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Abstract

Large language models (LLMs) are increas-
ingly used for social-science simulations, yet
most evaluations target task optimality rather
than the variability and adaptation character-
istic of human decision-making. We propose
a process-oriented evaluation framework with
progressive interventions (Intrinsicality, In-
struction, and Imitation), and apply it to two
classic economics tasks: the second-price auc-
tion and the newsvendor inventory problem.

By default, LLMs adopt stable, conservative
strategies that diverge from observed human
behavior. Giving LLMs risk-framed instruc-
tions makes them behave more like humans.
However, this also causes complex irregular-
ities. Incorporating human decision trajecto-
ries via in-context learning further narrows dis-
tributional gaps, indicating that models can
absorb human patterns. However, across all
interventions, LLMs underexpress round-to-
round variability relative to humans, reveal-
ing a persistent alignment gap in behavioral
fidelity. Future evaluations of LLM-based
social simulations should prioritize process-
level realism. Our code and data are avail-
able here: https://github.com/diana3135/
LLM-Fidelity-in-Decision-Making.

1 Introduction

Large language models (LLMs) are increasingly
applied to tasks requiring decision-making, plan-
ning, and reasoning (Rosenman et al., 2024; Choi
et al., 2025; Huang et al., 2024). As interest grows
in using LLMs to simulate human subjects in social
science, recent work has moved beyond static tasks
toward more dynamic and interactive evaluations
(Gueta et al., 2025; Ziems et al., 2024). Bench-
marks like MoralBench (Ji et al., 2025) and the
Decision-Making Behavior Evaluation Framework
(Jia et al., 2024) assess LLMs on single-shot tasks
such as ethical dilemmas, risk preferences, and
loss aversion. Similarly, economic game studies

(e.g., Dictator, Ultimatum, Public Goods) show that
LLMs can reproduce some human-like behaviors,
such as generosity or cooperation (Akata et al.,
2025; Mozikov et al., 2024). These evaluations
typically focus on final choices or performance.
However, human decisions are often noisy, history-
dependent, and shaped by bounded social and cog-
nitive constraints (Santos and Rosati, 2015). While
LLMs now match or surpass human accuracy on
standard reasoning benchmarks (Leng and Yuan,
2024), their ability to reproduce these stochastic
patterns remains an open question:

To what extent do LLMs exhibit be-
havior consistent with human decision-
making, and can this behavior be modu-
lated through targeted interventions?

As LLMs are increasingly proposed for use in
behavioral modeling, synthetic data generation,
and experimental simulation, it is crucial to assess
whether their behavior reflects these foundational
properties of human cognition (Wang et al., 2023).
Our study contributes to this goal by introducing
a structured framework for evaluating behavioral
alignment between LLMs and humans in dynamic
decision-making contexts.

To systematically evaluate LLM behavior, we
propose a process-oriented evaluation framework
with progressive interventions: (1) Intrinsicality,
LLMs operate without any intervention; (2) In-
struction, LLMs receive risk-framed instructions;
and (3) Imitation, LLMs receive partial human
decision histories and are tasked with continuing
the behavior. This framework enables us to assess
the extent to which LLMs exhibit key features of
human decision-making, such as bounded ratio-
nality (taking suboptimal strategies under limited
cognitive resources) or behavioral variance (indi-
vidual variability in decisions, often linked to risk
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Figure 1: Overview of the experimental design. (A) We instantiate 40 agents per LLM with real human demographic
profiles. (B1) In the main experiment (second-price auction), agents set a reserve price r (rPrice) in 60 rounds and
receive simulated bidder valuations drawn from known distributions. Profit depends on bidder valuations b1 and b2
(highest and second-highest bids). (B2) In the supplementary experiment (newsvendor problem), agents choose an
order quantity q over 30 rounds to maximize expected profit under stochastic demand. p is the selling price, and c is
the cost. (C) On both tasks, we apply an evaluation framework with progressive interventions: Intrinsicality (no
intervention), Instruction (indicate risk preference), and Imitation (provide historical human data).

preference or adaptation).
We apply this framework to two classic be-

havioral tasks: a second-price auction (Edelman
et al., 2007; Cooper and Fang, 2008), where sub-
jects set reserve prices before observing bids, and
a newsvendor problem (Schweitzer and Cachon,
2000), where subjects choose order quantities for
newspapers under uncertain demand. Both tasks
feature dynamic feedback and closed-form opti-
mal strategies, enabling direct comparison between
LLM and human decision patterns. We instanti-
ate LLMs using GPT-4o, Claude 3.5 Sonnet, and
Claude 3.7 Sonnet1, and compare their behaviors
with those of human subjects.

Since the second-price auction has established
theoretical benchmarks and involves bilateral in-
teraction and strategic complexity, we designate
it as the primary use case. We conduct a compre-
hensive evaluation of LLM behavior on this task,
comparing it against empirical human data and doc-
umented behavioral theories. The newsvendor task

1We pin model snapshots (as of March 2025): gpt-4o-
2024-11-20 (GPT-4o), claude-3-5-sonnet-20241022 (Claude
3.5 Sonnet), and claude-3-7-sonnet-20250219 (Claude 3.7
Sonnet).

serves as a supplementary experiment to verify the
generalizability of our framework. We illustrate
the two experimental processes and the evaluation
framework in Figure 1.

