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Abstract

Knowledge distillation (KD) is crucial for com-
pressing large text embedding models, but faces
challenges when teacher and student models
use different tokenizers (Cross-Tokenizer KD -
CTKD). Vocabulary mismatches impede the
transfer of relational knowledge encoded in
deep representations, such as hidden states and
attention matrices, which are vital for produc-
ing high-quality embeddings. Existing CTKD
methods often focus on direct output alignment,
neglecting this crucial structural information.
We propose a novel framework tailored for
CTKD embedding model distillation. We first
map tokens one-to-one via Minimum Edit Dis-
tance (MinED). Then, we distill intra-model
relational knowledge by aligning attention ma-
trix patterns using Centered Kernel Alignment,
focusing on the top-m most important tokens
of the directly mapped tokens. Simultane-
ously, we align final hidden states via Opti-
mal Transport with Importance-Scored Mass
Assignment, which emphasizes semantically
important token representations, based on im-
portance scores derived from attention weights.
We evaluate distillation from state-of-the-art
embedding models (e.g., LLM2Vec, BGE) to a
Bert-base-uncased model on embedding-reliant
tasks such as text classification, sentence pair
classification, and semantic textual similarity.
Our proposed framework significantly outper-
forms existing CTKD baselines. By preserving
attention structure and prioritizing key repre-
sentations, our approach yields smaller, high-
fidelity embedding models despite tokenizer
differences.

1 Introduction

Knowledge distillation (KD) has emerged as a
highly effective technique for model compres-
sion, enabling the transfer of knowledge from
large, computationally expensive teacher models
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to smaller, more efficient student models (Hin-
ton et al., 2015). This is crucial for Large Lan-
guage Models (LLMs), whose state-of-the-art per-
formance often entails significant deployment chal-
lenges (Zhao et al., 2025). KD offers a promis-
ing avenue to create compact models that pre-
serve much of the teacher’s capabilities while being
suitable for resource-constrained environments, as
demonstrated by influential works like DistilBERT,
TinyBERT, and MiniLM (Sanh et al., 2020; Jiao
et al., 2019; Wang et al., 2020).

In the specific domain of representation learning,
KD plays a vital role in developing efficient text em-
bedding models, as demonstrated by various efforts
to compress large embedding models while preserv-
ing their semantic representation capabilities (Sanh
et al., 2020; Jiao et al., 2019; Wang et al., 2020;
Zhang et al., 2025; Gao et al., 2023). State-of-the-
art embedding models, benchmarked on MTEB
(Muennighoff et al., 2023), tend to possess a large
number of parameters and high-dimensional out-
puts (Lee et al., 2025; Xiao et al., 2024), pos-
ing challenges for practical deployment. Conse-
quently, distilling these large embedding teachers
into smaller students, as explored in works such as
Jasper (Zhang et al., 2025) and DistillCSE (Gao
et al., 2023), is an area of significant interest.

A fundamental assumption in many conventional
KD frameworks, including those recently applied
to embedding models like Jasper (Zhang et al.,
2025) or general embedding models such as Tiny-
BERT (Jiao et al., 2019) and DistilBERT (Sanh
et al., 2020), is that the teacher and student models
share the same tokenizer, vocabulary. This homo-
geneity simplifies the alignment process, typically
involving the minimization of a distance metric
(e.g., KL divergence) between the probability dis-
tributions of the two models at each token position
(Sun et al., 2019; Gu et al., 2024). However, this
assumption limits flexibility given diverse modern
LLMs’ tokenization. Distilling knowledge between
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models with different tokenizers introduces signifi-
cant challenges: divergent tokenization strategies
cause sequence misalignments, and differing vo-
cabularies result in output spaces with mismatched
dimensions and semantics.

Recent approaches to Cross-Tokenizer KD
(CTKD) include using Optimal Transport (OT) for
distribution and sequence level alignment (Boizard
etal., 2025; Cui et al., 2024), employing MinED for
token mapping (Wan et al., 2024), and unifying out-
put spaces (Zhang et al., 2024). Despite these ad-
vancements, current CTKD methods mainly align
logits, overlooking rich intermediate layer knowl-
edge such as hidden states (Sun et al., 2019) or
attention patterns (Clark et al., 2019), which are
crucial for effective distillation into smaller models
(Jiao et al., 2019; Sun et al., 2019).

