

PricingLogic: Evaluating LLMs Reasoning on Complex Tourism Pricing Tasks

Yunuo Liu¹, Dawei Zhu², Zena Al-Khalili², Dai Cheng³, Yanjun Chen^{3,4}
Dietrich Klakow², Wei Zhang³, Xiaoyu Shen^{3*}

¹ Hunan University ² Saarland University, Saarland Informatics Campus

³ Ningbo Key Laboratory of Spatial Intelligence and Digital, Derivative Institute of Digital Twin, EIT

⁴ Department of Computing, The Hong Kong Polytechnic University
s2302w0374@hnu.edu.cn, xyshen@eitech.edu.cn

Abstract

We present PricingLogic, the first benchmark that probes whether Large Language Models (LLMs) can reliably automate tourism-related prices when multiple, overlapping fare rules apply. Travel agencies are eager to offload this error-prone task onto AI systems; however, deploying LLMs without verified reliability could result in significant financial losses and erode customer trust. PricingLogic comprises 300 natural-language questions based on booking requests derived from 42 real-world pricing policies, spanning two levels of difficulty: (i) basic customer-type pricing and (ii) bundled-tour calculations involving interacting discounts. Evaluations of a line of LLMs reveal a steep performance drop on the harder tier, exposing systematic failures in rule interpretation and arithmetic reasoning. These results highlight that, despite their general capabilities, today’s LLMs remain unreliable in revenue-critical applications without further safeguards or domain adaptation. Our code and dataset are available at <https://github.com/EIT-NLP/PricingLogic>.

1 Introduction

Recent advances in Large Language Models (LLMs) have demonstrated remarkable capabilities across diverse domains, such as code generation (Chen et al., 2021, 2022; Hui et al., 2024), mathematical problem-solving (Hendrycks et al., 2021; Ahn et al., 2024), and general-purpose human instruction following (Zhou et al., 2023; Chen et al., 2024; Chiang et al., 2024). However, real-world deployment remains challenging, as practical applications require domain-specific knowledge, navigation of conflicting rules, and high reliability in contexts where error tolerance is minimal. These requirements are not fully captured by existing benchmarks (Zhou et al., 2024).

In this paper, we focus on a specific yet representative real-world task: automating pricing calculations for tourism bookings, in collaboration with travel agencies interested in using LLM-based systems to process questions expressed in *natural language* (Figure 1, left). These questions often involve multiple destinations, varied fare types, and dynamic pricing policies, making manual processing labor-intensive and error-prone. For LLMs, the task is also nontrivial, as it requires reasoning over complex constraints (Jiang et al., 2023).

To systematically evaluate LLMs on this problem, we introduce PricingLogic, a benchmark specifically designed to evaluate the capabilities of LLMs in handling realistic booking scenarios. We collected 42 real-world pricing policy documents and 300 questions. These questions cover two main tasks: basic customer-type pricing and more advanced bundled-tour calculations, presented in increasing levels of difficulty. Notably, in addition to standard prompting approaches, we also investigate code-assisted reasoning, which has been shown to enhance LLM performance on computational and logical tasks (Chen et al., 2022; Gao et al., 2023; Lyu et al., 2023, i.a.). In our approach, LLMs are first prompted to translate pricing policies into executable Python code. For each incoming question written in natural language, the model extracts relevant information and converts it into input arguments for the generated code, which then calculates the price. We find that this method significantly improves accuracy; nevertheless, challenges remain for complex questions (see Section 4). Our main contributions are as follows: (1) We introduce **PriceLogic**, the first comprehensive benchmark for evaluating LLMs on real-world tourism pricing, comprising 300 questions derived from 42 actual pricing policy documents from travel agencies; (2) We perform a thorough evaluation on a range of open-weight and proprietary LLMs on PriceLogic, and show that it indeed poses a sig-

*Corresponding Author

nificant challenge to LLMs, where state-of-the-art models answer barely more than half of the questions correctly in our most difficult subset; (3) We demonstrate that code-assisted reasoning significantly improves model performance on our benchmark, which requires complex reasoning and computation, suggesting a promising direction for future work to tackle these types of tasks.

2 PricingLogic Construction

In this section, we introduce PricingLogic, a benchmark for evaluating the reasoning abilities of LLMs in tourism pricing scenarios. PricingLogic comprises 300 questions divided into three difficulty levels (simple, medium, and challenging) with increasing demands on reasoning and computational capabilities. Simple questions involve single customer types with basic pricing rules, such as “*What is the total price for 3 students visiting Eiffel Tower?*”. Medium questions incorporate multiple variables, including groups of more than 10 visitors, mixed demographics, accommodation status, and two to three service combinations. Challenging questions present complex scenarios with large groups (25–55 visitors), diverse demographic compositions, region-specific pricing, multiple attractions, and overlapping discount conditions. Benchmark statistics are provided in Table 1.