Contributions: We introduce a process-oriented
evaluation framework with progressive interven-
tions to systematically assess whether LLMs ex-
hibit the stochasticity and adaptiveness characteris-
tic of human decision-making. Through two clas-
sic behavioral experiments (second-price auction
and the newsvendor problem), we demonstrate that
LLMs consistently display low-variance, highly
stable strategies, with minimal within-agent fluc-
tuation or cross-agent diversity. These findings
highlight fundamental limitations in using current
LLMs as synthetic proxies for human subjects in
dynamic behavioral settings and provide a practical
framework for auditing LLM behavior in decision-
making tasks.

2 Background and Related Work

2.1 LLM Simulations in Social Science

LLMs are increasingly employed as proxies for
human subjects in experimental research across do-
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mains such as psychology (Binz and Schulz, 2023),
political science (Liu et al., 2025), and behavioral
economics (Ross et al., 2024). Researchers often
apply LLMs to tasks involving moral reasoning,
social forecasting, and decision-making (Bankins
et al., 2024), where models frequently perform at
levels comparable to humans. For example, Chi-
ang and Lee (2023) show that LLMs match human
experts in evaluation and reasoning during open-
ended story generation and adversarial attacks. In
a large-scale replication study involving 156 psy-
chological experiments from leading social science
journals, Cui et al. (2025) find that LLMs repro-
duce 73%-81% of main effects, closely aligning
with human outcomes in both direction and statisti-
cal significance. Similarly, Kirshner (2024) demon-
strates that GPT-4o replicates eight of nine classic
findings in operations management, with treatment
effects that closely track human behavior in both
magnitude and direction. These results suggest that
LLMs can reduce the cost and logistical complex-
ity of human-subject experiments while enabling
the exploration of counterfactuals and hypothetical
conditions at scale (Anthis et al., 2025).

While many cases demonstrate that LLMs can
approximate human cognitive and behavioral out-
puts in controlled experiments, it remains unclear
whether these models can consistently capture the
more nuanced “noise” (Slifkin and Newell, 1998)
observed in real-world human decision-making.
This subtle “noise” is essential because it shapes
how and when people deviate from normative pre-
dictions. This is important information that de-
termines the validity of synthetic-subject replace-
ments in behavioral experiments, and the robust-
ness and fairness of systems that rely on LLM
simulations. Without the stochastic fingerprints
of actual human decision makers, models risk
over-estimating equilibrium convergence or mis-
allocating welfare. For instance, Kitadai et al.
(2024) show that LLMs with stronger reasoning
abilities tend to produce outcomes closer to theo-
retical optima than to the actual results observed
in human experiments. In another study of altru-
istic behavior in dictator games, Ma (2024) finds
that LLMs fail to reproduce the internal delibera-
tion processes underlying human decision-making.
These findings suggest that LLMs may diverge
from human subjects’ behavior, underscoring the
need for careful evaluation of whether their deci-
sion patterns reflect the variability, inconsistency,
and adaptive heuristics that characterize human be-

havior in complex tasks.

2.2 LLM Behavior Evaluation

As LLMs are increasingly deployed across domains
that require human-level judgment and interaction,
evaluating and aligning their behavior has become a
central concern in NLP research (Wang et al., 2023;
Liu et al., 2023; Yao et al., 2023). Traditional eval-
uation frameworks often emphasize surface-level
metrics like factual accuracy, linguistic coherence,
or syntactic completeness (Yaldiz et al., 2025).
Along with the recognition of LLMs’ value in hu-
man simulations, human-alignment benchmarks
such as “HHH” (helpful, honest, and harmless)
have been introduced to assess normative align-
ment with intended responses (Askell et al., 2021).
While these metrics provide important insights into
correctness and linguistic quality, they offer lim-
ited information about the underlying behavioral
processes that govern model decisions.

Recent work has begun to move beyond tra-
ditional evaluation metrics by introducing frame-
works and benchmarks to assess LLM behavior
in more human-centered social science contexts
(Thapa et al., 2025). For example, Jia et al. (2024)
develop a behavioral economics-inspired evalua-
tion framework that quantifies decision patterns
like risk preference, probability distortion, and loss
aversion. Their results show that LLMs can re-
produce some of these behavioral signatures, but
their sensitivity to socio-demographic framing of-
ten leads to inconsistent patterns. Chen et al. (2024)
introduce XplainLLM, a dataset and accompany-
ing explanation framework designed to illuminate
LLMs’ internal reasoning behavior. In a related
line of inquiry, Ross et al. (2024) apply utility
theory to analyze economic decision-making by
LLMs. They find that while models often pro-
duce economically coherent responses in isolated
settings, they fail to maintain consistent behavior
across varying payoff structures or decision con-
texts. Furthermore, Macmillan-Scott and Musolesi
(2024) evaluate LLM susceptibility to cognitive bi-
ases and reveals that LLMs respond incorrectly in
ways that differ from human-like biases. Together,
these studies reveal the importance of evaluation
methods that go beyond output correctness and in-
stead capture how LLMs simulate plausible human
behavior across conditions and frames of reference.
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2.3 Research Gap

Previous studies show that LLMs can achieve or
even exceed human-level performance targets (Cai
et al., 2025). However, these studies are outcome-
oriented, evaluating LLMs mostly on profit or ef-
ficiency. They ignore the decision path by which
humans reach those outcomes: fluctuating explo-
ration, myopic loss aversion, and gradual strat-
egy revision over repeated feedback (Slifkin and
Newell, 1998).

