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Abstract

Tuning inference hyperparameters, such as
temperature and maximum output tokens, on
downstream tasks can enhance inference per-
formance. However, directly applying hyper-
parameter optimization to these hyperparam-
eters is token-expensive. Multi-fidelity opti-
mization improves HPO efficiency with low-
fidelity evaluations, but its static scheduling
strategies ignore token consumption, leading to
high costs. To address these limitations, we pro-
pose a token-efficient multi-fidelity optimiza-
tion method, which enhances inference perfor-
mance and minimizes token usage. Our method
is empowered by (i) a token-based fidelity defi-
nition with explicit token cost modeling on con-
figurations; (ii) a novel Token-Aware Expected
Improvement acquisition function that selects
configurations based on performance gain per
token; and (iii) a dynamic fidelity scheduling
mechanism that adapts to real-time budget sta-
tus. We evaluate our method on LLaMA-2 and
LLaMA-3 series across MMLU, Humaneval,
MedQA, and OpenBookQA. Our method im-
proves over the HELM leaderboard by 7.1%,
24.3%, 21.9%, and 4.6%, respectively. Com-
pared to existing multi-fidelity HPO baselines,
our method reduces token consumption by over
80% while maintaining or surpassing perfor-
mance, demonstrating the state-of-the-art token
efficiency for inference-time optimization.

1 Introduction

Large language models (LLMs) have demonstrated
remarkable capabilities across a broad spectrum
of natural language processing tasks, such as ques-
tion answering and code generation (Minaee et al.,
2024). Notable examples of such models include
the GPT (Achiam et al., 2023; Hurst et al., 2024),
LLaMA (Touvron et al., 2023; Grattafiori et al.,
2024), and DeepSeek series (Liu et al., 2024; Guo
et al., 2025). These advances have been driven
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Figure 1: (a) Performance comparison across MMLU,
Humaneval, MedQA, and OpenbookQA; (b) System
overview of EcoTune.

by scaling up model size, diverse training corpora,
and powerful generalization capabilities (Brown
et al., 2020; Chowdhery et al., 2022; Touvron et al.,
2023). However, enhancing the performance of
LLMs through training or fine-tuning is expensive,
requiring massive computational resources, large-
scale labeled datasets, and extensive engineering
efforts (Bommasani et al., 2021; Zhao et al., 2023).

As a result, growing attention has shifted toward
improving model behavior during inference, where
the choice of decoding hyperparameters plays a
critical role (Saad-Falcon et al., 2025). Optimizing
these parameters, such as temperature (Du et al.,
2025) or max_tokens (Wang et al., 2023a), offers a
lightweight yet effective way to boost performance
without retraining. These parameters control the
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randomness, diversity, and length of the generated
text, affecting the balance between creativity and
coherence in responses. For instance, a higher tem-
perature value can lead to more diverse outputs,
while a lower value tends to produce more deter-
ministic results. Vendors like OpenAI (Floridi and
Chiriatti, 2020) and Meta (Grattafiori et al., 2024)
provide default configurations for their LLM APIs.
For example, OpenAI recommends setting the tem-
perature to 0.2 for code generation and 0.7 for cre-
ative writing (Achiam et al., 2023). However, these
configurations can not generalize across tasks or
domains. Empirical studies have shown that task-
specific tuning of inference hyperparameters can
lead to significant performance gains without re-
training (Zhang et al., 2024; Wang et al., 2023a).

Although tuning inference hyperparameters can
improve LLM performance, directly applying hy-
perparameter optimization is often expensive due
to the high token cost of each trial. For exam-
ple, evaluating 50 GPT-4 configurations on full
MMLU (Hendrycks et al., 2020) can cost hundreds
of dollars under current API pricing. Multi-fidelity
optimization (Peherstorfer et al., 2018) provides a
principled framework that improves the efficiency
of hyperparameter search by performing evalua-
tions at multiple fidelity levels, such as reduced
data or shorter runs. However, existing approaches
such as Successive Halving (Karnin et al., 2013)
and Hyperband (Li et al., 2018) rely on fixed re-
source schedules that are not aligned with actual
token consumption, making them difficult to cali-
brate and often inefficient for LLM inference.

In this paper, we address the above limitations by
proposing EcoTune, a token-efficient multi-fidelity
optimization method for inference-time hyperpa-
rameter tuning. EcoTune is designed to improve
task performance while strictly minimizing token
consumption under budget constraints. The core
idea is to treat token usage as the primary cost met-
ric, which in turn guides both configuration selec-
tion and fidelity scheduling throughout the process.
Our main contributions are summarized as follows:

• We introduce EcoTune (Figure 1b), a novel token-
aware multi-fidelity optimization framework that
simultaneously improves inference performance
and reduces token consumption.

• We formalize a token-based fidelity model and
develop two key components: Token-Aware Ex-
pected Improvement, an acquisition function that
maximizes expected performance gain per token,

and Dynamic Fidelity Scheduling, an adaptive
mechanism that allocates fidelity levels based on
current usage and remaining budget.

• We validate EcoTune on LLaMA-2 and LLaMA-3
across MMLU, Humaneval, MedQA, and Open-
BookQA, showing performance improvements
of 7.1%, 24.3%, 21.9%, and 4.6% over HELM-
recommended configurations (Figure 1a), while
reducing token consumption by over 80% com-
pared to existing multi-fidelity HPO baselines.