To overcome these limitations, we propose a
framework EMO (Embedding Model Distillation
via Intra-Model Relation and Optimal Transport
Alignments) for Cross-Tokenizer Knowledge Dis-
tillation, specifically designed for learning high-
quality text embeddings. Our approach goes be-
yond simple output alignment by distilling knowl-
edge from intermediate layers while explicitly pre-
serve intra-model token relationships. We identify
reliably one-to-one mapped tokens between student
and teacher sequences using Minimum Edit Dis-
tance (MinED). Then we focus on the top-m most
important tokens of these specific matched tokens
to align the internal model structures by distilling
their corresponding attention matrices using Cen-
tered Kernel Alignment (CKA) (Kornblith et al.,
2019). This step explicitly transfers the learned
token relationships and contextual dependencies
captured within the teacher’s self-attention mecha-
nism, preserving vital structural information often
lost in cross-tokenizer scenarios. In addition, we
introduce Optimal Transport (Villani, 2008; Cuturi,
2013) with importance-based mass assignment to
directly align tokens’ representations across the
teacher and student models. While CKA preserves
structural dependencies within mapped token pairs,
OT focuses on mapping semantically tokens be-
tween the models, addressing the token misalign-
ment caused by tokenizer differences. This direct
alignment of contextualized tokens’ representations
ensures that critical information is transferred even
when sequence lengths or token boundaries differ.
We summarize the contributions of our study as
follows:

1. We propose EMO, a novel embedding model
distillation framework that integrates two
complementary components for improved
cross-model alignment. First, Intra-Model
Relational Alignment (IRA) captures struc-
tural correspondences by aligning attention
patterns using Centered Kernel Alignment
(CKA), focusing specifically on the top-m
most salient token pairs identified via di-
rect mapping from MinED. Second, Optimal
Transport with Importance-Scored Mass As-
signment (OTIS) ensures robust representa-
tion alignment across models by leveraging
token-level importance scores to guide the op-
timal transport process. Together, these com-
ponents enable EMO to distill both relational
and representational knowledge effectively.

2. Through extensive experiments distilling a
LLM2Vec (BehnamGhader et al., 2024) or
BGE (Chen et al., 2024) teacher to a Bert-
base-uncased student, we demonstrate that our
framework significantly outperforms existing
state-of-the-art cross-tokenizer KD methods
and conventional KD baselines for text embed-
ding tasks, enabling the creation of smaller,
yet highly performant, embedding models.

2 Related Work and Background

This section reviews prior work in knowledge distil-
lation, focusing on techniques for same- and cross-
tokenizer scenarios, and introduces foundational
concepts like Optimal Transport and Centered Ker-
nel Alignment.

2.1 Related Work

Text embedding models play an important role
in several domains such as retrieval-augmented
generation (RAG) (Nguyen et al., 2025), informa-
tion extraction (Pham et al., 2025; Le et al., 2025;
Anh et al., 2025), topic model (Vuong et al., 2025;
Vu et al., 2025), etc. Recent advances in embed-
ding models largely result from fine-tuning large
language models on representation learning tasks
(BehnamGhader et al., 2024). However, the sub-
stantial size of these architectures results in high
computational overhead and significant resource
costs during training and inference. Therefore,
there is a need for lightweight yet effective embed-
ding models. Knowledge distillation (KD) (Hin-
ton et al., 2015) is a standard compression tech-
nique. With shared tokenizers, KD evolved from
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logit matching (Gu et al., 2024) to distilling inter-
mediate layer information, including hidden states
(Sun et al., 2019; Liang et al., 2023; Jiao et al.,
2019) and attention matrices (Clark et al., 2019;
Wang et al., 2020; Jiao et al., 2019), recognizing
that these capture crucial structural and relational
knowledge.

However, distillation between models with dif-
ferent tokenizers (Cross-Tokenizer KD - CTKD)
introduces challenges of sequence and vocabulary
mismatches (Zhang et al., 2024). While early black-
box methods relied on teacher outputs (Kim and
Rush, 2016), recent white-box CTKD approaches
employ techniques such as Optimal Transport for
aligning output distributions like ULD (Boizard
et al., 2025), MultiLevelOT (Cui et al., 2024), or
dynamic programming for sequence alignment like
MinED (Wan et al., 2024), or unified output spaces
via projections like DSKD (Zhang et al., 2024).

Despite these advances in aligning overall out-
puts or logits, current CTKD methods often lack
mechanisms to explicitly distill the relational in-
formation captured within the teacher’s attention
mechanism — a technique proven valuable in
same-tokenizer KD. This gap is particularly rel-
evant when distilling large text embedding mod-
els (Zhang et al., 2025; Muennighoff et al., 2023),
where preserving contextual and structural under-
standing is paramount for downstream tasks. While
some work exists on same-tokenizer embedding
KD (Gao et al., 2023), effectively transferring re-
lational knowledge across disparate tokenizers for
embedding models remains an open challenge. Our
work addresses this by specifically adapting rela-
tional distillation principles, focusing on attention
structure, to the cross-tokenizer embedding sce-
nario.

