
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing, pages 7816–7836
November 4-9, 2025 ©2025 Association for Computational Linguistics

Self-Adjust Softmax

Chuanyang Zheng1, Yihang Gao2, Guoxuan Chen3, Han Shi4,
Jing Xiong3, Xiaozhe Ren4, Chao Huang3,

Zhenguo Li4, Yu Li1,

1The Chinese University of Hong Kong, 2National University of Singapore
3The University of Hong Kong, 4Noah’s Ark Lab

Contact: cyzheng21@link.cuhk.edu.hk

Abstract

The softmax function is crucial in Transformer
attention, which normalizes each row of the
attention scores with summation to one. Usu-
ally, tokens with larger attention scores are
important for the final prediction. However,
the softmax function can face a gradient van-
ishing issue for such important tokens (e.g.,
probabilities close to one), leading to opti-
mization difficulties for the important tokens
so that the performance may not be better. In
this paper, we propose Self-Adjusting Softmax
(SA-Softmax) to address this issue by modi-
fying softmax(z) to z · softmax(z) and its
normalized variant (z−min(zmin,0))

max(0,zmax)−min(zmin,0)
·

softmax(z). We theoretically show that SA-
Softmax provides enhanced gradient proper-
ties compared to the vanilla softmax function.
Moreover, SA-Softmax Attention can be seam-
lessly integrated into existing Transformer mod-
els to their attention mechanisms with minor
adjustments. We conducted experiments to
evaluate the empirical performance of Trans-
former models using SA-Softmax compared
to the vanilla softmax function. These exper-
iments, involving models with up to 2.7 bil-
lion parameters, are conducted across diverse
datasets, language tasks, and positional encod-
ing methods.

1 Introduction

Transformer-based models (Vaswani et al., 2017)
have delivered exceptional performances across
widespread applications, including language pro-
cessing (Zhang et al., 2020; Guo et al., 2022;
Ainslie et al., 2023), computer vision (Alexey,
2020; Touvron et al., 2021; Liu et al., 2021b; Chen
et al., 2024b; Peebles and Xie, 2023), quantitative
research (Zhou et al., 2024; Liu et al., 2021c; Wu
et al., 2023), and scientific machine learning (Tay-
lor et al., 2022; Geneva and Zabaras, 2022). A
critical component of the Transformer is its atten-
tion mechanism, which computes the importance

and contribution of each token in a sequence for
next-token generation. Central to this mechanism
is the softmax function, a mathematical operation
that normalizes attention scores token-wise, en-
suring a summation of one. This property facil-
itates probabilistic interpretability and enables a
more expressive attention mechanism. For exam-
ple, Chen et al. (2024a); Xiao et al. (2024a); Xiong
et al. (2025) observed that most attention scores
are usually concentrated on specific tokens, allow-
ing for more efficient Transformer architectures by
discarding tokens with lower accumulative atten-
tion scores (Xiong et al., 2024). As a result, the
normalized attention scores produced by softmax
provide insights into the mechanism of next-token
generation in LLMs. Moreover, compared to other
attention functions, softmax exhibits some unique
and advantageous properties, which contribute to
the superior performance of softmax-based Trans-
former models (Han et al., 2024; Deng et al., 2023).

One of the primary limitations of softmax lies
in its susceptibility to the gradient vanishing prob-
lem. When input values to the softmax function
become highly polarized, i.e., extreme values that
are very large or small, the resulting probabilities
can exhibit extreme sparsity. This, in turn, leads
to gradients that approach zero, impeding effective
learning and optimization during backpropagation.
Such issues are particularly pronounced in deep
architectures, where the accumulation of small gra-
dients can hinder convergence and degrade model
performance (Vaswani et al., 2017; Duvvuri and
Dhillon, 2024). Several variations have been pro-
posed, including ReLU attention (Nair and Hinton,
2010; Chen et al., 2020; Wortsman et al., 2023;
Shen et al., 2023) or sigmoid attention (Ramapu-
ram et al., 2024). These alternatives aim to ad-
dress specific shortcomings of softmax, such as its
sensitivity to extreme input values or its restricted
output range, which may limit the behavior of the
attention mechanism. However, these approaches

7816

cyzheng21@link.cuhk.edu.hk


often fall short of achieving comparable stability,
interpretability, or general performance, especially
in large-scale models where softmax continues to
dominate due to its robustness and simplicity.

To address this limitation, we propose a novel
modification to the softmax function, introducing
Self-Adjusting Softmax (SA-Softmax), which en-
hances gradient propagation while preserving the
probabilistic properties and ranking order of tra-
ditional softmax. Our approach builds on theo-
retical insights and empirical observations. First,
we show theoretically that modifying the soft-
max function to z · softmax(z) amplifies gradient
magnitudes, addressing gradient saturation under
a range of typical conditions. Building on this
formulation, we further refine the formulation to

(z−min(zmin,0))
max(0,zmax)−min(zmin,0)

·softmax(z), incorporat-
ing the normalization while enhancing gradient
flow. It also maintains the relative ordering of input
values, which serves as a critical property for the
effectiveness of attention mechanisms. The pro-
posed modification of the vanilla softmax function
ensures compatibility with standard Transformer
architectures and facilitates seamless integration
into existing frameworks.

1. We propose z · softmax(z) as an alternative
to the vanilla softmax in the attention mecha-
nism to improve gradient magnitudes, thereby
enhancing backpropagation during training.
Additionally, we refine z · softmax(z) to

(z−min(zmin,0))
max(0,zmax)−min(zmin,0)

· softmax(z) with
normalization, preserving a critical property
of softmax while achieving superior perfor-
mance.

2. We conduct extensive experiments across vari-
ous datasets, tasks, and models, comparing the
proposed SA-Softmax and its variants with the
standard softmax(z). Results demonstrate
that our approach effectively mitigates gradi-
ent vanishing and consistently improves per-
formances across models with different scales.

3. We validate the proposed methods on large-
scale pre-training datasets with a training
length of 2048. Moreover, we also show the
effectiveness of the proposed method in down-
stream tasks.

2 Related Works

Transformer Attention. The Transformer
model, introduced by Vaswani et al. (Vaswani

et al., 2017), revolutionized the field of Natural
Language Processing (NLP) with its self-attention
mechanism. Unlike previous sequence models
such as RNNs and LSTMs (Graves and Graves,
2012), Transformer does not rely on recurrent
structures and instead uses self-attention to depict
relationships between input tokens in parallel.
Self-attention, also known as scaled dot-product
attention, computes attention scores between input
tokens using the query (Q), key (K), and value
(V ) vectors.

Attention(Q,K, V ) = softmax

(
QKT

√
dk

)
V

where dk is the dimension of the key vectors
(Vaswani et al., 2017). There are also linearized
attention methods, such as the Linformer (Wang
et al., 2020) and Performer (Choromanski et al.,
2020), approximating the softmax attention func-
tion using low-rank approximations, reducing the
computational complexity from O(n2) to O(n).
Another approach to reduce computational com-
plexity is through sparse attention, where only a
subset of attention scores are computed. For ex-
ample, the Longformer (Beltagy et al., 2020) uses
a combination of local windowed attention and
global attention, reducing the attention complexity
to O(n) for sequences of length n.

Gradient Vanishing. The gradient vanishing
problem refers to the phenomenon where gradients
become exceedingly small during backpropagation
(Lillicrap et al., 2020). Several works have ex-
plored the causes and potential solutions to the gra-
dient vanishing problem. Gradient clipping (Zhang
et al., 2019) is one practical solution to mitigate
both vanishing and exploding gradients. This tech-
nique caps gradients at a maximum value to pre-
vent them from becoming too small or too large.
Pascanu (2013) explored gradient clipping in the
context of RNNs and found that it can help stabilize
training by preventing gradient explosions, which
often arise due to large gradients propagating back-
ward through deep networks. The skip connection
(He et al., 2016) is the potential way to mitigate
the gradient vanishing problem. For softmax atten-
tion, the gradient will become zero if one attention
probability is too large (Vaswani et al., 2017).

Normalization. Batch Normalization (BN)
(Ioffe, 2015) normalizes activations along the
batch dimension, while Layer Normalization (LN)

7817



(Ba, 2016) operates along the channel dimension,
and Instance Normalization (IN) (Huang and
Belongie, 2017) applies BN-like computations
independently for each sample. Weight Nor-
malization (WN) (Salimans and Kingma, 2016)
instead normalizes filter weights directly. Group
Normalization (GN) divides channels into groups,
normalizing each group independently, and its
computations are unaffected by batch size. Bjorck
et al. (2018) show that in networks without BN,
large gradient updates can cause diverging loss
and uncontrolled activation growth with network
depth, limiting learning rates. Similarly, Xu et al.
(2019) demonstrates that layer normalization
smooths gradients and highlights the importance
of mean and variance derivatives, which re-center
and re-scale backward gradients beyond forward
normalization.