2 Related Work

Enhancing LLMs at Inference Time. A wide
range of approaches have been proposed to improve
LLM performance during inference. Input-level
strategies include prompt engineering (White et al.,
2023) and retrieval-augmented generation (Zhao
et al., 2024), while output-level methods such as
self-consistency (Wang et al., 2023b) and model
soups (Wortsman et al., 2022). More recently, re-
search has gradually shifted toward decoding-level
adaptations (Shi et al., 2024), particularly the care-
ful tuning of inference hyperparameters such as
temperature (Ackley et al., 1985; Renze, 2024;
Zhang et al., 2024), top-p (Holtzman et al., 2019),
and max_tokens (Wang et al., 2023a), which di-
rectly affect the quality and efficiency of generated
outputs. However, traditional hyperparameter op-
timization methods, including Bayesian optimiza-
tion and evolutionary strategies (Loshchilov and
Hutter, 2016), often incur prohibitively high to-
ken costs due to repeated full-scale evaluations,
highlighting the urgent need for more cost-efficient
approaches tailored to LLM inference.

Inference Hyperparameters in LLMs. The be-
havior of LLMs during inference is highly sensi-
tive to decoding hyperparameters such as temper-
ature, top-p, and max_tokens (Arora et al., 2024).
These parameters govern the randomness, diversity,
and length of generated outputs, thereby shaping
task-specific performance. Recent studies have
shown that careful tuning of such hyperparameters
can substantially improve results compared to the
default configurations (Zhang et al., 2024; Wang
et al., 2023a). For example, problem-solving bench-
marks are particularly sensitive to temperature ad-
justments (Renze, 2024), while joint optimization
strategies like Multi-Sample have been introduced
to handle challenging tasks such as MATH (Du
et al., 2025). Beyond standard parameters, new
controls such as min-p have also been proposed to
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more precisely regulate generation quality (Nguyen
et al., 2024). Collectively, these findings under-
score the central role of inference hyperparameters
in optimizing LLM performance.

Multi-Fidelity Optimization. Multi-fidelity op-
timization has become a powerful paradigm for
resource-efficient search for computationally ex-
pensive tasks in automated machine learning (Pe-
herstorfer et al., 2018). By exploiting hierar-
chical approximations of the objective function,
these methods accelerate optimization while re-
taining theoretical convergence guarantees (For-
rester et al., 2007). Their effectiveness is exem-
plified by early-stopping strategies such as suc-
cessive halving (Karnin et al., 2013) and Hyper-
band (Li et al., 2018), which allocate resources
adaptively by quickly discarding underperforming
candidates. More recent advances integrate multi-
fidelity principles into Bayesian optimization (Wu
et al., 2020), achieving state-of-the-art results in
diverse AutoML tasks. Building on this founda-
tion, we extend adaptive fidelity allocation to LLM
inference, where fidelity is dynamically scheduled
according to token consumption.

3 Methodology

In this section, we propose EcoTune, a token-
constrained multi-fidelity hyperparameter optimiza-
tion method tailored for LLM inference. Our
method treats token consumption as a primary re-
source constraint and integrates fidelity control
with budget-aware optimization to explore the hy-
perparameter space efficiently.

3.1 Problem Formulation

Given a hyperparameter search space Θ, our ob-
jective is to find the optimal configuration θ∗ ∈ Θ
that maximizes a performance metric f(θ) (e.g.,
accuracy), subject to a total token budget B. The
constrained optimization problem is defined as:

max
θ∈Θ

f(θ), s.t.
N∑

i=1

T (θi, ri) ≤ B (1)

Here, T (θ, r) denotes the token consumption of
configuration θ evaluated at fidelity level r, which
reflects the inference cost.

Multi-Fidelity Resource Mapping. To enable
cost-efficient evaluation, we define a continuous fi-
delity space r ∈ [rmin, rmax], where r controls

evaluation granularity (e.g., the number of in-
stances or decoding length). The token cost as-
sociated with evaluating configuration θ at fidelity
r is modeled as:

T (θ, r) = α(θ) · r + β(θ) (2)

In this formulation, α(θ) captures the per-unit
token cost (e.g., output length per instance), while
β(θ) accounts for fixed overheads (e.g., prompt
or input encoding). This linear model provides a
tractable approximation for balancing performance
and resource consumption across fidelity levels.

3.2 Framework Overview
As illustrated in Figure 1, our method operates in
an iterative cycle that integrates configuration se-
lection, fidelity control, and budget management.
Each round begins with a token-aware acquisition
function (Section 3.3) that balances expected per-
formance improvement against token cost. Se-
lected configurations are then evaluated at dynami-
cally assigned fidelity levels (Section 3.4), enabling
cost-efficient exploration under different granular-
ities. Their outcomes update the surrogate model,
and the remaining budget is adaptively reallocated
(Section 3.5) to emphasize promising candidates
while maintaining exploration of uncertain regions.
This closed-loop process enforces strict token con-
straints, maximizes information gain per token, and
underlies the efficiency and convergence properties
discussed in Section 3.6. The overall procedure is
summarized in Algorithm 1.

3.3 Token-Efficient Fidelity Allocation
Our allocation strategy is designed to select fidelity
levels r that maximize the performance gain per
token consumed. To this end, we estimate the
marginal utility of increasing fidelity under a fixed
token budget B. Given the initial reduction factor
η and the average input/output token lengths, mea-
sured using a sliding window over the dataset, we
allocate trials across multiple fidelity levels accord-
ingly at the start of the optimization process.
Token-Aware Expected Improvement. We ex-
tend the classical Expected Improvement (EI) ac-
quisition function (Močkus, 1975) to explicitly ac-
count for token consumption at different fidelity
levels. For a configuration–fidelity pair (θ, r), the
token-aware acquisition function is defined as

αEIpT(θ, r) =
E
[(
f(θ, r)− f⋆

)+]

E[T (θ, r)] , (3)
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where f⋆ denotes the incumbent best performance
observed at the maximum fidelity rmax, and T (θ, r)
is the expected token cost (Eq. 2). Configurations
are first ranked by their maximal score across fi-
delity levels, and the top-ranked configuration θt is
selected for evaluation. This formulation naturally
balances exploration and exploitation: when token
costs are very small, the denominator E[T (θ, r)]
amplifies the value of even modest performance
gains, encouraging the evaluation of inexpensive
configurations and thereby promoting exploration.
Conversely, configurations with high token costs
are only favored when they promise substantial
improvements, ensuring budget efficiency.

