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Abstract
Large Multimodal Models (LMMs) face lim-
itations in geometric reasoning due to insuffi-
cient Chain of Thought (CoT) image-text train-
ing data. While existing approaches leverage
template-based or LLM-assisted methods for
geometric CoT data creation, they often face
challenges in achieving both diversity and pre-
cision. To bridge this gap, we introduce a two-
stage Theorem-Validated Reverse Chain-of-
Thought Reasoning Synthesis (TR-CoT) frame-
work. The first stage, TR-Engine, synthesizes
theorem-grounded geometric diagrams with
structured descriptions and properties. The
second stage, TR-Reasoner, employs reverse
reasoning to iteratively refine question-answer
pairs by cross-validating geometric properties
and description fragments. Our approach ex-
pands theorem-type coverage, corrects long-
standing misunderstandings, and enhances geo-
metric reasoning. Fine-grained CoT enhances
theorem understanding and improves logical
consistency by 24.5%.. Our best models sur-
pass the baselines in MathVista and GeoQA
by 10.1% and 4.7%, outperforming advanced
closed-source models like GPT-4o. The code
is available at https://github.com/dle666/
R-CoT.

1 Introduction

Large Language Models (LLMs) (OpenAI, 2024;
Guo et al., 2025) have revolutionized textual
mathematical reasoning through advanced inferen-
tial mechanisms. While architectural innovations
now enable these models to process multimodal
inputs via parameter-efficient vision-language
alignment (e.g., GPT-4o (Islam and Moushi,
2024), Gemini (Team et al., 2023)), achieving
human-competitive VQA performance (Fan et al.,
2024), their geometric reasoning remains con-
strained (Wang et al., 2025). This limitation stems

∗Equal contribution.
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from training data dominated by natural scenes,
which lack the geometric specificity required for
rigorous spatial problem-solving.

Current methods for generating geometric rea-
soning data through Chain-of-Thought (CoT)
frameworks face three fundamental limitations.
First, rephrasing approaches (Gao et al., 2023b)
use LLM to transform the CoT format of existing
problems, which requires scarce high-quality an-
notations and domain-specific expertise to ensure
theorem consistency (Fig. 1 (a)). Second, template-
based methods (Kazemi et al., 2023a; Zhang et al.,
2024b) generate geometrically oversimplified im-
ages by combining predefined polygons in rigid
configurations, lacking theorem-aware element in-
teractions, limiting their applicability to advanced
reasoning, as shown in Fig. 1 (b). Thirdly, while
LMM-based reasoning (Peng et al., 2024) ensures
reasoning diversity, insufficient mathematical pri-
ors often lead to incorrect reasoning, e.g., misusing
theorems in the wrong situation, leading to logi-
cally invalid chains of reasoning (Fig. 1 (c)).

We introduce Theorem-Validated Reverse Chain-
of-Thought (TR-CoT), a two-stage framework de-
signed to generate geometric reasoning data and
verify logical flows, as shown in Fig. 1 (d). We first
develop the theorem-driven image and property
generation engine (TR-Engine) to create images
paired with geometric properties, ensuring depen-
dencies among elements. Then, TR-Reasoner de-
rives questions from answers by segmenting image
descriptions, generating single-step reasoning, and
combining them into multi-step reasoning chains.
Each step is verified against geometric properties,
discarding pairs that violate mathematical rules,
ensuring the logical rigor of generated data.

With TR-CoT, we create TR-GeoMM and TR-
GeoSup, comprehensive datasets of diverse geo-
metric theorems, which fully leverage CoT infor-
mation. TR-CoT can bring notable and consistent
improvements across a range of LMM baselines
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AO ⊥ BO, ∠1 = 35°, ∠2 = ?

AO ⊥ BO, therefore ∠AOB =
90°, ∠2 = ∠AOB - ∠1 = 90° -
35° = 55°

Q:
A:

AO ⊥ BO, ∠1 = 70°, ∠2 = ?

AO ⊥ BO, therefore ∠AOB =
90°, ∠2 = ∠AOB - ∠1 = 90° -
70° = 20°

Q:
A:
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Figure 1: Comparison of TR-CoT with existing CoT data generation approaches. (a) Rephrase existing Q&A pairs
using LLMs, relying on existing CoT data. (b) Generate images and CoT data using pre-defined templates containing
a limited number of theorems. (c) Generate CoT using LMMs, where accuracy is limited by the performance of the
LMMs. (d) Design the TR-Engine to generate images, corresponding descriptions, and geometric properties from
theorems. And input the descriptions and properties into TR-Reasoner to generate reliable CoT Q&A pairs.

such as LLaVA, Qwen, and InternVL. Using the
recent LMM baselines, we achieve a new perfor-
mance record in 2B, 7B, and 8B settings for solving
geometry problems. The main advantages of our
method are summarized as follows:

• Compared to traditional template-based methods,
our approach covers twice the number of theorem
types, effectively correcting long-standing theo-
rem misunderstandings in models and enhancing
their geometric reasoning.

• Generating geometric data with fine-grained
CoTs enhances the model’s understanding of the-
orems, increasing the proportion of logically con-
sistent and clear outputs by 24.5%.

• Our most advanced models achieve a 10.1%
performance gain on MathVista and 4.7% on
GeoQA over the baseline, outperforming ad-
vanced closed-source models such as GPT-4o.

2 Related Work

Enhancing Reasoning with CoT in Inference.
Chain-of-thought (CoT) prompting has improved
reasoning in math tasks. KQG-CoT (Liang et al.,
2023a) selects logical forms from unlabeled data
via CoT-based KBQG. In general math, code-based
self-verification (Zhou et al., 2023) and SSC-CoT
(Zhao et al., 2024b) enhance reliability by combin-
ing reasoning with structured knowledge. Other
prompting strategies, including PEP (Liao et al.,
2024), Plan-and-Solve (Wang et al., 2023), and in-
context demonstrations (Didolkar et al., 2024), fur-
ther refine inference. In geometry, visual-symbolic

CoT methods (Zhao et al., 2024a; Hu et al., 2024)
align reasoning with multimodal representations.

Enhancing Reasoning in Geometry Training.
Training geometric solvers requires scalable and
diverse data. Early symbolic systems (e.g., GeoS
(Seo et al., 2015), Inter-GPS (Lu et al., 2021)) re-
lied on small benchmarks, while neural approaches
like UniGeo (Chen et al., 2022) and PGPS9K
(Zhang et al., 2023a) scaled up with costly man-
ual annotations. Recent methods automate data
generation using visual-language models (e.g., G-
LLaVA (Gao et al., 2023a)) or code-based engines
(Kazemi et al., 2023b; Zhang et al., 2024b). Geo-
Eval (Zhang et al., 2024a) provides fine-grained
evaluation across diverse reasoning settings. LLM-
generated CoT traces (Peng et al., 2024) offer new
avenues for training data synthesis.

Recently, reverse engineering has helped diag-
nose and refine LLM reasoning. Techniques such
as condition-answer swapping (Jiang et al., 2024;
Weng et al., 2023), error localization (Xue et al.,
2023), and prompt optimization (Yuan et al., 2024)
validate reasoning consistency without model up-
dates. However, they often lack integration into
training. Our approach embeds reverse reason-
ing into CoT generation, producing fine-grained,
theorem-aware supervision for model training.

3 Theorem-Validated Reverse
Chain-of-Thought

There are two key challenges for generating ge-
ometry reasoning data: (1) Direct generation of
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TR-Engine

Descriptions

TR-Reasoner 

Step2 Math Geometry Problems

Step3 Math Geometry Problems

LMM

In equilateral triangle
ABC, the length of line
AB is 10. Draw a line
from A perpendicular to
BC, intersecting BC at
point D. …...

reasoning
reasoning

Geometric Images

Step1 Math Geometry Problems

Answer 1:
Step 1: According to the three sides of an equilateral triangle being equal, we can get AB=BC=CA=10.
The perimeter of the triangle is 3*10 = 30.

Question 1:
In equilateral triangle ABC, the length of line AB is 10. What is the perimeter of triangle ABC ?
Answer 2:
Step 1: According to the three sides of an equilateral triangle being equal, we can get AB=BC=CA=10.
Step 2: AD divides BC into two equal parts, BD and CD, each of length 5 (since BC = 10). Triangle
ABD is a 30-60-90 triangle, so AD = AB*sin(60°) = 5√3.

Question2:
In equilateral triangle ABC, AB=10. AD is perpendicular to BC. What is the length of AD?
Answer 3:
Step 1: According to the three sides of an equilateral triangle being equal, we can get AB=BC=CA=10.
Step 2: AD divides BC into two equal parts, BD and CD, each of length 5 (since BC = 10). Triangle

ABD is a 30-60-90 triangle, so AD = AB*sin(60°) = 5√3.
Step 3: we can use trigonometry in triangle ADE: AD = AE*cos(15°). Since AD = 5√3, AE is 8.95.

Question 3:
In equilateral triangle ABC, AB=10. AD is perpendicular to BC. AE is the bisector of the angle BAD.
What is the length of line AE?