Our work addresses this gap by proposing a
process-oriented evaluation framework with pro-
gressive interventions (Intrinsicality, Instruction,
and Imitation). We evaluate LLM behaviors on two
classic tasks in economics. By comparing LLM
behaviors to standard theory and human data, we
assess whether LLMs exhibit variability and adapt-
ability in decision-making.

3 Methodology

3.1 Task Description

We apply our process-oriented framework to two
classic decision-making tasks: the second-price
auction and the newsvendor problem. These tasks
differ substantially in structure and complexity.
The auction task involves strategic reasoning and
a discontinuous payoff function, where outcomes
depend on the interaction between the reserve price
and external bidder valuations. In contrast, the
newsvendor task features a smooth, continuous
payoff structure and requires threshold-based opti-
mization under cost and demand uncertainty. This
contrast enables us to evaluate whether LLMs ex-
hibit consistent behavioral patterns across distinct
economic mechanisms.

Second-Price Auction Our primary experiment
is based on the second-price auction mechanism
(Edelman et al., 2007; Cooper and Fang, 2008). In
this task, LLMs act as sellers aiming to maximize
total profit over 60 rounds. Following the design
of prior human-subject experiments conducted at
a U.S. university (Davis et al., 2011, 2023), each
LLM agent is assigned a unique profile with age,
gender, and field of study. Before the auction be-
gins, they receive complete instructions, includ-
ing the rules of second-price auctions, examples
of profit calculation, and illustrations of historical
bidder valuation distributions. For every round
t ∈ {1, . . . , 60}, a subject sets a reserve price
rt ∈ {0, . . . , 100}. Each agent is paired with a
group of simulated bidder valuations bt, sorted in

descending order b(1)t ≥ b
(2)
t ≥ . . .. An item is

sold if the highest bid exceeds the reserve price;
otherwise, no sale occurs.

In each round, the agent is matched with a group
of simulated bidder valuations drawn from one of
two known distributions: the Cube-root distribu-
tion, defined by F (v) =

(
v

100

)1/3, or the Cube
distribution, defined by F (v) =

(
v

100

)3. These
correspond to left-skewed (µ = 25, σ = 28.4) and
right-skewed (µ = 75, σ = 19.4) settings, respec-
tively, over a common support. The number of
bidders per round is randomly chosen from {1, 4, 7,
10}. Agents receive feedback on profit after each
round and adjust their reserve prices accordingly.

Newsvendor Problem In this task, LLMs act as
the vendor deciding how many newspapers to order
before knowing the actual demand (Schweitzer and
Cachon, 2000). In every round t ∈ {1, . . . , 30},
a subject chooses an order quantity q before ob-
serving stochastic demand D ∼ U [1, 300]. The
unit cost c and unit selling price p vary by round.
Agents earn profit according to: Profit = p ·
min(q,D)− c · q. The optimal order quantity q∗ is
given by the critical fractile rule: q∗ = F−1

(
p−c
p

)
,

where F is the cumulative distribution of demand.
Table 1 summarizes the key variables and eval-

uation metrics. While task-specific variables (e.g.,
rPrice, order bias) differ, we have common metrics
for behavior divergence (Kolmogorov–Smirnov dis-
tance) and variability (entropy).

Empirical studies show that humans systemat-
ically deviate from optimal strategies in both set-
tings. In auctions, they tend to increase reserve
prices as the number of bidders increases, a pattern
linked to bounded rationality, overconfidence, or
heuristic beliefs about competition. In the newsven-
dor task, over-ordering in low-margin conditions
and demand-chasing behavior are commonly ob-
served. By comparing LLM behavior to both theo-
retical optima and human benchmarks across these
two tasks, we assess whether LLMs conform to
normative expectations and whether they present
key patterns in human decision-making.

3.2 Setup

We instantiate with state-of-the-art models: GPT-
4o, Claude 3.5 Sonnet, and Claude 3.7 Sonnet. For
each model, we simulate 40 agents. Each agent
is assigned a unique profile constructed from real
demographic data, including gender, race, age, and
academic background. Before each task, agents
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Metric Definition

KS distance DKS = supx |FLLM(x) − FHuman(x)|
Behavioral Entropy H = −∑

x P (at = x) log2 P (at = x)

AUCTION

Sale indicator st =

{
1, if rt ≤ b

(1)
t

0, if rt > b
(1)
t

Sell-through rate STR = 1
T

∑T
t=1 st

Profit Profitt =

{
max{rt, b(2)t }, if st = 1

0, if st = 0

NEWSVENDOR

Profit Profitt = min(qt, Dt) · p − qt · c
Order bias Biast = qt − q∗

Table 1: Key variables and evaluation metrics. For both
tasks, t indexes the round, and T is the total number
of rounds. In the auction task, rt is the reserve price,
b
(1)
t and b

(2)
t are the highest and second-highest bidder

valuations in round t. In the newsvendor task, qt is the
quantity ordered, Dt is realized demand, p is the unit
selling price, c is the unit cost, and q∗ is the theoretical
optimal quantity. The action at refers to the subject’s
decision at round t (e.g., rt or qt). Entropy is computed
per round over the discrete action and reported as the
mean. KS distance measures distributional divergence
between LLM and human decisions, and entropy quan-
tifies behavioral variability.

receive complete instructions that cover the rules
of the auction or newsvendor problem. They also
receive illustrative examples of profit calculation.
Full instruction texts are provided in Appendix B.