Category	Count
Data Collection	
Individual attractions	33
Bundled attractions	9
Difficulty Distribution (per task)	
Simple questions	60
Medium questions	50
Challenging questions	40

Table 1: PricingLogic data statistics.

2.1 Collection and Organization of Tourism Products and Discount Policies

We collected PricingLogic through partnerships with travel agencies serving 7 scenic areas with 33 distinct activities. We documented pricing policies for nine customer types (regular visitors, contracted groups, seniors, students, etc.), capturing specific pricing structures, discount thresholds, and special conditions (accommodation exemptions, combination incentives). This process revealed the complex con-

ditional rules where prices vary based on customer categories and qualifications. We classified policies by location, activity type, client type, and conditions to generate realistic benchmarking questions.

2.2 Dataset and Task Setups

PricingLogic includes two tasks of increasing complexity, described as follows.

Task 1: Standard price policies. Task 1 evaluates LLMs’ ability to compute the total cost of tourism bookings using 33 pricing documents. Bundled packages are excluded from this task. We created 150 test examples with clearly defined parameters: visitor classification (regular, contract, etc.), demographic thresholds (at least 80% students or at least 70% seniors), group size requirements (10 or more for group rates), and regional pricing variations, etc.

Task 2: Bundled price policies. Task 2 builds upon Task 1 by introducing bundled-tour discounts, which increase the problem’s complexity. Multiple feasible pricing options (regular and preferential) may apply. This setup mirrors real-world tourism dynamics, where specific combinations of attractions receive preferential rates (lower total price than booking each attraction separately).

3 Methods

We consider two approaches for applying LLMs to tasks in PricingLogic. The first is prompting, which serves as the most straightforward baseline. We include it to assess how well recent LLMs can solve tasks in PricingLogic without relying on external tools. The second approach allows LLMs to use external tools, in this case, a Python interpreter, to assist with price computation. Both methods are described as follows.

End-to-end prompting (E2E). Our E2E approach processes pricing in a single inference pass. We standardized the structure and terminology of pricing policy documents, defined and annotated customer types for each project, and explicitly specified the corresponding prices. The prompt guides LLMs through two stages: (1) identifying project details, visitor counts, and special conditions, and (2) calculating prices based on applicable policies, including accommodation exemptions and combination requirements. The full prompt is provided in Figure 2.

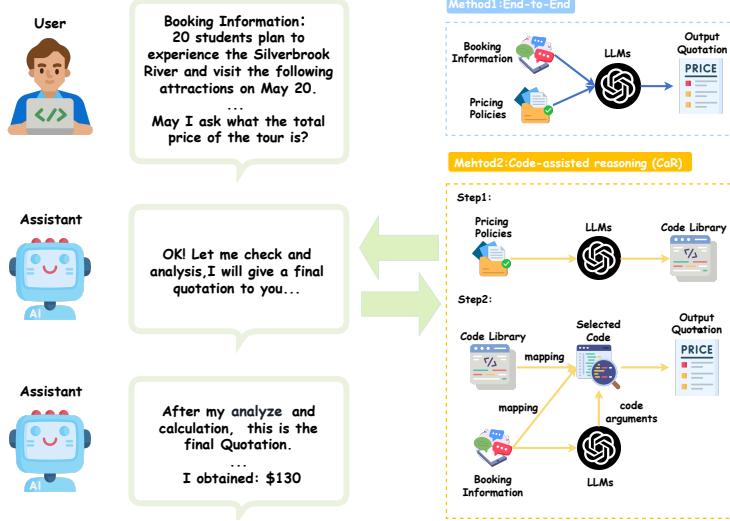


Figure 1: Automatic quotation use case (left) and its two LLM-based realizations (right).

Code-assisted reasoning (CaR). Our approach employs a two-stage procedure for automated price calculation. In the first stage, LLMs generate dedicated calculator functions for each pricing policy file, encapsulating conditional rules for customer categories, discounts, and exemptions. In the second stage, natural language orders are parsed to identify the requested items, retrieve the corresponding calculator functions, extract parameter values (e.g., visitor counts, ticket types, or special conditions), and execute the functions to obtain the final price.