DESCRIPTION
In equilateral triangle ABC, the length of line 

AB is 10. Draw a line from A perpendicular to 
BC, intersecting BC at point D……

A

B

C

D

E

Geometry Properties
Length: AB=10, AC=10,
AD=8.66, AE=8.95...
Angle: BAC=60, BAD
=30, DAC=30...
Area: ABC=43.30, ABD
=21.65...

A

B

C

D

E

PROPERTIES
Length: AD=8.66, AE=8.95...
Angle: BAC=60, BAD =30...
Area: ABC=43.30, ABD =21.65...

Figure 2: The TR-Engine generates diverse images, corresponding descriptions, and geometric properties step by
step based on geometric theorems. Subsequently, the TR-Reasoner is utilized to obtain accurate geometric Q&A
pairs from descriptions and properties.

question-answer pairs often leads to errors or un-
solvable problems due to oversimplified scenarios.
(2) Single-step reasoning processes lack validation
of intermediate steps, compromising reliability.

We propose Theorem-Validated Reverse Chain-
of-Thought (TR-CoT), a two-stage framework for
creating geometry reasoning data with verified log-
ical flow, as shown in Fig. 2. The pseudo-code of
TR-CoT is shown in Appendix A.

1) Stage 1: Theorem-Driven Image & Prop-
erty Generation. We collect 110 fundamental ge-
ometry theorems (Complete theorems and collec-
tion method are shown in Appendix K) and develop
TR-Engine, a structured method to generate im-
ages paired with textual descriptions and geometric
properties (e.g., angles, lengths). Unlike random
image generation, TR-Engine guides image gener-
ation based on the sampled theorems and enforces
dependencies between geometric elements across
generation steps. Each step must operate on the
geometric primitives—such as lines, angles, and
points—produced in the preceding step.

2) Stage 2: Q&A Generation with Stepwise
Validation. Using the descriptions and properties
from Stage 1, TR-Reasoner generates questions
from answers through three steps: First, the image
description is divided into logical segments (e.g.,
“Triangle ABC is isosceles with AB = AC”). An
LLM processes these parts step-by-step, generating
individual inferences that are then combined into
multi-step reasoning chains. Secondly, for each
reasoning step, the system creates corresponding
questions. For instance, the inference “∠B = ∠C”
generates the question: “If triangle ABC is isosce-
les with AB=AC, which angles are equal?” Finally,
all Q&A pairs are cross-checked against the ge-

ometric properties from Stage 1. Pairs violating
mathematical rules (e.g., claiming “∠A = 90◦” for
a non-right isosceles triangle) are discarded.

3.1 TR-Engine

TR-Engine is a theorem-guided framework for syn-
thesizing geometrically valid images with rich rela-
tional structures, corresponding descriptions, and
geometric properties. TR-Engine operates through
four key components (Fig. 3):

1) Geometric Theorem Library. The 110 fun-
damental geometric theorems are classified into
substrate-related theorems and line-element-related
theorems. During the image generation process, 1
to 3 theorems from each category are sampled to
guide the selection of geometric substrates and the
addition of line elements.

2) Geometric Substrate Library. We curate 20
fundamental geometric shapes (substrates), such
as triangles, circles, and quadrilaterals. Each sub-
strate is paired with a set of relevant geometric
theorems and description templates. During image
generation, appropriate substrates are selected ac-
cording to the sampled theorems. The description
templates encode geometric conditions (e.g., “In
triangle ABC, AB = 5 cm and BC = 6 cm”) to
anchor subsequent reasoning steps.

3) Theorem-Based Dynamic Element Injection.
This component strategically injects elements to
enable complex reasoning scenarios based on the-
orem requirements. For example: Adding parallel
lines to invoke properties of alternate angles. In-
troducing auxiliary lines (e.g., medians, altitudes)
to create congruent sub-shapes. Such operations
expand reasoning opportunities while maintaining
geometric validity. In addition, TR-Engine assigns
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There is a circle with a radius of 2.9, and an 
equilateral triangle ABC is inscribed in the 
circle. Point D lies on line CB, the length of CD 
is 3.5, and line segment DA is drawn. Draw a 
perpendicular line from point C to line DA, 
such that it intersects line DA at point E. The 
midpoint of line segment AC is point F. Draw a 
line segment connecting points F and E. 

Image

Description

result

Length: AB = 5.02. AC = 5.02. AD = 4.46. 
AE = 3.69. BC = 5.02. BD = 1.52. BF = 
0.76. CD = 3.50. CE = 3.41. DE = 0.78. 
DF = 0.76. FE = 1.20. 
Area of triangle: ABC = 10.92. ABD = 
3.31. ACD = 7.61. ACE = 6.29. CDE = 
1.32. FDE = 0.29. 
Angle: BAC = 60.0 degrees. BAD = 17.2 
degrees. BAE = 17.2 degrees. CAD = 42.8 
degrees. CAE = 42.8 degrees.ABC = 60.0 
degrees. ABD = 60.0 degrees. ABF = 60.0 
degrees. ACB = 60.0 degrees. ACD = 60.0 
degrees. ACE = 47.2 degrees......

A

C

D

B

E

F

60°

Ground Truth

3.
5

Cyclic Polygon 
Theorem

Equi Triangle 
Properties

Substrate Theorem Addline Theorem

Figure 3: Overview of the TR-Engine. Starting from a Geometric Substrate Library, dynamically injecting elements
based on theorems, and integrating a property computation module to enable multi-step geometric reasoning and
validation in image generation.

line segment values and angle degrees using exact
vertex coordinates, preventing numerical conflicts
from geometric constraints.

4) Property Computation Module. As elements
are added, the vertex coordinates are used to au-
tomatically calculate: Metric properties: Lengths,
angles, areas. Relational properties: Parallelism,
congruence, symmetry. These properties serve as
ground truth for verifying generated Q&A pairs.
Additionally, we perform a visual fidelity check on
geometric properties, filtering out distorted images
with abnormal vertex spacing (the ratio of the max-
imum distance to the minimum distance exceeds a
threshold) or extreme angles (less than 15 degrees
or more than 160 degrees).

By integrating theorem-driven construction with
stepwise validation, TR-Engine ensures images in-
herently support multi-step geometric reasoning,
which is a critical advance over prior generation
methods in practice. Additionally, to expand the
range of potential element relationships and sup-
port the introduction of new substrates, we explore
all possible interactions between elements. Dis-
torted images with abnormal vertex spacing or ex-
treme angles are filtered out by automatically ana-
lyzing geometric properties.

3.2 TR-Reasoner

Despite advances in LLMs, generating accurate and
educationally viable geometric question-answer
(Q&A) pairs remains challenging due to three per-
sistent issues: (1) misapplication of geometric the-

orems in multi-step proofs, (2) diagram-text mis-
alignment in problem formulation, and (3) inabil-
ity to maintain answerability constraints during
question generation. To address these limitations,
we propose the TR-Reasoner to generate theorem-
grounded Q&A pairs through coordinated interac-
tion between geometric properties and structured
reasoning chains (Fig. 4).

Description Patch Reasoning Fusion Building
on the geometrically valid descriptions from TR-
Engine, this module enforces logical coherence
through causal dependencies between reasoning
steps. Let D = {p1, p2, ..., px} denote the x de-
scription patches extracted from an image, where
each patch pi corresponds to a geometrically mean-
ingful component (e.g., “Circle O with chord AB
and tangent CD”). The single-step reasoning ri for
patch pi is generated through theorem-constrained
transformation:

ri = FLLM(pi|r<i, T ), (1)

where r<i = {r1, ..., ri−1} represents preceding
reasoning states, and T denotes the applicable theo-
rem set (e.g., intersecting chords theorem for patch
pi describing chord intersections). This chained
formulation ensures cumulative reasoning: later
steps automatically inherit and extend prior conclu-
sions (e.g., deriving arc lengths after establishing
chord congruence).

Reverse Question Generation To prevent
answerability drift, we implement answer-
constrained reverse generation rather than
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Draw the bisector line of angle BAD 
from A, intersecting line BD at point E.

According to the three sides of an equilateral 
triangle being equal, we can get AB=CA=BC=10. 

The perimeter of the triangle is 3*10 = 30.

What is the perimeter of triangle ABC ?

AD divides BC into two equal parts, BD and CD, 
each of length 5 (since BC = 10). Triangle ABD is 
a 30-60-90 triangle, so AD = AB*sin(60°) = 5√3.

What is the length of line AD?

we can use trigonometry in triangle 
ADE: AD = AE*cos(30°).  Since 

AD = 5√3, AE is approximately 7.5. 

What is the length of line AE?

Description Patch Reasoning Fusion

Reverse Question Generation

Step 1 Math Problems Step 2 Math Problems Step 3 Math Problems

In equilateral triangle ABC, 
its side length measures 10.

Draw a line from A perpendicular to BC, 
intersecting BC at point D. 

DESCRIPTION
In equilateral triangle ABC, its side length measures 10. Draw a line 
from A perpendicular to BC, intersecting BC at point D. Draw the 
bisector line of angle BAD from A, intersecting line BD at point E.A B

C

D

E

Right

Property
Length: AB=10, AC=10, AD=8.66, AE=8.95, BC=10...

Angle:  BAC=60, BAD=30, DAC=30, EAC=45...
Area: ABC=43.30, ABD=21.65, ACD=21.65...