To systematically evaluate LLM behavior, we
propose the evaluation framework with progres-
sive interventions: (1) Intrinsicality, where LLMs
complete the task identically to human subjects,
without any intervention; (2) Instruction, where
LLMs receive additional framing about risk pref-
erences (e.g., risk-seeking or risk-averse); and (3)
Imitation, where LLMs are provided historical hu-
man data, including reserve prices, profits, and bid-
der valuations (auction), or order quantities, profits,
and demands (newsvendor). Then, LLMs should
follow the patterns and complete the remaining
rounds. Specifically, to ensure robustness, we con-
duct four ablation studies in which the way of pro-
viding human history is altered: masking the round
number (Mask), reversing the order (Reverse), fully
shuffling the sequence (Shuffle), and regionally
shuffling subsets of rounds (RegionShuffle).

Task parameters such as bidder valuations and
demand distributions are held constant across
LLMs with matching demographic profiles. This

ensures consistency with the conditions used in
the original human-subject studies. We provide
complete prompts for the experiment setup and
interventions in Appendix C.

3.3 Experimental Controls and Robustness

To ensure the reliability and reproducibility of our
findings in the main and supplement tasks, we
conducted each experimental configuration three
times per LLM and intervention condition. We as-
sessed consistency by computing pairwise Pearson
correlations of key behavioral sequences (e.g., re-
serve prices in the auction, order quantities in the
newsvendor task) and profit outcomes, observing
high correlations across runs. Therefore, we report
results from the first iteration throughout the paper.

We performed robustness checks across differ-
ent temperature settings (0.0, 0.3, 0.7, 1.0), ob-
serving that key metrics like reserve prices and
correlation between reserve prices and number of
bidders are highly similar. Thus, we adopt a tem-
perature of 1.0 as the default setting for all reported
experiments.

4 Main Experiment (Auction)

4.1 Intrinsicality

In the Intrinsicality stage, we follow the same ex-
perimental process for human subjects and LLMs
without any interventions, aiming to reveal the de-
fault behavioral patterns.

Table 2 reports the summary statistics for reserve
prices across all subjects and rounds in all condi-
tions. By default, LLMs exhibit reserve price distri-
butions that differ markedly from those of human
subjects. Human subjects set the most varied re-
serve prices (µ = 27.31, σ = 23.22, Entropy =
5.08). In contrast, LLMs display limited varia-
tion in reserve price setting, tending toward a con-
servative selling strategy that favors a higher sell-
through rate. Among the models, GPT-4o deviates
most strongly from human price-setting trajectories
(DKS = 0.41).

The small differences in average profits are con-
sistent with the mechanics of second-price auctions.
Profit depends primarily on the bidder valuations
rather than on the reserve price itself, provided that
the reserve price is not prohibitively high (Davis
et al., 2011).

To examine strategic patterns more closely, we
group subject-level reserve price observations by
the number of bidders and calculate average reserve

7697



Source rPrice Mean (SD) Entropy STR Profit DKS rPrice–Bidder Corr. Mode

Human 27.31 (23.22) 5.08 0.76 32.83 – Linear positive (r=0.42) —

INTRINSICALITY (DEFAULT)

GPT-4o 16.12 (11.70) 1.43 0.94 33.00 0.41 Flat for >4 bidders —
Claude 3.5 Sonnet 23.37 (8.75) 2.92 0.77 34.54 0.27 Flat for >4 bidders —
Claude 3.7 Sonnet 18.22 (8.19) 2.96 0.79 34.13 0.32 Flat for >4 bidders —

INSTRUCTION (RISK-SEEKING OR RISK-AVERSE)

GPT-4o 81.63 (14.99) 2.96 0.08 5.84 0.84 Flat for >4 bidders Seeking
Claude 3.5 Sonnet 41.05 (14.55) 3.51 0.37 23.91 0.43 Linear positive (r=0.58) Seeking
Claude 3.7 Sonnet 63.29 (22.82) 3.56 0.17 12.04 0.58 Linear positive (r=0.43) Seeking
GPT-4o 20.68 (7.34) 1.67 0.63 31.92 0.42 Flat for >4 bidders Averse
Claude 3.5 Sonnet 20.51 (8.10) 2.72 0.57 30.78 0.30 Flat for >4 bidders Averse
Claude 3.7 Sonnet 30.83 (10.77) 2.74 0.50 28.47 0.39 Linear positive (r=0.36) Averse

IMITATION (IN-CONTEXT LEARNING)