2.2 Background

2.2.1 Knowledge Distillation Fundamentals

Knowledge Distillation (KD) (Hinton et al., 2015)
is a model compression technique where a smaller
student model learns from a larger teacher model.
Instead of only using ground-truth labels, the stu-
dent matches the teacher’s softened output probabil-
ity distributions, typically derived from teacher log-
its () after temperature scaling. This knowledge
transfer is achieved by minimizing a distillation
loss Lxp(xe,xs) (e.g., KL divergence) between
the student’s and teacher’s distributions:

[,KD(.’Et,.TS) (1)

This Lk p is usually combined with the standard
supervised cross-entropy loss Lo g on ground-truth
labels y for the student’s training:

L= Lcr(y,p(xs)) + Lxp(Te,25)  (2)

2.2.2 Optimal Transport Principles

Optimal Transport (OT) (Villani, 2008) offers a
robust framework for comparing probability distri-
butions by finding the minimal cost to transform
one into another, excelling where classical diver-
gences like KL struggle with differing supports.
This makes OT highly suitable for aligning outputs
from language models with disparate vocabularies.
For discrete distributions f = > ;dz, and
g = > Bjdy;, OT finds a transport plan T de-
tailing mass 7;; moved from x; to y;, respecting
marginal probabilities o, 3. Given a cost matrix
D (e.g., based on distances d(x;,y;)P), the OT
(Wasserstein) distance dyy is the minimum total
transport cost (T", D) over all valid plans T":
min

dW(awB’ D) = Tl (a,B)

(T,D) (3

This facilitates sequence-level alignment across dif-
ferent vocabularies in CTKD.

2.2.3 Measuring Representational Similarity:
From CCA to CKA

Canonical Correlation Analysis (CCA) (Hardoon
et al., 2004) has been employed to measure repre-
sentational similarity by seeking linear projections
that maximize the correlation between two sets of
representations. However, CCA faces limitations:
it is sensitive to simple transformations of the rep-
resentations (such as isotropic scaling or rotation)
and can be computationally intensive, especially
for the high-dimensional representations common
in deep learning (Kornblith et al., 2019). Centered
Kernel Alignment (CKA), introduced by Kornblith
et al. (2019), offers a more robust and computation-
ally efficient alternative. A core insight of CKA is
its shift from comparing individual multivariate fea-
tures to comparing the learned similarity structures
within each representation space.

CKA operationalizes this concept using the
Hilbert-Schmidt Independence Criterion (HSIC),
a non-parametric kernel-based measure of statis-
tical dependence. For two sets of representations,
X e RS and Y € R™*T (for m common in-
puts), CKA constructs kernel matrices K and L.
Here, K;j = k(x;,x;) and L;; = [(y;,y;) capture

7596



the pairwise similarities using kernel functions k
and [. HSIC then measures the dependence be-
tween these kernel matrices after centering them
with a matrix H = I,,, — %11T to remove mean
effects:

HSIC(K, L) = t(KHLH) (4)

(m—1)
A high HSIC value signifies that the structure
of pairwise similarities in X (captured by K) is
strongly related to the structure in Y (captured by
L). CKA then normalizes HSIC to achieve invari-
ance to isotropic scaling and orthogonal transfor-
mations, yielding a robust similarity score:

CKA(X,Y) = HSIC(K, L)
"7 \/HSIC(K, K)HSIC(L, L)

)

This normalized index effectively quantifies the
alignment of the overall representational geome-
tries, making CKA a valuable tool for determining
if two models or layers have learned to organize
input examples in a structurally similar fashion.

3 Methodology

This section details our proposed EMO framework,
which distills intra-model relational knowledge via
attention matrix alignment using CKA and aligns
cross-model representation of hidden states using
Optimal Transport with Importance-Scored Mass
Assignment (OTIS).

3.1 Intra-Model Relation Distillation via
Attention Matrices

A core challenge in CTKD is the inherent misalign-
ment between the student token sequences xg and
the teacher token sequences x¢. Directly compar-
ing hidden states or attention token-by-token is
often infeasible or inaccurate. Furthermore, simply
aligning final outputs neglects the rich relational
information learned within the transformer layers.
Our approach IRA (Intra-Model Relation Distilla-
tion via Attention Matrices) addresses this by dis-
tilling the attention patterns associated with them.

Token mapping via MinED

We use Minimum Edit Distance (MinED) to iden-
tify n reliably mapped one-to-one token pairs be-
tween the student tokenized sequence xg (length
S) and the teacher tokenized sequence x (length
T), such that n < min(S,7T"). We denote the set

of indices corresponding to these n mapped to-
kens within their respective sequences as N C
{1,...,Stand N; C {1,...,T} (N = |Ng| =
n), and the set of mapped token pairs as N' =
{(i,4)|i € Ns,j € Ny, token i maps to token j}.
Token mapping statistics are in Appendix A.