Right Error

Error A&Q Filtering

Figure 4: Overview of the TR-Reasoner. Image descriptions are segmented into patches to generate single-step
reasoning results. Single-step reasoning results are fused progressively to get multi-step reasoning results. Then
questions are generated based on the multi-step reasoning results. Finally, Q&A pairs that contradict geometric
properties are filtered.

open-ended question synthesis. Given a verified
reasoning chain R = {r1, r2, ..., rn}, each step
ri undergoes answerability assessment through a
theorem-aware discriminator:

faq(ri) =

{
fq(ri; Φgeo), if V(ri, Gprops) = True
∅, otherwise

(2)
where Gprops denotes geometric properties from

TR-Engine (e.g., coordinate-derived lengths), V
performs theorem-based validation (e.g., checking
triangle congruence rules), and fq generates ques-
tions using a geometry-specialized LLM with in-
struction prompt Φgeo. This approach leverages the
granular reasoning steps from the patch reasoning
stage to generate theorem-aware Q&A pairs.

To comprehensively capture multi-level reason-
ing and ensure the quality of the dataset, we in-
cluded Q&A pairs generated at all reasoning steps
while implementing measures to eliminate redun-
dancy and overly simplistic entries. Specifically: 1)
Semantic Similarity Filtering: Using a pre-trained
language model (BERT), we calculated the seman-
tic similarity between Q&A pairs. Highly similar
pairs were either merged or removed to reduce re-
dundancy. 2) Length-Based Filtering: Simple Q&A
pairs are often shorter in length. We set a minimum
length threshold and excluded excessively short

pairs that lacked sufficient information.

Error A&Q Filtering The final verification
stage applies bidirectional cross-validation to en-
sure Q&A quality. The forward validation aligns
generated answers with deterministic geometric
properties computed by TR-Engine’s analytical al-
gorithms, removing cases with (1) discrepancies
between final answers and properties, and (2) in-
consistencies in intermediate reasoning steps from
verified properties. The reverse validation identi-
fies ill-posed questions through semantic analysis,
excluding those exhibiting answer ambiguity or
logical indeterminacy. Both of the validation pro-
cesses are conducted through single-round LLM
inference, and only Q&A pairs that satisfy both
verifications are reserved. Quantitative analysis re-
vealed four main error patterns that were filtered
out: Theorem Violation (36.3%): incorrect geo-
metric principle application; Metric Discrepancy
(24.9%): numerical inconsistency with problem
constraints; Diagram-Text Mismatch (12.2%): ref-
erences to non-existent diagram elements; and An-
swerability Ambiguity (26.6%): ill-defined prob-
lem statements.

Our proposed filtering mechanism can effec-
tively reduce model hallucination and accumulate
errors in previous reasoning steps. Among a sam-
ple of 200 generated Q&A pairs, the framework
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successfully suppresses reasoning error, reducing
overall error rates from 16.0% (pre-validation) to
5.0% (post-validation). Showcases of invalid sam-
ples in Appendix D.

Context-Aware Prompt Engineering We de-
ploy an instruction-based context-aware prompt-
ing strategy to optimize reasoning. We construct
a reasoning instruction template pool containing
prototypical geometric problems with a correspond-
ing reasoning process. For each input, 3-4 optimal
templates that are most relevant to the theorem and
content is selected and integrated into the prompt.
Additionally, the pool also contains a series of geo-
metric relationships that are easily misunderstood
by LLM. We use the same sample strategy to inte-
grate them into the prompt as well, referred to as
Basic Knowledge. The sampled instruction tem-
plates and basic knowledge serve as examples to
assist the LLM to perform correct reasoning. Such
context-aware prompt engineering ensures a rela-
tively ideal reasoning accuracy, improving the effi-
ciency of data generation. More details about the
prompt strategy in Appendix B.

3.3 TR-GeoMM

Through the TR-CoT pipeline, we construct the
TR-GeoMM dataset to enhance LMM’s geometric
reasoning ability. From 15k figures, we obtain 45k
high-quality Q&A pairs after error filtering, aver-
aging 3.49 questions per figure. Detailed dataset
statistics are shown in Fig. 6.

At the image level, TR-GeoMM covers 20 sub-
strate shapes, mainly triangles, quadrilaterals, and
circles. Unlike conventional polygon-based de-
signs, TR-Engine builds figures from lines as prim-
itive elements. It emphasizes key lines with geo-
metric significance, e.g., midlines, angle bisectors,
and radii, which frequently appear in theorems. As
illustrated in Fig. 5 (a), 1.7k unique patterns are
formed through theorem-guided line combinations,
where each addition must interact with existing el-
ements(e.g., a new line’s vertex must align with
previously generated lines). At the text level, ques-
tions are categorized into four core types: side
lengths, angles, areas, and geometric relationships.
The hierarchical figure construction induces inter-
dependent questions, where earlier solutions serve
as prerequisites for subsequent ones. This sub-
problem design supports step-by-step learning of
geometric concepts and reasoning. As shown in
Fig. 5 (b), TR-GeoMM contains a theorem repos-

itory twice as large as existing synthetic datasets
(MAVIS and GeomVerse). Furthermore, Fig. 5 (c)
demonstrates superior data diversity through higher
Q&A pair cosine distances. More information is
provided in Appendix C and Appendix F.

3.4 TR-GeoSup

TR-CoT can not only generate reliable CoT geo-
metric data but also be used to augment existing
datasets. Real-world geometry CoTs often include
key intermediate steps rich in problem-solving in-
sights, yet these are typically implicit or oversimpli-
fied, relying on human prior knowledge. This lack
of explicit reasoning may hinder model learning
due to limited background knowledge and infer-
ence capability. Leveraging the TR-CoT pipeline,
we decompose the original CoT process into ex-
plicit theorem-aware steps, then reverse generate
new Q&A pairs with TR-Reasoner.

Specifically, our augmentation involves three
steps: generating a comprehensive multi-step anal-
ysis of the geometric figure, segmenting it into
essential problem-solving steps, and creating new
Q&A pairs for each step. These fine-grained Q&A
pairs explicitly guide the model with theorems and
knowledge implicitly expressed in the original data,
leading to improvement in comprehension and rea-
soning abilities. We applied TR-Reasoner to the
GeoQA dataset, producing the TR-GeoSup dataset
with 20k new entries. The final TR-GeoSup dataset
does not contain the original GeoQA data. Exam-
ples of TR-GeoSup are shown in Appendix E.

During the augmentation, LLM receives the orig-
inal question and its corresponding CoT answer to
produce a more complete analysis, supplementing
missing theorems and steps not explicitly stated in
the original CoT. We sampled 200 examples from
both the analysis and Q&A generation stages and
observed no errors, confirming the reliability of
our design. To streamline the data generation pro-
cess, we did not introduce additional independent
validation. After generation, 10% of the data was
manually reviewed and corrected.

4 Experiments

4.1 Setup

We train multiple LMMs (Wang et al., 2024; Liu
et al., 2024; Chen et al., 2024c) using existing ge-
ometric instruction datasets (Chen et al., 2021;
Gao et al., 2023b) and our TR-CoT generated data
(TR-GeoMM and TR-GeoSup). Both the projected
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Figure 5: Diversity analysis of TR-GeoMM.

Distribution of Geometric Shape Distribution of Question Types

Figure 6: Statistical information about TR-GeoMM.

linear layer and the language model are trainable.
The models are trained for two epochs with a batch
size of 128 on 16× 64G NPU, and learning rate set
to 5e-6. For evaluation, we assess these models on
the geometry problem solving on the testmini set
of MathVista (Lu et al., 2023) and GeoQA (Chen
et al., 2021) following Gao et al. (2023b). Top-1
accuracy serves as the metric, with predictions and
ground truth evaluated via ERNIE Bot 4.0. Abla-
tion experiments were done on Intern-VL-2.0-8B.

4.2 Ablation Study

Data generating procedures. To evaluate the
contributions of TR-CoT components, we construct
ablated variants by removing specific modules, as
summarized in Tab. 1. Each variant is used to gener-
ate training data, and the resulting models are eval-
uated on MathVista and GeoQA. Generating Q&A
pairs from descriptions yields better performance
than from images, with gains of 5.3% on MathVista
and 6.3% on GeoQA. Incorporating reverse gener-
ation further improves accuracy by 2.9% and 2.6%
on the two datasets, respectively. The full TR-CoT
pipeline achieves the best performance, confirming
the effectiveness of each component.

Separate validity of synthetic and augmented
data. We evaluated the impact of the TR-GeoSup
and TR-GeoMM datasets on model performance,
as shown in Tab. 2. Training with TR-GeoSup im-
proved performance by 1.4% on MathVista and
7.9% on GeoQA compared to the baseline. Com-
bining GeoQA with TR-GeoSup improves perfor-
mance by 2.9% on MathVista and 3.9% on GeoQA

Table 1: Ablation study on the data generating proce-
dures. ‘Description’ represents generation based on
descriptions. ‘Reverse’ represents generating reasoning
followed by reverse question generation. ‘Filter’ repre-
sents filtering errors based on geometric properties.

