LLM (Instruct)
with the first unit as a contextual prefix and task it
with solving the problem. If it fails across four gen-
erated samples, we expand the context to include
the next unit and repeat the process. This continues
until a correct solution is obtained, thereby iden-
tifying the minimal reasoning scaffold the LLM
required to succeed.

To quantify the LLM’s behavior, we introduce
two metrics: 1) the Context Ratio, representing the
fraction of the LRM’s total reasoning trace pro-
vided to the LLM, and 2) the Generation Ratio,
defined as the token length of the LLM’s generated
solution divided by the token length of the LRM’s
remaining ground-truth reasoning and solution.

Main Results. Our findings, depicted in Fig-
ure 2, reveal a strong positive correlation between
the length of provided reasoning context and the
LLM’s success, a dependency that is significantly
intensified by problem difficulty. We summarize
our key conclusions as follows.

LLM’s Reliance on Scaffolding Increases with
Difficulty. For low-difficulty problems, the LLM
exhibits a degree of autonomous reasoning, requir-
ing a median Context Ratio of 33% to arrive at
a correct solution. However, this capacity falters

on high-difficulty problems, where the necessary
context dramatically increases to a median of 61%.
This suggests the LLM’s intrinsic problem-solving
ability degrades as complexity rises.

Shift from Problem-Solver to Completion En-
gine. The steep increase in required context for
harder problems indicates a fundamental shift in
the LLM’s function. Rather than reasoning au-
tonomously, it increasingly acts as a proficient com-
pletion engine, merely executing the final, well-
defined steps of a plan laid out for it. It succeeds
not by reasoning, but by completing a nearly-solved
problem.

Internalized vs. Externalized Reasoning. This
observed behavior contrasts sharply with the LRM,
whose strength lies in its internalized cognitive
model. The LRM excels in complex scenarios
precisely because it can leverage this internal ap-
paratus, a faculty so robust that it enables correct
solutions even when explicit step-by-step genera-
tion is suppressed (NoThink). While the base LLM
needs an external script, the LRM relies on an in-
ternal one.

This distinction underscores our central hypoth-
esis: the crucial transformation from an LLM to
an LRM is not about learning to produce longer
reasoning chains, but about cultivating a compact
and flexible internal reasoning capability. This cog-
nitive apparatus can be explicitly unfolded into a
verifiable trace (NoRehink) or executed implicitly
for greater efficiency (NoThink).

4 Distill Reasoning Capabilities into
Small LLMs

This section investigates the distillation of ad-
vanced reasoning abilities from LRMs into smaller
LLM counterparts. A fundamental challenge in
this process is the inherent difficulty smaller mod-
els have in replicating the long and complex rea-
soning chains produced by larger teacher models.
Recent findings by Li et al. (2025) corroborate this,
demonstrating that smaller models benefit more
from concise reasoning traces and supervision from
moderately-sized teachers.

4.1 Single-Stage Reasoning Distillation

A common approach for transferring reasoning
skills is single-stage distillation, where a smaller
student model is fine-tuned directly on the reason-
ing traces generated by a more capable teacher
model. We design a series of experiments
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AIME 24 AIME 25 AMC 23 MATH 500 Minerva Olympiad Average

Qwen2.5-3B

Instruct 4.79±2.69 2.50±1.20 38.28±5.65 62.98±1.78 24.63±2.19 26.72±1.36 26.65

NoThink 5.31±2.65 1.15±0.53 29.53±5.23 59.95±1.80 20.08±1.99 24.31±1.29 23.39

NoRethink 3.42±1.44 3.02±0.97 26.80±4.84 57.73±1.77 18.43±1.48 22.24±1.22 21.94

Think 2.81±1.29 3.75±1.90 21.80±3.89 56.70±1.75 14.38±1.55 21.16±1.19 20.08
Think: Solution 2.81±1.30 1.67±0.89 25.94±4.77 57.73±1.82 18.43±1.82 21.98±1.24 21.43

Qwen2.5-3B-Instruct

Instruct 4.06±1.79 1.77±0.86 35.62±5.31 62.82±1.79 25.00±2.23 27.31±1.39 26.10

NoThink 5.10±2.48 2.29±0.92 28.67±4.73 61.20±1.78 22.52±2.14 25.54±1.33 24.22

NoRethink 3.33±1.55 3.23±1.49 25.94±4.67 58.43±1.75 19.21±1.88 22.24±1.18 22.06

Think 3.02±1.73 4.48±2.29 24.22±3.99 56.95±1.76 15.12±1.58 21.15±1.19 20.82
Think: Solution 3.02±1.41 2.40±1.29 28.52±5.19 57.37±1.82 20.31±2.00 21.56±2.15 22.20