3 Method

3.1 Softmax Attention Mechanism
In the attention mechanism, the weight αij repre-
sents the attention score between token i (the query)
and token j (the key). This score quantifies the rel-
ative importance of token j to token i, among all
tokens in the input sequence. It is formulated as

αij = softmax

(
qTi kj√
dk

)
=

exp
(
qTi kj√

dk

)

∑
j′ exp

(
qTi kj′√

dk

) ,

(1)
where qi and kj are the query and key vectors for to-
kens i and j, respectively, and dk is a scaling factor
based on the dimensionality of the keys (Vaswani
et al., 2017). The softmax function ensures that the
resulting attention scores αij are normalized and
can be interpreted as probabilities, summing to one
over all tokens j for a given query token i.

The final output of the attention mechanism for
each query token i is then calculated as a weighted
sum of the values vj corresponding to each token
j in the sequence, with the weight determined by
the attention scores αij . The output of the attention
mechanism for token i is defined as

Attentioni(Q,K, V ) =
∑

j

αijvj , (2)

where Q, K, and V are matrices representing all
queries, keys, and values for a given sequence.
This approach allows the model to focus selectively

on parts of the sequence that contribute meaning-
fully to the current query position (Bahdanau et al.,
2015).

3.2 Gradient of Softmax Attention
Training Transformer models involves updating all
trainable parameters using their gradients. The
backpropagation process, which relies on the chain
rule, requires the computation of the derivative
of the softmax function with respect to its inputs.
However, when the input values to the softmax
function become extremely large or small, the func-
tion can enter flat regions. This results in vanishing
gradients, which can hinder the efficient training of
model parameters.

We denote the pre-softmax attention scores (i.e.,
the input to the softmax function before normaliza-
tion) as

zi,j =
qTi kj√
dk

, (3)

then the derivative of the output attention scores
(after passing through the softmax function) with
respect to the input zi,j admits

∂αij

∂zi,j
= αij(1− αij),

∂αij

∂zi,j′
= −αijαij′ , for j′ ̸= j.

(4)

This Jacobian matrix structure implies that each
attention weight depends not only on its own value
but also on the values of all other weights. This
property, while beneficial for capturing complex
relationships, can also make optimization challeng-
ing in some scenarios, as explored in the next sec-
tion.

3.3 Gradient Vanishing in Softmax Attention
One notable issue with softmax attention is the van-
ishing gradient problem, especially when attention
scores become highly peaked. When the softmax
output approaches 1 for a specific score and 0 for
others, the gradients can become excessively small,
slowing down or even halting learning. This is
particularly problematic in deeper models where
multiple layers of attention are stacked.

The vanishing gradient issue arises from the
form of the softmax derivatives. We examine the
two cases: Consider the token i in the attention
mechanism, and let zi,j and αi,j represent the at-
tention scores of all tokens relative to token i, for
j = 1, 2, . . . , T . In the extreme case where one

7818



of the attention weights dominates, i.e., αi,j∗ ≈ 1
and αi,j ≈ 0, for j ̸= j∗. Then Equation 4 im-
plies that ∂αi,j

∂zi,j′
≈ 0 for all j, j′ = 1, 2, . . . , T .

This result indicates that, under such circumstances,
the derivative of the output attention weights with
respect to the input pre-softmax attention scores
vanishes, leading to gradient vanishing across all
tokens. Moreover, in a milder case where αi,j ≈ 0

holds for some j, we have ∂αi,j

∂zi,j′
≈ 0 and

∂αi,j′
∂zi,j

≈ 0

for j′ = 1, 2, . . . , T . This means that the derivative
of the softmax function partially vanishes, if input
and output correspond to αi,j and zi,j of token j,
resulting in gradient vanishing for those specific
tokens.

In summary, when the extreme case arises where
one attention score dominates while others ap-
proach zero, the softmax mechanism suffers from
complete gradient vanishing for all tokens, leading
to slow training and failure in gradient backprop-
agation. In the milder case, where some attention
scores are close to zero, the derivatives associated
with these tokens and their attention scores still
vanish, causing suboptimal training performance.

The extreme case, where some attention scores
approach zero, frequently occurs in attention mech-
anisms due to the exponential function’s sensitiv-
ity to large values. In the following section, we
first introduce a modification to the vanilla soft-
max, called Self-Adjusting Softmax (SA-Softmax),
which is theoretically guaranteed to enhance and
amplify gradient propagation. Additionally, we
propose several variants of SA-Softmax, designed
to further improve the effectiveness and stability
of Transformer models by incorporating normaliza-
tion techniques.

3.4 Self-Adjusting Softmax
To address the issue of potential gradient vanishing
of the softmax function, we propose modifying the
attention mechanism by scaling the softmax output
with its input, called Self-Adjusting Softmax (SA-
Softmax). Specifically, we redefine the output of
attention scores as follows:

βi,j = zi,j · softmax(zi,j), (5)

where zi,j is the pre-softmax attention score of the
token i corresponding to the token j. This modi-
fication introduces an additional scaling term zi,j
to calculate the final attention scores besides the
standard softmax function, amplifying the gradient
propagation compared to the original formulation.

Gradient Analysis of SA-Softmax. Let us eval-
uate the gradient of the modified attention scores
βi,j with respect to the input zi,j′ . Differentiating
βi,j = zi,j ·softmax(zi,j) with respect to zi,j′ , we
have

∂βi,j
∂zi,j

= softmax(zi,j) + zi,j ·
∂softmax(zi,j)

∂zi,j

= αi,j + zi,j · αi,j(1− αi,j),

(6)

and

∂βi,j
∂zi,j′

= zi,j′ ·
∂softmax(zi,j)

∂zi,j′

= −zi,j · αi,jαi,j′ ,

(7)

with j′ ̸= j.

Implications for Gradient Vanishing. Accord-
ing to Equation 6, considering the extreme case
where αi,j∗ ≈ 1, the gradient is amplified as the
first term αi,j∗ is dominant and governs the gradi-
ent. Moreover, for tokens where αi,j ≈ 0, the gra-
dient is enhanced by the dynamic and self-adjusting
scaler zi,j , as demonstrated in Equations 6 and 7.
Therefore, our method significantly enhances the
gradient propagation for tokens with αi,j′ ≈ 1 and
improves the gradient for tokens satisfying αi,j ≈ 0
through the dynamic and self-adjusting scalers.

Comparison with Standard Softmax. In the
standard softmax attention, the gradient softmax
output αi,j with respect to the input zi,j tends to
vanish when αi,j approaches 0 or 1. By introducing
an additional self-adjusting term in the attention
score computation (i.e., modifying softmax(z) to
z · softmax(z)), we allow for a more resilient gra-
dient. As shown in Equations 6 and 7, this approach
may not completely eliminate the gradient vanish-
ing problem, it significantly mitigates its effects,
especially in cases with long sequences or deep
networks, where gradients from softmax attention
typically diminish (Vaswani et al., 2017).

3.5 Variants of SA-Softmax
In this section, we further develop some variants of
SA-Softmax, by utilizing normalization techniques
on the self-adjusting term to further stabilize the
training process.

Variant 1: (z − zmin) · softmax(z) A notable
potential inconsistency in SA-Softmax arises from

7819



the negative attention scores, which can lead to
unpredictable and difficult-to-interpret behavior in
the attention mechanism.

To address this issue, we propose a modified
approach that shifts the self-adjusting term by
its minimum value along the sequence. Specifi-
cally, we reformulate the attention computation as
(z − zmin) · softmax(z), where zmin represents
the minimum value of z across the sequence. This
modification ensures that all attention scores are
non-negative, thereby stabilizing the scaling effect
across different zi:

γi,j = (zi,j − zi,min) · softmax(zi,j) (8)

where zi,min := min{zi,j : j = 1, 2, . . . , T} de-
notes the minimum values of zi,j along the se-
quence. This adjustment enhances the robustness
of the attention mechanism by ensuring consistency
and stability in the scaling of attention scores.

Variant 2: z−zmin
zmax−zmin

·softmax(z) The first vari-
ant introduced a shift in the self-adjusting term to
ensure the non-negativity of attention scores. Build-
ing on this idea, a more widely used technique is
normalization. To further stabilize training, we nor-
malize the self-adjusting term to z−zmin

zmax−zmin
∈ [0, 1].

Therefore, the attention scores are calculated as fol-
lows:

δi,j =
zi,j − zi,min

zi,max − zi,min
· softmax(zi,j), (9)

where zi,max = max{zi,j : j = 1, 2, . . . , T}
denotes the maximum value of zi,j along the se-
quence, and zi,min := min{zi,j : j = 1, 2, . . . , T}
represents the minimum value. This normaliza-
tion ensures that the self-adjusting term (z−zmin)

zmax−zmin

lies within the bounded region [0, 1], resulting in a
stable scaling effect across different input distribu-
tions. This formulation provides a stable gradient
computation, as the adjusting term, normalized by
xmax−xmin, prevents excessively large values and
ensures all values fall within a bounded range.