Configurations
Description Reverse Filter

MathVista GeoQA

✗ ✗ ✗ 55.3 44.2
✓ ✗ ✗ 60.6 50.5
✓ ✓ ✗ 63.5 53.1
✓ ✓ ✓ 64.4 54.0

compared to GeoQA alone, indicating their com-
plementarity. It suggests that TR-GeoSup effec-
tively enhances in-domain performance with better
extracted knowledge. A deeper understanding of
knowledge may contribute to improved generaliza-
tion on mixed out-of-domain datasets.

Table 2: Ablation study on the TR-CoT generated data.

Configurations
GeoQA TR-GeoSup TR-GeoMM

MathVista GeoQA

✗ ✗ ✗ 63.0 52.4
✓ ✗ ✗ 64.9 64.8
✗ ✓ ✗ 64.4 60.3
✗ ✗ ✓ 64.4 54.0
✓ ✓ ✗ 67.8 68.7
✓ ✗ ✓ 65.4 67.9
✓ ✓ ✓ 68.3 69.0

Second, training with TR-GeoMM improved
performance by 1.4% on MathVista and 1.6% on
GeoQA, confirming the strong generalization of
TR-CoT synthetic data to real data. Moreover,
joint training with GeoQA further improved perfor-
mance, highlighting the effectiveness of synthetic
data in supplementing real data. Finally, when
jointly training on all three datasets (GeoQA, TR-
GeoSup and TR-GeoMM). The model achieved the
best performance, with improvements of 5.3% on
MathVista and 6.6% on GeoQA over the baseline.
These results support that TR-CoT-generated data
compensate for the limitations of existing datasets
and enhance the model’s reasoning capability.
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Question: In the figure, KL is tangent to
⊙M at K. Find the value of x.
Choices: (A) 6.00 (B) 9.45 (C) 18.9 (D) 37.8

Utilizing the Pythagorean theorem,
we can express MK as √(ML^2 -
KL^2). For the equation
√{(x+10)^2 - 17^2} = x, therefore,
the value of x is 9.45. Answer: B

Question: Find the length of AC in the
isosceles triangle ABC.
Choices: (A) 1.5 (B) 7 (C) 11 (D) 12.5

To find the length of AC, we use the given information and the properties of isosceles triangles.
AB = 9x – 1, AC = 4x + 1, BC = 5x - 0.5. Since ABC is an isosceles triangle, two sides are equal.
We can set up the following equations based on the given information: 1. AB = AC 2. AB = BC.
Step 1: Set AB = AC, 9x - 1 = 4x + 1 , so x = 5/2. Set AB = BC, 9x - 1 = 5x - 0.5, so x = 0.375.
Step 2: Since x must be consistent in both equations, 5/2 = 0.4, 0.375≠0.4 …

K
x

10
L

M 17
x

A

C

B9x-1

4x+1 5x-0.5

1. To find the value of x, we can use the Pythagorean theorem in the right triangle KLM.
2. KL = 17, LM = 10, MK = x. Since KL is tangent to the circle at K, MK is the radius of the
circle. Using the Pythagorean theorem in △KLM :KL^2 = KM^2 + LM^2.
3. Substitute the given values: 17^2 = x^2 + 10^2, x≈13.75. Since none of the given choices
match this value, it appears there might be an error in the problem.

By equating the expressions for the
sides of the triangle, we get 4x + 1
= 5x - 0.5. Solving for x, we find x
= 1.5, AC = 4(1.5) + 1 = 7.
Answer:C

(a) pre-trained model (b) post-trained model

Figure 7: Comparison of model problem solving before and after training.

Compared with other synthesis datasets. We
train InternVL-2.0-8B using TR-GeoMM and two
recent synthetic datasets for geometric problems,
i.e., MAVIS (synthesis part) (Zhang et al., 2024b)
and GeomVerse (Kazemi et al., 2023a), as summa-
rized in Tab. 3. Compared to the baseline, models
trained with GeomVerse or MAVIS show a slight
performance gain on GeoQA and a decline on
MathVista, both lower than TR-GeoMM. We at-
tribute this to the limited diversity of image and
Q&A pairs in these datasets, which benefits the
simpler distribution of GeoQA but struggles with
the diverse distributions in MathVista. In contrast,
TR-GeoMM, with its diverse image and Q&A pairs,
improves performance on both datasets.

Table 3: Compared with other synthesis datasets.

Dataset MathVista GeoQA
/ 63.0 52.4

GeomVerse(9k) 58.2 53.6
MAVIS(sample 48k) 57.2 53.2

TR-GeoMM(45k) 64.4 54.0
TR-GeoMM(sample 9k) 63.0 55.6

4.3 Comparison with Previous
State-of-the-Art

With the proposed method, we train three special-
ized models for geometry problem solving named
TR-CoT-InternVL-2.0-2B, TR-CoT-Qwen2.5-VL-
7B, and TR-CoT-InternVL-2.5-8B on the joint
dataset of Geo170K and TR-CoT-generated data
(TR-GeoMM and TR-GeoSup). We compare our
models with both general and mathematical LMMs
on the geometry problems from testmini set of
MathVista and the test set of GeoQA. As shown
in Tab. 4, TR-CoT-InternVL-2.5-8B outperforms
GPT-4o by 17.3% on MathVista and TR-CoT-
Qwen2.5-VL-7B outperforms GPT-4o by 17.8%
on GeoQA. Compared to mathematical LMMs, TR-
CoT-InternVL-2.5-8B maintains a 11.1% lead on
MathVista, and TR-CoT-Qwen2.5-VL-7B achieves
a 12.5% advantage on GeoQA. For performance

analysis on more baselines and benchmarks, please
refer to Appendix H.

Table 4: Top-1 Accuracy (%) on geometry problem
solving on the testmini set of MathVista and the GeoQA
test set. * represents the results from the existing papers.

Model MathVista GeoQA
Closed-source LMMs

GPT-4o (Islam and Moushi, 2024) 60.6 61.4
GPT-4V 51.0* 43.4*

Gemini Ultra (Team et al., 2023) 56.3* -
Open-source LMMs

LLaVA2-13B (Liu et al., 2024) 29.3* 20.3*
mPLUG-Owl2-7B (Ye et al., 2024) 25.5 21.4

Qwen-VL-Chat-7B (Bai et al., 2023) 35.6 26.1
Monkey-Chat-7B (Li et al., 2024) 24.5 28.5
Deepseek-VL-7B (Lu et al., 2024) 34.6 33.7

InternVL-2.0-2B (Chen et al., 2024c) 46.2 38.2
InternLM-XC2-7B (Zhang et al., 2023b) 51.4 44.7
InternVL-1.5-20B (Chen et al., 2024b) 60.1 49.7

Qwen2-VL-7B (Wang et al., 2024) 55.1 55.7
InternVL-2.0-8B (Chen et al., 2024c) 65.9 56.5
InternVL-2.5-8B (Chen et al., 2024a) 67.8 59.0
Qwen2.5-VL-7B (Wang et al., 2024) 71.6 74.5

Open-source Mathematical LMMs
UniMath (Liang et al., 2023b) - 50.0*

Math-LLaVA-13B (Shi et al., 2024) 56.5* 47.8
G-LLaVA-7B (Gao et al., 2023b) 53.4* 62.8*
MAVIS-7B (Zhang et al., 2024b) - 66.7*

PUMA-Qwen2-7B (Zhuang et al., 2024) 48.1* -
MultiMath-7B (Peng et al., 2024) 66.8* -

TR-CoT-InternVL-2.0-2B 56.3 63.4
TR-CoT-Qwen2.5-VL-7B 74.5 79.2
TR-CoT-InternVL-2.5-8B 77.9 76.7

5 Discussion

Fig. 7 highlights consistent improvements: post-
trained models produce concise, logical CoTs with
accurate conclusions, demonstrating robust geo-
metric understanding. Pre-trained models show re-
curring errors (e.g., misdefining isosceles triangles
as having two equal sides), reflecting foundational
gaps in theorem comprehension. Our approach
trains models on diverse theorems with structured
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Correct AvgTotal AvgScore

6.516.15Before Training

7.216.52After Training

Correct AvgLength

108.5Before Training

99.5After Training

Figure 8: Comparison of model output quality and token
length before and after training.

reasoning, addressing these errors and enhancing
general geometric problem-solving.

We use DeepSeek R1 and ERNIE Bot 4.0 to
quantitatively evaluate model outputs before and af-
ter training, focusing on logical consistency, clarity,
and lack of ambiguity (see Appendix I for detailed
information). We use the average score of the two
models as the final score. As shown in Fig. 8 (a),
the total mean score increased by 0.37 after train-
ing, the mean score for correct answers increased
by 0.70, and outputs with scores of 8 or higher
increased by 24.5%. We attribute these improve-
ments to TR-CoT’s explicit focus on the reasoning
process, where step decomposition enhances the
model’s logical consistency and rigor.

We further compare the token usage for correct
answers before and after training. As shown in
Fig. 8 (b), the model after training requires fewer
tokens on average, with the percentage of correct
answers within 200 tokens increasing by 35%. We
assume this improvement results from the data di-
versity, which enables the model to find more ef-
ficient solutions across different theorems, while
a deeper understanding of the theorems allows for
more concise reasoning.