3.4 Dynamic Fidelity Assignment

For the chosen configuration θt, the fidelity level
rt is determined using a budget-aware scheduling
principle:

rt =

{
rmax, if αEIpT(θt, rmax) > τ,
argmaxr∈R αEIpT(θt, r), otherwise.

(4)
Here, τ is a promotion threshold that triggers

early evaluation at maximum fidelity when the EI-
per-token at rmax is sufficiently high. Otherwise,
the fidelity that maximizes cost-efficiency is se-
lected. This formulation ensures that both config-
uration choice and fidelity scheduling are consis-
tently guided by the same acquisition criterion.

3.5 Dynamic Budget Reallocation

At each iteration, the selected configuration θt is
evaluated at its assigned fidelity level rt, and the
corresponding token cost is recorded. To monitor
budget usage, we maintain cumulative statistics:

Bused =
t∑

i=1

T (θi, ri), Bremain = B −Bused.

(5)
Here, Bused denotes the total number of tokens con-
sumed up to iteration t, while Bremain represents the
remaining budget available for subsequent trials.
Surrogate Model Update. The multi-fidelity sur-
rogate model (e.g., a Gaussian Process) is incre-
mentally and consistently updated with the newly
collected observation data Dt:

Dt+1 = Dt ∪ {(θt, rt, f(θt, rt), T (θt, rt))} (6)

where (θt, rt) denotes the evaluated configuration–
fidelity pair and f(θt, rt) the observed performance.

The surrogate is defined as:

f(θ, r) ∼ GP
(
µ(θ, r), k

(
(θ, r), (θ′, r′)

))
, (7)

with mean function µ(·) and kernel k(·, ·) model-
ing correlations across both hyperparameter and
fidelity dimensions. Model hyperparameters are
learned by maximizing the marginal likelihood.
Budget Reallocation. To maximize the overall
utility of the remaining token budget, resources
are adaptively redistributed between exploitation
and exploration. Configurations showing strong
performance indicators are promoted to higher fi-
delities. In particular, two key planning parameters
are updated to reflect the current budget status:

T̂ ←
⌊
Bremain

E[T ]

⌋
(8)

ηt+1 = ηt · exp
(
−λ · Bremain

B

)
(9)

Here, T̂ estimates the number of additional trials
that can be executed given the expected per-trial
token cost, and ηt+1 adjusts the fidelity reduction
factor to balance exploration and exploitation as the
budget shrinks. The optimization terminates once
the token budget is exhausted (Bremain ≤ 0), the
performance metric converges, or the maximum
number of trials is reached.

3.6 Efficiency and Convergence Analysis
Given a total token budget B and the expected to-
ken cost per evaluation trial E[T (θ, r)] (Eq. 2), the
number of trials that can be executed is approx-
imately bounded by T ≈ B/E[T (θ, r)]. If the
average computation time per token is c, the over-
all optimization runtime scales linearly with the
total number of tokens consumed, i.e., Runtime =
O(B · c). This indicates that both computational
cost and wall-clock runtime are primarily deter-
mined by the token budget. For convergence, let
f∗(B) denote the best performance achieved un-
der budget B. Empirical evidence suggests that
performance typically follows a diminishing-return
trajectory as the budget increases, which can be ap-
proximated by f∗(B) ≈ fopt − C/Bγ , where fopt
is the asymptotic optimum under unlimited bud-
get, C is a task-dependent constant, and γ ∈ (0, 1)
characterizes the convergence rate. A larger γ im-
plies faster convergence with respect to the budget,
whereas smaller values correspond to slower im-
provement even as additional tokens are consumed.
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3.7 Algorithm of EcoTune

Algorithm 1 outlines EcoTune. At each iteration t,
a configuration θt is proposed by maximizing the
token-aware acquisition function (Eq. 3), which
balances expected improvement against token cost.
Its fidelity rt is then scheduled using Eq. 4, either
promoting candidates directly to rmax or assigning
the most cost-efficient fidelity. The configuration
is evaluated, and the observed performance and
token cost update the surrogate model (Eq. 7) via
marginal likelihood optimization. Budget statistics
are tracked, and planning parameters T̂ and η are
adapted (Section 3.5). The procedure terminates
when the token budget is exhausted, convergence
is detected, or the maximum number of trials is
reached, and returns the best configuration θ∗.

