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Abstract

Large Language Models (LLMs) often don’t
perform as expected under Domain Shift or
after Instruct-tuning. A reliable indicator of
LLM performance in these settings could assist
in decision-making. We present a method that
uses the known performance in high-resource
domains and fine-tuning settings to predict per-
formance in low-resource domains or base mod-
els, respectively. In our paper, we formulate
the task of performance prediction, construct
a dataset for it, and train regression models to
predict the said change in performance. Our
proposed methodology is lightweight and, in
practice, can help researchers & practitioners
decide if resources should be allocated for data
labeling and LLM Instruct-tuning.

1 Introduction

Domain adaptation in Large Language Models
refers to the ability of such models to understand
and generate output for a new domain that is not
part of their original training. Typically, LLMs are
trained on high-resource domains, and by proxy,
LLM performance on those domains is outstand-
ing. Theoretically, LLMs should generalize well to
domains not part of their training data. However,
the reality is far from this (Basmov et al., 2024).
Benchmarks show that when evaluated on a new
domain, LLMs, and especially smaller ones, do not
perform so well (Afzal et al., 2024).

In practice, LLMs are often fine-tuned before
they can be used reliably on a new domain. Such
techniques require hardware and domain-specific
labeled data. Acquiring these resources can be both
expensive and challenging, especially when the
new domain in question is also a low-resource one.
Furthermore, reliable indicators of how an LLM
would generalize across a new domain or under
Instruct-tuning approaches are currently missing
for Text Summarization. Current performance met-
rics within common benchmarks for Text Summa-

rization include ROUGE and BERTScore, which
require reference summaries. While these metrics
can provide insight into LLM performance, they
pose limitations against the evaluation of LLMs
for low-resource domains, such as the need for
significant amounts of annotated data to reveal a
domain shift (Van Asch and Daelemans, 2010a).
We address this issue by presenting an approach
that can predict performance under domain shift
for low-resource domains without any labeled data.
We first define the task of performance prediction
by leveraging the performance indicators of a high-
resource domain and the similarity between high-
resource and low-resource domains as the basis for
prediction.

Over the years, there have been attempts to pre-
dict the performance in Classification (Xia et al.,
2020; Elsahar and Gallé, 2019; Pogrebnyakov and
Shaghaghian, 2021) and Multilinguality (Srini-
vasan et al., 2021; Patankar et al., 2022). The ef-
forts for performance prediction on text summariza-
tion have been rather limited, albeit not completely
missing. Louis and Nenkova (2009) formulate it as
a classification problem by classifying a document
into one of the two classes "good performance”
and “poor performance". Similarly, Li et al. (2024)
presents an analysis as to which characteristics of
the corpus play a role in Text Summarization per-
formance. All previous works have focused on
limited domains and used n-gram-based features
for analysis and prediction. We build on these pre-
vious works by formulating performance prediction
as a regression problem, which, to the best of our
knowledge, hasn’t been done before. We predict
the change in performance over a wide range of
domains by utilizing a combination of n-gram and
contextual metrics.

To summarize, we address the challenge of pre-
dicting the performance change of LLMs under
domain shift in a setting where no labeled data is
available or training resources might be scarce. We
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construct and release our DA-Pred Dataset'. Al-
though already quite diverse, our domain catalog
can be easily expanded to include more domains.
Our contributions are as follows:

* We introduce a method that leverages known
performance on similar high-resource do-
mains to predict performance change on a
new low-resource domain for Text Summa-
rization®

* We create a dataset for this task using 14
datasets with a wide range of metrics char-
acterizing the datasets.

* We train four Regression models for perfor-
mance predictions on low-resource domains
and present our findings about the importance
of including features beyond n-gram overlap.

2 Related Work

Attempting to predict model performance under
domain shift has been an ongoing effort. Prior
works that attempted to predict model performance
include Louis and Nenkova (2009), which posed
performance prediction in Automatic Summariza-
tion as a classification problem with two predic-
tion classes: "poor performance" and "good per-
formance". Although quite helpful, their work ex-
presses the problem of performance prediction as
a binary one and is not applicable to cross-domain
prediction. We built on this work by expressing
the change in performance as a weighted average
for several text summarization evaluation metrics
and making it generalizable over domains. Further-
more, Li et al. (2024) investigates the factors that
play a role in domain adaptation for text summa-
rization. They characterize aspects like learning
difficulty, cross-domain overlap, and word count
while using compression ratio and abstraction level
to predict the model performance under domain
shift. Our work differs in our focus on expanding
features and developing models for performance
prediction rather than analysis.