Variant 3: z−min(zmin,0)
max(0,zmax)−min(zmin,0)

· softmax(z)
To make it easier for the model optimization, we
add a threshold to further normalize the (z−zmin)

zmax−zmin

z − zmin to z−min(zmin,0)
max(0,zmax)−min(zmin,0)

∈ [0,1].

δi =
z −min(zmin, 0)

max(0, zmax)−min(zmin, 0)
·softmax(zi)

(10)

where zmax = max(z) and zmin = min(z). When
the z becomes positive and zmax − xmin ≫ 0 ,

z−min(zmin,0)
max(0,zmax)−min(zmin,0)

will close to 1 so that the
z−min(zmin,0)

max(0,zmax)−min(zmin,0)
·softmax(zi) degrades to

softma(z).

4 Experiment

Datasets. We use the Arxiv and Books3 dataset
for our experiments. The training is conducted
using a batch size of 512 or 1024 sequences, each
with a sequence length from length 128 to length
2048. The models are trained for 50000 iterations.
Throughout the training process, we monitor both
the training and the gradient. We also evaluate our
methods in downstream datasets, such as sequence
classification and machine translation.

Experiment Setting. We begin by conducting
experiments on the Arxiv and Books datasets,
evaluating model performance across training se-
quence lengths ranging from 128 to 1024 with
various positional encodings. Next, we validate
our method on models of varying scales, from
125M to 2.7B parameters. Following this, we an-
alyze the performance of different model variants
and assess their ability to extrapolate to longer
sequence lengths. Subsequently, we further val-
idate the method on downstream tasks, including
text classification and machine translation. Lastly,
we visualize the gradient behavior across differ-
ent methods to provide deeper insights into their
effectiveness. The experiment setting details are
presented in Appendix A. By default, we use the

z−min(zmin,0)
max(0,zmax)−min(zmin,0)

· softmax(z).

4.1 Compare with Baseline Performance

The SA-Softmax could improve performance
across different position encoding. The results
in Table 1 highlight the effectiveness of SA-
Softmax in improving perplexity for Kerple (Chi
et al., 2022), FIRE (Li et al., 2023), RoPE (Su
et al., 2024) and DAPEV2-Kerple (Zheng et al.,
2024b). Without SA-Softmax (✕), RoPE achieves
perplexities of 89.60, 38.29, and 28.78 for sequence
lengths 128, 512, and 1024, respectively. With SA-
Softmax (✓), these values drop to 89.36, 37.57,
and 27.57, showcasing its contribution. DAPEV2-
Kerple exhibits more significant improvements,
with perplexities dropping from 84.33, 36.25, and
26.86 to 83.63, 35.93, and 26.56 across the respec-
tive sequence lengths when SA-Softmax is applied.

7820



Table 1: The perplexity on Arxiv and Books dataset
with different position encodings.

Data PE SA-Softmax 128 512 1024

Arxiv Kerple ✕ 14.61 6.70 5.47
Arxiv Kerple ✓ 14.51 6.66 5.44
Arxiv FIRE ✕ 14.76 6.67 5.43
Arxiv FIRE ✓ 14.46 6.59 5.38
Arxiv RoPE ✕ 14.86 6.70 5.52
Arxiv RoPE ✓ 14.62 6.63 5.49
Arxiv DAPEV2-Kerple ✕ 14.27 6.63 5.26
Arxiv DAPEV2-Kerple ✓ 14.10 6.36 5.20

Books Kerple ✕ 88.88 38.46 28.65
Books Kerple ✓ 87.56 37.95 28.37
Books FIRE ✕ 88.48 38.12 28.57
Books FIRE ✓ 87.98 37.34 28.00
Books RoPE ✕ 89.60 38.29 28.78
Books RoPE ✓ 89.36 37.57 28.57
Books DAPEV2-Kerple ✕ 84.33 36.25 26.86
Books DAPEV2-Kerple ✓ 83.63 35.93 26.56

This demonstrates the universal applicability of SA-
Softmax to enhance position encoding methods.

DAPEV2-Kerple achieves the best performance,
especially with SA-Softmax. Among all tested
configurations, DAPEV2-Kerple combined with
SA-Softmax yields the lowest perplexity scores,
outperforming both the baseline RoPE and RoPE
with SA-Softmax. For instance, at a sequence
length of 1024, DAPEV2-Kerple with SA-Softmax
achieves a perplexity of 26.56, compared to 30.29
for RoPE with SA-Softmax. This superiority is
consistent across shorter sequence lengths as well,
with DAPEV2-Kerple maintaining its advantage
even without SA-Softmax. These results confirm
that DAPEV2-Kerple is the most effective posi-
tion encoding method for reducing perplexity in
language modeling tasks.

The proposed SA-Softmax improves both short
and long-sequence modeling. The analysis in-
dicates that SA-Softmax enhances performance at
all sequence lengths, demonstrating its ability to
handle both short-range and long-range dependen-
cies effectively. The reductions in perplexity are
kept at longer sequence lengths, particularly for
DAPEV2-Kerple (e.g., a drop from 26.86 to 26.56
for length 1024), suggesting that SA-Softmax still
provides better optimization for long contexts. This
capability is critical for modern language models
that often deal with extensive input sequences.

The SA-Softmax still works well on longer train-
ing length. The results in Table 2 demonstrate
the impact of using SA-Softmax (SA-Softmax, in-
dicated by ✓) versus not using it (✕) on the Arxiv

Table 2: The perplexity on the Arxiv and Books dataset
with training length 2048, evaluated from length 128 to
length 2048.

Dataset PE SA-Softmax 128 256 512 1024 2048

Arxiv RoPE ✕ 9.14 7.53 5.42 5.00 4.95
Arxiv RoPE ✓ 9.05 7.46 5.38 4.96 4.92
Arxiv DAPEV2-Kerple ✕ 8.80 7.22 5.16 4.74 4.64
Arxiv DAPEV2-Kerple ✓ 8.70 7.15 5.13 4.72 4.61

Books RoPE ✕ 35.99 31.32 25.97 24.32 22.65
Books RoPE ✓ 35.71 31.15 25.906 24.23 22.63
Books DAPEV2-Kerple ✕ 34.13 29.54 24.28 22.60 20.85
Books DAPEV2-Kerple ✓ 33.60 29.16 24.06 22.40 20.71

and Books datasets under different positional en-
codings (RoPE and DAPEV2-Kerple) across eval-
uation lengths from 128 to 2048, with a training
length of 2048. For both datasets and positional
encodings, SA-Softmax consistently improves per-
formance, as evidenced by lower perplexity values.
On the Arxiv dataset, DAPEV2-Kerple with SA-
Softmax achieves the best results, with perplexity
decreasing from 8.70 at length 128 to 4.61 at length
2048, outperforming baseline DAPEV2-Kerple in
all cases. For the Books dataset, DAPEV2-Kerple
combined with SA-Softmax achieves the lowest
perplexity. Similarly, RoPE with SA-Softmax also
achieves better performance than baseline RoPE on
the Arxiv and Books dataset from evaluation length
128 to length 2048. These results indicate that SA-
Softmax effectively enhances model performance,
and works well on longer training lengths.

4.2 The performance on Larger Model Size

Table 3: The perplexity on the Arxiv and Books dataset
with different model sizes, with training length 512.

PE Dataset SA-Softmax 125M 350M 1.3B 2.7B

RoPE Arxiv ✕ 6.70 6.26 6.01 5.93
RoPE Arxiv ✓ 6.63 6.20 5.92 5.83

DAPEV2-Kerple Arxiv ✕ 6.63 6.02 5.79 5.70
DAPEV2-Kerple Arxiv ✓ 6.36 5.97 5.74 5.65

RoPE Book ✕ 38.29 33.81 30.94 29.98
RoPE Book ✓ 37.57 33.17 30.24 29.15

DAPEV2-Kerple Book ✕ 36.25 32.20 29.32 28.15
DAPEV2-Kerple Book ✓ 35.93 31.82 28.91 27.75

SA-Softmax still enhances performance for
larger model sizes. Table 3 demonstrates the ef-
fectiveness of SA-Softmax across different model
sizes, ranging from 125M to 2.7B parameters, on
the Books and Arxiv datasets. The results show
that, as model size increases, the integration of
SA-Softmax consistently improves performance
compared to the baseline (✕). For example, with
RoPE on the Books dataset, the perplexity at 2.7B

7821



parameters decreases from 29.98 to 29.15 when SA-
Softmax is applied. Similarly, for DAPEV2-Kerple
on the same dataset, perplexity improves from
28.15 to 27.75 at the largest model size, highlight-
ing the compatibility of SA-Softmax with large-
scale models.