Table 1: Performance of Qwen2.5-3B and Qwen2.5-3B-Instruct student models after single-stage reasoning
distillation. Models are fine-tuned on datasets generated by a 32B LLM teacher (Instruct) and a 32B LRM teacher
under various conditions (NoThink, NoRethink, and Think). We report Pass@1 scores (± means standard deviation)
across six mathematical reasoning benchmarks.

to evaluate the effectiveness of this paradigm.
We distill reasoning capabilities from two
teacher models, an LLM Qwen2.5-32B-Instruct,
and an LRM DeepSeek-R1-Distill-Qwen-32B,
into smaller student models, Qwen2.5-3B and
Qwen2.5-3B-Instruct. Crucially, both teacher
models originate from the same foundational
model, Qwen2.5-32B, ensuring they share a com-
mon basis of world knowledge. However, their
distinct post-training strategies result in different
reasoning styles. This controlled setup allows us
to isolate and evaluate the impact of the teacher’s
reasoning approach on the distillation process.

Reasoning Traces Extraction. We derive our
distillation data from the 7,500 problems in the
MATH training set (Hendrycks et al., 2021). To gen-
erate solutions for each problem, we prompted two
teacher models and used rejection sampling to en-
sure correctness, verifying each output with the
Math-Verify toolkit (Face, 2025). Our generation
process was configured to maximize the yield of
correct solutions, using a temperature of 0.6, a top-
p of 0.95, a maximum sequence length of 16,384
tokens, and up to four sampling attempts per prob-
lem. We prompted the Qwen2.5-32B-Instruct
teacher in its standard Instruct mode and the
DeepSeek-R1-Distill-Qwen-32B teacher using
the Think, NoRethink, and NoThink modes. The fi-

nal dataset comprises the 6,445 problems for which
all prompting modes yielded a correct solution. For
a more comprehensive comparison, this dataset
also includes the final condensed solutions from
the LRM’s Think mode.

Training and Evaluations. We instruction-tuned
both 3B student models for two epochs using the
LlamaFactory framework (Zheng et al., 2024), a
cosine learning rate scheduler, and a maximum
learning rate of 1 × 10−5. To evaluate perfor-
mance, we used a suite of mathematical reason-
ing benchmarks: AIME 2024 (Art of Problem
Solving, 2024), AIME 2025 (Art of Problem Solv-
ing, 2025), AMC 2023 (Art of Problem Solv-
ing, 2023), MATH 500 (Hendrycks et al., 2021),
Minerva (Lewkowycz et al., 2022), and Olympiad
Bench (He et al., 2024). Our evaluation protocol
involved generating multiple samples per problem
with a temperature of 0.6, a top-p of 0.95, and a
maximum sequence length of 16,384 tokens. We
generated 32 samples for each problem in the AIME
and AMC benchmarks and 8 samples for all other
benchmarks. Performance is reported using the
Pass@1 metric across all datasets.

Experimental Results. The experimental results,
detailed in Table 1, demonstrate a fundamental
trade-off between teaching for general proficiency
and specialized skill. This tension highlights the
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limitations of a direct imitation approach and mo-
tivates the need for a more structured distillation
strategy. Our key conclusions are as follows.

A Foundational Trade-off Between Teachers. We
observe a distinct trade-off between teacher models.
The LLM teacher (Instruct) consistently produces
the best-performing student models on average, in-
dicating that its straightforward chain-of-thought
format provides a highly effective and learnable
foundation for general reasoning. In contrast, dis-
tillation from the LRM’s complex, explicit reason-
ing (Think) proves to be the least effective method,
confirming that small models cannot easily repli-
cate long, intricate logical chains. This establishes
a clear dilemma: the teacher with the most com-
prehensible reasoning style lacks the specialized
knowledge for the hardest problems, while the ex-
pert teacher’s explicit thoughts are too complex to
be learned effectively through simple imitation.

Implicit Heuristics are More Transferable than
Explicit Traces. A promising finding is the rela-
tive success of the NoThink paradigm. While still
lagging the Instruct baseline on average, it outper-
forms all other LRM-based methods and shows a
competitive advantage on the most difficult prob-
lems (AIME 24 and AIME 25). This critical result
suggests that the student model can successfully
internalize the LRM’s advanced problem-solving
heuristics when presented in a concise, implicit
format. The core value being transferred is not
the step-by-step articulation of the reasoning, but
the underlying heuristic leap required to solve the
problem.