Algorithm 1: EcoTune
Input: Search space Θ, token budget B,

promotion threshold τ , initial
reduction factor η0, dataset D

Output: Best configuration θ∗

Initialize GP with empty data D0 ← ∅;
Bused ← 0, η ← η0, t← 0, f∗ ← −∞;
while Bused < B and not converged do

θt ← argmaxθ∈Θ αEIpT(θ, r);
// token-aware EI (Eq. 3)
if αEIpT(θt, rmax) > τ then

rt ← rmax // early promotion
else

rt ←
argmaxr∈[rmin,rmax] αEIpT(θt, r)

s← f(θt, rt);
Tt ← T (θt, rt);
Bused ← Bused + Tt;
Dt+1 ← Dt ∪ {(θt, rt, s, Tt)};
Update GP surrogate;
Bremain ← B −Bused;
T̂ ← ⌊Bremain/E[T ]⌋;
η ← η · exp(−λ ·Bremain/B);
if s > f∗ then

f∗ ← s;

t← t+ 1;

return θ∗ = argmax(θi,ri)∈D f(θi, ri)

4 Experiment

In this section, we elaborate on our experimental
studies designed to validate the effectiveness and
token efficiency of EcoTune. We benchmark our

method across diverse tasks and datasets, compar-
ing against existing hyperparameter optimization
baselines under controlled token budgets.

4.1 Experimental Setup

Datasets and Metrics. We evaluate our method
on four diverse benchmarks to assess different ca-
pabilities of language models. MMLU (Hendrycks
et al., 2020) (Apache License 2.0) covers 57 aca-
demic subjects with multiple-choice questions,
using Exact Match (EM) for evaluation. Hu-
maneval (Chen et al., 2021) (MIT License) includes
164 code generation problems, assessed by Pass@1.
MedQA (Jin et al., 2021) (Available for research
use only) is a medical QA dataset from professional
exams, evaluated by EM. OpenBookQA (Mihaylov
et al., 2018) (CC BY-SA 4.0) tests multi-hop rea-
soning with 5,957 science questions, also using
EM. These tasks span across general knowledge,
code generation, domain-specific QA, and reason-
ing, enabling the comprehensive evaluation.

Baselines and HPO Settings. We compare Eco-
Tune against a broad suite of hyperparameter op-
timization baselines spanning different algorith-
mic families:(i) single-fidelity methods include
Random Search (RS), Bayesian Optimization
(BoTorch) (Balandat et al., 2020), quasi-Monte
Carlo sampling (QMC) (Caflisch, 1998; Akiba
et al., 2019), and CMA-ES (Nomura and Shibata,
2024);(ii) multi-fidelity methods are represented
by BOHB (Falkner et al., 2018), which reduces
evaluation cost through early-stopping. In addi-
tion, we report results from the HELM leader-
board (Liang et al., 2023)1, which provides vendor-
recommended configurations on continuously up-
dated benchmarks. All methods are evaluated un-
der a strict 50K-token budget per dataset, account-
ing for both input and output tokens. The hyper-
parameter search space is aligned with practical
decoding ranges: temperature is varied within [0.0,
1.0], max_tokens from 1 (for multiple-choice tasks
such as MMLU) up to 600 (for code generation
tasks like Humaneval), repetition penalty in [1.0,
1.5], and length penalty in [0.8, 1.2]. Unless oth-
erwise noted, all hyperparameters are uniformly
sampled within these ranges.

Implementation Details. For evaluation, we
adopt prompting strategies consistent with HELM.
On MMLU, MedQA, and OpenBookQA, we use

1https://crfm.stanford.edu/helm/
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MMLU Humaneval MedQA OpenBookQA

LLaMA-2-7B LLaMA-3-8B LLaMA-2-7B LLaMA-3-8B LLaMA-2-7B LLaMA-3-8B LLaMA-2-7B LLaMA-3-8B

HELM (Liang et al., 2023) 42.6 60.2 13.4 32.9 39.2 58.1 50.1 76.6

Random 42.4 60.1 8.5 25.6 41.0 67.1 52.7 75.4
BoTorch 43.8 61.5 12.2 28.3 44.0 67.1 46.0 76.7
BOHB 45.8 60.8 12.6 32.9 35.0 68.3 54.0 76.8
QMC 44.4 61.3 16.2 34.8 43.1 65.8 53.3 77.3
CMA-ES 44.8 59.9 13.4 36.6 43.0 64.6 55.3 78.7
EcoTune (Ours) 48.1 64.5 16.5 40.9 44.2 70.8 56.2 80.1

Table 1: Comparison of performance across various HPO methods on LLaMA-2-7B and LLaMA-3-8B models
across MMLU, Humaneval, MedQA, and OpenBookQA.

5-shot prompting with top-k sampling (k=5) in a
Question/Answer format (Liang et al., 2023). On
Humaneval, we use zero-shot prompting with a
600-token output limit, stopping generation when
encountering reserved tokens such as class, def,
if, or print. All evaluations run through local
APIs with exact token accounting, and optimiza-
tion continues until the token budget is fully con-
sumed. BOHB uses min_resource = 0.01 and
reduction_factor = 4 for aggressive early stop-
ping. CMA-ES sets its hyperparameters by default.

4.2 Main Performance Comparison

Table 1 compares EcoTune with a diverse set of hy-
perparameter optimization baselines across four
representative tasks and two backbone models,
LLaMA-2-7B and LLaMA-3-8B. All the methods
operate under a strict token budget per dataset, ac-
counting for both input and output token usage.

Across all the tasks and model scales, Eco-
Tune consistently achieves the best overall perfor-
mance, demonstrating strong effectiveness under
token constraints. On the knowledge-intensive task
MMLU, EcoTune attains 48.1 and 64.5 accuracy on
LLaMA-2 and LLaMA-3, respectively, surpassing
the next-best baselines (BOHB and QMC) by 3.2
points. In the medical QA task MedQA, it reaches
70.8 EM on LLaMA-3, exhibiting superior stabil-
ity. BoTorch performs reasonably under LLaMA-2
but degrades under LLaMA-3 due to poor handling
of the fidelity-cost tradeoff. In contrast, EcoTune
leverages adaptive fidelity and token estimation to
conduct more informative evaluations.