Identifying Important Tokens

Inspired by Li et al. (2023), we identify the most
salient tokens based on the attention patterns in
the final layer of the teacher model h; (h; and hg
are the number of hidden layers in the teacher and
student models, respectively). The final layer often
provides a more global perspective on token impor-
tance (Li et al., 2023). We compute the average
attention matrix sztg’Tea € RT*T by averaging

Al;i“’Tea across all heads. Similarly, we define

szg,sm € R5%S for student. The importance

score for the j-th teacher token is calculated as the
sum of attention it receives from all other tokens:

T
scorej = Z(Aztg’Te“)ij (6)
i=1
We select the top-m indices from N; based on their
corresponding scores, where m < n. The resulting
subset is denoted as NV, The corresponding
student token indices are /\/St(’p'm. The choice of m
is discussed in Section 5. Focusing on the top-m
most salient tokens (among the already mapped
n) allows us to distill the most critical structural
interactions efficiently. This selective focus is in-
spired by observations that not all tokens contribute
equally to learning (Lin et al., 2025). It also re-
duces the dimensionality for CKA computation we
demonstrate below.

Structural Alignment with CKA
For each student layer k£, we map to layer [ of the
teacher with [ = M (k) = H—EJ - k. We extract

the attention patterns from these top-m tokens to
the entire sequence within their respective models.
Let A7 € R™ S be the submatrix of szg’St“
containing rows corresponding to the indices in
NP Similarly, let A7¢e € R™*T be the sub-

matrix of A?Vg’Te“ with rows corresponding to the

indices in N;**™". We use a linear kernel, which
offers reduced computational cost, vital for apply-
ing this algorithm to large language models. Let us
define two kernel matrices:

Pftu — AEtU(AEtu)T (7)
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Figure 1: Overall workflow of our EMO framework. We perform Intra-Model Relational Distillation (IRA) using
MinED for token mapping, followed by CKA on attention matrices and employ Optimal Transport with
Importance-Scored Mass Assignment (OTIS) for cross-model representation alignment.

PlTea —_ A’ll“ea(AlTea)T (8)

‘We define Aft“ and A;fea are the centered matrices
of Aft“ and AT¢e:

. 1
AR = A" (I — —117) ©)

- 1
ATea — ATea(r, — EIIT) (10)

The HSIC between the teacher and student sub-
attention matrices is:

~ ~ 2
HSIC(PF™, P0) = [cov(AF™)T, (AF)T)|
(1)
where cov() is a covariance function.

From section 2.2.3, the linear CKA between
A7% and ATe is defined as:

CKA (Aftul’A’lI‘ea) _ HSIC(PJ™, P{“)
\/ HSIC(P{t, Pyt) - HSIC(PTea PTea)
(12)
Combining Eq.11 and Eq.12, we obtain the for-
mula for linear CKA between two sub-attention
matrices:

~ ~ 2
o (7.7)
F

Jeor (7. XY oo (77 77)
(13)

CKA(X,Y) =

where X denotes Azm and Y denotes AlTea. Note
that CKA values lie within the interval [0, 1].

We then define the Intra-Model Relation Distil-
lation between these m x S and m x T matrices,
applied to the last z layers of the student model:

hs

>

k=hs—z+1

LirA =

(1 — \/CKA (AgtU,AlTea)>

(14)

While previous work has effectively employed
CKA to measure similarity between hidden state
representations in language models (Dasgupta and
Cohn, 2025), we apply it directly to attention matri-
ces (Af tu and A;Fe“). Lira leverages CKA to mea-
sure the structural similarity between the attention
patterns from the top-m important tokens towards
their respective full sequences. Specifically, Lira
assesses whether the student and teacher models
exhibit similar overall attention patterns (whether
key tokens focus on similar parts of the sequence
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in both models). By optimizing CKA loss on these
attention matrices, we encourage the student to
learn the teacher’s high-level attentional structure
regarding its top salient tokens.

3.2 Cross-Model Representation Alignment
via Optimal Transport with Importance
Scored Mass Assignment

While the intra-model relation distillation dis-
cussed earlier focuses on aligning attention pat-
terns within each model’s token sequence, this sec-
tion addresses the direct alignment of token repre-
sentations between the student and teacher mod-
els. We align the last hidden states of the student
and teacher models via Optimal Transport (OT)
(Nguyen, 2025). Specifically, our approach intro-
duces a novel mass assignment strategy leveraging
the insights from Section 3.1.