The field of performance prediction under do-
main shift is highly applicable to other tasks as
well. Xia et al. (2020) attempts to predict the per-
formance of a language model under domain shift

!Code and Datasets for DA-Pred can be found at
github.com/anum94/DAPred

2DA-Pred could be easily adapted for other tasks by re-
placing the text summarization evaluation metrics with the
ones suitable for the other task.

for 9 tasks by training a regression model for each
task. However, they leave out complex tasks such
as text summarization and question answering. Fur-
thermore, Elsahar and Gallé (2019) proposes meth-
ods that use H-divergence, reverse classification
accuracy, and confidence measures to predict the
performance drop under domain shift for sentiment
classification and a sequence labeling task. Alter-
natively, Pogrebnyakov and Shaghaghian (2021)
uses metrics like KL divergence, dataset size, and
distribution similarity to predict the success of Do-
main Adaptation. They leverage the most common
source domains in a transfer learning setup for a
text similarity task. In another attempt, researchers
found a linear relationship between domain sim-
ilarity and model performance for POS Tagging
(Van Asch and Daelemans, 2010b).

Performance prediction has also been explored
for Multilinguality in (L)LMs. Srinivasan et al.
(2021) provides a holistic overview of performance
prediction in a multilingual setting. They employ a
regression model that leverages various syntactical
characteristics and performance scores of a simi-
lar language to predict performance on an unseen
language. A similar effort is made by Patankar
et al. (2022), who use several regression models
to predict the performance of Multilingual LLMs
for the SumEval 2022 shared task. On the other
hand, Khiu et al. (2024) used domain similarity
to predict performance on low-resource languages
for machine translation. They use features such as
the size of the Instruct-tuning corpus, the domain
similarity between Instruct-tuning and testing cor-
pora, and the language similarity between source
and target languages as the basics for prediction.
They report domain similarity to have a big impact
on performance.

3 Domains

To make our methodology generalizable, we utilize
14 text summarization datasets spanning six do-
mains: Medical, Science, Law, Government, News,
and Conversation. Table 1 provides a summary
of the average article and summary lengths for
each dataset by domain. Although the number of
datasets per domain varies, the datasets within each
domain are diverse in origin, which helps address
potential concerns about class imbalance in our ex-
periments. The datasets were chosen based on their
availability and strong representation in previous
work on domain adaptation for text summarization.
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3.1 Medical

We used PubMed (Cohan et al., 2018), which
contains articles from the medical domain along
with their summaries, and Lay Summarization by
Goldsack et al. (2022), which contains Biomedi-
cal articles and their expert-written lay summaries.
Contrary to PubMed, the summaries in this dataset
are layman summaries of the rather technical arti-
cles.

3.2 Science

We include ArXiv (Bhattacharya and Getoor,
2007), derived from the ArXiv OpenAccess reposi-
tory, and ACLSum (Takeshita et al., 2024) consists
of Natural Language Processing research papers
and summaries of these articles manually written
by domain experts.

3.3 Law

Our suite includes Big Patent’ (Sharma et al.,
2019) contains U.S. patent documents along with
human written summaries, and Multi-LexSum
dataset (Shen et al., 2022) consists of legal case
summaries as articles followed by expert-authored
summaries.

3.4 Government

We include the GovReport dataset by Huang et al.
(2021), which is a collection of long reports pub-
lished by the U.S. Government Accountability Of-
fice, and BillSum dataset (Kornilova and Eidelman,
2019), which uses a collection of U.S. Congress
and California state bills as an article along with a
human-written summary from the Congressional
Research Service.

3.5 News

Our news domains consists of four datasets includ-
ing Newsroom by Grusky et al. (2018) contains
the news snippet as the article and reference sum-
maries written by domain experts, CNN / Daily-
Mail dataset (Nallapati et al., 2016) consisting of
news article and bullet point highlights as sum-
maries, Gigaword (Graff et al., 2003) which fol-
lows the same structure as CNN / DailMail, and
lastly XL-Sum dataset (Hasan et al., 2021) con-
tains news article and their respective summaries
from BBC.