4 Experiments

4.1 Experimental Setups

Models. We benchmark a line of recent LLMs including both proprietary ones and open-weight ones, including GPT-4o (OpenAI, 2024), DeepSeek-V3/R1 (DeepSeek-AI et al., 2025b,a), and Claude Sonnet 4 (Anthropic, 2025), and Qwen2.5-7B/32B/Max (Qwen et al., 2025).¹

Inference settings. As outlined in Section 3, we evaluate LLMs using both E2E and CaR approaches. CaR has two potential failure modes: (1) generating incorrect calculation code and (2) invoking code with incorrect parameters. To isolate error sources, we introduce **CaR-Oracle**, where we manually implement Python code for all pricing policies. In this control condition, LLMs only need to pass correct parameters to human-verified code,

enabling precise diagnosis of model limitations by controlling for code quality. We set the temperature to 0.0 across all models for deterministic outputs.

Metrics. We use exact match to compare the model predictions with the correct answer, and report the accuracy.

4.2 Results on Task 1

Table 2 presents model performance on Task 1. For simple questions, all LLMs except Qwen2.5-7B correctly answer more than 76% of the time under direct prompting (E2E). However, performance declines as question complexity increases. Upon inspection, we find that models frequently misidentify customer categories and/or overlook pricing conditions. For challenging questions, all LLMs barely exceed 50% accuracy.

The CaR approach improves accuracy over E2E in the vast majority of cases. On simple questions, performance gaps between models narrow, and all except Qwen2.5-7B exceed 90% accuracy. On challenging questions, CaR also provides substantial gains in most cases, but absolute performance remains below 60% for all models, leaving considerable room for improvement. Overall, CaR demonstrates the effectiveness of this two-stage inference framework with external tools. A notable outlier is Qwen2.5-32B, where CaR underperforms E2E by 15%. Further analysis reveals that this model often fails to transform booking information into complete and correct function arguments.

Results from CaR-Oracle shed light on CaR’s failure modes. On simple questions, most models

¹Model versions: GPT-4o-0129, DeepSeek-V3-0324, Qwen-Max-1015, claude-sonnet-4-20250514-thinking.

Inference settings	Model	Question difficulties		
		Simple	Medium	Challenging
E2E	Qwen2.5-7B	63.33	12.00	0.00
	Qwen2.5-32B	86.67	40.00	50.00
	Qwen2.5-Max	90.00	54.00	32.50
	DeepSeek-V3	83.33	70.00	40.00
	DeepSeek-R1	78.33	72.00	45.00
	GPT-4o	81.67	58.00	52.50
	Claude Sonnet 4	91.67	76.00	52.50
CaR	Qwen2.5-7B	66.66 ^{3.3↑}	28.00 ^{16.0↑}	5.00 ^{5.0↑}
	Qwen2.5-32B	93.33 ^{6.7↑}	68.00 ^{28.0↑}	35.00 ^{15.0↓}
	Qwen2.5-Max	92.00 ^{2.0↑}	78.00 ^{24.0↑}	55.00 ^{22.5↑}
	DeepSeek-V3	90.00 ^{6.7↑}	70.00 ^{0.0↑}	50.00 ^{10.0↑}
	DeepSeek-R1	93.33 ^{15.0↑}	74.00 ^{2.0↑}	57.50 ^{12.5↑}
	GPT-4o	96.67 ^{15.0↑}	72.00 ^{14.0↑}	55.00 ^{2.5↑}
	Claude Sonnet 4	96.67 ^{5.0↑}	80.00 ^{4.0↑}	60.00 ^{7.5↑}
CaR-Oracle	Qwen2.5-7B	15.00 ^{51.7↓}	6.00 ^{22.0↓}	0.00 ^{5.0↓}
	Qwen2.5-32B	96.67 ^{3.3↑}	92.00 ^{24.0↑}	30.00 ^{5.0↓}
	Qwen2.5-Max	100.00 ^{8.0↑}	82.50 ^{4.5↑}	55.00 ^{0.0↑}
	DeepSeek-V3	100.00 ^{10.0↑}	85.00 ^{15.0↑}	52.50 ^{2.5↑}
	DeepSeek-R1	100.00 ^{6.7↑}	92.50 ^{18.5↑}	55.00 ^{2.5↑}
	GPT-4o	96.67 ^{0.0↑}	85.00 ^{13.0↑}	50.00 ^{0.0↑}
	Claude Sonnet 4	100.0 ^{3.33↑}	88.00 ^{8.0↑}	62.50 ^{2.5↑}

Table 2: Task 1 results across inference settings. Arrows show performance changes between consecutive settings: CaR vs. E2E (second row vs. first row) and CaR-Oracle vs. CaR (third row vs. second row). Values represent percentage point differences. CaR-Oracle uses human-verified code to isolate parameter extraction errors from code generation issues.

improve further, with three LLMs achieving 100% accuracy using oracle code. This indicates that strong LLMs can generate accurate code for solving simple tasks but may still miss edge cases in implementation. For medium-difficulty tasks, generated code often contains substantial flaws, though strong LLMs can still map questions to correct code arguments. For challenging tasks, oracle code offers little improvement: even with human-written code, models fail to supply correct arguments, indicating that deep task comprehension remains the main bottleneck.