Importance-Based Mass Assignment

To assign masses to tokens, we inherit the teacher’s
importance scores computed in the previous sec-
tion using Eq.6. These scores are normalized to
form a probability distribution over the teacher’s
tokens: p; = %, j=1,...,T. Thus,
the empirical distribution for the teacher’s last hid-
den state h%ft € RTxde js;

T
p= 2; Hiowg (15)
J:

where hgt 4 is the hidden state of the j-th teacher
token, and § denotes the Dirac delta function.

For the student, we map the teacher’s impor-
tance scores to the student’s tokens using the
mapped pairs of tokens N' = {(4,j)|i € N, j €
N, token ¢ maps to token j}. For each mapped
student token i € N, we assign the mass of
its corresponding teacher token j € N;: v; =
pj, for (i,5) € N. For student tokens i ¢ N
(i.e., unmapped tokens), we assign a minimal
mass equal to the smallest teacher token mass:
v; = minj—y 7 pj. The masses for all student
tokens are then normalized to sum to 1:

vi
25:1 Vi
tion for the student’s last hidden state hgs € RS*ds
is:

v; =
1 =1,...,5. The empirical distribu-

(16)

S
V= E V;0y s
¢ hhs,i
i=1

where hgs ; is the hidden state of the :-th student
token, and ¢ denotes the Dirac delta function.

Cost Matrix Computation

To align the student and teacher hidden states, we
compute a cost matrix C € RS*T that quanti-
fies the dissimilarity between token representations.
We project the teacher’s hidden states into the
student’s space using a learnable mapping matrix
P € R%*ds_The similarity matrix is computed as:

_ hy (b} P)T
Vs

where hﬁs e RSxds, h;‘ft e RTxd: and the
scaling factor /d, ensures numerical stability. The
similarity matrix is normalized row-wise using the
softmax function Syom = softmax(S), ensuring
each row sums to 1. The cost matrix is then derived
as:

(17)

C=1- Snorm (18)

Optimal Transport Alignment Loss with
Importance-Based Masses

We compute the optimal transport plan T* by solv-
ing the entropy-regularized OT problem (Cuturi,
2013):

1
T = in (T,C)— ~H(T
8. i, (T O~ 3H(D

(19)
where H(T) = — %, ; Ti;log T;; is the entropy
regularization term, and A > 0 controls regulariza-
tion strength. The OT-based loss is:

Lor = (T*,C) (20)
We only apply OTIS at the final layer due to the
substantial computational cost of Optimal Trans-
port, as shown in Appendix C. Specifically, the
cross-model alignment loss via Optimal Transport
with Importance-Scored Mass Assignment (OTIS),
applied to the last hidden states capturing refined
representations, is formulated as:

Lotis = EOT(h}iv hi) 21

This loss aligns the teacher and student represen-
tations in the last hidden states, respecting the
importance-based mass distributions. By restrict-
ing OTIS to the last layer, we strike a balance be-
tween effective representation alignment and feasi-
ble training efficiency.
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3.3 Overall Distillation Loss

The final objective function for training the student
model within our EMO framework is a combina-
tion of the standard task-specific loss and our pro-
posed distillation losses. This overall loss Lgmo is
defined as:

Lemo = o - Lcg + (1 — a)(Lira + Lotis) (22)

where o € [0, 1] controls the relative influence
of the standard cross-entropy loss L¢ g, the Intra-
relation via attention matrices loss L;r 4, and the
proposed OT-based loss Lorrs.

4 Experiments

4.1 Experimental Setup

We evaluate the effectiveness of our proposed
framework through extensive experiments on tasks
where high-quality text embeddings play a crucial
role. We select the following three tasks for evalua-
tion:

Text Classification: Requires models to capture
the overall semantics of a single text input. We use
Patent (Sharma et al., 2019), Imdb and Banking77
(both from MTEB (Muennighoff et al., 2023)).

Sentence Pair Classification: Demands under-
standing the relationship or similarity between two
text inputs, heavily relying on the quality of their re-
spective embeddings. We evaluate on SciTail (Khot
et al., 2018), ConTRoL-NLI (Liu et al., 2021), and
Anli_r2 (Nie et al., 2020).

Semantic Textual Similarity (STS): Directly
measures the ability of embeddings to capture fine-
grained semantic similarity. We use STSB, STS12
(both from MTEB (Muennighoff et al., 2023)) and
SICK (from (Marelli et al., 2014)).

Further details on the models used, as well as
the training and evaluation setup, can be found in
Appendix B.