SA-Softmax delivers consistent improvements
across datasets. The results are consistent across
both the Books and Arxiv datasets, confirming
the generalizability of SA-Softmax. On the Arxiv
dataset, for instance, RoPE with SA-Softmax re-
duces perplexity across all model sizes, from 6.70
to 6.63 at 125M parameters and from 5.93 to 5.83
at 2.7B parameters. Similar trends are observed
for DAPEV2-Kerple, where the improvements are
slightly less pronounced but still consistent. These
findings indicate that SA-Softmax is robust and
effective across diverse text corpora and model
configurations.

4.3 The Performance of Different Variants

Table 4: The perplexity on the Books dataset with train-
ing length 512, compared to baselines.

Length Variant RoPE DAPEV 2−Kerple

128 softmax(z) 89.60 84.33
128 z ∗ softmax(z) 85.98 82.63
128 (z − zmax) ∗ softmax(z) 86.10 82.08
128 (z−zmin)

zmax−zmin
· softmax(z) 89.36 84.21

128 (z−min(zmin,0))
max(0,zmax)−min(zmin,0)

· softmax(z) 89.36 83.63

512 softmax(z) 38.29 36.25
512 z ∗ softmax(z) 38.07 35.82
512 (z − zmax) ∗ softmax(z) 39.47 35.70
512 (z−zmin)

zmax−zmin
· softmax(z) 37.93 36.21

512 (z−min(zmin,0))
max(0,zmax)−min(zmin,0)

· softmax(z) 37.57 35.93

1024 softmax(z) 28.78 26.86
1024 z ∗ softmax(z) 28.96 26.62
1024 (z − zmax) ∗ softmax(z) 30.26 26.78
1024 (z−zmin)

zmax−zmin
· softmax(z) 28.73 26.74

1024 (z−min(zmin,0))
max(0,zmax)−min(zmin,0)

· softmax(z) 28.57 26.56

The (z−min(zmin,0))
max(0,zmax)−min(zmin,0)

· softmax(z) variant
is a robust default choice. Table 4 shows that
this variant consistently improves perplexity across
all sequence lengths (128, 512, and 1024) and for
both RoPE and DAPEV2-Kerple position encod-
ings. For RoPE, this variant achieves the best
performance at 128, 512, and 1024 lengths, and
for DAPEV2-Kerple, it also achieves better per-
formance than baseline from length 128 to length
1024. This suggests that the variant balances per-
formance improvements across different configu-
rations, making it a reliable choice when specific
experimental conditions are not predefined.

Optimal SA-Softmax variants depend on the ex-
perimental setup and position encoding method.
The results reveal that different variants perform
best under different conditions. For example, the
(z − zmax) · softmax(z) variant achieves the low-
est perplexity for DAPEV2-Kerple at lengths 128
(82.08) and 512 (35.70), outperforming all other
configurations for these specific setups. Similarly,
the standard z ·softmax(z) variant shows competi-
tive performance at 1024-length sequences, achiev-
ing 26.62 for DAPEV2-Kerple. These variations
highlight that while certain formulations may work
well across the board, optimal performance often
depends on the interaction between the sequence
length and the positional encoding technique.

4.4 Performance on Downstream Tasks

Table 5: The performance on downstream tasks, with
125M model size and 300B training tokens.

Dataset Metrics Softmax SA-Softmax

Lambda ppl↓ 21.63 20.43
WikiText ppl↓ 27.57 27.47
ARCEasy acc↑ 45.92 47.52
HellaSwag acc↑ 30.34 30.42

PiQA acc↑ 64.64 64.69
OpenBookQA acc↑ 16.80 18.00

SciQ acc↑ 76.80 77.60
Winogrande acc↑ 51.54 51.85

Pretrain Setting. We pre-train a 125M model
with 300B tokens from the Pile dataset and evaluate
the performance on the downstream tasks (Black
et al., 2022). Following the setting of previous
works (Black et al., 2022), the training steps are
143000 with a training length of 2048 and a global
batch size 1024.

The SA-Softmax achieves better performance
than baseline softmax. As shown in Table 5,
SA-Softmax demonstrates superior performance
compared to the baseline Softmax model across
a wide range of tasks. The improvements are
particularly notable in tasks requiring language
modeling and reasoning. For instance, on the
Lambda dataset (Paperno et al., 2016), SA-Softmax
achieves a significant reduction in perplexity (ppl)
from 21.63 to 20.43. Similarly, on WikiText (Mer-
ity et al., 2017), SA-Softmax reduces perplex-
ity from 27.57 to 27.47. Additionally, it attains
higher accuracy (acc) on several datasets, includ-
ing ARCEasy (Clark et al., 2018b), HellaSwag

7822



(Zellers et al., 2019), PiQA(Clark et al., 2018b),
OpenBookQA(Bisk et al., 2020), SciQ (Welbl et al.,
2017), and Winogrande (Kocijan et al., 2020).
These results underscore the effectiveness of SA-
Softmax, even with a relatively small model size,
when trained on a large-scale corpus. with potential
for further improvements through increased model
size and training data.

5 The Performance on Classification and
Translation Taks

Table 6: Accuracy achieved on various downstream
classification tasks. The Improve ∆ column shows
the improvement in percentage points when using SA-
Softmax compared to Softmax.

Dataset Softmax SA-Softmax ∆

AG-News 93.75 95.83 2.08
DBPedia 99.11 100 0.09

Yelp-Review 65.00 67.50 2.50
YahooNews 72.92 73.96 1.04

AmazonNews 62.50 68.75 6.25

Table 7: Performance comparison on IWSLT2017 ma-
chine translation tasks. Bold values indicate the best
performance for each pair.

Input SA-Softmax en nl de it ro

en ✕ - 25.98 22.53 24.08 21.98
en ✓ - 26.25 23.57 24.67 22.21

nl ✕ 31.43 - 18.57 15.89 14.67
nl ✓ 32.10 - 19.21 16.14 15.04

de ✕ 26.83 18.44 - 14.55 13.72
de ✓ 27.49 18.76 - 14.76 13.57

it ✕ 28.31 15.50 15.65 - 15.77
it ✓ 28.55 15.65 15.97 - 16.09

ro ✕ 28.75 15.42 15.72 18.27 -
ro ✓ 29.21 16.71 16.11 18.54 -

The Performance on Classification and Transla-
tion Tasks, the experiment setting is presented
in Appendix A. The results across both classifi-
cation and machine translation tasks indicate the
consistent effectiveness of SA-Softmax over tradi-
tional methods such as Softmax. On classification
tasks (Table 6), SA-Softmax achieves notable im-
provements across all datasets, with the highest im-
provement observed on the AmazonNews dataset
(+6.25 percentage points) and significant gains on
AG-News (+2.08), Yelp-Review (+2.50), and Ya-
hooNews (+1.04). On machine translation tasks
(Table 7), SA-Softmax consistently outperforms

baseline methods across multiple language pairs.
These results collectively indicate that SA-Softmax
enhances both the accuracy and generalization ca-
pabilities of models, making it a promising alterna-
tive to traditional Softmax-based approaches.

5.1 Visualization of Attention Output
We also visualize the attention probability for dif-
ferent methods in Appendix F.

(z−min(zmin,0))
max(0,zmax)−min(zmin,0)

· softmax(z) and
softmax(z) present similar pattern, compared
to z · softmax(z) . As shown Appendix
F, the (z−min(zmin,0))

max(0,zmax)−min(zmin,0)
· softmax(z)

range may be larger than baseline
softmax(z). Also, the softmax(z) and

(z−min(zmin,0))
max(0,zmax)−min(zmin,0)

· softmax(z) are more
similar, compared to z ∗ softmax(z). The
z ∗ softmax(z) may have some special attention
patterns, as shown in layer 3 and layer 10.

Attention scores can be negative, contrary to
previous beliefs that attention scores must be
positive. In prior work, the research community
has attempted to replace softmax attention with
ReLU attention or Sigmoid attention, operating
under the assumption that attention scores should
always be positive (Nair and Hinton, 2010; Chen
et al., 2020; Wortsman et al., 2023; Shen et al.,
2023) (Ramapuram et al., 2024) However, in this
work, we successfully demonstrate that attention
scores can indeed take on negative values. As
shown in Appendix F, we observe that transform-
ers can still be effectively trained even when the
attention scores contain negative elements and the
sum of each row is not strictly equal to one.