An interesting case arises with Qwen2.5-7B, which shows substantial degradation with oracle code. We find that the model tends to produce simple code to solve tasks, whereas human-written code is more complex in order to cover corner cases. As a result, the model struggles to interpret these more elaborate implementations and fails to map the correct arguments to them.

4.3 Results on Task 2

Table 3 presents the model performance on Task 2. With E2E prompting, even the strongest model, Claude Sonnet 4, achieves only 35.0% accuracy on challenging questions, demonstrating the difficulty introduced by having to reason about bundled-discount interactions. The CaR approach shows

substantial improvements for most models across difficulty levels. Particularly notable are the gains for Qwen2.5-Max, DeepSeek-V3, and DeepSeek-R1 on medium-difficulty questions, with improvements of 30%, 23%, and 30%, respectively.

The CaR approach’s success demonstrates that separating policy interpretation from parameter extraction improves handling of complex pricing logic. Error analysis reveals that models struggle with two specific challenges in Task 2: (1) identifying when bundled discounts should override other customer-type pricing, and (2) calculating the optimal combination when multiple valid bundle options exist.

4.4 0-shot(E2E) vs 3-shot Evaluation

We further investigate the impact of prompting strategies by comparing 0-shot prompting which corresponds to our E2E method—with 3-shot performance on representative models, examining whether in-context learning can mitigate the observed performance gaps on complex tourism pricing tasks.

For the 3-shot evaluation, we provided 3 examples with correct answers as in-context demonstrations and evaluated performance on 15 representative test examples: 10 simple questions and 5 medium/challenging questions. Table 4 presents

Inference settings	Model	Question difficulties		
		Simple	Medium	Challenging
E2E	Qwen2.5-7B	68.33	28.00	0.00
	Qwen2.5-32B	76.67	46.00	27.50
	Qwen2.5-Max	85.00	48.00	22.50
	DeepSeek-V3	83.33	45.00	27.50
	DeepSeek-R1	88.33	40.00	30.00
	GPT-4o	90.00	54.00	27.50
	Claude Sonnet 4	91.67	60.00	35.00
CaR	Qwen2.5-7B	61.67 ^{6.7↓}	22.00 ^{6.0↓}	12.50 ^{12.5↑}
	Qwen2.5-32B	76.67 ^{0.0↑}	42.00 ^{4.0↓}	22.50 ^{5.0↓}
	Qwen2.5-Max	93.33 ^{8.3↑}	78.00 ^{30.0↑}	35.00 ^{12.5↑}
	DeepSeek-V3	91.67 ^{8.3↑}	68.00 ^{23.0↑}	30.00 ^{2.5↑}
	DeepSeek-R1	93.33 ^{5.0↑}	70.00 ^{30.0↑}	35.00 ^{5.0↑}
	GPT-4o	95.00 ^{5.0↑}	76.00 ^{22.0↑}	37.50 ^{10.0↑}
	Claude Sonnet 4	93.33 ^{1.67↑}	80.00 ^{20.0↑}	42.50 ^{7.5↑}

Table 3: Task 2 results across inference settings. Arrows show CaR performance changes compared to E2E baseline (second row vs. first row). Values represent percentage point differences. CaR demonstrates substantial improvements across most models, particularly on medium difficulty questions with 10-20% gains.

the comparison between 0-shot and 3-shot performance across different difficulty levels. The results reveal several important findings: 3-shot prompting shows only marginal improvements on simple questions (1.6% for GPT-4o, 6.7% for DeepSeek-R1) with no gains on complex scenarios. This indicates that the observed performance limitations reflect fundamental reasoning challenges rather than insufficient demonstrations, supporting our findings about LLMs’ difficulties with complex pricing tasks.

Model/Method	Simple	Medium	Challenging
GPT-4o 0-shot	81.7	58.0	52.5
GPT-4o 3-shot	83.3	58.0	52.5
DeepSeek-R1 0-shot	78.3	72.0	45.0
DeepSeek-R1 3-shot	85.0	72.0	45.0

Table 4: 0-shot vs 3-shot Performance Comparison.

5 Related work

LLMs in real-world scenarios. Recent research has focused on evaluating LLMs in real-world applications. Miserendino et al. (2025) benchmarked LLMs for freelance software engineering, and Huang et al. (2024) assessed their tool utilization in real-world scenarios. Closely related to our work is RuleArena (Zhou et al., 2024) that tests LLMs’ rules-following in real-world domains. Unlike RuleArena’s linear difficulty scaling (e.g., increasing bag count) and minimal rule conflicts. Our benchmark evaluates LLMs’ ability to select optimal pricing among multiple overlapping conditions across diverse demographics, accommodation

status, and service combinations, requiring sophisticated comprehension to identify the most favorable option among competing discount rules.