4.2 Baselines

We compare our EMO framework against several
state-of-the-art CTKD methods:

» ULD (Universal Logit Distillation) (Boizard
et al., 2025): Employs Optimal Transport to
align output logit distributions across different
vocabularies.

e MinED (Wan et al., 2024): Uses Minimum
Edit Distance based on dynamic programming
to align token sequences before distillation.

* DSKD (Dual-Space Knowledge Distillation)
(Zhang et al., 2024): Unifies output spaces
using projections and cross-model attention to
enable KD between different tokenizers.

* MultilevelOT (Cui et al., 2024): Extends Op-
timal Transport for CTKD by incorporating
multi-level alignment strategies.

In our experiment, when logit-based methods
such as MinED or ULD are applied to an embed-
ding model for a classification task, they essentially
reduce to a conventional KL.-based knowledge dis-
tillation approach.

Moreover, because STS is a regression task pre-
dicting a continuous similarity score, the model
outputs a single scalar rather than a logit vector.
Thus, we only compare our method with DSKD, as
other baselines rely on output logit alignment. This
also highlights the advantage of our method, which
does not depend on logits, can be applied across
diverse tasks.

4.3 Results

We present the evaluation results across the three
task categories in Table 1, and Table 2. Across
all three task categories and constituent datasets,
the results consistently demonstrate the superiority
of our proposed framework compared to the state-
of-the-art CTKD baselines (ULD, MinED, DSKD,
MultilevelOT). Our framework achieves the highest
scores among the distillation methods on nearly all
metrics and datasets, significantly closing the gap
between the student (Bert SFT) and the teacher
(LLM2Vec Mistral 7B SFT).

S Analysis

This section investigates the individual contribu-
tions of our framework’s components and the im-
pact of top-m salient token selection. Moreover,
the ablation study about its robustness to different
teacher models, and the impact of the distilled layer
depth are in Appendix C.

Impact of Framework Components

An ablation study (Table 3) isolates the con-
tributions of Intra-Model Relational Distillation
(IRA) and Optimal Transport with Importance-
Scored Mass Assignment (OTIS). Configurations
using only IRA (EMOy, oris) or only OTIS
(EMOyo 1rA) both consistently outperform the
Bert SFT baseline, demonstrating their individ-
ual benefits. The full framework EMO combining
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Table 1: Model Performance on Classification and SentencePair Classification Tasks. "EMO" denotes our proposed
framework.

Classification task

SentencePair Classification task

Method
Dataset Accuracy Precision Recall Dataset Accuracy Precision Recall

LLM2Vec Mistral 7B SFT (Teacher) 70.0 67.7 66.1 96.1 96.0 95.8
Bert SFT (Student) 63.1 58.7 54.4 88.1 87.7 88.8
ULD (Boizard et al., 2025) 64.8 61.4 60.9 o 87.0 86.4 87.8
DSKD (Zhang et al., 2024) Patent 64.0 60.0 sgg Scilail 88.0 87.3 88.8
MinED (Wan et al., 2024) 65.0 61.6 60.8 86.9 86.1 87.5
MultilevelOT (Cui et al., 2024) 64.6 60.4 59.0 88.2 88.0 89.1
EMO 66.5 633 62.4 90.9 90.1 91.2
LLM2Vec Mistral 7B SFT (Teacher) 96.6 96.6 96.6 63.6 62.7 62.6
Bert SFT (Student) 91.3 91.4 91.3 42.1 38.6 37.5
ULD (Boizard et al., 2025) 925 92.6 925 454 453 453
DSKD (Zhang et al., 2024) Imdb 93.4 93.5 934 ConTRoL-ni 4, 412 39.7
MinED (Wan et al., 2024) 9.5 925 925 47.1 47.0 472
MultilevelOT (Cui et al., 2024) 93.3 93.4 93.3 425 41.4 40.1
EMO 94.2 94.3 94.2 48.6 482 48.1
LLM2Vec Mistral 7B SFT (Teacher) 93.3 93.5 93.3 67.1 67.8 67.0
Bert SFT (Student) 85.7 86.4 85.7 427 426 426
ULD (Boizard et al., 2025) , 91.4 91.9 91.4 , 44.8 44.7 44.7
DSKD (Zhang et al., 2024) Banking 77 97 5 91.7 91 Anlir2 43.1 434 43.0
MinED (Wan et al., 2024) 90.0 91.2 90.0 46.4 46.6 46.4
MultilevelOT (Cui et al., 2024) 89.4 90.4 89.4 44.1 44.1 439
EMO 92.3 92.7 923 47.6 47.8 475

Table 2: Model Performance on Semantic Textual
Similarity (STS) tasks. Metric is Spearman Correlation
Coefficient (p). "EMO" denotes our proposed