3Although there are 9 subcategories of this dataset, we
focus on the category Fixed Constructions.

3.6 Conversation

The Conversation domain consists of two datasets,
including SamSum dataset (Gliwa et al., 2019),
which is manually generated by linguists, and each
messenger-like conversation contains a summary of
the topic discussed, and DialogSum dataset (Chen
et al., 2021), which is similar in nature to SamSum

Domain Dataset #W  #W Sum
Medical PubMed 4400 394
Lay Summarization 26446 969
Science ACLSum 5779 480
ArXiv 7414 402
Law BigPatent 12362 366
Multi-LexSum 74977 1639
Government BillSum 5450 318
GovReport 28285 3221
News CNN/DM 1108 137
Newsroom 324 13
Gigaword 128 31
XLSum 669 71
Conversation DialogSum 384 67
SamSum 338 76

Table 1: Average token count in articles (#W) and Aver-
age token count in Summaries (#W Sum) computed on
the test split of all datasets computed using L1lama 3.1
Instruct (8b) tokenizer.

4 DA-Pred Suite

In this section, we explain our performance predic-
tion tasks, dataset construction methodology, and
the experimental settings used.

4.1 Performance Prediction Task

Our goal is to predict performance change when a)
transitioning from a high-resource domain (source)
to a low-resource domain (target), and b) perfor-
mance gain when transitioning from a base model
to a fine-tuned model under the same domain. To
evaluate the said change, we study three Domain
Adaptation scenarios:

e No Domain Shift (ND): There is no domain-
shift between source and target.

e In Domain Shift (ID): There is a shift in dis-
tribution such that the source and target belong
to different datasets or different splits of the
same dataset.
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¢ Out of Domain (OOD): There is an evident
domain shift such that the source and target
belong to different domains.

We simulate ND, ID, and OOD settings using the
datasets explained in section 3. Some examples
of dataset sampling under different scenarios are
shown in Table 2. For instance, we predict the
potential Instruct-tuning performance on the News-
room dataset based on known Instruct-tuning re-
sults from the Gigaword dataset. This models an
in-distribution (ID) scenario, where similarities be-
tween the datasets and prior performance on Giga-
word are used to estimate expected performance
changes.

Source Target DA
dataset split dataset split
PubMed (IT) test CNN/DM (IT) test OOD
ArXiv train ArXiv test ND
Gigaword (IT) train Newsroom (IT) test ID
SamSum test ArXiv test OOD

XLSum (IT) test
Multi-LexSum  test

Newsroom (IT) test OOD
BigPatent test ID

Table 2: An illustration of possible samples of the DA-
pred dataset where ND, ID, and OOD refer to No Do-
main Adaptation, In-domain, and Out of Distribution
settings. IT refers to inference on the fine-tuned model.

4.2 Dataset Construction

We use the methodology illustrated in Figure 1 to
construct our DA-Pred dataset consisting of 392*
samples. One sample in our dataset represents the
performance change for one of the domains under
one of the domain adaptation settings. Each sample
is constructed using a pair (source domain A, target
domain B) that reflects the change in performance
when transitioning to target domain B or moving
from the base to the fine-tuned model for the same
domain. We employ task-specific and task-agnostic
metrics as training features and model performance
changes as the y_drop to be predicted. The pairs
are created by sampling from the 14 datasets shown
in Table 2 under 3 domain adaptation settings for
both zero-shot and fine-tuning.

As illustrated in Figure 1, we compute domain-
similarity metrics between the source and target
domains, as well as domain-specific metrics for

*When training a regression model, the One in ten rule can
be applied. We use only 11 features under feature selection;
therefore, our dataset is of sufficient size

the target domain. We refer to both of these as
task-agnostic metrics’. In addition, we compute
task-specific metrics for both the source and target
domains, but only use the source domain metrics
as training features.