Code-assisted reasoning. Assisting LLMs with code improved their reasoning on computation-intensive tasks, (Lyu et al., 2023), through generating programmatic steps executed by external interpreters. Methods either employ pure code (Chen et al., 2022; Gao et al., 2023), code-language interleaving (Lyu et al., 2023), code with algebraic expressions, (Imani et al., 2023), or code with specialized libraries (Das et al., 2024). While previous work targeted controlled mathematical problems, our approach extends this paradigm to real-world tourism pricing, exceeding textbook problem complexity, through a two-stage pipeline addressing practical constraints such as diverse customer groups and overlapping discount rules.

6 Conclusion

We introduced PricingLogic, a benchmark evaluating LLMs on complex tourism pricing tasks. Our experiments show code-assisted reasoning generally outperforms end-to-end approaches, yet even advanced models struggle with challenging pricing scenarios involving multiple overlapping rules. These findings highlight the gap between theoretical reasoning capabilities and practical deployment needs in revenue-critical applications, emphasizing the importance of rigorous evaluation before implementing AI in financial contexts.

Limitations

We focused only on E2E prompting and CaR methods for evaluating LLMs on pricing tasks. While fine-tuning LLMs specifically for tourism pricing could potentially improve performance, it would require substantial training data, more computational resources, and retraining whenever pricing policies change—making it impractical in dynamic business environments. Our methods offer some flexibility while still providing meaningful performance benchmarks.

Acknowledgments

We thank EIT and IDT High Performance Computing Center for providing computational resources for this project. This work was supported by the 2035 Key Research and Development Program of Ningbo City under Grant No. 2025Z034.

References

Janice Ahn, Rishu Verma, Renze Lou, Di Liu, Rui Zhang, and Wenpeng Yin. 2024. Large language models for mathematical reasoning: Progresses and challenges. *arXiv preprint arXiv:2402.00157*.

Anthropic. 2025. *System card: Claude opus 4 & claude sonnet 4*.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde De Oliveira Pinto, Jared Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, and 1 others. 2021. Evaluating large language models trained on code. *arXiv preprint arXiv:2107.03374*.

Wenhu Chen, Xueguang Ma, Xinyi Wang, and William W Cohen. 2022. Program of thoughts prompting: Disentangling computation from reasoning for numerical reasoning tasks. *arXiv preprint arXiv:2211.12588*.

Yihan Chen, Benfeng Xu, Quan Wang, Yi Liu, and Zhendong Mao. 2024. Benchmarking large language models on controllable generation under diversified instructions. In *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 38, pages 17808–17816.

Wei-Lin Chiang, Lianmin Zheng, Ying Sheng, Anastasios Nikolas Angelopoulos, Tianle Li, Dacheng Li, Hao Zhang, Banghua Zhu, Michael Jordan, Joseph E. Gonzalez, and Ion Stoica. 2024. *Chatbot arena: An open platform for evaluating llms by human preference*. *Preprint, arXiv:2403.04132*.

Debrup Das, Debopriyo Banerjee, Somak Aditya, and Ashish Kulkarni. 2024. *Mathsensei: A tool-augmented large language model for mathematical reasoning*. *arXiv preprint arXiv:2402.17231*.

DeepSeek-AI, Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu, Shirong Ma, Peiyi Wang, Xiao Bi, Xiaokang Zhang, Xingkai Yu, Yu Wu, Z. F. Wu, Zhibin Gou, Zhi-hong Shao, Zhuoshu Li, Ziyi Gao, and 181 others. 2025a. *Deepseek-r1: Incentivizing reasoning capability in llms via reinforcement learning*. *Preprint, arXiv:2501.12948*.

DeepSeek-AI, Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang, Bochao Wu, Chengda Lu, Chenggang Zhao, Chengqi Deng, Chenyu Zhang, Chong Ruan, Damai Dai, Daya Guo, Dejian Yang, Deli Chen, Dongjie Ji, Erhang Li, Fangyun Lin, Fucong Dai, and 181 others. 2025b. *Deepseek-v3 technical report*. *Preprint, arXiv:2412.19437*.

Luyu Gao, Aman Madaan, Shuyan Zhou, Uri Alon, Pengfei Liu, Yiming Yang, Jamie Callan, and Graham Neubig. 2023. *Pal: Program-aided language models*. In *International Conference on Machine Learning*, pages 10764–10799. PMLR.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song, and Jacob Steinhardt. 2021. Measuring mathematical problem solving with the math dataset. *arXiv preprint arXiv:2103.03874*.