The results indicate that single-stage distillation
is a suboptimal method for transferring advanced
reasoning. Effective knowledge transfer necessi-
tates two elements not found in any single teacher
model: first, a foundational capacity for explicit,
procedural reasoning on general tasks, and second,
exposure to the sophisticated, implicit heuristics of
an expert for challenging tasks. A naive combina-
tion data from these distinct paradigms is prone to
failure because the student may fail to reconcile the
divergent reasoning processes. Therefore, a curric-
ular learning approach is warranted, one that first
establishes a robust reasoning foundation before
systematically introducing more advanced, implicit
heuristics.

4.2 Curriculum Reasoning Distillation
To resolve the challenges identified in the single
stage approach, we propose a curriculum based

distillation framework. This methodology draws
inspiration from the educational principle of the
Zone of Proximal Development, which suggests
that learning is most effective when complex con-
cepts are introduced after foundational knowledge
has been established. Our framework implements
this concept through a two stage process designed
to develop a robust internal reasoning model within
the student, rather than promoting the superficial
imitation of reasoning traces.

Stage 1: Foundational Distillation of Implicit
Heuristics. The initial stage of the curriculum
focuses on establishing a strong foundation of im-
plicit problem solving heuristics. We construct a
composite dataset that strategically combines data
from both teacher models. For problems of low to
moderate difficulty (Levels 1 through 4), we use the
effective and learnable chain of thought data from
the LLM teacher (Instruct). For the most challeng-
ing problems (Level 5, which constitute approxi-
mately 24% of the data), we substitute this with the
LRM’s concise NoThink solutions. This selective
data composition introduces the LRM’s advanced,
dense reasoning patterns only on tasks where they
are most critical. The design compels the student
model to internalize sophisticated heuristics with-
out being overwhelmed by long, explicit reasoning
chains.

Stage 2: Unfolding Implicit Knowledge into
Explicit Reasoning. Building upon the foun-
dation established in the first stage, the second
stage teaches the student model to articulate its
acquired implicit knowledge as an explicit and
verifiable chain of thought. The learning objec-
tive shifts from internalizing heuristics to exter-
nalizing them. To achieve this, we fine tune the
Stage 1 model on a revised data mixture. For less
complex problems, we reinforce efficient problem
solving using the LRM’s NoThink outputs. For
the most complex Level 5 problems, we introduce
the LRM’s externalized reasoning traces from the
NoRethink paradigm. Since the student has already
been primed with the appropriate implicit heuris-
tics for these problems, it is not learning the com-
plex reasoning without prior conceptual grounding.
Instead, it learns to verbalize a thought process
founded on logic it has already begun to master.
This progressive transition from implicit intuition
to explicit articulation aims to foster a genuine
and flexible reasoning capability that emulates the
LRM’s own functionality.
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AIME 24 AIME 25 AMC 23 MATH 500 Minerva Olympiad Average

Qwen2.5-3B
Instruct 4.79±2.69 2.50±1.20 38.28±5.65 62.98±1.78 24.63±2.19 26.72±1.36 26.65
NoThink 5.31±2.65 1.15±0.53 29.53±5.23 59.95±1.80 20.08±1.99 24.31±1.29 23.39
Mix-Long 4.06±2.60 1.87±0.82 34.14±5.40 61.52±1.74 23.62±2.08 26.11±1.34 25.22

Stage 1: Instruct + NoThink
+ Stage2: NoThink Only 6.15±3.05 2.91±1.45 38.81±5.51 63.43±1.75 26.13±2.20 28.67±1.45 27.68
+ Stage2: NoThink + Think 6.43±3.01 3.05±1.51 38.23±5.25 62.81±1.75 25.82±2.32 28.99±1.47 27.56
+ Stage2: NoThink + NoRethink 6.98±3.12 3.44±1.65 39.43±5.48 64.02±1.74 26.88±2.31 29.51±1.41 28.38

Qwen2.5-3B-Instruct

Instruct 4.06±1.79 1.77±0.86 35.62±5.31 62.82±1.79 25.00±2.23 27.31±1.39 26.10
NoThink 5.10±2.48 2.29±0.92 28.67±4.73 61.20±1.78 22.52±2.14 25.54±1.33 24.22
Mix-Long 3.75±1.77 1.98±1.11 35.00±5.62 62.38±1.77 25.60±2.20 26.41±1.35 25.85

Stage 1: Instruct + NoThink
+ Stage2: NoThink Only 5.91±2.31 2.66±1.20 36.54±4.72 63.95±1.79 26.15±2.28 28.95±1.46 27.36
+ Stage2: NoThink + Think 6.02±2.80 2.81±1.35 36.19±5.15 63.40±1.76 25.74±2.10 29.21±1.49 27.23
+ Stage2: NoThink + NoRethink 6.44±2.19 3.01±1.42 37.19±5.11 64.21±1.76 27.05±2.33 29.86±1.32 27.96

Table 2: Performance comparison of the two-stage curriculum distillation framework against single-stage baselines.
We report Pass@1 scores (± means standard deviation) for the Qwen2.5-3B and Qwen2.5-3B-Instruct student
models across six mathematical reasoning benchmarks. The single-stage baselines represent the best-performing
methods from Table 1.