Table 3: Ablation study results showing the impact of
Intra-Model Relation Distillation (IRA) and Optimal
Transport with Importance-Scored Mass Assignment

framework. (OTIS). “w/0” denotes “without”.
Dataset Method Spearman Corr (p) Dataset Method Accuracy Precision Recall Spearman
LLM2Vec Mistral 7B SFT (Teacher) 90.8 Bert SFT 63.1 58.7 54.4 -
STS-B Bert SFT (Student) 75.1 Patent Exgw/o OTIS 22? géz ggg -
DSKD (Zhang et al., 2024) 78.3 EM OW’O IRA 66.5 633 2.4 )
EMO 81.3 - - - -
LLM2Vec Mistral 7B SFT (Teacher) 80.42 Bert SET 88.1 87.7. 888 ;
Bert SFT (Student) 497 Scitail EMOwoors 888 8.1 895 -
sTsi2 °¢ ude : EMO,,ra 872 869 883 -
DSKD (Zhang et al., 2024) 65.3 EMO 90.9 90.1 91.2 -
EMO 753 Bert SFT - - - 75.1
LLM2Vec Mistral 7B SFT (Teacher) 88.9 STSB EMOy/ o118 - - - 80.9
Bert SFT (Student) 61.1 EMOy,/0 1RA - - - 78.5
SICK EMO 81.3
DSKD (Zhang et al., 2024) 78.7 B B B -
EMO 80.1

both yields the best results, indicating their com-
plementary roles: IRA preserves internal relational
structure, which OTIS then effectively aligns across
models for superior knowledge transfer.

Impact of top-m Important Token Selection
We analyze the effect of top-m, the number of
top salient tokens selected from the n one-to-
one MinED-aligned tokens in IRA. We test m &€
{n,|n/2],|n/3]} on STS tasks. Table 4 shows
that selecting a suitable subset of top salient tokens

(m = |n/3]) can achieve the best performance,
suggesting that focusing CKA on the attention pat-
terns of the most critical tokens is effective and
potentially reduces noise from less important ones.
Across all tested values of m, our method consis-
tently outperforms the DSKD baseline, underscor-
ing the benefit of structural attention distillation.

Robustness to Teacher Model Choice To eval-
uate framework robustness beyond the LLM?2Vec-
Mistral 7B teacher, we repeated experiments on
SciTail using BGE-M3 (Chen et al., 2024) as the
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Table 4: Impact of top-m salient tokens for CKA
attention distillation on STS tasks (Pearson p), n: total
one-to-one aligned tokens.

Dataset m=n m=[n/2] m=|n/3] DSKD (Baseline)
STSB 80.2 80.6 81.3 78.3
SICK 76.9 79.4 80.1 78.7

teacher. Table 5 shows our framework EMO main-
tains significant performance gains over both the
Bert SFT baseline and all compared cross-tokenizer
distillation methods (ULD, MinED, DSKD, Mul-
tilevelOT), even with this different teacher. This
result indicates our framework’s general applica-
bility and effectiveness in transferring knowledge
from various high-performing embedding models.

Table 5: Results on SciTail using BGE-M3 as the
teacher model.

Method Accuracy Precision Recall
BGE SFT (Teacher) 94.3 94.1 93.9
Bert SFT (Student) 88.1 87.7 88.8
ULD (Boizard et al., 2025) 91.2 90.6 91.9
DSKD (Zhang et al., 2024) 91.5 91.2 91.0
MinED (Wan et al., 2024) 89.5 88.9 90.4
MultilevelOT (Cui et al., 2024) 91.4 91.2 90.9
EMO 92.7 91.8 92.3

6 Conclusion

We address the challenge of CTKD for text em-
bedding models by proposing a new method
EMO. Our framework distills intra-model rela-
tional knowledge via CKA on attention matrices of
aligned tokens and aligns final hidden states using
Optimal Transport with Importance-Scored Mass
Assignment. Experiments show our method signif-
icantly outperforms existing CTKD baselines on
diverse embedding tasks. By preserving attention
structure and prioritizing key representations, our
approach yields smaller, high-fidelity embedding
models despite tokenizer differences, offering a
more comprehensive solution for effective CTKD.