Shijue Huang, Wanjun Zhong, Jianqiao Lu, Qi Zhu, Jiahui Gao, Weiwen Liu, Yutai Hou, Xingshan Zeng, Yasheng Wang, Lifeng Shang, and 1 others. 2024. Planning, creation, usage: Benchmarking llms for comprehensive tool utilization in real-world complex scenarios. *arXiv preprint arXiv:2401.17167*.

Binyuan Hui, Jian Yang, Zeyu Cui, Jiaxi Yang, Dayiheng Liu, Lei Zhang, Tianyu Liu, Jiajun Zhang, Bowen Yu, Keming Lu, Kai Dang, Yang Fan, Yichang Zhang, An Yang, Rui Men, Fei Huang, Bo Zheng, Yibo Miao, Shanghaoran Quan, and 5 others. 2024. *Qwen2.5-coder technical report*. *Preprint, arXiv:2409.12186*.

Shima Imani, Liang Du, and Harsh Shrivastava. 2023. *Mathprompter: Mathematical reasoning using large language models*. *arXiv preprint arXiv:2303.05398*.

Yuxin Jiang, Yufei Wang, Xingshan Zeng, Wanjun Zhong, Liangyou Li, Fei Mi, Lifeng Shang, Xin Jiang, Qun Liu, and Wei Wang. 2023. Follow-bench: A multi-level fine-grained constraints following benchmark for large language models. *arXiv preprint arXiv:2310.20410*.

Qing Lyu, Shreya Havaldar, Adam Stein, Li Zhang, Delip Rao, Eric Wong, Marianna Apidianaki, and Chris Callison-Burch. 2023. *Faithful chain-of-thought reasoning*. *arXiv preprint arXiv:2301.13379*.

Samuel Miserendino, Michele Wang, Tejal Patwardhan, and Johannes Heidecke. 2025. *Swe-lancer: Can frontier llms earn \$1 million from real-world freelance software engineering?* *arXiv preprint arXiv:2502.12115*.

OpenAI. 2024. [Gpt-4o system card](#). *Preprint*, arXiv:2410.21276.

Qwen, :, An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan Li, Dayiheng Liu, Fei Huang, Haoran Wei, Huan Lin, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin Yang, Jiaxi Yang, Jingren Zhou, and 25 others. 2025. [Qwen2.5 technical report](#). *Preprint*, arXiv:2412.15115.

Jeffrey Zhou, Tianjian Lu, Swaroop Mishra, Siddhartha Brahma, Sujoy Basu, Yi Luan, Denny Zhou, and Le Hou. 2023. [Instruction-following evaluation for large language models](#). *Preprint*, arXiv:2311.07911.

Ruiwen Zhou, Wenyue Hua, Liangming Pan, Sitalo Cheng, Xiaobao Wu, En Yu, and William Yang Wang. 2024. [Rulearena: A benchmark for rule-guided reasoning with llms in real-world scenarios](#). *CoRR*, abs/2412.08972.

A Prompts

The E2E prompt is shown in Figure 2. The E2E prompt employs a structured approach that guides LLMs through project identification and price calculation, incorporating domain-specific constraints such as hotel partnership benefits and mandatory ticket bundles. By instructing models to select the most favorable pricing option and providing structured output format, this single-pass design tests whether LLMs can handle the full complexity of tourism pricing without task decomposition. The CaR prompt is shown in Figures 3 to 5. The CaR approach employs a three-stage pipeline: first generating specialized calculator functions from pricing policies (Figure 3), then identifying relevant projects from questions (Figure 4), and finally extracting precise parameters guided by the generated code (Figure 5). The code generation stage enforces customer-favorable pricing logic with priority-ordered conditional structures, while the subsequent stages leverage this structured representation to systematically decompose complex pricing scenarios into manageable computational steps. The Benchmark example information is shown in Table 5.

B Annotation Process

The PricingLogic dataset was manually collected and annotated by the authors over a four-day period. We first established clear definitions for various customer types and documented their corresponding pricing structures for each tourism attraction. Table 6 illustrates an example of the pricing policy for a specific attraction, showing how prices

Benchmark Examples

Example of a Simple Question:

3 non-contract customers plan to experience the Harrenstadt Bay tour route. What is the total price for the Harrenstadt Bay tour route?

Example of a Medium Question:

12 tourists (non-contract customers from Essex) are visiting Brighton Cave and St. Elvi Ancient Village. They plan to experience the Brighton Cave entrance ticket and St. Elvi Ancient Village entrance ticket. What is the total price for the Brighton Cave entrance ticket and St. Elvi Ancient Village entrance ticket?