Experimental Setup. We follow the training
and evaluation protocol established in our single-
stage experiments to facilitate a direct compari-
son. Our two-stage training procedure is config-
ured as follows. For Stage 1, we use solutions from
the Qwen2.5-32B-Instruct teacher (Instruct) for
MATH problems of difficulty levels 1-4. For the most
difficult problems (level 5), we incorporate solu-
tions from the DeepSeek-R1-Distill-Qwen-32B
teacher’s NoThink paradigm. Subsequently, in
Stage 2, the training data comprises the LRM
teacher’s NoThink outputs for levels 1-4 and its
explicit reasoning traces (NoRethink) for level 5.
Our baseline is the Mix-Long method (Li et al.,
2025), which randomly combines Instruct outputs
with Think outputs in a 4:1 ratio. We conduct eval-
uations on six mathematical reasoning benchmarks,
employing uniform sampling parameters and re-
porting the Pass@1 score.

Experimental Results. The experimental results,
presented in Table 2, validate the effectiveness of
our two-stage curriculum distillation framework.
This structured approach consistently yields stu-
dent models that outperform all single-stage base-
lines, confirming that a progressive learning strat-
egy is more effective than direct imitation for trans-
ferring complex reasoning skills. We summarize
our key findings below.

Curriculum Distillation Substantially Outper-

forms Baselines. Our curriculum-trained models
achieve a clear and significant performance im-
provement over the strongest single-stage methods.
For instance, our optimal Qwen2-3B model reaches
an average Pass@1 score of 28.38 across all bench-
marks. This is a substantial gain compared to the
26.65 score from the best single-stage baseline,
which was trained on the LLM teacher’s Instruct
data. This outcome demonstrates the value of a
carefully scaffolded educational progression.

Pruned Reasoning is the Optimal Scaffold for
Articulation. The primary advantage of our design
is most evident in the Stage 2 results. The strategy
of using streamlined NoRethink traces to teach the
articulation of complex reasoning yields the best
performance. This approach surpasses the alterna-
tives of either reinforcing implicit knowledge with
more NoThink data or introducing the unabridged
reasoning from the Think paradigm. After Stage 1,
the student model has already acquired the implicit
problem-solving heuristics for hard problems. At
this point, the verbose and often redundant Think
traces are suboptimal, as they overwhelm the model
instead of refining its skills.

The Curriculum Successfully Bridges Intuition
and Expression. The success of the NoRethink
traces in Stage 2 confirms our core hypothesis. The
streamlined traces act as a ideal conceptual scaf-
fold. They provide a clean, logical template that
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teaches the student how to effectively structure and
externalize the implicit knowledge it has already
acquired. By first fostering the internalization of
heuristics and then teaching the model to articu-
late that knowledge using concise examples, we
cultivate a more robust reasoning capability that is
challenging to achieve with single-stage methods.

5 Conclusion

In this work, we demonstrate a fundamental asym-
metry between LRMs and conventional LLMs,
which originates from the LRM’s intrinsic capac-
ity for implicit self-distillation. We show that this
disparity causes direct distillation to fail by creat-
ing an intractable learning problem: the LRM’s
explicit reasoning traces are too complex, while its
implicit solutions are too information-dense for a
student model to effectively learn from. To address
this challenge, we propose a novel curriculum dis-
tillation framework. Our two-stage method first
trains a student on an LRM’s implicit solutions
to build a foundational reasoning capability, then
fine-tunes it on explicit reasoning traces to develop
explicit reasoning skills. Empirical evaluation con-
firms that our method significantly outperforms
single-stage baselines, yielding compact models
that successfully inherit the dual-process reason-
ing of advanced LRMs and mitigate the trade-off
between analytical depth and inference efficiency.

Limitations

Our study has several limitations. First, our in-
vestigation is confined to mathematical reasoning,
and the generalizability of our curriculum distil-
lation framework to other domains, such as code
generation, instruction following, or multi-modal
reasoning, remains unexplored. Second, we focus
on reasoning paradigms and distillation strategies,
without systematically investigating how variations
in data diversity or annotation style might affect
the transfer of reasoning skills. Third, our experi-
ments are limited to English-language benchmarks;
the effectiveness of our approach in multilingual or
culturally diverse settings is yet to be examined. Fi-
nally, while our framework improves the efficiency
of smaller models, it presupposes access to power-
ful LRMs as teachers, which may not be feasible
in resource-constrained environments.
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