GPT-4o

27.12 (21.87) 4.62 0.76 33.51 0.05 Linear positive (r=0.47) Direct
26.08 (21.15) 4.68 0.78 33.64 0.04 Linear positive (r=0.47) Mask
26.84 (21.67) 4.54 0.77 33.76 0.05 Linear positive (r=0.49) Reverse
27.00 (21.87) 4.69 0.77 33.34 0.05 Linear positive (r=0.46) Shuffle
26.86 (22.02) 4.75 0.77 33.46 0.04 Linear positive (r=0.46) RegionShuffle

Table 2: Summary statistics of humans and LLMs under three conditions (Intrinsicality, Instruction, and Imitation).
rPrice is the reserve price. Entropy measures the extent of disorder or variety of the reserve price setting. STR
represents the sell-through rate, indicating the proportion of the successful deals in 60 rounds. Profit is the average
profit per round. DKS denotes the average Kolmogorov-Smirnov distance between LLMs’ and humans’ empirical
distributions of reserve prices. rPrice-Bidder Corr. reflects the relationship between the number of bidders and
average reserve prices. Human subjects typically raise reserve prices as the number of bidders increases, producing
a positive linear correlation. By default, LLMs adopt stable strategies largely independent of the number of bidders,
but under Instruction and Imitation conditions, they also exhibit a positive linear pattern.

prices. This approach captures how subjects adjust
their strategies in response to different levels of
market competition. Figure 2 visualizes the results.

As the number of bidders increases from one to
four, all LLMs raise their reserve prices. Claude
models align more closely with human behavior,
starting near 15 and rising to about 25. GPT-4o
is more conservative, setting reserve prices near
two on average with one bidder. Beyond four bid-
ders, LLM strategies converge and stabilize be-
tween 20 and 26, whereas humans continue raising
their prices, reaching nearly 40 with ten bidders.
These trends highlight a clear divergence in strat-
egy. Human subjects appear influenced by bounded
rationality or overconfidence, while LLMs adopt
more rational and conservative approaches. In the
following analysis, we treat this divergence, along
with the variance in price setting, as the main ev-
idence in evaluating whether LLMs successfully
simulate human behavior in this experiment. Over-
all, in the absence of intervention, LLMs depart
from the adaptive and heterogeneous character of
human decision-making. In the following sections,
we introduce risk-framed instructions and imita-
tion (in-context learning) to examine how these
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Figure 2: Reserve price variation with the number of
bidders, aggregated across 40 agents per bidder-number
group. Each line represents the mean reserve price, with
shaded areas indicating 95% confidence intervals.

interventions shape LLM behavior.

4.2 Instruction

Risk preference is a critical factor influencing hu-
man behavior in auction settings (Myerson, 1981;
Cooper and Fang, 2008). To examine whether
LLMs exhibit similar sensitivity, we introduce risk-
framed instructions, risk-averse and risk-seeking,
into the original experiment and evaluate how they
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Figure 3: Examples of reserve price trajectories under the Imitation condition. Each panel compares human
reserve prices (first 30 rounds in dashed pink, provided to the LLM; last 30 rounds in solid pink, representing real
human decisions) with the corresponding LLM predictions (last 30 rounds in solid blue, representing the LLM’s
understanding of human patterns).

adjust their pricing strategies.
According to Table 2, risk-seeking instructions

push LLMs toward markedly higher reserve prices,
often reaching extreme levels. GPT-4o, for exam-
ple, sets high reserve prices (µ = 81.63) on aver-
age, which leads to a very low sell-through rate.
The reserve price trajectories also diverge strongly
from human subjects, with an average Kolmogorov-
Smirnov distance of DKS = 0.84. Claude models
likewise raise reserve prices substantially under
risk-seeking framing, while maintaining stronger
alignment with the human-like positive correlation
between reserve prices and the number of bidders.
However, profits decline sharply relative to the In-
trinsicality condition, reflecting the trade-off be-
tween aggressive pricing and sales completion.

Under risk-averse instructions, LLMs set lower
reserve prices, close to those observed in the Intrin-
sicality stage. This suggests that LLMs, by default,
adopt conservative and rational strategies.

A notable finding is that, under risk-preference
instructions, Claude models display a positive lin-
ear relationship between reserve price and the num-
ber of bidders, indicating that they can be influ-
enced to partially exhibit human-like strategic ad-

justments.
Overall, LLMs demonstrate clear directional

sensitivity to risk-preference instructions. While
risk preference is theoretically central to human
decision-making, introducing it through prompts
induces additional irregularities in LLM strategies;
however, these interventions remain insufficient for
reproducing the full variability and heterogeneity
observed among humans.

4.3 Imitation

We examine how LLMs respond when human data
is introduced through in-context learning. By sup-
plying the first 30 rounds of human data (reserve
prices, profits, and bidder valuations), we task
LLMs with completing the remaining 30 rounds.

As shown in Table 2, imitation markedly im-
proves alignment between LLMs and humans.
Across all imitation modes, LLMs generate reserve
price distributions with means around 27 and stan-
dard deviations of around 21, which is much closer
to the human baseline. Entropy values also rise
to approximately 4.6-4.7, indicating a substantial
increase in behavioral variability compared to the
narrow ranges observed under Intrinsicality. Sell-
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through rates converge toward human performance
(STR ≈ 0.77).