Example of a Challenging Question:

25 tourists (contract customers, including 12 students and 6 seniors, staying at a designated hotel in Clayton Castle) are visiting Brighton Cave, St. Elvi Ancient Village, and Montfiel Monastery. They plan to experience the Brighton Cave entrance ticket, Brighton Cave boat ride, Brighton Cave magic carpet ascent, St. Elvi Ancient Village entrance ticket, and Montfiel Monastery entrance ticket. What is the total price for the Brighton Cave entrance ticket, Brighton Cave boat ride, Brighton Cave magic carpet ascent, St. Elvi Ancient Village entrance ticket, and Montfiel Monastery entrance ticket?

Table 5: Benchmark Examples Across Difficulty Levels

vary across different customer categories. Table 7 provides detailed definitions of these customer categories, explaining the qualifications and conditions for each pricing tier.

C Computing Infra

Experiments in this work were conducted on a mixed infrastructure setup, with some models run locally and others accessed via API endpoints. For open-source models, experiments were conducted with different GPU configurations. Qwen2.5-7B was run on a single Nvidia A800 GPU card (80GB), while Qwen2.5-32B required 4 A800 GPUs for inference. The server was equipped with Intel(R) Xeon(R) Platinum 8378A CPU @ 3.00GHz processors. Batch processing was implemented to optimize throughput across all experimental runs. For larger proprietary models (Qwen2.5-Max, DeepSeek-V3, DeepSeek-R1, GPT-4o, and Claude Sonnet 4), we utilized their respective API end-

points. The API calls were managed through a queuing system to handle rate limits and ensure reliable data collection. All API requests were executed with temperature set to 0.0 to ensure deterministic outputs.

D Code Analysis

The comparison between LLM-generated and human-written pricing calculation code reveals fundamental differences that directly impact the CaR method’s effectiveness. Figure 6 presents a representative LLM-generated calculator, while Figure 7 shows the corresponding human-implemented version.

The LLM-generated code follows a simplified linear if-elif structure that processes pricing rules sequentially, returning the final total cost. In contrast, the human-written code implements a sophisticated multi-option evaluation system that identifies all applicable pricing schemes, compares them systematically, and selects the optimal solution. This approach correctly handles complex conditional logic, provides detailed calculation breakdowns, and manages special cases like employee exemptions that affect the paying customer count.

Type	Price
Regular retail price	80
Contracted group price	50
Contracted non-group price	50
Non-contracted group price	64
Non-contracted non-group price	72
Senior/Student group price	40
Long-distance and new market price	30
Accommodation package price	50
Travel employee price	50
Free admission with hotel stay	0

Table 6: Example Customer Type Price of one Attraction

Customer Type	Definition
Regular retail price	Standard price for individual visitors
Group price	Applies when the number of visitors is ≥ 10 people
Contracted group price	Discounted rate for customers with a signed contract
Contracted non-group price	Price for contracted customers who don’t meet group size requirement
Non-contracted group price	Group rate for customers without a contract (requires tour guide certificate)
Non-contracted non-group price	Standard price for customers without a contract
Senior group price	Applies when seniors (55+) constitute $> 70\%$ of the group
Student group price	Applies when students constitute $> 80\%$ of the group
Long-distance market price	Special price for visitors from outside Somerset, Hampshire, and London
Accommodation package price	Preferential prices for contracted groups staying at designated hotels in Clayton Castle
Travel employee price	Special price for travel employees and companions; applies to entire group when led by an employee
Free admission with hotel stay	Visitors at designated Clayton Castle hotels receive free admission to select attractions

Table 7: Customer Type Definitions

E2E method prompt

You are a tourism pricing expert. Please complete two tasks based on the following order information and pricing policies: project identification and price calculation.

Order Information:
{order_text}

Pricing Policies:
{all_policy_content}

Please complete the following two tasks:

Task 1: Identify Project Information

Please analyze the order text to identify the tourism projects, number of people, dates, and any special identities or conditions mentioned.

Task 2: Calculate Price

Based on the project information you've identified and the corresponding pricing policies, calculate the total price of the order.

Please follow the rules in the pricing policies, considering information such as the number of people, dates, special identities or conditions in the order to determine the customer type and accurately calculate the price. If the order meets multiple customer conditions, choose the customer type that results in the lowest price.

In your response, first clearly list the project information you've identified (including project name, number of people, etc.), then explain the calculation process in detail.

Finally, be sure to output the total price on the last line of your answer in the following fixed format:

Final Price:XXXX yuan

Please ensure this line stands alone without any other text, where XXXX is the final price number you calculated. This is important for the system to extract the price.