On the reasoning benchmark OpenBookQA, Eco-
Tune again delivers top results, achieving 56.2 and
80.1 EM on LLaMA-2 and LLaMA-3. Competing
methods either plateau early (e.g., BOHB, QMC) or
overcommit to expensive configurations, reducing
the number of completed trials. On the code gen-

eration task Humaneval, where evaluation is par-
ticularly costly, EcoTune’s adaptive fidelity mecha-
nism and token-aware scoring yield 40.9 Pass@1
on LLaMA-3, surpassing CMA-ES by 4.3 points
and the HELM default by 8.0 points.

While most baselines could theoretically con-
verge given unlimited tokens, such evaluations are
generally infeasible in real practice. Generation-
heavy tasks are extremely expensive both in cost
and runtime resources. For instance, exhaustively
evaluating 2,000 configurations on Humaneval
would easily require hundreds of dollars and sev-
eral days. In contrast, EcoTune quickly identifies
promising configurations early, ensuring robust and
efficient optimization under realistic budgets.

In summary, EcoTune not only achieves higher
performance but also exhibits strong robustness
across models and tasks. Its dynamic resource
allocation and token-aware design together make
it particularly well-suited for budget-constrained
inference-time optimization scenarios in practice.

4.3 Efficiency Analysis

Token Consumption Comparison. We compare
the token efficiency of our proposed method against
the existing multi-fidelity method, BOHB (Falkner
et al., 2018), which integrates Bayesian optimiza-
tion with the Hyperband technique (Li et al., 2018),
one of the most widely used multi-fidelity meth-
ods. To quantify the efficiency gains, we measure
the total token consumption required to reach con-
vergence while achieving comparable performance
on MMLU tasks. Since different tasks vary sig-
nificantly in context length, we group them into
three high-level domains: natural sciences includ-
ing Algebra, Medicine, Physics, and Mathematics,
social sciences including Economics, Global Facts,
Sociology, and Miscellaneous, and humanities in-
cluding Philosophy, Moral Disputes, World History,
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Figure 2: Token consumption comparison to achieve the same performance across different domains in MMLU.

Task Inst. Token (In/Out) Thru. (In/Out) Time/Inst. (s) Speedup (×)

Abstract Algebra 116 370 / 1 1.6k / 4 0.55 5.0
Economics 131 620 / 1 3.0k / 4 0.48 5.9
World History 268 1.4k / 1 3.3k / 2 0.98 4.5
OpenBookQA 5.9k 42 / 4 3.8k / 13 0.36 4.3
MedQA 5k 10k / 1 15.3k / 13 0.20 3.8
HumanEval 164 170 / 74 540 / 327 0.59 4.8

Average – 602 / 14 – 0.53 4.7

Table 2: Runtime statistics across tasks, including
dataset scale, token lengths, throughput, and Speedup.

and Prehistory. Notably, tasks in the humanities
tend to require longer contexts. The comparative
results are presented in Figure 2.

Several key observations emerge from the re-
sults. First, our method consistently identifies ef-
fective configurations under strict token budgets
and achieves substantial reductions in token usage,
exceeding 80% savings compared to the baseline,
highlighting its superior efficiency. Second, while
BOHB exhibits near-linear growth in token con-
sumption as the number of instances increases, our
method maintains consistently low token usage.
This stability indicates that our approach effectively
selects and leverages representative instances, lead-
ing to robust efficiency regardless of dataset scale.
Notably, the World History task incurs relatively
higher token consumption due to the inherently
long contextual inputs typical of historical content.

Wall-Clock Runtime Statistics. Beyond token-
level analysis, Table 2 reports task-specific run-
time characteristics, including dataset scale, token
lengths, and throughput. These results demonstrate
that EcoTune’s token savings consistently translate
into practical wall-clock improvements, achieving
an average 4.7× speedup over BOHB across di-
verse tasks. Notably, tasks with longer prompts
(e.g., MedQA, World History) benefit more from
input-side efficiency, while generation-heavy tasks
such as Humaneval gain from output-side optimiza-
tion. This confirms that EcoTune’s design yields
consistent efficiency advantages in both compute-
and memory-bound inference regimes.

Convergence Behavior under Token Constraints.
We evaluate convergence on the STEM subset of
MMLU using the Empirical Cumulative Distribu-
tion Function (ECDF) (Van der Vaart, 2000), which
captures detailed validation error dynamics under
equal token budgets. As shown in Figure 3, Eco-
Tune consistently dominates the top-left region,
achieving lower errors with fewer evaluations. The
denser ECDF curve further indicates more effective
and systematic exploration, confirming both faster
convergence and higher token efficiency. Com-
pared to BOHB, EcoTune reaches competitive error
levels with fewer trials, highlighting its practical
advantage under strict resource constraints.
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Figure 3: ECDF on Validation Error.

4.4 Combination of Decoding Strategies

Beyond fixed decoding settings such as tempera-
ture plus top-k, different stochastic sampling strate-
gies can independently influence the diversity and
quality of model outputs. To systematically as-
sess robustness, we evaluate EcoTune on subsets
of the MMLU dataset under four widely used de-
coding strategies: (i) pure temperature sampling
(“Temp.”), (ii) temperature combined with top-k
sampling (k=5) (Fan et al., 2018), (iii) top-p sam-
pling with p=0.95 (Holtzman et al., 2019), and
(iv) min-p sampling with p=0.2 (Nguyen et al.,
2024). These settings cover a representative spec-
trum from simple temperature control to nucleus-
and probability-based sampling, enabling a com-
prehensive evaluation of decoding robustness.