There are many available metrics for evaluat-
ing text, each with its own strengths and limita-
tions. Since no single metric is reliably sufficient,
we follow recent literature (Afzal et al., 2024) on
Text Summarization evaluation, which advocates
for using multiple metrics to assess performance.
To strike a balance between traditional and con-
temporary approaches, we selected representative
metrics from several categories: BERTScore for
contextual similarity, ROUGE for n-gram over-
lap, FActScore for factual consistency, and GPT-
4-based evaluations for coherence, relevance, and
other subjective aspects, representing the LLM-
as-a-judge paradigm. Lastly, task-specific metrics
from both the target and the source domains are
used to construct the y_drop as follows:

y_drop = y_weightedsource —

Z?:l W5

Doy Wi

y_weightediarget

y_weighted =

where: x; = value of the ¢-th metric
w; = weight of the i-th metric
n = # task-specific metrics

These weighted scores, which aggregate various
evaluation metrics, represent model performance
on a given domain or post fine-tuning. Accord-
ingly, y_drop ranging from -1 to +1 captures the
change in performance, specifically, the drop or
gain in quality, when moving from the source to
the target domain. In our methodology, the nega-
tive and positive values represent the performance
drop and gain, respectively. Details on the met-
rics used in constructing the DA-Pred dataset are
provided below. (See Appendix A for details).

Domain Similarity Metrics

* Vocabulary Overlap: We compute vocabu-
lary overlap as described by Afzal et al. 2024;
Yu et al. 2021 to encapsulate the word overlap
between the vocabulary of two given datasets.

e TF-IDF-weighted Overlap: This is an
adaptation of the Vocabulary Overlap where

SWe call them task-agnostic because they are computed
from the raw corpus and do not require labeled data.
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Figure 1: A block diagram depicting the pipeline used to generate the DA-Pred dataset. Each sample is a pair of
high-resource (source) and simulated low-resource (target) domains and follows the pipeline shown.

TF_IDF is used to find the top 10k words
in both datasets, which is used to compute
the overlap. We use TfidfVectorizer from
Scikit-learn (Pedregosa et al., 2012) to as-
sign an importance score to words by provid-
ing the list of all articles (documents) without
stopwords.

* Contextual Similarity: First, we generate

embeddings of all articles through a sentence
embedding model. Then we compute Cosine
Similarity between the embeddings of indi-
vidual documents and use the average cosine
similarity values to describe the contextual
similarity between them.

* Kullback-Leibler (KL) Divergence: We in-

clude KL divergence to capture the similarity
or rather dissimilarity between the distribution
of two corpora. For each dataset, we devise
a probability distribution of the words used
in all articles. These distributions are used
to compute the KL Divergences between two
given datasets.

Domain-Specific Metrics

* Syntactic Difficulty: Inspired by the Syntac-

tic Simplicity introduced by Redmiles et al.
2019; Leroy and Endicott 2012, we compute
syntactic difficulty by taking a weighted aver-
age of Dependency Length and Tree Depth of
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the corpus. We compute syntactic difficulty by
taking a weighted average of the Dependency
Length and Tree Depth of the corpus. Depen-
dency length measures the distance between a
word and its syntactic head (e.g., the relation-
ship between a verb and its object). Whereas
the tree depth is the maximum number of hi-
erarchical levels in a sentence’s dependency
tree. The syntactic difficult co-efficient o is
calculated as:

o = a X avg_dependency_length + 8 X
maz_tree_depth where a = 0.5, 8 = 0.5

* Shannon Entropy: We calculate Shannon
Entropy to encapsulate how much new infor-
mation is present in the dataset. Shannon En-
tropy is calculated by creating a probability
distribution of the dataset by using all words
in the articles. We hope that this serves as an
indicator of how difficult it might be for LLM
to understand this domain.

Task-Specific Metrics

* ROUGE: We conduct reference-based eval-
vation through n-gram by computing the
ROUGE score (Lin, 2004). We use ROUGE-
1, ROUGE-2, and ROUGE-L in our feature
space.

* BERTScore: We include the contextual over-
lap of generated summaries with reference
summaries through BERTScore (Zhang et al.,



All Features

Feature Selection

MSE MAE RMSE R?

MSE MAE RMSE  R?