Figure 2: E2E method prompt.

code generation prompt

Please deeply analyze the pricing policy document and generate a price calculator module. Please respond in Chinese.

Task Requirements

1. Create a function named calculate_price
2. The function should calculate the total expense based on the number of people
3. The function should handle various edge cases and special situations
4. If multiple pricing policies apply, choose the one most beneficial to the customer
5. The code should be concise, efficient, and easy to understand
6. Do not add any additional functions or classes
7. Do not import any unnecessary modules
8. Do not add any other content besides the calculation function

Pricing Policy Document

{document_content}

Calculation Function Requirements

Please determine the parameters needed for the function based on the content of the pricing policy document, and implement the complete calculation logic.

The following requirements apply to the function parameters and calculation logic:

1. The entire code's decision logic should be in a complete if-elif-else structure
2. The code should be able to calculate the unit price of each item in the combination policy, as well as the total price of all items in the combination policy

Please generate complete Python code directly, without any additional explanations or modules.

Figure 3: CaR method step1 prompt.

CaR method prompt1

Please analyze the following tourism order text and identify the projects needed by the customer.

Order text:
" {order_text}"

Available project list:
{'join(available_items)}

Please only return a JSON array containing the identified project names, for example:
["Project1", "Project2"]

Figure 4: CaR method step2 prompt for booking information analysis.

CaR method prompt2

Please parse the following tourism order text and extract all key information that may affect price calculation.

Order text:
" {order_text}"

Identified projects:
{'join(identified_items)}

Corresponding project function code, please carefully analyze the source code of each calculator function, paying special attention to how parameters are actually used within the function.
{calculator_code_prompt}

User question:
" {question if question else 'Calculate the total price of the order'}"

Please first provide a detailed explanation of your understanding of this order, including:

1. The key information you've identified (such as number of people, dates, customer type, etc.)
2. How you determined which parameters to extract based on the price calculator code
3. If you feel the information provided in the order is insufficient, you may refuse to answer and point out where information is lacking
4. Please refer to this supplementary policy document when understanding the order: {policy_content}

Then, please carefully analyze the order text to extract all factors that may affect the price, such as number of people, customer type, special identity, date, etc.

Please carefully understand the price calculation code for specific projects mentioned in the order information, and extract the corresponding information according to its parameter requirements.

Finally, please return the results in strict JSON format, without any comments, and must include the "items" field and all parameters required by the calculator functions.

Your response should include two parts:

1. Your analysis and understanding of the order (textual explanation)
2. Extracted parameters (JSON format)

Figure 5: CaR method step2 prompt for code arguments analysis.

LLM's Code

```
def calculate_price(num_people, is_agreement=False, is_non_agreement=False, is_elderly_team=False, is_student_team=False, is_remote_market=False, is_hotel_package=False, elderly_ratio=0.0, student_ratio=0.0):
    if is_remote_market or is_hotel_package:
        price_per_person = 20
    elif is_agreement and num_people >= 10:
        price_per_person = 20
    elif is_agreement and num_people < 10:
        price_per_person = 20
    elif is_elderly_team and elderly_ratio >= 0.7:
        price_per_person = 20
    elif is_student_team and student_ratio >= 0.8:
        price_per_person = 20
    elif is_non_agreement and num_people >= 10:
        price_per_person = 35
    elif is_non_agreement and num_people < 10:
        price_per_person = 35
    else:
        price_per_person = 35

    total_price = num_people * price_per_person
    return total_price
```

Figure 6: LLM's Code.

Human made Code

```
def calculate_price(num_people, is_agreement_client=False, has_guide_certificate=False, is_elderly_team=False, is_student_team=False, is_long_distance_market=False, is_hotel_package=False, is_employee=False, elderly_count=0, student_count=0, employee_relatives_count=0):
    market_price = 35
    agreement_group_price = 35
    agreement_non_group_price = 20
    non_agreement_group_price = 20
    non_agreement_non_group_price = 35
    elderly_student_team_price = 20
    ...

    is_group = num_people >= 10

    if not is_elderly_team and elderly_count > 0:
        is_elderly_team = (elderly_count / num_people) >= 0.7
    ...

    paying_people = num_people - employee_relatives_count
    ...

    if is_agreement_client:
        if is_group:
            price_options.append({
                "price_type": "agreement_group_price",
                "unit_price": agreement_group_price,
                "total_price": paying_people * agreement_group_price
            })
        else:
            price_options.append({
                "price_type": "agreement_non_group_price",
                "unit_price": agreement_non_group_price,
                "total_price": paying_people * agreement_non_group_price
            })
    ...

    return result
```

Figure 7: Human made Code.