Additionally, KS distances to human trajecto-
ries drop sharply, reaching values near 0.05 across
all ablation conditions. This represents a major
improvement from the default setting, reflecting
much closer distributional alignment with human
reserve price trajectories. The consistency of these
results across ablations suggests that LLMs rely
less on the surface order of human data and more
on extracting underlying behavioral patterns.

Figure 3 presents four illustrative examples of
reserve price sequences from LLMs and their cor-
responding human subjects. In Examples 1 and 2,
the LLM nearly replicates the human trajectories.
Example 3 demonstrates that the LLM is unable to
capture a human subject’s sudden change in pric-
ing strategy. In Example 4, although the LLM’s
prices diverge from those of humans, both follow
the same directional adjustments across rounds.

Taken together, the ablation studies and trajec-
tory comparisons demonstrate that human data can
strongly influence LLMs. Once exposed, they cap-
ture and reproduce salient patterns of human strat-
egy, providing compelling evidence that in-context
learning with human data enhances fidelity in simu-
lations. However, achieving full behavioral realism
will likely require additional interventions and fur-
ther validation.

5 Supplementary Experiment
(Newsvendor)

We apply the same evaluation framework to the
newsvendor task to assess its generalizability.

In the Intrinsicality stage, LLMs produce less
varied order quantities near the theoretical opti-
mum q∗, contrasting with the wide and fluctuating
decisions of human subjects. In the risk-framed
Instruction stage, LLMs adjust the order quantity
directionally but diverge further from human pat-
terns in variations, especially under risk-seeking
conditions. For the Imitation stage, LLMs again
present the most human-like behaviors in statistics.

These results support findings from the main auc-
tion task: LLMs behave rationally by default but
can be influenced toward more human-like behav-
ior with appropriate interventions. We provide full
quantitative results in Appendix A.

6 Discussion

Our findings reveal that LLMs inherently con-
verge toward rational, profit-maximizing behav-
iors. These diverge from the noisy and variable
patterns typical of human decision-making. One
likely explanation is that alignment pipelines such
as Reinforcement Learning from Human Feed-
back (RLHF) optimize a scalar preference reward
and shift probability mass toward high-reward re-
sponses, reducing output diversity (Kirk et al.,
2024). Meanwhile, maximization-oriented de-
coding compresses variation by favoring high-
probability tokens; nucleus (top-p) sampling miti-
gates this by truncating the distribution’s unreliable
tail (Holtzman et al., 2020).

A key implication of our study is that LLMs used
as proxies for human subjects require systematic
behavioral audits as well as outcome metrics. Tra-
ditional field experiments with human subjects are
costly (Levitt and List, 2009; Marette et al., 2011),
but LLM simulations offer advantages in cost and
time. Our results show that LLMs can achieve
outcomes similar to those of human subjects with
proper interventions. However, they also reveal
complexities and irregularities in the simulations.
It is important to note that human behavior is not
always predictable, so the discrepancies should be
carefully considered and recorded. Moreover, in-
jecting human data introduces the risk of importing
biases, which can undermine LLMs’ rational con-
sistency and further influence their performance
(Havrilla et al., 2024; Wang et al., 2024). Our
framework addresses these challenges by provid-
ing a reusable protocol for experiment design and
auditing in simulations of human behavior in social
science.

7 Conclusion

This study presents a process-oriented framework
to evaluate the behavioral fidelity of LLMs in dy-
namic decision-making tasks. Across two eco-
nomic experiments (second-price auction and the
newsvendor problem), we find that LLMs by de-
fault adopt rational strategies that diverge from
human behavior in both variability and adaptabil-
ity. While risk-framed instructions and imitation
through in-context learning can partially nudge
LLMs toward human-like behavior, these interven-
tions fall short of fully reproducing the stochastic
and context-sensitive decision patterns observed in
human subjects. Our results emphasize the neces-
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sity for more process-aware evaluation in behav-
ioral applications of LLMs and offer a practical
method for auditing their suitability as synthetic
human proxies in social science research.

Limitations and Future Work

We have several limitations in our study.
First, our interventions rely solely on static, text-

based inputs. Future work should explore more
dynamic approaches, such as multi-turn interac-
tions, memory-based adaptation, or reinforcement
learning–based fine-tuning, to better capture the
variability observed in human behavior.

Second, our evaluation focuses on single-player
profit-driven environments. Extending to multi-
player tasks (e.g., negotiation or coordination)
would provide a richer test of behavioral fidelity.

Finally, our analysis is based on human data
from a specific participant pool, which may limit
generalizability. Replicating with more diverse
populations would strengthen the robustness of con-
clusions.

Ethical Considerations

This study incorporates human data in behavioral
economics obtained from prior work conducted
under institutional review board (IRB) approval.
No new human data were collected. We faithfully
reproduce participant profiles (e.g., age, gender,
academic background) from the original studies to
preserve the integrity of comparisons. We acknowl-
edge the risks of over-interpreting LLM outputs as
reflective of human cognition. While our work ex-
plores whether LLMs replicate certain behavioral
patterns, we avoid reinforcing stereotypes or draw-
ing normative conclusions from demographic at-
tributes. We release no personally identifiable data
and adhere to ethical standards regarding simula-
tion fidelity, model transparency, and responsible
reporting of results.
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A Supplementary Results (Newsvendor)

To assess the generalizability of our framework
beyond the main experiment in the second-price
auction, we apply the same evaluation procedure to
the newsvendor problem, a single-agent inventory
task under demand uncertainty. Similar to the main
auction setting, we examine LLM behavior under
Intrinsicality, Instruction, and Imitation conditions.
We report the summary statistics of humans and
LLMs under three conditions in Table 3. For con-
sistency with the auction results, we report GPT-4o
as the representative LLM.