ROUGE (baseline)
Regression  0.05 0.04 0.23 0.41 0.04 0.05 0.23 0.34
Ridge 0.05 0.04 0.23 0.41 0.04 0.04 0.02 0.34
Lasso 0.07 0.06 0.27 0.01 0.06 0.06 0.27 0.011
XGBoost 0.05 0.04 0.22 056  0.04 0.05 0.22 0.47
DA-Pred
Regression  0.03 0.03 0.19 092  0.04 0.03 0.21 0.91
Ridge 0.04 0.03 0.19 092 0.03 0.03 0.19 0.89
Lasso 0.15 0.11 0.11 039 0.15 0.11 0.39 0.11
XGBoost 0.03 0.02 0.18 094  0.03 0.02 0.18 0.97

Table 3: The performance of Linear Regression Models through Mean Absolute Error (MAE), Root Mean Squared
Error (RM SE), and R? on the DA-Pred Dataset using K-fold cross validation.

2020). We include BERTScore Precision,
BERTScore Recall, and BERTScore F1 score.

* FActScore: We also include Factuality as
one of the training features and use FActscore
(Min et al., 2023) with GPT-40-mini for fac-
tuality evaluation.

* LLM-based Evaluation: @ We employ
GPT-40-mini as a judge to do a prompt-based
evaluation of all generated summaries against
Coherence, Readability, Relevance, and Flu-
ency. Our evaluation prompts are inspired by
G-Eval (Liu et al., 2023).

* Domain Vocabulary Overlap: We construct
domain vocabulary by taking the top 10k
words of the domain and computing the over-
lap of the words in the generated summaries
with the domain vocabulary.

4.3 Experimental Settings

In this section, we discuss the experimental settings
we used to realize the Performance Prediction task
using the DA-Pred dataset. For our experiments,
we construct our dataset and associated features
using Llama 3.1 Instruct (8b) (Grattafiori
et al., 2024) as the backbone. We run inference
for each dataset using L1lama 3.1 Instruct (8b)
and fine-tuned Llama 3.1 Instruct (8b) for
each dataset. All metrics are calculated using 500
samples from the test set. For contextual similarity,
we use OpenAl’s fext-embedding-3-small model.
See Appendix A for technical details.

4.4 Prediction Models

Since our training dataset is medium-sized, we em-
ploy models that support training on such a dataset

through regularization. We include a simple Lin-
ear Regression model as the baseline and compare
it with Lasso Regression, Ridge Regression and
finally an XGBoost Model (Chen and Guestrin,
2016). We use Mean Absolute Error (M AFE),
Mean Squared Error (M SE), Root Mean Squared
Error (RM SE), and Coefficient of Determination
(R?) to evaluate the performance of the prediction
models.

4.5 Feature Selection

We use Feature Selection using scikit-learn’s
SelectKBest to select the top-k features based on
their variance, such that k = \/n where n = the
number of training samples. This strategy helps us
understand which features are actually important
for the prediction of Text Summarization perfor-
mance and may also help improve model perfor-
mance.

4.6 ROUGE vs DA-Pred

ROUGE: In previous work (Li et al., 2024), n-
gram ROUGE was used as a metric for evaluation
of the generated summaries, and hence the per-
formance prediction was the change in ROUGE
scores. For this baseline implementation, we keep
only the n-gram-based metrics, including Vocabu-
lary Overlap, TF-IDF-weighted Vocabulary Over-
lap, KL-Divergence, Shannon Entropy, Syntactic
Difficulty, and ROUGE as the training features.

DA-Pred: Given the surge of LLM-based evalu-
ation metrics, we included them in our prediction
metrics. Contrary to the baseline, which used n-
gram as the sole indicator of performance, we use
a diverse range of metrics introduced in subsec-
tion 4.2 as training features.
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5 Results & Discussion

5.1 Prediction Models

As shown in Table 3, we observe that a simple
Linear Regression model is not a suitable choice
for the performance prediction task, and Lasso fails
to learn the characteristics of our dataset. The very
high R? and very low error scores of XGBoost
suggest overfitting. Using a combination of all
scores, Ridge Regression seems to be a suitable
choice for this task, and we would continue to use
it in the rest of our experiments. (See subsection 5.3
for effects of number of datasets)

5.2 ROUGE vs DA-Pred

We use n-gram-based metrics in our baseline
method and a combination of n-gram and con-
textual metrics as training features. Our exper-
iments, as depicted in Table 3, show better test
performance with the training features of the DA-
pred dataset. The low R? scores on the baseline
dataset suggest that the n-gram-based features are
not enough for the model to comprehend the do-
main fully. Whereas, for DA-Pred, the low M AF,
MSE, RMSE scores, and a high R? score com-
plement each other and eliminate the doubts of
overfit.