7741



LLaMA-2-13B LLaMA-2-70B

ANAT. MATH. PHY. ECON. LOGIC. CHEM. HIST. JURIS. Avg. ANAT. MATH. PHY. ECON. LOGIC. CHEM. HIST. JURIS. Avg.

Temp. (HELM) 49.63 30.00 23.53 31.00 39.68 48.28 63.63 71.90 44.71 55.59 37.00 36.27 34.00 42.86 49.75 67.27 74.10 49.60
+ top-k 49.63 30.00 23.53 33.33 39.68 48.28 63.63 71.29 44.92 56.30 38.00 35.29 35.09 43.65 51.23 66.67 74.07 50.04
+ top-p 49.63 30.00 23.53 33.33 39.68 48.28 63.64 71.29 44.92 53.33 39.00 35.29 33.33 42.06 50.25 66.67 73.15 49.14
+ min-p 48.89 30.00 23.53 33.33 39.68 48.28 63.64 71.29 44.83 53.33 36.00 37.25 35.96 42.86 50.74 66.06 75.00 49.65
Temp. (Ours) 55.59 37.00 36.27 34.00 42.86 49.75 67.27 74.10 49.60 60.74 35.00 35.29 43.83 46.03 49.75 82.42 82.41 54.4
+ top-k 56.30 38.00 35.29 35.09 43.65 51.23 66.67 74.07 50.04 60.74 35.00 35.29 43.86 46.03 49.75 81.81 82.41 54.36
+ top-p 53.33 39.00 35.29 33.33 42.06 50.25 66.67 73.15 49.14 60.70 35.00 35.29 43.86 46.03 49.75 82.42 82.41 54.36
+ min-p 53.33 36.00 37.25 35.96 42.86 50.74 66.06 75.00 49.65 60.74 35.00 35.29 43.86 46.03 49.75 82.42 82.41 54.43

(a) LLaMA-2 series (13B and 70B).

LLaMA-3-8B LLaMA-3-70B

ANAT. MATH. PHY. ECON. LOGIC. CHEM. HIST. JURIS. Avg. ANAT. MATH. PHY. ECON. LOGIC. CHEM. HIST. JURIS. Avg.

Temp. (HELM) 69.63 35.00 45.10 51.75 45.23 55.17 75.15 74.00 56.88 78.52 56.00 52.94 70.18 65.08 74.00 84.85 86.11 70.46
+ top-k 69.63 35.00 45.10 51.75 45.23 55.17 75.15 74.07 56.89 77.78 56.00 52.94 68.42 65.08 73.39 84.85 86.11 69.83
+ top-p 68.89 35.00 45.10 51.75 45.24 55.17 75.15 74.07 56.70 77.78 56.00 52.94 69.29 65.08 73.39 84.85 86.11 70.18
+ min-p 69.63 35.00 45.10 51.75 45.24 55.17 75.15 74.07 56.89 77.78 56.00 52.94 68.42 56.08 73.39 84.85 86.11 68.70
Temp. (Ours) 72.59 40.00 50.98 54.39 52.38 57.14 77.58 79.63 60.59 80.00 57.00 57.84 73.68 68.25 75.37 87.88 87.96 73.50
+ top-k 71.11 45.00 52.94 53.51 51.59 57.14 76.97 81.48 60.47 80.00 58.00 55.88 74.56 69.05 75.37 87.88 87.96 74.09
+ top-p 72.59 39.00 53.92 53.51 50.00 57.14 76.97 77.78 60.11 80.00 59.00 59.80 73.68 69.05 74.38 87.27 87.04 74.03
+ min-p 71.85 45.00 51.96 54.39 50.00 58.13 77.58 80.56 59.93 80.00 60.00 56.86 72.81 69.04 75.86 86.67 87.96 73.90

(b) LLaMA-3 series (8B and 70B).

Table 3: Ablation of mixed decoding strategy tuning across LLaMA series models.

As reported in Table 3, EcoTune consistently
surpasses the HELM baseline across all stochastic
decoding strategies, subject domains, and back-
bone models. On average, it improves overall accu-
racy by about 5.0 and 4.8 points on LLaMA-2-13B
and 70B, and by 3.7 and 3.5 points on LLaMA-
3-8B and 70B, respectively. Three observations
stand out: (i) EcoTune often achieves the highest
scores under top-k, top-p, or min-p, demonstrating
robustness across diverse decoding strategies; (ii)
performance gains are particularly pronounced in
humanities and social sciences, where longer con-
texts and nuanced reasoning make decoding more
challenging; and (iii) although improvements on
STEM-oriented tasks are more modest, EcoTune
still consistently outperforms the baseline, confirm-
ing its ability to generalize across domains.

5 Conclusion

In this paper, we propose EcoTune, a token-
constrained multi-fidelity hyperparameter optimiza-
tion method tailored for LLM inference. By
leveraging the token-aware acquisition function
and the dynamic fidelity adjustment mechanism,
our approach effectively balances the performance
and evaluation cost under strict token budgets.
Extensive experiments on MMLU, Humaneval,
MedQA, and OpenBookQA demonstrate that Eco-
Tune achieves up to 24% higher accuracy while
substantially reducing token consumption. It con-

sistently delivers stable and reliable performance
across different model sizes and task complexities.
Comprehensive ablation and comparative studies
further confirm the robustness and generality of our
method across diverse benchmarks. Future work
will explore incorporating a broader set of decod-
ing hyperparameters and extending the method to
account for latency and monetary cost constraints.