6 Conclusion

We propose Self-Adjusting Softmax, a modifica-
tion designed to improve gradient dynamics and
enhance performance in transformers. To demon-
strate the effectiveness of SA-Softmax, we conduct
extensive experiments, including analyses with var-
ious positional encodings, training lengths, and
model sizes and different variants. Additionally, we
evaluate SA-Softmax on downstream tasks, where
the variant (z−min(zmin,0))

max(0,zmax)−min(zmin,0)
· softmax(z)

consistently proves to be the most effective across
diverse settings. This powerful adjustment signifi-
cantly enhances transformer scalability and gener-
alization, offering promising potential for a wide
range of applications.

7823



Limitations

The proposed method needs to find the max and
min values first for the normalization. Therefore,
there may be additional costs.

References
Joshua Ainslie, Tao Lei, Michiel de Jong, Santiago On-

tanon, Siddhartha Brahma, Yury Zemlyanskiy, David
Uthus, Mandy Guo, James Lee-Thorp, Yi Tay, et al.
2023. CoLT5: Faster long-range transformers with
conditional computation. In The 2023 Conference on
Empirical Methods in Natural Language Processing.

Dosovitskiy Alexey. 2020. An image is worth 16x16
words: Transformers for image recognition at scale.
arXiv preprint arXiv: 2010.11929.

Jimmy Lei Ba. 2016. Layer normalization. arXiv
preprint arXiv:1607.06450.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-
gio. 2015. Neural machine translation by jointly
learning to align and translate. In 3rd International
Conference on Learning Representations, ICLR
2015.

Iz Beltagy, Matthew E Peters, and Arman Cohan. 2020.
Longformer: The long-document transformer. arXiv
preprint arXiv:2004.05150.

Yoshua Bengio, Patrice Simard, and Paolo Frasconi.
1994. Learning long-term dependencies with gradi-
ent descent is difficult. IEEE Transactions on Neural
Networks, 5(2):157–166.

Yonatan Bisk, Rowan Zellers, Ronan Le Bras, Jianfeng
Gao, and Yejin Choi. 2020. Piqa: Reasoning about
physical commonsense in natural language. In Pro-
ceedings of the Thirty-Fourth AAAI Conference on
Artificial Intelligence.

Nils Bjorck, Carla P Gomes, Bart Selman, and Kilian Q
Weinberger. 2018. Understanding batch normaliza-
tion. Advances in neural information processing
systems, 31.

Sid Black, Stella Biderman, Eric Hallahan, Quentin
Anthony, Leo Gao, Laurence Golding, Horace He,
Connor Leahy, Kyle McDonell, Jason Phang, et al.
2022. Gpt-neox-20b: An open-source autoregressive
language model. arXiv preprint arXiv:2204.06745.

Pierre Blanchard, Desmond J Higham, and Nicholas J
Higham. 2019. Accurate computation of the log-
sum-exp and softmax functions. arXiv preprint
arXiv:1909.03469.

Pierre Blanchard, Desmond J Higham, and Nicholas J
Higham. 2021. Accurately computing the log-sum-
exp and softmax functions. IMA Journal of Numeri-
cal Analysis, 41(4):2311–2330.

Stephen Boyd and Lieven Vandenberghe. 2004. Convex
optimization. Cambridge university press.

James Bradbury, Roy Frostig, Peter Hawkins,
Matthew James Johnson, Chris Leary, and Dougal
Maclaurin. 2018. JAX: Autograd and XLA. https:
//github.com/google/jax. Accessed: 2024-09-
25.

John S Bridle. 1990. Probabilistic interpretation of feed-
forward classification network outputs, with relation-
ships to statistical pattern recognition. In Neurocom-
puting: Algorithms, architectures and applications,
pages 227–236. Springer.

Tom B Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel M Ziegler, Jeffrey Wu,
Clemens Winter, Christopher Hesse, Mark Chen, Eric
Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess,
Jack Clark, Christopher Berner, Sam McCandlish,
Alec Radford, Ilya Sutskever, and Dario Amodei.
2020. Language models are few-shot learners. arXiv
preprint arXiv:2005.14165.

Mauro Cettolo, Marcello Federico, Luisa Bentivogli,
Jan Niehues, Sebastian Stüker, Katsuhito Sudoh,
Koichiro Yoshino, and Christian Federmann. 2017.
Overview of the IWSLT 2017 evaluation campaign.
In Proceedings of the 14th International Conference
on Spoken Language Translation, pages 2–14, Tokyo,
Japan. International Workshop on Spoken Language
Translation.

Dengsheng Chen, Jun Li, and Kai Xu. 2020. Arelu:
Attention-based rectified linear unit. arXiv preprint
arXiv:2006.13858.

Guoxuan Chen, Han Shi, Jiawei Li, Yihang Gao, Xi-
aozhe Ren, Yimeng Chen, Xin Jiang, Zhenguo Li,
Weiyang Liu, and Chao Huang. 2024a. SepLLM:
Accelerate large language models by compressing
one segment into one separator. arXiv preprint
arXiv:2412.12094.

Junsong Chen, Jincheng YU, Chongjian GE, Lewei
Yao, Enze Xie, Zhongdao Wang, James Kwok, Ping
Luo, Huchuan Lu, and Zhenguo Li. 2024b. Pixart-
$\alpha$: Fast training of diffusion transformer for
photorealistic text-to-image synthesis. In The Twelfth
International Conference on Learning Representa-
tions.

Ta-Chung Chi, Ting-Han Fan, Peter J Ramadge, and
Alexander Rudnicky. 2022. Kerple: Kernelized rel-
ative positional embedding for length extrapolation.
Advances in Neural Information Processing Systems,
35:8386–8399.

Rewon Child, Scott Gray, Alec Radford, and
Ilya Sutskever. 2019a. Generating long se-
quences with sparse transformers. arXiv preprint
arXiv:1904.10509.

7824

https://arxiv.org/abs/1409.0473
https://arxiv.org/abs/1409.0473
https://github.com/google/jax
https://github.com/google/jax
https://aclanthology.org/2017.iwslt-1.1
https://openreview.net/forum?id=eAKmQPe3m1
https://openreview.net/forum?id=eAKmQPe3m1
https://openreview.net/forum?id=eAKmQPe3m1


Rewon Child, Scott Gray, Alec Radford, and
Ilya Sutskever. 2019b. Generating long se-
quences with sparse transformers. arXiv preprint
arXiv:1904.10509.

Kyunghyun Cho. 2014. Learning phrase representations
using rnn encoder-decoder for statistical machine
translation. arXiv preprint arXiv:1406.1078.

Krzysztof Choromanski, Valerii Likhosherstov, David
Dohan, Xingyou Song, Andreea Gane, Tamas Sar-
los, Peter Hawkins, Jared Davis, Afroz Mohiuddin,
Lukasz Kaiser, et al. 2020. Rethinking attention with
performers. arXiv preprint arXiv:2009.14794.

Krzysztof Choromanski, Valerii Likhosherstov, David
Dohan, Xingyou Song, Andreea Gane, Tamas Sarlos,
Peter Hawkins, Jared Q Davis, Afroz Mohiuddin,
Łukasz Kaiser, et al. 2021. Rethinking attention with
performers. In International Conference on Learning
Representations.

Christopher Clark, Kenton Lee, Ming-Wei Chang,
Tom Kwiatkowski, Michael Collins, and Kristina
Toutanova. 2019. Boolq: Exploring the surprising
difficulty of natural yes/no questions. In Proceedings
of the 2019 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot,
Ashish Sabharwal, Carissa Schoenick, and Oyvind
Tafjord. 2018a. Think you have solved question an-
swering? try arc, the ai2 reasoning challenge. arXiv
preprint arXiv:1803.05457.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot,
Ashish Sabharwal, Caroline Schoenick, and Oyvind
Tafjord. 2018b. Think you have solved question an-
swering? try arc, the ai2 reasoning challenge. arXiv
preprint arXiv:1803.05457.

Google Cloud. 2023. Google cloud tpu v5e: Next-
generation ai hardware for large-scale model training.
https://cloud.google.com/blog/products/
ai-machine-learning/introducing-tpu-v5e.
Accessed: 2024-09-25.

George E Dahl, Frank Schneider, Zachary Nado, Naman
Agarwal, Chandramouli Shama Sastry, Philipp Hen-
nig, Sourabh Medapati, Runa Eschenhagen, Priya
Kasimbeg, Daniel Suo, et al. 2023. Benchmarking
neural network training algorithms. arXiv preprint
arXiv:2306.07179.

Tri Dao, Dan Fu, Stefano Ermon, Atri Rudra, and
Christopher Ré. 2022. Flashattention: Fast and
memory-efficient exact attention with io-awareness.
Advances in Neural Information Processing Systems,
35:16344–16359.

Tri Dao, Daniel Fu, Xinyang G Wang, et al. 2024.
Flashattention 2: Faster attention with better memory
scheduling. arXiv preprint arXiv:2401.14155.