6 Conclusion

We introduce TR-CoT, a theorem-validated reverse
chain-of-thought framework that generates logi-
cally consistent geometric reasoning data. By com-
bining theorem-driven diagram-property synthesis
with reverse reasoning validation, TR-CoT expands
theorem coverage, enhances fine-grained theorem
understanding, and effectively corrects common
reasoning errors in LMMs. Models trained on our
TR-CoT generated data achieve substantial gains
on MathVista and GeoQA, surpassing strong open-
and closed-source baselines. In future work, we
expect to explore the role of theorem-aware reason-
ing further beyond multimodal geometry problem

solving.

Limitations

For our method, one major constraint is that there is
still room for further improvement in the generation
efficiency. The overall efficiency can be divided
into time efficiency and data efficiency. First, in
our process, LLM is called multiple times for rea-
soning generation. The limited reasoning speed of
LLM becomes the bottleneck of time efficiency. In
addition, although we have adopted various meth-
ods to improve the reasoning accuracy of LLM,
due to the limitations of model performance, there
is still a certain proportion of errors in the direct
output of the model. We observe that about 10%
of the direct output is deleted in the Error A&Q
Filtering stage.
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A Pseudo Code

We have written pseudo-code for the overall flow of
TR-CoT, the details of which are given in Algor. 1.

Algorithm 1: Pseudo-code of TR-CoT
Input: Geometry substrates sampling rounds n, plot

function f , image-description pair sets S, line
sampling rounds k, geometric property
calculation module V , large language model
M

Output: Generated Image I, Description D,
Geometric Properties T , QuestionQ;
Answer A

1 Initialization: I ← ∅, D ← ∅, T ← ∅, vertex
coordinate C ← ∅, rs ← ∅

2 for i← 1 to n do
3 Sample geometry substrate Gi and description

Di from image-description pair sets S
4 Refresh I using plot function: I ← f(I,Gi)
5 Refresh corresponding description:

D ← D ∪Di

6 Refresh vertex coordinate: C ← C ∪ Ci
7 end
8 for j← 1 to k do
9 Select line drawing position Pj

10 Draw line and label length: I ← f(I,Pj)
11 Refresh corresponding description:

D ← D ∪ Pj

12 Refresh vertex coordinate: C ← C ∪ Ci
13 if j = k then
14 Calculate all angle informationR
15 Draw angles and label degrees:

I ← f(I,R)
16 Refresh corresponding description:

D ← D ∪R
17 end
18 end
19 Refresh Geometric Properties: T ← V(C)
20 Produce single-step reasoning result rc using prompt

Ps: rc ←M(D, Ps)
21 Generate answer Ae and its corresponding question

Qe using prompt Pq: Ae, Qe ←M(rc, Pq)
22 Filtering for correct answer A and its corresponding

question Q using prompt Pe:
A,Q←M(Ae, Qe, T, Pe)

23 Return: I, D,Q, A

B Details of prompt in TR-Reasoner

We used ERNIE Bot 4.0 to implement TR-
Reasoner. We describe the prompts used in TR-
Reasoner, including the prompts for the Descrip-
tion Patch Reasoning Fusion (Fig. 9), the Reverse
Question Generation (Fig. 10), and the Error A&Q
Filtering (Fig. 11). In these figures, the texts in blue
represent the Task Description, while the texts in or-
ange represent the input information. Each prompt
includes three contextual examples, and we show
only one of them, with the remaining examples
replaced by ellipses. In addition to the examples,
some prompts also include an instruction section

Description Patch Reasoning Fusion Prompt

Assume expertise in geometry. Perform accurate inferences based on image

descriptions, summarize analysis, and provide logical, correct reasoning for

each level of description based on the provided data.

Instructions:

1. Inference Process: Analyze each description step by step and derive conclusions.

2. Relevance: If a description is irrelevant, state why and ignore it.

3. Output Format: Present inference as numbered points, concise and precise.

Input:

Step 1: In triangle ABC, length of side AB is 4, length of side AC is 6,

length of side BC is 6.Step 2: CD is the bisector of angle ACB, D lies on

line segment AB. Step 3: E is the midpoint of CD, connect E and B

Output:

Reasoning 1: Triangle ABC has sides AB = 4, AC = 6, BC = 6. Since AC =

BC, triangle ABC is isosceles. The perimeter of triangle ABC is AB + AC +

BC = 4 + 6 + 6 = 16.Reasoning 2: CD bisects angle ACB, forming 2 equal

angle ACD and BCD. Also, according to the property of isosceles triangle,

CD is also Perpendicular bisector of AB. We can know AD = BD = 0.5

\times AB = 2, and using the Pythagorean theorem, we get CD = √(AC^2 -

AD^2) CD = 4 √ 2. Reasoning 3: As E being the midpoint of CD, CE = ED

= 0.5 \times CD = 2 √ 2. Connecting BE form a new triangle BDE, and

angle BDE = 90 degrees as CD is perpendicular to AB. Using the

Pythagorean theorem, we can get BE = √(BD^2 + DE^2) = 2\sqrt(3)

……

Input: [DESCRIPTION]

Output: [INFERENCE]

Basic knowledge:

1. sin(15 °) =cos(75 °) ≈ 0.2588 , cos(15 °)= sin(75 °) ≈ 0.9659.

2. The radius of circle equals the side length of its inscribed regular hexagon.

4. In a hexagon, diagonals CA, AC, EA, AE, DB, BD, FB, BF, EC, CE are

√ 3*side length; diagonals DA, AD, EB, BE, FC, CF are 2 *side length.

5. In a square, the radius of the circle is r, and the side length of the

inscribed square is √ 2*r.

6. In an equilateral triangle, the radius of the circle is r , and the side length

of the inscribed triangle is √ 3*r.

Figure 9: The prompt of the Description Patch Reason-
ing Fusion.

that specifies more detailed requirements, some in-
corporate additional basic knowledge, and others
outline more specific goals that must be achieved.

In preliminary experiments, we observed that
LLMs often failed to accurately interpret certain
geometric relationships. To systematically iden-
tify such issues, we selected 50 representative
instances per geometric substrate from the TR-
GeoMM dataset and applied the TR-Reasoner
framework for Patch Reasoning. We analyzed
the most frequently misinterpreted relationships
and formalized their correct representations into a
base knowledge library. During formal generation,
prompts are dynamically constructed by retrieving
relevant geometric relationships from this library
based on the target substrate.

C More information of TR-GeoMM

Through the TR-CoT, we construct a high-quality
geometric dataset, TR-GeoMM. In Fig. 12, we pro-
vide a detailed overview of specific cases from
TR-GeoMM. These cases demonstrate the variety
of mathematical geometry question types covered
by TR-GeoMM, including solving for lengths, an-
gles, areas, and geometry elemental relations. Each
of these categories is critical for improving the ge-
ometric reasoning ability of LMMs.

For Cosine distance based data diversity, we
first randomly sample 5000 instances from each
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Assume you're an expert in geometry. Your task is to generate questions and

step-by-step answers from provided hierarchical geometry descriptions. For

each level of detail, create a specific, calculation-based question with a

precise answer. Ensure questions and answers align with the given reasoning.

Instructions:

1. Analysis: Analyze hierarchical geometry descriptions for key properties

and relationships, ensuring logical consistency.

2. Question and Answer Generation: For each step, create specific,

calculation-based questions with detailed answers, using appropriate

geometric principles.

3. Output Format: Provide questions and answers in a clear, structured

format as shown in the example below.

Input:

Step 1: Equilateral triangle ATW has side length AT = 9.Step 2: AG is

perpendicular to TW, with G on TW. Step 3: M is the midpoint of AT, and

MG is drawn. Reasoning 1: Reasoning 1: All sides of the equilateral

triangle are equal, so AW = TW = 9. Reasoning 2: Since AG is

perpendicular to TW and G lies on TW, AG is the height of the equilateral

triangle ATW. The height h of an equilateral triangle can be calculated as

h =
3

2
*side length. Therefore, AG =

9 3

2
.G is the midpoint of TW, so TG

= GW = 9/2 = 4.5. Reasoning 3: GM is the midline of triangle ATW,

parallel to AW, and half its length. Therefore, GM = 4.5.

Output:

Question 1: In equilateral triangle ATW, with AT = 9, what are the lengths

of sides AW and TW? Answer 1: Since all sides of an equilateral triangle

are equal, AT = AW = TW = 9.. The final answer: AW = TW = 9 Question

2: In equilateral triangle ATW, with AT = 9, and AG perpendicular to TW at

G, what is the length of AG? Answer 2: All three sides of the equilateral

triangle are equal, so AT = AW = TW = 9. Since AG is the height of the

triangle, h =
3

2
*side length. Substituting, AG =

9 3

2
. Question 3: In

equilateral triangle ATW, with AT = 9, AG perpendicular to TW, G on TW,

and M the midpoint of AT, what is the length of GM? Answer 3: With M as

the midpoint of AT and G as the midpoint of TW, GM is the midline of

triangle ATW. The midline is parallel to one side and has half its length.

Since AW = 9, GM =
9

2
= 4.5. The final answer is GM = 4.5

……

Input: [DESCRIPTION AND REASONING]

Output: [QUESTION AND ANSWER]

Reverse Question Generation Prompt

Figure 10: The prompt of the Reverse Question Genera-
tion.