5.3 Effects of Dataset Size

We evaluated the RM SE and R? with respect to
the number of datasets and show them in Figure 3.
Apart from minor fluctuations, it can be seen that
the RM SF for all models and both datasets slowly
decreases as we increase the number of samples,
suggesting better learning. We do not see any im-
provements in R? scores of all models when chang-
ing the size of the train set.

5.4 Feature Selection

Baseline DA-Pred

Feature # Selection Feature # Selection
vocab_overlap 6 source_coherence 12
source_rougel 6 source_consistency 12
source_rouge2 6 source_relevance 11
source_rougeL. 6 source_factscore 10

target_shannon_entropy 5 source_rougel 10
tfidf_overlap 4 source_rouge2 8
learning_difficulty 3 source_fluency 6
source_shannon_entropy 1 source_rougeL 5

Table 4: Most important features for the prediction
of Text Summarization performance along with their
counts.

To better understand which metrics contribute to
performance prediction under domain adaptation,

we perform feature selection on both the baseline
and DA-Pred datasets, as shown in Table 3. Over-
all, feature selection does not lead to significant
changes in model performance, but we still use it as
an analytical tool to gain insights into the datasets.

We track the features selected across various val-
ues of N, where N is the number of datasets, and
count how often each feature is selected. These
counts are presented in Table 4. Our analysis re-
veals that features such as coherence, consistency,
relevance, and factual correctness are especially im-
portant for performance prediction—yet they are
absent in the baseline method.

6 Practical Implications

Our models can be used off-the-shelf to estimate
performance on a low-resource dataset by leverag-
ing a related high-resource dataset. As illustrated
in Figure 2, performance on similar high-resource
datasets within a given domain is assumed to be
known in advance. Task-agnostic metrics for the
low-resource domain can be computed efficiently,
without requiring a GPU. Based on these metrics,
our method predicts model performance on the low-
resource domain. We created four holdout datasets,
each consisting of 1,000 samples, to evaluate our
methodology. These include ACLSumm+, which
consists of research papers scraped from ACL 2024
proceedings, medical articles scraped from BMJ
Medical Research®, the legal cases from India and
UK (Shukla et al., 2022), and lastly, we scraped the
articles of current affairs from Q4 2024.

6.1 Human Evaluation

To validate the implications and effectiveness of
Ydrop (ranging from -1 to +1), we compared our
model with human evaluators. We generated sum-
maries using zero-shot LLaMA 3.1 Instruct (8B)
and also the fine-tuned’ variant of the same model.
For each sample, annotators assigned scores in
two evaluation settings when transitioning from
1) a high-resource domain summary to a similar
low-resource domain summary, and 2) a zero-shot
summary to an Instruct-tuned summary, within the
same domain.

We recruited eight annotators from a local univer-
sity and compensated them at 16 euros per hour.
All annotators held graduate degrees in the domain

https://www.bmj.com/research/research
"We used GPT-4.1 to generate summaries for Holdout
datasets for Instruct-tuning
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Figure 2: The lightweight methodology used to obtain predictions on a new domain. The illustration uses 2 domains,
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Figure 3: RM SE and R? scores of models recorded when trained over N samples where N = number of datasets

they were evaluating. Each sample was annotated
by two annotators. Each annotator was asked to
assign a score between -1 and +1, reflecting the
quality of a summary relative to a provided ref-
erence. The inter-annotator agreement, measured
using Pearson correlation, was 0.4. We report the
average y_drop assigned by human evaluators and
predicted by our method on 25 samples in Table 5.

6.2 Mapping y_drop to Recommended
Actions

To further support practitioners, we used annotator
feedback to map y_drop values to practical rec-
ommendations. For each sample, three summaries
were generated—one from each of the zero-shot,
in-context learning (ICL), and Instruct-tuned set-
tings. Annotators were shown a reference summary
from a similar high-resource domain, along with all
three generated summaries for the corresponding
sample in the holdout dataset. They first assigned a
score between -1 and +1 to the zero-shot summary.

Then, after reviewing the ICL and Instruct-tuned
summaries, they were asked to assign a recommen-
dation label based on their comparative assessment.
We present the mapping between y_ drop and these
recommendation labels in Figure 4. The recom-
mendation labels were:

Fine-tuned Summary preferred: if the annota-
tor preferred the Instruct-tuned summary,

ICL Summary preferred:
ICL summary,

if they preferred the

zero-shot summary preferred: if neither the
ICL nor the instruct-tuned summaries were judged
better.