Tri Dao and Albert Gu. 2024. Transformers are
ssms: Generalized models and efficient algorithms
through structured state space duality. arXiv preprint
arXiv:2405.21060.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,
and Li Fei-Fei. 2009. Imagenet: A large-scale hier-
archical image database. In 2009 IEEE conference
on computer vision and pattern recognition, pages
248–255. Ieee.

Yichuan Deng, Zhao Song, and Tianyi Zhou. 2023.
Superiority of softmax: Unveiling the perfor-
mance edge over linear attention. arXiv preprint
arXiv:2310.11685.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. arXiv preprint arXiv:1810.04805.

Alexey Dosovitskiy, Lucas Beyer, Alexander
Kolesnikov, Dirk Weissenborn, Xiaohua Zhai,
Thomas Unterthiner, Mostafa Dehghani, Matthias
Minderer, Georg Heigold, Sylvain Gelly, et al. 2021.
An image is worth 16x16 words: Transformers
for image recognition at scale. arXiv preprint
arXiv:2010.11929.

Timothy Dozat. 2016. Incorporating nesterov momen-
tum into adam.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey,
Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman,
Akhil Mathur, Alan Schelten, Amy Yang, Angela
Fan, et al. 2024. The llama 3 herd of models. arXiv
preprint arXiv:2407.21783.

Sai Surya Duvvuri and Inderjit S Dhillon. 2024. Laser:
Attention with exponential transformation. arXiv
preprint arXiv:2411.03493.

Zafeirios Fountas, Martin A Benfeghoul, Adnan Oomer-
jee, Fenia Christopoulou, Gerasimos Lampouras,
Haitham Bou-Ammar, and Jun Wang. 2024. Human-
like episodic memory for infinite context llms. arXiv
preprint arXiv:2407.09450.

Team Gemini. 2024. Gemini 1.5: Unlocking multi-
modal understanding across millions of tokens of
context. arXiv preprint arXiv:2403.05530.

Nicholas Geneva and Nicholas Zabaras. 2022. Trans-
formers for modeling physical systems. Neural Net-
works, 146:272–289.

Justin M. Gilmer, George E. Dahl, Zachary Nado, Priya
Kasimbeg, and Sourabh Medapati. 2023. init2winit:
a jax codebase for initialization, optimization, and
tuning research.

Xavier Glorot and Yoshua Bengio. 2010. Understanding
the difficulty of training deep feedforward neural net-
works. In Proceedings of the thirteenth international
conference on artificial intelligence and statistics,
pages 249–256. JMLR Workshop and Conference
Proceedings.

7825

https://arxiv.org/abs/1904.10509
https://arxiv.org/abs/1904.10509
https://cloud.google.com/blog/products/ai-machine-learning/introducing-tpu-v5e
https://cloud.google.com/blog/products/ai-machine-learning/introducing-tpu-v5e
https://arxiv.org/abs/2401.14155
https://arxiv.org/abs/2401.14155
https://arxiv.org/abs/2403.05530
https://arxiv.org/abs/2403.05530
https://arxiv.org/abs/2403.05530
http://github.com/google/init2winit
http://github.com/google/init2winit
http://github.com/google/init2winit


Research Google. 2023. Pax: A JAX-based neural net-
work training framework. https://github.com/
google/paxml. Accessed: 2024-09-25.

Alex Graves and Alex Graves. 2012. Long short-term
memory. Supervised sequence labelling with recur-
rent neural networks, pages 37–45.

Albert Gu and Tri Dao. 2023. Mamba: Linear-time
sequence modeling with selective state spaces. arXiv
preprint arXiv:2312.00752.

Anmol Gulati, James Qin, Chung-Cheng Chiu, Niki
Parmar, Yu Zhang, Jiahui Yu, Wei Han, Shibo
Wang, Zhengdong Zhang, Yonghui Wu, et al. 2020.
Conformer: Convolution-augmented transformer for
speech recognition. In Proc. Interspeech.

Mandy Guo, Joshua Ainslie, David Uthus, Santiago On-
tanon, Jianmo Ni, Yun-Hsuan Sung, and Yinfei Yang.
2022. LongT5: Efficient text-to-text transformer for
long sequences. Findings of the Association for Com-
putational Linguistics: NAACL.

Dongchen Han, Yifan Pu, Zhuofan Xia, Yizeng Han,
Xuran Pan, Xiu Li, Jiwen Lu, Shiji Song, and Gao
Huang. 2024. Bridging the divide: Reconsidering
softmax and linear attention. In The Thirty-eighth An-
nual Conference on Neural Information Processing
Systems.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. 2016. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 770–
778.

Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long
short-term memory. Neural computation, 9(8):1735–
1780.

Xun Huang and Serge Belongie. 2017. Arbitrary style
transfer in real-time with adaptive instance normal-
ization. In Proceedings of the IEEE international
conference on computer vision, pages 1501–1510.

Sergey Ioffe. 2015. Batch normalization: Accelerating
deep network training by reducing internal covariate
shift. arXiv preprint arXiv:1502.03167.

Angelos Katharopoulos, Apoorv Vyas, Nikolaos Pap-
pas, and François Fleuret. 2020. Transformers are
RNNs: Fast autoregressive transformers with linear
attention. In International conference on machine
learning, pages 5156–5165. PMLR.

Daniel Khashabi, Snigdha Chaturvedi, Michael Roth,
Shyam Upadhyay, and Dan Roth. 2018. Looking
beyond the surface: A challenge set for reading com-
prehension over multiple sentences. Proceedings of
the 2018 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, pages 252–262.

Vid Kocijan, Elias Chamorro-Perera, Damien Sileo,
Jonathan Raiman, and Peter Clark. 2020. Wino-
grande: An adversarial winograd schema challenge
at scale. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 34, pages 8732–8740.

Guokun Lai, Qizhe Xie, Hanxiao Liu, Yiming Yang,
and Eduard Hovy. 2017. Race: Large-scale read-
ing comprehension dataset from examinations. In
Proceedings of the 2017 Conference on Empirical
Methods in Natural Language Processing, pages 785–
794.

Yann LeCun, Léon Bottou, Genevieve B Orr, and Klaus-
Robert Müller. 2002. Efficient backprop. In Neural
networks: Tricks of the trade, pages 9–50. Springer.

Hector J. Levesque, Ernest Davis, and Leora Morgen-
stern. 2012. The winograd schema challenge. In
Proceedings of the Thirteenth International Confer-
ence on Principles of Knowledge Representation and
Reasoning, pages 552–561.

Shanda Li, Chong You, Guru Guruganesh, Joshua
Ainslie, Santiago Ontanon, Manzil Zaheer, Sumit
Sanghai, Yiming Yang, Sanjiv Kumar, and Srinadh
Bhojanapalli. 2023. Functional interpolation for rel-
ative positions improves long context transformers.
arXiv preprint arXiv:2310.04418.

Opher Lieber, Barak Lenz, Hofit Bata, Gal Co-
hen, Jhonathan Osin, Itay Dalmedigos, Erez
Safahi, Shaked Meirom, Yonatan Belinkov, Shai
Shalev-Shwartz, et al. 2024. Jamba: A hybrid
transformer-mamba language model. arXiv preprint
arXiv:2403.19887.

Timothy P Lillicrap, Adam Santoro, Luke Marris,
Colin J Akerman, and Geoffrey Hinton. 2020. Back-
propagation and the brain. Nature Reviews Neuro-
science, 21(6):335–346.

Hao Liu, Matei Zaharia, and Pieter Abbeel. 2023.
Ring attention with blockwise transformers for near-
infinite context. arXiv preprint arXiv:2310.01889.

Jian Liu, Leyang Cui, Hanmeng Liu, Dandan Huang,
Yile Wang, and Yue Zhang. 2021a. Logiqa: a
challenge dataset for machine reading comprehen-
sion with logical reasoning. In Proceedings of the
Twenty-Ninth International Conference on Interna-
tional Joint Conferences on Artificial Intelligence,
pages 3622–3628.

Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei,
Zheng Zhang, Stephen Lin, and Baining Guo. 2021b.
Swin transformer: Hierarchical vision transformer
using shifted windows. In Proceedings of the
IEEE/CVF international conference on computer vi-
sion, pages 10012–10022.

Zhuang Liu, Degen Huang, Kaiyu Huang, Zhuang Li,
and Jun Zhao. 2021c. Finbert: A pre-trained finan-
cial language representation model for financial text
mining. In Proceedings of the Twenty-ninth Interna-
tional Conference on International Joint Conferences
on Artificial Intelligence, pages 4513–4519.

7826

https://github.com/google/paxml
https://github.com/google/paxml
https://openreview.net/forum?id=RSiGFzQapl
https://openreview.net/forum?id=RSiGFzQapl


Ilya Loshchilov and Frank Hutter. 2016. Sgdr: Stochas-
tic gradient descent with warm restarts. arXiv
preprint arXiv:1608.03983.