Error A&Q Filtering Prompt

All the correct answers are given in Ground Truth, if the result obtained

in Answer contradicts the Ground Truth, return Score: 0, otherwise return

Score: 1.

Input:

Ground Truth: Length of segment OA = 2.00. Length of segment OB =

2.00. Length of segment AC = 1.04. Length of segment BC = 4.00.

Length of segment BD = 1.04. Angle OAC measures 75.0 degrees. Angle

AOB measures 150.0 degrees. Angle ACB measures 75.0 degrees. Angle

OBD measures 75.0 degrees. Angle CBD measures 75.0

degrees.Question: There is a circle O with a radius of 2. The central angle

AOB measures 150 degrees. Line BD is parallel to line CA. What is the

relationship between angle DBC and angle ACB?Answer: Since line BD

is parallel to line CA, according to the properties of parallel lines, the

corresponding angles are equal. Therefore, angle DBC is equal to angle

ACB.

Output:

Analysis: From the ground truth we can get angle ACB measures 75.0

degrees and angle CBD measures 75.0 degrees. So angle ACB = angle

DBC.Score: 1

……

Input: [GROUND TRUTH AND ANSWER]

Output: [SCORE]

What must be achieved:

1. When Ground Truth is the same as the content of the Answer, Score: 1.

2. When Ground Truth contradicts the content of the Answer, Score: 0.

3. When Ground Truth is not related to the content of the Answer, Score:

4. You don't need to focus on the solution process, as long as the result

agrees with the Ground Truth, return Score: 1.

Figure 11: The prompt of the Error A&Q Filtering.

dataset(MAVIS, GeomVerse, and TR-GeoMM),
then we encode the instances into embedding fea-
tures using pretrained BERT model (Devlin, 2018).
Finally, we calculate the average cosine distance
of each dataset using the BERT output features.
Higher distance score indicates better diversity,
and our TR-GeoMM has the highest distance score

Question:
In a regular pentagon ABCDE, a perpendicular line is
drawn from point F to DE, in tersecting DE at G.What is
the measure of ∠DFG? A. 27° B. 36° C. 45° D. 54°
Answer:
In a regular pentagon, each internal angle is 108°. The
angle bisector divides ∠CDE into two equal parts, so the
angle formed by the bisector and DE is 108°/2 = 54°. In
the right triangle FGD, ∠FGD is 90°. Since ∠FDG is 54°,
∠DFG = 180° - 90° - 54° = 36°. Answer: B.

Question:
There is a circle O in the figure with a radius of 2, line
AB is a chord of the circle with a length of 3.0 units. Let
M be the midpoint of AB, which of the following
correctly represents the distance from the center of the
circle O to the chord?
Answer:
By Pythagoras theorem, we have OM = √{OA^2 -
AM^2}. Given that OA (the radius) is 2 units and AM is
half of AB, which is 1.5 units, we can calculate OM =
√{2^2 - (1.5)^2} = √{4 - 2.25} = √1.75 units.

Question:
A circle has a radius of 9.2, and an equilateral triangle
ABC is inscribed within it. what is the area of triangle
ABC?

Answer:
The side length of an equilateral triangle inscribed in a
circle with radius 9.2 is √ 3 times 9.2 = 9.2 √ 3 units.
Using the formula S = !

" times (side length)^2, the area
of triangle ABC is 63.48 √ 3 square units.

Question:
In square ABCD, a perpendicular line is drawn from
point C to line FA, intersecting FA at point G. what is
the relationship about CG and FA? A. CG is parallel to
FA. B. CG is perpendicular to FA. C. CG is equal to FA.
D. CG is half of FA.
Answer:
Since a perpendicular line is drawn from point C to line
FA, intersecting FA at point G, CG is perpendicular to
FA.
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Figure 12: Examples of TR-GeoMM dataset.

among the three datasets.
We further report the computation and gener-

ation cost of the generation pipeline here. Geo-
metric images, descriptions, and properties are all
generated simultaneously by the TR-Engine, our
Python-built graphics rendering engine. A total of
15,000 geometric images were generated during
the geometric image generation phase, and it could
be done in approximately 10 minutes by a 12th-gen
Intel Core i7-12700. TR-Reasoner, our LLM-based
module for Patch Reasoning, Q&A generation, and
error filtering, runs via cloud APIs with 32 parallel
processes. These stages take approximately 6 hours
in total ( 2 hours per stage). As a one-time cost, the
generated data can be reused across model training
tasks.

D Qualitative examples of filtered errors

Fig. 13 presents four representative types of errors
identified by the Error A&Q Filtering module. The-
orem Violation refers to cases where conclusions
or assumptions contradict established mathemat-
ical theorems. Metric Discrepancies involve in-
consistencies between the given numerical values
or angles and the geometric properties. Diagram-
text Mismatches occur when elements described
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Table 5: Statistic comparison between Geo170K, Geom-
Verse, and our data. En. Exis means Enhance Existing
data. Fully syn. means Fully synthesized.‘/’indicates
the same number as GeoQA

Dataset name Data type Img. Q&A Theorem
Geo170K En. Exis. 6.4K 110K /

GeomVerse Fully syn. 9.3K 9.3K 60
TR-GeoMM Fully syn. 15K 45K 110
TR-GeoSup En. Exis. 6.4K 20K /

in the problem statement are either absent from
the diagram or inconsistent with it. Ambiguous
Answerability denotes problems in which the infor-
mation provided is insufficient to derive a unique
solution, or essential data is not explicitly stated in
the question.

E Examples of TR-GeoSup dataset

Fig. 14 illustrates an example from the TR-GeoSup
dataset, showcasing the transformation of a multi-
step reasoning problem from the original GeoQA
dataset. In the original Q&A pair, the reasoning
process is condensed and lacks explicit interme-
diate steps, relying on implicit knowledge. TR-
GeoSup decomposes the original reasoning process
into three hierarchical sub-questions, each accom-
panied by a detailed and theorem-aware reasoning
chain. This augmentation not only clarifies the
implicit knowledge embedded in the original data
but also provides a step-by-step guide for model
training.

F Statistical Comparison With Related
Datasets

Here we make a brief comparison between our pro-
posed dataset with some related academic datasets.

• GeomVerse is a representative template-based
method that generates geometrically oversimpli-
fied images by combining predefined polygons in
fixed configurations. These images only contain
polygon compositions and lack theorem-aware
elements (e.g., midlines and angle bisectors). It
has 9.3k synthetic images accompanied by Q&A
pairs, but their richness was limited by the ab-
sence of theorem-aware elements, covering only
60 theorems.

• Geo170K represents an augmented version of
the existing GeoQA dataset. It primarily focuses
on rephrasing Q&A pairs, such as altering word-
ing, swapping conditions and answers, or scaling
numerical values while keeping the underlying

theorems identical. This approach does not en-
hance the diversity of theorems covered in the
dataset.

• TR-CoT enables theorem-driven multimodal rea-
soning by designing substrates and embedding
theorem-aware elements based on theorem condi-
tions, allowing generated images to support com-
plex Q&A construction. Unlike prior approaches,
TR-CoT is not limited by existing data coverage
and can expand a model’s geometric knowledge.
The framework supports both new data synthesis
and augmentation of existing datasets, and covers
110 theorems through its structured generation
process.

As shown in Tab. 5, our data possess a notable
diversity in theorem coverage, image distribution,
and Q&A quantity. Ablation studies in Section
4.2 further discuss the training effectiveness of our
proposed data.

G Robustness of polygon distribution

We conducted robustness experiments for different
polygon distributions, where the details of the poly-
gon distributions are shown in Tab. 6. From top to
bottom, the percentage of triangles and quads grad-
ually decreases, and the percentage of pentagons
and hexagons gradually increases. There is also a
clear difference in the percentage of circles.

Similar quantitative results within 0.6% in Tab. 7
show that the impact of polygon distributions is
almost negligible, demonstrating the strong robust-
ness of our method to different polygon distribu-
tions. Therefore, the performance gain is mainly
attributed to the diverse geometry representation
and reasoning knowledge provided by our method.

Table 6: Details of polygon distribution for distribu-
tional robust ablation studies.

Method Polygon Distribution
triangle quad circle pentagon hexagon

Group I 29% 46% 17% 5% 3%
Group II 32% 40% 14% 8% 6%
Group III 25% 33% 21% 12% 8%

Table 7: Ablation study on the robustness to polygonal
distributions.