7 Conclusion and Future Work

We introduced a Performance Prediction task
for Text Summarization under Domain Shift and
Instruct-Tuning. We created a dataset for it cov-
ering 6 domains and 14 datasets under various
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Figure 4: We show the y_drop scores assigned by human Annotator along with their recommended actions after
seeing the In-context Learning summary and Instruct-tuned summary of our 4 Holdout Validation datasets. Major
Improvements, Minor Improvements, and no Improvements needed imply Instruct-tuning, ICL, and use as is,

respectively.
Holdout Dataset Similar Datasets DAV HV
ACLSum ArXiv 0.02 0.1
Scrapped News Newsroom 0.07 0
Scrapped Legal BigPatent -0.23  -03
BMJ Medical Research PubMed -0.86 -0.9

Table 5: DAV and HV are the change in performance
depicted by our method and human annotator, respec-
tively.

domain adaptation settings for zero-shot and fine-
tuned models. We train four prediction models
for this task using the DA-Pred dataset. Our ex-
periments show a Ridge Regression model with
DA-pred features to be most suitable, whereas
Feature Selection shows only minor improvement.
Through human evaluation, we show our method to
be reliable and also provide a mapping of y_drop
to recommended actions for practitioners. Text
Summarization is a complex task that evaluates an
LLM’s Text Modeling ability on a wide spectrum.
Based on this motivation and the existing research
gap in Text Summarization performance predic-
tion, we selected it for evaluating our methodology.
However, our approach can be adapted to predict
performance for all tasks under domain shift by
simply replacing the task-specific metrics. We in-
troduce task-agnostic metrics briefly in the paper,
but the broader implication is to include metrics
like Perplexity that capture LLM competence on
a domain without relying on task-specific metrics
and potentially evolving towards task-agnostic per-
formance prediction for LLM under domain shift.

Limitations

Due to the high computational effort needed for
the construction of each sample in the dataset, we
limited the metrics computation to 500 samples per

dataset. This sample size, however, is still large
enough to be statistically significant.

The task introduced in our paper focuses on the
change in performance when switching from one
domain to the other, and not so much on the per-
formance change when switching models. We use
only one model, such as Llama 3.1 Instruct
(8b) as an experimental choice for computing task-
specific scores needed to validate the methodology.
Switching to Mistral, for example, should not im-
pact how the regression models learn to compre-
hend the domains. The dataset introduced in this
paper is small in comparison to datasets that are
nowadays used to train deep learning models, al-
though still sufficient for training a light-weight
Regression Model. Including more models in the
DA-pred suite could help increase the size of the
training data.

Lastly, our experiments are designed to simulate
low-resource domains in which we do have Instruct-
tuned models / labeled data available. We use ex-
isting High-Resource datasets to simulate a real-
world low-resource setting.

Ethical Statement

We present a method for the performance predic-
tion of Text Summarization under domain shift to
foster research in this area. In our dataset con-
struction, we used open-source Text Summariza-
tion datasets. Our human annotation guidelines
were carefully crafted, and annotators were com-
pensated. We performed Instruct-tuning also using
the open-source datasets and thus did not include
any bias in the model other than what might already
be part of the model/datasets.
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A Experimental Settings
A.1 DA-Pred Dataset

For Inference on Instruct-tuned models, we use an
A100 80GB, whereas for zero-shot inference, we
use API endpoints provided by Together AI®. We
Instruct-tuned Llama 3.1 Instruct 8B on 10k
samples from the train split with a context window
of 8192 tokens. We trained for 2 epochs with a
batch size of 64 using the Cerebras Framework®.
Unless specified, we use the default values for all
models and methods.

A.2 Prediction Models

We train all Regression models with default set-
tings and employ RidgeCV and LassoCV provided
by Scikit-learn to automatically select the best
values of a. For XGBoost, we train it for 20 epochs
and pick the best model based on the validation loss.
For better training, we normalize all our features
to be on a scale of O - 1 and use K-fold cross-
validation with K=5.

8https://api.together.ai/
*https://docs.cerebras.ai/
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