7 Limitations

While our EMO framework demonstrates signifi-
cant efficacy, its current focus on 1-to-1 mapped
tokens via MinED and subsequent top-m selec-
tion for intra-model attention distillation inherently
means some tokens are excluded from this specific
structural alignment stage. This could potentially
lead to a loss of nuanced relational information

associated with these unaligned or less salient to-
kens, although the final OTIS stage considers full
representations. Evaluating the precise impact of
this exclusion and developing strategies to softly
incorporate these tokens into attention distillation
are avenues for future exploration. Future research
will investigate more dynamic and context-aware
methods for selecting the top-m important tokens,
moving beyond static final-layer attention scores.
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Appendix
A Addressing Potential Token Loss

A consequence of focusing solely on these n tokens derived from one-to-one mappings is that the remain
tokens are initially excluded from the relational distillation process described in section 3.1. It is important
to note that while these one-to-one mapped tokens are excluded from this specific attention distillation
stage, the subsequent stage involving Optimal Transport for representation alignment (Section 3.2 operates
on the full sequences or representations derived thereof, ensuring that information from all original
tokens contributes to the overall distillation objective. To quantify the extent of this one-to-one mapping
achievable in practice, we conducted experiments on the SciTail dataset (Khot et al., 2018), Control dataset
(Liu et al., 2021) and Anli_r2 dataset (Nie et al., 2020) . We applied the MinED mapping procedure
between the tokenizations produced by our student (Bert-base-uncased) and teacher (LLM?2Vec-Mistral
7B) models across the train, development, and test splits. The percentage of tokens participating in the
resulting 1-to-1 mapping is presented in Table 6.

Table 6: one-to-one token mapping rates (%) found by MinED between
student (Bert-base-uncased) and teacher (LLM2Vec-Mistral) tokenizations.

Dataset Teacher Mapping (%) Student mapping (%)
SciTail 71.03 80.22
ConTRoL-nli 68.86 75.48
Anli_r2 66.37 74.47

As observed in Table 6, the proportion of tokens that can be directly mapped one-to-one between the
two distinct tokenizers is substantial, generally ranging from 66-71 % for the teacher sequence and 74-80
% for the student sequence across different data splits. An average mapping rate of approximately 75%
(considering both models) indicates that a significant majority of tokens have a direct counterpart found
by MinED.

B Experimental Details

Table 7: Detailed training configurations

LLM2Vec Mistral 7B — Bert-base-uncased

Epoch 5

LR 1x107°
Batch Size 4

LR Scheduler cosine
Finetune method LoRA
LoRA rank 256
LoRA alpha 32

LoRA dropout 0.1

Models Our student model is the standard Bert-base-uncased (110M parameters). The teacher model is
LLM?2Vec Mistral 7B (BehnamGhader et al., 2024), a state-of-the-art text embedding model from the
MTEB leaderboard. The detail of each models training configurations in KD in Table 7.

Training and Evaluation For distillation, the student model (Bert-base-uncased) is fully finetuned. The
teacher model (LLM2Vec Mistral 7B) is fine-tuned using LoRa. For Text Classification and Sentence
Pair Classification tasks, we report standard metrics: Accuracy, Precision, Recall, and F1-Score. For
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STS tasks, we report the Spearman Correlation Coefficient between model predictions and ground-truth
similarity scores.

Table 8: The best-searched hyperparameters « for different configurations.

Method Patent Imdb Banking77 Scitail ConTRoL-nli Anli_r2 STSB STS12 SICK
OURS 0.5 0.1 0.1 0.5 0.5 0.5 0.5 0.5 0.5

Detailed Dataset Statistics Table 9 presents the sample counts for the training, validation, and test
splits across each domain-specific dataset.

Table 9: Dataset Statistics

Dataset Train Validation Test

Patent 25000 5000 5000
Imdb 25000 - 25000
Banking77 10000 - 3080
SciTail 23100 1300 2130
ConTRoL-nli 6720 799 805

Anli_r2 45500 1000 1000
STSB 5750 1500 1380
STS12 2230 - 3110
SICK 4500 500 4823

Hyperparameter We explored the hyperparameter « over the set 0.1,0.2,0.3,0.4,0.5,0.6, 0.9, and the
optimal value for each experimental setting is reported in Table 8.

C Ablation study about the computational overhead analysis

The computational overhead analysis

Table 10: Training time per batch for each method on the SciTail dataset.

Method ULD DSKD MinED MultiOT IRA (for 2 layers) OTIS EMO
Time (s) 0.18  0.31 0.67 0.72 0.41 0.56 097

As shown in Table 10, our full EMO framework (apply IRA for 2 layers and OTIS for 1 layer) requires
approximately 0.97 seconds per batch in our experimental setup. This overhead arises mainly during
training and is not counted in the inference or deployment stage, making it a reasonable trade-off for the
substantial gains in the student model’s performance and representation fidelity. It is also worth noting
that OTIS alone incurs a relatively high training time of 0.56 seconds per batch, even though it is applied
only to the final hidden layer. This observation highlights the significant computational burden of Optimal
Transport, and thus justifies our design choice of restricting OTIS to the last layer to balance effectiveness
with efficiency.
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