Polygon Distribution MathVista GeoQA
Group I 64.4 54.0
Group II 64.4 53.7
Group III 63.9 53.4
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1. Theorem Violation: Conclusions or assumptions violate proven mathematical theorems.
Question: In isosceles triangle ABC, AC = BC = 5, Angle BAC measures 40 degrees. CD line is drawn from vertex C perpendicular to AB, intersecting 
AB at D. E is the midpoint of line BC, it is connected to D. The bisector of angle EDC intersect line BC at F. What is the measure of angle EDF?
Answer: In isosceles triangle ABC, AC = BC = 5, and ∠BAC measures 40 degrees, so ∠ABC = ∠BAC =40 degrees. Since CD is perpendicular to AB, 
triangle BCD is a regular triangle. Knowing E is the midpoint of BC, BE = CE = DE, which means triangle CED and triangle DEB are congruent 
triangles, and ∠EDC = ∠EBD = 40 degrees. The bisector of ∠EDC intersect line BC at F, so ∠EDF is half of ∠EDC, which is 20 degrees.
Error Analysis: The theorem of congruent triangles was misused. The two triangles are not congruent.A

C

E
F

BD

C

A

E F

B

D

G

D

A

B

C 5

A

B C

D

E

2. Metric Discrepancies: Inconsistency in values.
Question: In a regular hexagon ABCDEF with a side length of 18, the angle bisector of angle ∠BFE meets line CD at point G. What is the measure of 
the angles formed by the bisector of ∠BFE?
Answer: The angle bisector of ∠BFE divides it into two equal angles. Since ∠BFE is an internal angle of the regular hexagon and measures 120 
degrees, its bisector creates two angles, each measuring half of 120 degrees, which is 60 degrees.
Error Analysis: From the property we can get ∠BFE measures 90.0 degrees. The Answer:∠BFE measures 120 degrees, which contradicts the property.

3. Diagram-text Mismatches: Appearance of elements not present in the diagram or description.
Question: In parallelogram ABCD, the length of AB is 3, the length of BC is 5, and the angle BAD is 75 degrees. Point E lies on line CD, the length 
of CE is 1.4, and line segment EB is drawn. Can we determine any properties of segment FB without further information?
Answer: Knowing only the length of CE is not enough to determine any properties of segment FB without additional information.
Error Analysis: The diagram does not contain a point named F.

4. Ambiguous Answerability: The answer is not clear.
Question: In circle O, A and B lies on the circle and OA is perpendicular to OB. Extend AO, intersecting the circle at C, and connect BC. line AD is 
parallel to line BC, and D is on the circle. Can AD's length be determined without extra data?
Answer: Without extra info about D's position, AD's length cannot be ascertained.
Error Analysis: Length of AD is actually easy to calculate, which contradicts the Answer's claim that AD's length cannot be determined.

Figure 13: Examples of filtered errors.

Question:
As shown in the figure, in triangle ABC, point D is on
BC, AB=AD=DC, ∠B=80°, then the degree of ∠C is ()
A. 30° B. 40° C. 45° D. 60°
Answer:
In triangle ABD, since AB=AD and ∠B=80°, we have 
∠B=∠ADB=80°. Therefore, ∠ADC=180°-∠ADB=100°. 
Because AD=CD, we can calculate ∠C as (180°-
∠ADC)/2=(180°-100°)/2=40°. So the answer is B.

Original

Question 1:
In triangle ABC, point D lies on BC, and AB = AD = DC. If ∠B is given as 80°,
which of the following represents the measure of ∠ADB? Choices are: A. 60° B. 70°
C. 80° D. 90°
Answer 1:
In triangle ABD, since AB = AD and ∠B = 80°, the isosceles triangle property tells us
that the base angles are equal. Therefore, ∠ADB = ∠B = 80°. Answer: C.

Question 2:
Triangle ABC has a point D on BC where AB = AD = DC, and ∠B measures 80°.
What is the correct measure of angle ADC? Choices: A. 80° B. 90° C. 100° D. 110°
Answer 2:
In triangle ABD, since AB = AD and ∠B = 80°, with isosceles triangle property,
∠ADB = ∠B = 80°. Since ∠ADB and ∠ADC are adjacent angles forming a straight
line, their sum is 180°. Given ∠ADB = 80°, ∠ADC=180° - ∠ADB = 100°. Answer: C.

Question 3:
In triangle ABC, point D is located on BC, with AB = AD = DC. If angle B is 80°,
what is the measure of angle C? Choices are: A. 20° B. 30°C. 40° D. 50°
Answer 3:
Triangle ADC is isosceles since AD = CD, making angles CAD and ACD equal. The
sum of angles in a triangle is 180°, so angle C = (180° - ∠ADC) / 2. In triangle ABD,
since AB = AD and ∠B = 80°, knowing AB = AD, ∠ADB = ∠B = 80 °. Since ∠ADB
and ∠ADC are adjacent angles, ∠ADC = 180° - ∠ADB = 100°. With angle ADC =
100°, angle C = (180° - 100°) / 2 = 40°. Answer: C.

GeoSup

Figure 14: Examples of TR-GeoSup dataset.

H Effectiveness of TR-CoT

As shown in Tab. 8, models jointly trained
on Geo170K and TR-CoT-generated data (TR-
GeoMM and TR-GeoSup) consistently outper-
form those trained solely on Geo170K (‘Geo-
’). InternVL2.5-8B receives 1.5% improvements
on MathVista and GeoQA, and Qwen2.5-VL-7B
improves by 1.0% and 2.0% on MathVista and
GeoQA, respectively. These results indicate that
TR-CoT-generated data can supplement existing
datasets and is widely effective in various LMMs.

We further evaluate model performance on more
diverse benchmarks, i.e., MathVerse, MathVision

Table 8: TR-CoT generated data effectiveness validation
on different models. ‘Geo-’ indicates the model is fine-
tuned only with geometric instruction data of Geo170K.
Consistent and significant improvement without adding
any additional parameters.

Model MathVista GeoQA
Geo-InternVL-2.0-2B 51.9 62.5

TR-CoT-InternVL-2.0-2B 56.3 (4.4↑) 63.4 (0.9↑)
Geo-LLaVA-1.5-7B 27.9 47.6
TR-CoT-LLaVA-7B 29.3 (1.4↑) 51.7 (4.1↑)
Geo-Qwen2-VL-7B 59.9 69.1

TR-CoT-Qwen2-VL-7B 67.6 (7.7↑) 70.4 (1.3↑)
Geo-InternVL-2.0-8B 70.2 74.9

TR-CoT-InternVL-2.0-8B 72.1 (1.9↑) 76.7 (1.8↑)
Geo-InternVL-2.5-8B 76.4 75.2

TR-CoT-InternVL-2.5-8B 77.9 (1.5↑) 76.7 (1.5↑)
Geo-Qwen2.5-VL-7B 73.5 77.2

TR-CoT-Qwen2.5-VL-7B 74.5 (1.0↑) 79.2 (2.0↑)

and WeMath, to investigate the generalizability
of TR-CoT generated data. As shown in the
Tab. 9, models of various scale trained with TR-
CoT demonstrate an average performance improve-
ment compared to the baseline, which validates the
potential generalization ability of TR-CoT on math-
ematical tasks beyond geometry problem solving.

I Details of CoT quality evaluation

We used ERNIE Bot 4.0 and DeepSeek R1 to eval-
uate model outputs. For each response, the evalua-
tion model gives a score between 0 and 10 to judge
the logical consistency, clarity, and lack of ambi-
guity. We use the average score of the two models
as the final score. To ensure a more accurate evalu-
ation, we include specific judging standards. The
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Table 9: TR-CoT generated data effectiveness validation
on more diverse math-related benchmarks. ‘+TR-CoT’
indicates model fine-tuned on TR-CoT generated data.
‘∆’ denotes the relative change in accuracy.

Model MathVerse MathVision WeMath Total
InternVL-2.0-2B 19.2 7.5 32.9 59.6

+TR-CoT 24.3 12.3 36.5 73.1
∆ 5.1↑ 4.8↑ 3.6↑ 13.5↑

Qwen2.5-VL-7B 42.6 25.7 63.1 131.4
+TR-CoT 45.7 24.8 61.3 131.8

∆ 3.1↑ 0.9↓ 1.8↓ 0.4↑
InternVL-2.5-2B 40.1 17.0 61.3 118.4

+TR-CoT 41.8 20.0 59.9 121.7
∆ 1.7↑ 3.0↑ 1.4↓ 3.3↑

Quality Judgment Prompt

You are provided with a language model’s response to a geometric question.

Your mission is to judge the quality of the response based on the following

standards, and give a score between 0 to 10.

Judging Standards:

1.Logic consistency. Assess whether the response is self-consistent,

logically coherent, and free from contradictions or illogical reasoning.

2.Clarity. Evaluate whether the response is clear and easy to understand,

avoiding ambiguity or vague expressions。
3.Output format: Score: your score(from 0 to 10)

Figure 15: Comparison of model problem solving be-
fore and after training.

prompts used are shown in Fig. 15. The blue part
represents the Task Description.

J The Case of Direct Generation and
TR-Reasoner Generation

The core idea of the TR-Reasoner is to improve
the accuracy of Q&A pairs by simplifying the rea-
soning based on descriptions and then generating
corresponding questions from the answers in a re-
versed manner. A straightforward approach is di-
rectly prompting ERNIE Bot 4.0 to generate Q&A
pairs from the input image description. However,
as shown on the left of Fig. 16, this approach often
fails to determine the correct answer. In contrast,
the Q&A pairs produced by TR-Reasoner are cor-
rect for all three instances with our design.

K Details of the theorems

The support of mathematical theorems is crucial
for the accuracy of TR-Engine. In Tab. 10, we
present the geometric theorems and properties that
we used. These define the rules for combining
elements, establishing a logically coherent chain
throughout the figure construction process. They
serve as the foundation for extending reasoning
scenarios and also assist in the computation and
verification of question-answer pairs.