Ilya Loshchilov and Frank Hutter. 2017. Decou-
pled weight decay regularization. arXiv preprint
arXiv:1711.05101.

Stephen Merity, Caiming Xiong, James Bradbury, and
Richard Socher. 2017. Pointer sentinel mixture mod-
els. In International Conference on Learning Repre-
sentations.

Team Meta-AI. 2024. The llama 3 herd of models.
arXiv preprint arXiv:2407.21783.

Todor Mihaylov, Peter Clark, Tushar Khot, and Ashish
Sabharwal. 2018a. Can a suit of armor conduct elec-
tricity? a new dataset for open book question an-
swering. In Proceedings of the 2018 Conference on
Empirical Methods in Natural Language Processing,
pages 2381–2391.

Todor Mihaylov, Peter Clark, Tushar Khot, and Ashish
Sabharwal. 2018b. Can a suit of armor conduct elec-
tricity? a new dataset for open book question an-
swering. In Proceedings of the 2018 Conference on
Empirical Methods in Natural Language Processing,
pages 2381–2391.

MLCommons. Bert dataset documentation.
https://github.com/mlcommons/training/
blob/master/language_model/tensorflow/
bert/dataset.md. Accessed: 2024-10-16.

Nasrin Mostafazadeh, Nathanael Chambers, Xiaodong
He, Devi Parikh, Dhruv Batra, Lucy Vanderwende,
Pushmeet Kohli, and James Allen. 2016. A corpus
and cloze evaluation for deeper understanding of
commonsense stories. In Proceedings of the 2016
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, pages 839–849.

Vinod Nair and Geoffrey E Hinton. 2010. Rectified
linear units improve restricted boltzmann machines.
In Proceedings of the 27th international conference
on machine learning (ICML-10), pages 807–814.

Yixin Nie, Adina Williams, Emily Dinan, Mohit Bansal,
Jason Weston, and Douwe Kiela. 2019. Adversarial
nli: A new benchmark for natural language under-
standing. arXiv preprint arXiv:1910.14599.

Vassil Panayotov, Guoguo Chen, Daniel Povey, and
Sanjeev Khudanpur. 2015. Librispeech: An asr cor-
pus based on public domain audio books. In 2015
IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP), pages 5206–5210.
IEEE.

Denis Paperno, Germán Kruszewski, Angeliki Lazari-
dou, Ngoc-Quan Pham, Raffaella Bernardi, Sandro
Pezzelle, Marco Baroni, Gemma Boleda, and Raquel
Fernández. 2016. The lambada dataset: Word predic-
tion requiring a broad discourse context. In Proceed-
ings of the 54th Annual Meeting of the Association for

Computational Linguistics (Volume 1: Long Papers),
pages 1525–1534.

R Pascanu. 2013. On the difficulty of training recurrent
neural networks. arXiv preprint arXiv:1211.5063.

Adam Paszke, Sam Gross, Francisco Massa, Adam
Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca
Antiga, et al. 2019. Pytorch: An imperative style,
high-performance deep learning library. Advances in
Neural Information Processing Systems, 32.

William Peebles and Saining Xie. 2023. Scalable diffu-
sion models with transformers. In Proceedings of the
IEEE/CVF International Conference on Computer
Vision, pages 4195–4205.

Mohammad Taher Pilehvar and Jose Camacho-Collados.
2019. Wic: The word-in-context dataset for evalu-
ating context-sensitive meaning representations. In
Proceedings of the 2019 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
Volume 1 (Long and Short Papers), pages 1267–1273.

Alec Radford, Karthik Narasimhan, Tim Salimans, and
Ilya Sutskever. 2018. Improving language under-
standing by generative pre-training. OpenAI.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J. Liu. 2020. Exploring the limits
of transfer learning with a unified text-to-text trans-
former. In Journal of Machine Learning Research,
volume 21, pages 1–67.

Jason Ramapuram, Federico Danieli, Eeshan Dhekane,
Floris Weers, Dan Busbridge, Pierre Ablin, Tatiana
Likhomanenko, Jagrit Digani, Zijin Gu, Amitis Shi-
dani, et al. 2024. Theory, analysis, and best prac-
tices for sigmoid self-attention. arXiv preprint
arXiv:2409.04431.

Aurko Roy, Mohammad Saffar, Ashish Vaswani, and
David Grangier. 2021a. Efficient content-based
sparse attention with routing transformers. Trans-
actions of the Association for Computational Linguis-
tics, 9:53–68.

Aurko Roy, Mohammad Saffar, Ashish Vaswani,
and David Grangier. 2021b. Efficient routing
transformers: Dynamic token interaction models
for natural language processing. arXiv preprint
arXiv:2003.05997.

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavat-
ula, and Yejin Choi. 2021. Winogrande: An adver-
sarial winograd schema challenge at scale. Commu-
nications of the ACM, 64(9):99–106.

Tim Salimans and Durk P Kingma. 2016. Weight nor-
malization: A simple reparameterization to accelerate
training of deep neural networks. Advances in neural
information processing systems, 29.

7827

https://arxiv.org/abs/2407.21783
https://github.com/mlcommons/training/blob/master/language_model/tensorflow/bert/dataset.md
https://github.com/mlcommons/training/blob/master/language_model/tensorflow/bert/dataset.md
https://github.com/mlcommons/training/blob/master/language_model/tensorflow/bert/dataset.md
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
https://arxiv.org/abs/2003.05997
https://arxiv.org/abs/2003.05997
https://arxiv.org/abs/2003.05997


Kai Shen, Junliang Guo, Xu Tan, Siliang Tang,
Rui Wang, and Jiang Bian. 2023. A study on
relu and softmax in transformer. arXiv preprint
arXiv:2302.06461.

Jianlin Su, Murtadha Ahmed, Yu Lu, Shengfeng Pan,
Wen Bo, and Yunfeng Liu. 2024. Roformer: En-
hanced transformer with rotary position embedding.
Neurocomputing, 568:127063.

Jiankai Sun, Chuanyang Zheng, Enze Xie, Zhengying
Liu, Ruihang Chu, Jianing Qiu, Jiaqi Xu, Mingyu
Ding, Hongyang Li, Mengzhe Geng, et al. 2023. A
survey of reasoning with foundation models. arXiv
preprint arXiv:2312.11562.

Ross Taylor, Marcin Kardas, Guillem Cucurull, Thomas
Scialom, Anthony Hartshorn, Elvis Saravia, Andrew
Poulton, Viktor Kerkez, and Robert Stojnic. 2022.
Galactica: A large language model for science. arXiv
preprint arXiv:2211.09085.

Hugo Touvron, Matthieu Cord, Matthijs Douze, Fran-
cisco Massa, Alexandre Sablayrolles, and Hervé Jé-
gou. 2021. Training data-efficient image transform-
ers & distillation through attention. In International
conference on machine learning, pages 10347–10357.
PMLR.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. Advances in Neural Information Process-
ing Systems, 30.

Alex Wang, Yada Pruksachatkun, Nikita Nangia, Aman-
preet Singh, Julian Michael, Felix Hill, Omer Levy,
and Samuel R Bowman. 2019. Superglue: A stickier
benchmark for general-purpose language understand-
ing systems. In Advances in Neural Information Pro-
cessing Systems (NeurIPS), pages 3261–3275. Cur-
ran Associates, Inc.

Sinong Wang, Belinda Z Li, Madian Khabsa, Han Fang,
and Hao Ma. 2020. Linformer: Self-attention with
linear complexity. arXiv preprint arXiv:2006.04768.

Johannes Welbl, Nelson F Liu, and Matt Gardner. 2017.
Crowdsourcing multiple choice science questions.
In Proceedings of the 3rd Workshop on Noisy User-
generated Text, pages 94–106.

Mitchell Wortsman, Jaehoon Lee, Justin Gilmer,
and Simon Kornblith. 2023. Replacing softmax
with relu in vision transformers. arXiv preprint
arXiv:2309.08586.

Shijie Wu, Ozan Irsoy, Steven Lu, Vadim Dabravolski,
Mark Dredze, Sebastian Gehrmann, Prabhanjan Kam-
badur, David Rosenberg, and Gideon Mann. 2023.
Bloomberggpt: A large language model for finance.
arXiv preprint arXiv:2303.17564.

Chaojun Xiao, Pengle Zhang, Xu Han, Guangxuan Xiao,
Yankai Lin, Zhengyan Zhang, Zhiyuan Liu, Song
Han, and Maosong Sun. 2024a. InfLLM: Unveiling

the intrinsic capacity of LLMs for understanding ex-
tremely long sequences with training-free memory.
arXiv preprint arXiv:2402.04617.