Source Order Mean (SD) Entropy DKS Mode

Human 163.80 (61.25) 4.56 — —

INTRINSICALITY (DEFAULT)

LLM 158.39 (20.57) 1.71 0.30 —

INSTRUCTION (RISK PREFERENCE)

LLM 140.60 (25.64) 3.05 0.37 Averse
LLM 275.44 (11.93) 1.89 0.88 Seeking

IMITATION (IN-CONTEXT LEARNING)

LLM 159.30 (43.94) 3.86 0.11 Direct

Table 3: Summary statistics of humans and LLMs under
Intrinsicality, Instruction, and Imitation for newsven-
dor experiment. DKS is the average KS distance be-
tween LLMs’ and humans’ order-quantity trajectories.
Entropy quantifies variability in order choices across
rounds.

Intrinsicality Figure 4 shows the average or-
der quantities across rounds. Human subjects dis-
play substantial round-to-round variability and fre-

quently deviate from the optimal order quantity
q∗. In contrast, LLMs by default produce tightly
clustered orders near q∗. This low-variance, profit-
oriented strategy is effective in profit optimization
but lacks the variations observed in human behav-
ior.
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Figure 4: Order quantities across rounds.

Instruction Under risk-framed instructions,
LLMs respond in a directional manner. Figure 5
shows the order quantity distribution across
conditions. Risk-averse instructions reduce orders,
whereas risk-seeking instructions substantially
raise orders. These shifts align with human
interpretations of risk framing, yet the resulting
distributions remain narrower than those of
humans, reinforcing LLMs’ tendency toward
reduced behavioral variability, especially under
risk seeking, which departs most from human
trajectories.
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Figure 5: Order quantity distributions across risk-
framed instruction conditions. Avg Q* represents the
mean optimal quantity.

Imitation Direct imitation again recovers human-
like variability and shows the least divergence
from human trajectories. However, compared to
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the second-price auction, human subjects in the
newsvendor experiment are more likely to choose
irregular order quantities because demand values
vary across rounds. This difference explains why
imitation is not as close as in the main auction
experiment.

Across all conditions, LLMs in the newsven-
dor task show behavioral trends similar to those
observed in the main auction experiment: they gen-
erally default to consistent, low-variance strategies
but can display more human-like patterns if pro-
vided with specific framing or demonstration. How-
ever, compared more directly to human subjects,
who show greater variability due to fluctuating de-
mand, LLMs’ imitation does not fully capture the
natural variation of human decision-making. These
results reinforce our main study findings, support
our evaluation framework, and highlight the need
for careful behavioral auditing when considering
LLMs as substitutes for human subjects in social
science research.

B Second-Price Auction Instruction

Here is the complete instruction for the second-
price auction.

B.1 Overview

You are a seller of a fictitious product. To make
money, you must sell that product in an auction. In
each auction, you will be selling your product to a
different number of computerized buyers. To sell
the product, you enter the minimum value that you
are willing to sell this product for; this amount is
your reserve price.

Before entering your reserve price, you will
know the number of computerized buyers partic-
ipating in your auction for each round. Each of
these buyers will have a maximum willingness to
pay for your product. The maximum willingness
to pay is an integer between 0 and 100.

In each auction, bids ascend until all buyers
reach their maximum willingness to pay. Some
buyers will be forced to stop bidding as their limits
are reached. The auction ends when one buyer re-
mains. The amount where each buyer stops bidding
in the auction is called the drop-out price.

The buyer with the highest drop-out price wins,
so long as that amount is equal to or above your
reserve price. If all of the drop-out prices are below
your reserve price, your product will not be sold,
and you will earn zero in that round.

Profit Calculation
• Your Profit = Second Highest drop-out price,

if the second highest drop-out price is equal
to or above your reserve price.

• Your Profit = reserve price, if the highest drop-
out price is above the reserve price, but the
second highest drop-out price is below the
reserve price.

• Your Profit = 0, if all the drop-out prices are
below the reserve price.

Each auction round, you will have one unit of
the product to sell, regardless of whether or not you
sold it in the previous round. You will participate
in 60 consecutive auctions.

For each round, the number of buyers is ran-
domly drawn as 1, 4, 7, or 10, each number being
equally likely. The maximum amount a buyer is
willing to pay is a whole number from 0 to 100.

B.2 Examples
• Example 1: If you enter a reserve price of 60,

and the second highest drop-out price is 75,
you earn a profit of 75 in this round.

• Example 2: If you enter a reserve price of 40,
and the second highest drop-out price is 30,
but the highest drop-out price is 60, you earn
a profit of 40 in this round.

• Example 3: If you enter a reserve price of 60,
and the highest willingness to pay is 55, then
none of the buyers have a drop-out price equal
to or higher than 60. No bids will be entered,
and you earn a profit of 0 in this round.