We collect and organize geometric theorems

through three main approaches: (1) Systematic
Textbook Mining: We analyzed standard text-
books and online educational resources to com-
pile core geometric axioms and theorems from pri-
mary and secondary school mathematics curricula
in Mainland China. (2) Alignment with Public
Academic Datasets: We extracted theorems refer-
enced in public academic datasets (e.g., PGPS9K,
MAVIS, GeomVerse) to ensure consistency with
commonly used training corpora. (3) Expert Con-
sultation: We consulted primary and secondary
school educators to identify important theorems
and conclusions grounded in real-world teaching
practices.
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TR-ReasonerThere is a parallelogram in the diagram, represented by the symbol
AHKC. There is also a rectangle in the diagram, represented by the
symbol UBAC. The length of line BA is 5. Line QX is the line
connecting the midpoint Q of line HK and the midpoint X of line CU...
Generate reasonable math QA pairs based on image descriptions.

There is a parallelogram in the diagram, represented by the symbol AHKC. There is also a rectangle in the diagram,
represented by the symbol UBAC. The length of line BA is 5. Line QX is the line connecting the midpoint Q of line
HK and the midpoint X of line CU. Point Q lies on line HK. Point X lies on line CU. The length of line QH equals
the length of line QK. The length of line XC equals the length of line XU.UE is the extension line of CU, that is, C,
U, and E are collinear. Line AB is perpendicular to line UB. Point B lies on line UB.

Image: Description:

Q1: What is the length of line QX in the diagram?
A1: Since QX connects the midpoints of lines HK and CU in a
parallelogram AHKC and rectangle UBAC, the length of QX
corresponds to half the diagonal of rectangle UBAC. However,
without additional information about the rectangle’s dimensions,
we cannot determine the exact length of QX.

Q2: Are the lines AB and UE parallel in the diagram?
A2: No, the AB and UE are not parallel because AB is perpendicular
to line UB, which means it is also perpendicular to CU since UBAC
is a rectangle. Line UE, being an extension of CU, would also be
perpendicular to AB.

Q3: Line AB is perpendicular to line UB, what can be said about the
angle at point B?
A3: Since AB is perpendicular to UB, the angle B is 90 degrees.

Q1: There is a parallelogram in the diagram, represented by the symbol
AHKC. There is also a rectangle in the diagram, represented by the
symbol UBAC. The length of line BA is 5. What is the length of line CU?
A1: Since BA is a side of the rectangle UBAC, and its length is given as 5,
we can infer that the length of CU is also 5.

Q2: There is a parallelogram...The length of line BA is 5. Line QX is the
line connecting the midpoint Q of line HK and the midpoint X of line CU.
What is the length of line XU?
A2: Since BA is a side of the rectangle UBAC, and its length is given as 5,
we can infer that the length of CU (the opposite side in the rectangle) is
also 5. X being the midpoint of CU means that XU=XC=CU/2=2.5. The
answer is 2.5.

Q3: There is a parallelogram...Line QX is the line connecting the midpoint
Q of line HK and the midpoint X of line CU. What is the length of line QH
if the length of line HK is 8?
A3: Q being the midpoint of HK means that QH=QK=HK/2. Substituting
the given value HK=8, we get QH=8/2=4.
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There is a regular pentagon in the diagram, represented by the symbol CPYJZ. The length of line PY 
is 4. Line YE is the line connecting point Y and the midpoint E of line JZ. Point E lies on line JZ. 
The length of line EJ equals the length of line EZ.Line YN is perpendicular to line CP. Point N lies 
on line CP. Line CK is perpendicular to line YJ. Point K lies on line YJ.
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Q1: What is the length of line YE in the diagram?
A1: Since E is the midpoint of line JZ in a regular pentagon CPYJZ with side length
4, line YE can be considered as the apothem of the pentagon. The length of the
apothem in a regular pentagon can be calculated using the formula a = s / (2 * tan(π /
5)), where s is the side length of the pentagon. Substituting s = 4, we get a ≈ 2.75.

Q2: What is the length of line YN in the diagram?
A2: Line YN is perpendicular to line CP and passes through point Y, which is a
vertex of the regular pentagon CPYJZ. In a regular pentagon, the length of a
perpendicular from any vertex to the opposite side is the same as the apothem.
Therefore, the length of line YN is approximately 2.75.

Q3: What is the length of line CK in the diagram?
A3: Line CK is perpendicular to line YJ and passes through point C, which is a
vertex of the regular pentagon CPYJZ. Since CPYJZ is a regular pentagon, all its
sides are of equal length, and all its angles are equal. The length of line CK can be
calculated by considering the right triangle formed by line CK, line KC (which is a
part of line YJ), and line YK (which is a part of line JZ). However, without
additional information or assumptions, we cannot determine the exact length of line
CK.

There is a regular pentagon in the diagram, represented by the symbol ...
Generate reasonable math QA pairs based on image descriptions.

TR-Reasoner

Q1: There is a regular pentagon in the diagram, represented by
the symbol CPYJZ. The length of line PY is 4. Line YE is the
line connecting point Y and the midpoint E of line JZ. What is
the length of line EZ?
A1: According to the five sides of a regular pentagon being
equal, we can get CP=PJ=JY=YZ=ZC=PY=4. According to E
is the midpoint of JZ, we can get JE=EZ=JZ*1/2=2.

Q2: There is a regular pentagon in the diagram, represented by
the symbol CPYJZ. Line YN is perpendicular to line CP. What
is the product of the slopes of line YN and line CP?"
A2: According to the product of the slopes of two
perpendicular lines being -1, we can get the slope of YN*the
slope of CP=-1.

Q3: There is a regular pentagon in the diagram, represented by
the symbol CPYJZ. Line CK is perpendicular to line YJ. What
is the product of the slopes of line CK and line YJ?
A3: According to the product of the slopes of two
perpendicular lines being -1, we can get the slope of CK*the
slope of YJ=-1.

Figure 16: The Case of Direct Generation and TR-Reasoner Generation.
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Table 10: Summary of Geometric Theorems and Properties

Category Properties Criteria
Parallel Lines Corresponding angles equal; Alternate inte-

rior angles equal; Consecutive interior an-
gles supplementary

Equal corresponding angles; Supplemen-
tary consecutive angles; Equal alternate an-
gles; Parallel to the same line

General Triangles Interior angles sum to 180◦ AA similarity; SSS/SAS/ASA/AAS/HL
congruence

Isosceles Trian-
gles

Equal base angles; Three-line coincidence
(angle bisector, median, altitude) ;Base an-
gles are 45◦ in right-isosceles case

Two equal angles ; Two equal sides

Equilateral Trian-
gles

All angles are 60◦ ; Three - line coincidence Three equal sides ; Three equal angles ;
Isosceles triangle with a 60◦ angle

Right Triangles Acute angles are complementary ; Side op-
posite 30◦ angle is half of the hypotenuse ;
Median on the hypotenuse is half of the hy-
potenuse ; Pythagorean theorem: a2+b2 =
c2

Contains a right angle ; HL congruence for
right - triangles

Angle Bisector Points on the perpendicular bisector are
equidistant from the endpoints

A ray that divides an angle into two equal
parts

Triangle Midline Parallel to the third side and half of its
length

Connects the mid-points of two sides

Parallelogram Opposite sides are equal ; Diagonals bisect
each other ; Area = base× height

Both pairs of opposite sides are parallel;
Diagonals bisect each other; Opposite sides
are equal

Rectangle All angles are 90◦ ; Diagonals are equal A parallelogram with a right angle; A
quadrilateral with three right angles

Rhombus All sides are equal; Diagonals are perpen-
dicular to each other

A parallelogram with adjacent sides equal;
A quadrilateral with four equal sides

Square All sides and angles are equal; Diagonals
are equal and perpendicular

Prove it is both a rectangle and a rhombus

Isosceles Trape-
zoid

Legs are equal; Base angles on the same
base are equal

Two equal legs; Equal base angles on the
same base

Trigonometric
Functions

sin 30◦ = 1
2

; sin 45◦ =
√
2

2
; sin 60◦ =√

3
2

; sin 90◦ = 1 ; cos 30◦ =
√

3
2

;
cos 45◦ =

√
2
2

; cos 60◦ = 1
2

; cos 90◦ =

0 ; tan 30◦ =
√
3
3

; tan 45◦ = 1 ;
tan 60◦ =

√
3

/

Circle The perpendicular bisector of a chord is per-
pendicular to the chord; The perpendicular
bisector of a chord passes through the cen-
ter

/

Central Angle Equal central angles subtend equal chords
and arcs

/

Inscribed Angle An inscribed angle is half of the central
angle subtended by the same arc; An angle
subtended by a diameter is a right angle

/

Cyclic Quadrilat-
eral

Opposite angles are supplementary /

Tangent A tangent is perpendicular to the radius at
the point of contact; Tangents from an ex-
ternal point to a circle are equal in length

A line perpendicular to the radius at the
endpoint on the circle is a tangent

Regular Polygon For an equilateral triangle inscribed in a
circle of radius R, side length a = R

√
3 ;

For a square inscribed in a circle of radius
R, side length a = R

√
2

/
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