Limitation

EcoTune advances token-efficient hyperparameter
optimization for LLM inference, yet its scope re-
mains primarily at the algorithmic level. Broader
system-level factors, such as including hardware
constraints, are not fully considered, though inte-
grating such dimensions could yield a more com-
prehensive and deployable optimization framework.
Moreover, our evaluation is limited to a selected set
of benchmarks, and further studies on more diverse
tasks are needed to assess broader applicability.
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A Appendix

A.1 Main Experiment
Full experimental results across 57 sub-tasks of
MMLU for LLaMA-2 (7B, 13B, 70B) and LLaMA-
3 (8B, 70B) are presented in Table 4. For each
model, we report the initial accuracy (Init) based
on HELM-style evaluation, the accuracy after ap-
plying our tuning method, and the relative improve-
ment (∆%). Improvements exceeding 5% are high-
lighted in bold.
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Subject LLaMA-2-7B LLaMA-2-13B LLaMA-2-70B LLaMA-3-8B LLaMA-3-70B

Init Imp ∆% Init Imp ∆% Init Imp ∆% Init Imp ∆% Init Imp ∆%

Algebra 29.0 36.0 +24.1 27.0 43.0 +59.3 31.0 35.0 +12.9 33.0 41.0 +24.2 41.0 49.0 +19.5
Anatomy 45.0 49.0 +8.2 49.6 55.6 +12.1 60.7 67.4 +21.5 69.6 72.6 +9.0 78.5 80.0 +3.6
Astronomy 41.4 44.1 +4.5 56.6 58.6 +3.5 82.2 84.9 +8.5 71.1 72.4 +4.0 92.1 93.4 +3.2
BusEth 48.0 52.0 +6.8 53.0 60.0 +13.2 72.0 76.0 +12.9 66.0 69.0 +9.1 83.0 86.0 +7.3
ClinKnow 44.5 47.5 +5.1 60.0 61.1 +1.8 71.3 75.9 +14.6 75.1 76.6 +4.6 84.5 85.3 +1.8
Col Biology 42.4 46.5 +7.0 59.7 61.1 +2.3 84.7 85.4 +2.3 76.4 79.2 +8.5 94.4 95.1 +1.7
ColChem 27.0 39.0 +44.4 41.0 49.0 +19.5 50.0 55.0 +16.1 48.0 55.0 +21.2 57.0 62.0 +12.2
Col CS 39.0 43.0 +6.8 42.0 43.0 +2.4 59.0 61.0 +6.5 58.0 59.0 +3.0 70.0 74.0 +9.8
Col Math 29.0 40.0 +37.9 30.0 37.0 +23.3 35.0 43.0 +25.8 35.0 40.0 +15.2 56.0 57.0 +2.4
ColMed 46.0 48.6 +5.5 53.8 54.9 +2.2 65.3 68.8 +11.0 63.6 65.9 +7.0 79.8 80.9 +2.8
ColPhy 21.6 29.4 +36.4 23.5 36.3 +54.5 35.3 44.1 +28.5 45.1 51.0 +17.8 52.9 57.8 +12.0
CompSec 59.0 64.0 +8.5 68.0 71.0 +4.4 76.0 79.0 +9.7 80.0 81.0 +3.0 85.0 87.0 +4.9
ConPhys 42.8 45.1 +5.4 41.7 45.5 +9.2 66.4 68.5 +6.9 56.2 60.0 +11.6 83.8 84.3 +1.1
Econ 31.6 38.6 +22.2 31.0 34.0 +11.4 43.9 49.1 +17.0 51.8 54.4 +8.0 70.2 73.7 +8.5
EE 43.4 44.8 +3.2 49.0 51.7 +5.6 63.5 64.8 +4.5 66.9 70.3 +10.4 76.6 77.9 +3.4
ElemMath 25.9 29.1 +12.3 32.0 33.6 +5.0 41.8 46.0 +13.7 42.9 45.2 +7.2 63.0 65.6 +6.5
FormLog 27.8 33.3 +19.8 39.7 42.9 +8.0 46.0 52.4 +20.5 45.2 52.4 +21.7 65.1 68.3 +7.7
GlobalFacts 29.0 32.0 +10.3 38.0 42.0 +10.5 48.0 54.0 +19.4 33.0 40.0 +21.2 49.0 54.0 +12.2
HS Bio 51.3 53.6 +4.4 66.5 68.1 +2.4 81.6 83.9 +7.3 78.1 79.7 +4.9 90.0 91.6 +3.9
HS Chem 36.5 40.4 +10.8 48.3 49.8 +3.0 49.8 56.7 +22.3 55.2 57.1 +6.0 74.0 75.4 +3.3
HS CS 38.0 46.0 +21.1 59.0 62.0 +5.1 75.0 78.0 +9.7 67.0 70.0 +9.1 87.0 90.0 +7.3
HS EuroHist 62.4 64.2 +3.0 63.6 67.3 +5.7 82.4 84.2 +5.9 75.2 77.6 +7.4 84.9 87.9 +7.4
HS Geo 51.5 55.6 +8.0 71.7 72.7 +1.4 87.9 88.4 +1.7 82.8 84.9 +6.1 93.9 95.0 +2.5