B.3 Mechanics of Entering a Reserve Price
Once you output a reserve price, the auction will
proceed.

B.4 Information Displayed After Each Round
After each round, you will be shown the results.
We will show what the drop-out prices were for
each buyer or whether the buyer was unable to bid
because their maximum willingness to pay was
below the reserve price.

You will also see the following information:

• The Period

• The Reserve price

• The Number of Buyers
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• The Winning Bid

• Your Profit for the round

You will also see this information for all previous
rounds.

B.5 Sample Drop-Out Prices Table (100
Rounds)

4 32 0 16 67 47 0 12 0 0
1 5 39 0 21 81 5 0 7 1
2 1 1 7 3 4 1 84 8 58
2 0 62 2 1 0 68 20 92 8
5 0 4 0 16 43 1 50 2 0
43 7 39 7 6 0 23 25 14 12
71 0 17 44 15 15 3 0 84 54
1 91 11 60 1 36 91 30 3 0
1 1 0 15 0 57 3 9 93 5
10 2 18 71 0 12 79 64 19 10

B.6 Drop-Out Price Sample Distribution
Chart Title: Drop-Out Price Sample Distribution

X-axis: Drop-Out Price (10 price ranges)
Y-axis: Frequency (percentage of rounds)

• The 0–10 range is the tallest bar, representing
approximately 45% of the total rounds.

• The 11–20 range is about 15%.

• The ranges 21–30, 31–40, and 41–50 each
account for between 5% and 10%.

• The 51–60 and higher ranges are each below
5%.

• The 91–100 range is the shortest bar, repre-
senting the lowest frequency.

Below the graph:

• Average: 25

• Min: 0

• Max: 100

C Prompts

This appendix documents the full prompting setup
used across both experimental tasks: the second-
price auction and the newsvendor problem. We or-
ganize all prompt templates under the three levels
of intervention defined in our framework: Intrin-
sicality, Instruction, and Imitation. Each block
corresponds to a system or user message provided
to the LLM, using placeholders (e.g., {round},
{price}) that were dynamically populated at run-
time.

C.1 Second-Price Auction

You are an undergraduate student.
You are {age}, {gender}, {race}, and studying {

program}.

You are about to participate in an experiment in
the economics of decision-making.

Here are the experiment instructions:
{experiment_instructions}

IMPORTANT:
- Try to maximize your total profit over 60

rounds.
- You can only respond with an integer between 0

and 100 representing the reserve price.
- Do not provide any explanation or additional

text in your response.

Here is your last round result:
{last_round_info}

Here is the history of all previous rounds (Drop-
Out Prices provides the bidding values from
all bidders, and 'None' represents a bid
lower than your reserve price):

{history}

Now it's round {current_round}.
Number of Bidders in this round: {

current_num_bidders}

What reserve price do you set for this round?

Listing 1: Intrinsicality

Risk-Seeking:
You are a risk-seeking decision maker,

prioritizing higher-risk reserve prices for
the potential of higher profit.

---
Risk-Averse:
You are a risk-averse decision maker,

prioritizing lower-risk reserve prices to
ensure positive profits.

Listing 2: Instruction

You are participating in a 60-round second-price
auction experiment.

## Experiment Instructions:
{experiment_instructions}

## Task:
{task}

## Output Format:
Provide your responses in the following format,

without any additional text or explanations:

round 31: [reserve_price]
...
round 60: [reserve_price]

## Participant's Auction Results (Rounds 1-30):
{first_auction_result_texts}
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## Bidder Information for Prediction (Rounds
31-60):

{last_bid_information_texts}

1. Review the participant's bidding results from
the first 30 rounds.

2. For rounds 31 to 60, replicate the
participant's strategy as closely as
possible.

Listing 3: Imitation

C.2 Newsvendor

You are participating in an inventory management
simulation.

In each round, you will decide how many units of
a product to order before the selling

season begins.
The demand for the product is uncertain but

follows a known distribution.
Your objective is to maximize your profit over

the course of the simulation.
Your output should be an integer between 1 and

300.

Round {round}
- Selling Price per Unit: {price} USD
- Cost per Unit: {cost} USD
Please enter the number of units you would like

to order for this round.

Listing 4: Intrinsicality

Risk-Seeking:
As a risk-seeking manager, you are willing to

take chances.
You prefer to over-order in hopes of capturing

high sales, even if it means risking unsold
inventory.

---
Risk-Averse:
As a risk-averse manager, you are cautious.
You prefer to under-order to avoid the risk of

unsold inventory, even if it means missing
some potential sales.

Listing 5: Instruction

You are an autonomous agent in a 30-round
inventory management experiment.

## Instructions:
In each round, you decide how many units to

order before demand is realized.
Demand ranges from 1 to 300 units. Your

objective is to maximize profit.
Price and cost vary by round.

## Task:
{task}

## Output Format:
Please respond using this format, one per line:

round 16: [order]
...
round 30: [order]

## Participant History (Rounds 1-15):
{context_text}

## Demand & Pricing Info (Rounds 16-30):
{future_demand_text}

1. Review the participant's inventory ordering
decisions from the first 15 rounds.

2. For rounds 16 to 30, continue their strategy
by predicting order quantities that match
their decisions.

Listing 6: Imitation
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