HS Politics 67.9 70.0 +3.1 80.8 81.9 +1.3 92.8 94.3 +5.0 88.1 89.6 +4.7 97.9 98.5 +1.3
HS Macro 43.9 45.9 +4.7 51.0 52.6 +3.0 73.1 74.4 +4.1 63.6 64.9 +3.9 83.3 83.9 +1.3
HS Math 31.1 31.1 0.0 27.8 30.0 +8.0 34.8 40.0 +16.7 41.9 43.0 +3.4 48.9 51.1 +5.4
HS Micro 42.4 44.1 +4.0 59.2 60.5 +2.1 76.9 77.7 +2.7 72.7 76.1 +10.2 88.7 90.3 +4.1
HS Physics 29.8 31.1 +4.4 31.8 37.1 +16.7 45.7 49.0 +10.7 42.4 48.3 +18.1 57.6 60.3 +6.4
HS Psycho 63.7 65.0 +2.0 75.6 76.1 +0.7 88.6 89.7 +3.6 85.0 85.7 +2.2 93.9 93.9 0.0
HS Stat 27.8 30.6 +10.0 42.1 50.5 +19.8 62.0 65.7 +12.0 56.0 58.3 +7.0 73.6 75.0 +3.4
HS US Hist 53.4 56.9 +6.4 76.5 77.0 +0.6 89.7 92.7 +9.5 84.3 84.8 +1.5 95.1 95.6 +1.2
HS WorldHist 65.4 66.7 +1.9 70.9 73.4 +3.6 88.2 89.5 +4.1 82.3 83.5 +3.8 94.1 95.4 +3.1
Aging 55.2 56.5 +2.5 62.3 64.1 +2.9 79.8 80.7 +2.9 71.3 72.7 +4.1 82.5 83.4 +2.2
Sexuality 56.5 61.1 +8.1 61.1 64.1 +5.0 83.2 86.3 +9.8 74.8 78.6 +11.6 87.8 88.6 +1.9
Inter Law 62.8 64.5 +2.6 74.4 75.2 +1.1 86.8 89.3 +8.0 84.3 86.8 +7.5 90.1 91.7 +4.1
Juris 51.9 57.4 +10.6 71.9 74.1 +3.6 82.4 84.3 +6.0 74.0 79.6 +17.1 86.1 88.0 +4.5
LogFal 48.2 50.9 +7.8 68.7 70.6 +2.7 78.5 81.0 +7.9 74.9 77.9 +9.3 87.1 87.7 +1.5
ML 41.1 42.9 +4.4 28.0 40.0 +42.9 50.0 56.3 +20.2 54.5 58.0 +10.8 72.3 73.2 +2.2
Mgmt 56.3 60.2 +6.9 74.8 77.7 +3.9 83.5 86.4 +9.4 87.4 88.4 +2.9 91.3 92.2 +2.4
Marketing 70.0 70.5 +0.7 77.8 78.6 +1.1 89.3 89.7 +1.4 88.5 90.6 +6.5 94.0 94.4 +1.0
MedGene 53.0 57.0 +7.6 56.0 63.0 +12.5 71.0 75.0 +12.9 83.0 85.0 +6.1 89.0 91.0 +4.9
Miscell 62.8 64.8 +3.0 74.7 75.9 +1.5 85.7 86.2 +1.7 83.1 83.9 +2.3 91.7 92.2 +1.2
MoralDisp 48.3 50.9 +5.4 63.0 64.2 +1.8 76.9 78.9 +6.5 71.7 73.1 +4.4 85.0 85.8 +2.1
MoralScen 23.8 26.9 +13.2 37.4 37.8 +0.9 46.3 46.9 +2.2 41.3 42.2 +2.7 59.9 59.9 0.0
Nutrition 50.0 51.0 +2.0 62.4 63.4 +1.6 75.5 77.8 +7.4 76.1 77.8 +5.0 87.6 88.9 +3.2
Philosophy 59.0 61.0 +2.7 67.0 68.0 +0.5 78.8 80.7 +6.2 74.3 75.2 +2.9 86.5 88.4 +4.7
Prehistory 50.0 52.8 +5.6 62.8 66.4 +5.6 84.0 85.5 +5.0 73.5 75.3 +5.6 91.1 92.3 +3.0
ProAccount 35.8 39.0 +8.9 42.2 45.4 +7.6 57.4 58.2 +2.3 48.6 50.7 +6.5 64.5 67.4 +6.9
Pro Law 35.9 37.1 +3.3 42.1 42.6 +1.2 54.0 54.5 +1.5 46.7 47.1 +1.2 0.0 0.0 0.0
Pro Med 52.2 54.4 +3.7 56.1 56.1 0.0 73.9 75.4 +4.7 72.8 73.5 +2.2 87.9 88.6 +1.8
Pro Psy 44.8 45.6 +1.8 56.4 58.3 +3.5 75.5 76.1 +2.1 71.1 72.1 +3.0 87.4 87.6 +0.4
PR 51.8 52.7 +1.8 60.0 65.5 +9.1 74.6 77.3 +8.8 73.6 76.4 +8.3 72.7 76.4 +8.9
SecStud 42.9 46.5 +7.1 62.9 64.1 +1.9 78.8 80.8 +6.6 77.1 78.4 +3.7 83.3 86.1 +7.0
Sociology 62.2 66.7 +8.7 75.6 77.1 +2.0 89.6 92.0 +8.0 86.6 88.6 +6.0 93.0 94.0 +2.4
USFP 64.0 69.0 +8.4 84.0 85.0 +1.2 92.0 94.0 +6.5 88.0 89.0 +3.0 94.0 95.0 +2.4
Virology 40.4 44.6 +8.2 46.4 48.2 +3.9 53.6 56.0 +7.8 56.6 58.4 +5.5 59.0 59.6 +1.5
WorldRel 70.8 72.5 +3.4 77.2 79.0 +2.3 85.4 87.7 +7.6 81.9 82.5 +1.8 90.9 90.9 0.0

Table 4: Accuracy Improvements on MMLU Across LLaMA-2 and LLaMA-3 Models (Major Gains Highlighted).
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