Guangxuan Xiao, Yuandong Tian, Beidi Chen, Song
Han, and Mike Lewis. 2024b. Efficient streaming
language models with attention sinks. In The Twelfth
International Conference on Learning Representa-
tions.

Jing Xiong, Chengming Li, Min Yang, Xiping Hu, and
Bin Hu. 2022a. Expression syntax information bot-
tleneck for math word problems. In Proceedings of
the 45th International ACM SIGIR Conference on
Research and Development in Information Retrieval,
pages 2166–2171.

Jing Xiong, Zixuan Li, Chuanyang Zheng, Zhijiang
Guo, Yichun Yin, Enze Xie, Zhicheng Yang, Qingx-
ing Cao, Haiming Wang, Xiongwei Han, et al. 2023a.
Dq-lore: Dual queries with low rank approximation
re-ranking for in-context learning. arXiv preprint
arXiv:2310.02954.

Jing Xiong, Jianghan Shen, Fanghua Ye, Chaofan Tao,
Zhongwei Wan, Jianqiao Lu, Xun Wu, Chuanyang
Zheng, Zhijiang Guo, Lingpeng Kong, et al. 2024.
Uncomp: Uncertainty-aware long-context compres-
sor for efficient large language model inference.
arXiv preprint arXiv:2410.03090.

Jing Xiong, Jianghan Shen, Chuanyang Zheng, Zhong-
wei Wan, Chenyang Zhao, Chiwun Yang, Fanghua
Ye, Hongxia Yang, Lingpeng Kong, and Ngai Wong.
2025. Parallelcomp: Parallel long-context com-
pressor for length extrapolation. arXiv preprint
arXiv:2502.14317.

Jing Xiong, Jianhao Shen, Ye Yuan, Haiming Wang,
Yichun Yin, Zhengying Liu, Lin Li, Zhijiang Guo,
Qingxing Cao, Yinya Huang, et al. 2023b. Trigo:
Benchmarking formal mathematical proof reduction
for generative language models. arXiv preprint
arXiv:2310.10180.

Jing Xiong, Zhongwei Wan, Xiping Hu, Min Yang,
and Chengming Li. 2022b. Self-consistent reason-
ing for solving math word problems. arXiv preprint
arXiv:2210.15373.

Ruibin Xiong, Yingquan Yang, Di He, Kai Zheng,
Shuxin Zheng, Yaliang Lan, Jingdong Wang, and Tie-
Yan Liu. 2020. On layer normalization in the trans-
former architecture. In International Conference on
Machine Learning, pages 10524–10533. PMLR.

Jingjing Xu, Xu Sun, Zhiyuan Zhang, Guangxiang Zhao,
and Junyang Lin. 2019. Understanding and improv-
ing layer normalization. Advances in neural informa-
tion processing systems, 32.

Yang You, Jing Li, Sashank Reddi, Jason Hseu, Sanjiv
Kumar, Srinadh Bhojanapalli, Xiaodan Song, James
Demmel, and Cho-Jui Hsieh. 2019. Large batch
optimization for deep learning: Training bert in 76
minutes. arXiv preprint arXiv:1904.00962.

7828

https://openreview.net/forum?id=NG7sS51zVF
https://openreview.net/forum?id=NG7sS51zVF


Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali
Farhadi, and Yejin Choi. 2019. Hellaswag: Can a
machine really finish your sentence? In Proceedings
of the 57th Annual Meeting of the Association for
Computational Linguistics, pages 4791–4800.

Jingqing Zhang, Yao Zhao, Mohammad Saleh, and Peter
Liu. 2020. PEGASUS: Pre-training with extracted
gap-sentences for abstractive summarization. In In-
ternational Conference on Machine Learning, pages
11328–11339. PMLR.

Jingzhao Zhang, Tianxing He, Suvrit Sra, and Ali Jad-
babaie. 2019. Why gradient clipping accelerates
training: A theoretical justification for adaptivity.
arXiv preprint arXiv:1905.11881.

Shuailong Zhang, Huanbo Liu, Shuyan Liu, Yuwei
Wang, Jiawei Liu, Zhiyu Gao, Wei Xu, Yiming
Xu, Xin Sun, Lei Cui, et al. 2018. Record: Bridg-
ing the gap between human and machine com-
monsense reading comprehension. arXiv preprint
arXiv:1810.12885.

Xiang Zhang, Junbo Zhao, and Yann LeCun. 2015.
Character-level convolutional networks for text classi-
fication. Advances in neural information processing
systems, 28.

Chuanyang Zheng, Yihang Gao, Han Shi, Minbin
Huang, Jingyao Li, Jing Xiong, Xiaozhe Ren,
Michael Ng, Xin Jiang, Zhenguo Li, et al. 2024a.
Dape: Data-adaptive positional encoding for length
extrapolation. In The Thirty-eighth Annual Confer-
ence on Neural Information Processing Systems.

Chuanyang Zheng, Yihang Gao, Han Shi, Jing Xiong,
Jiankai Sun, Jingyao Li, Minbin Huang, Xiaozhe
Ren, Michael Ng, Xin Jiang, et al. 2024b. Dape
v2: Process attention score as feature map for length
extrapolation. arXiv preprint arXiv:2410.04798.

Jin Peng Zhou, Charles E Staats, Wenda Li, Christian
Szegedy, Kilian Q Weinberger, and Yuhuai Wu. 2024.
Don’t trust: Verify – grounding LLM quantitative
reasoning with autoformalization. In The Twelfth In-
ternational Conference on Learning Representations.

Qianchao Zhu, Jiangfei Duan, Chang Chen, Siran Liu,
Xiuhong Li, Guanyu Feng, Xin Lv, Huanqi Cao,
Xiao Chuanfu, Xingcheng Zhang, et al. 2024. Near-
lossless acceleration of long context llm inference
with adaptive structured sparse attention. arXiv
preprint arXiv:2406.15486.

7829

https://openreview.net/forum?id=V5tdi14ple
https://openreview.net/forum?id=V5tdi14ple


A Model Configuration

Pretrain Setting. All experiments are conducted
on 8 GPUs. The 125M and 350M model configura-
tions are the following.

Table 8: Model Configurations.

125M 350M

Training sequence length 512 512
Batch size 2 × 8 2 × 8

Number of iterations 50k 50k
Dropout prob. 0.0 0.0

Attention dropout prob. 0.0 0.0
Attention head 12 16

Feature dimension 768 1024
Layer number 12 24

Optimizer Adam Adam
Optimizer parameter betas [0.9, 0.95] [0.9, 0.95]

Learning rate 6e− 4 3e− 4
Precision float132 float32

Experiment Setting for Classification and Trans-
lation tasks. For the sequence classification tasks
presented in Table 6, the feature dimension is set
to 128, with 2 attention heads and 6 layers. The
datasets are AGNews, DBPedia, Yelp-Review, Ya-
hooNews, AmazonNews (Zhang et al., 2015). In
contrast, for the machine translation tasks shown in
Table 7, the feature dimension is increased to 512,
with 8 attention heads and 12 layers. The dataset
comes from IWSLT2017 datasets (Cettolo et al.,
2017).

B Error Bar

Table 9: The perplexity on Books3 dataset with three
random seeds.

Method SA-Softmax Mean Std

Kerple ✕ 38.21 0.3873
Kerple ✓ 37.71 0.3826
FIRE ✕ 38.00 0.2211
FIRE ✓ 37.24 0.2786
RoPE ✕ 38.03 0.2165
RoPE ✓ 37.48 0.3287

DAPEV2-Kerple ✕ 35.92 0.3821
DAPEV2-Kerple ✓ 35.58 0.4037

0 10000 20000 30000 40000 50000
Iteration

0.125

0.100

0.075

0.050

0.025

0.000

0.025

Lo
ss

 D
iff

er
en

ce

Loss Difference

softmax(z)- (z min(zmin, 0))
max(0, zmax) min(zmin, 0) softmax(z)

softmax(z)-z*softmax(z)

0 10000 20000 30000 40000 50000
Iteration

0.15

0.10

0.05

0.00

0.05

0.10

0.15

Gr
ad

ie
nt

 D
iff

er
en

ce

Gradient Difference

softmax(z)- (z min(zmin, 0))
max(0, zmax) min(zmin, 0) softmax(z)

softmax(z)-z*softmax(z)

Figure 1: The loss difference and gradient difference between
our methods and baseline.

C Analyze the Training Loss and
Gradient

Optimizer Gradient. As shown in Figure 1,
comparing the gradients of softmax(z) and z ·
softmax(z), the latter shows larger gradients ini-
tially due to the multiplicative factor of z. A de-
tailed analysis in the methodology section confirms
this behavior. In contrast, the normalized variant,

(z−min(zmin,0))
max(0,zmax)−min(zmin,0)

· softmax(z), produces
gradients similar to or smaller than softmax(z)
early on but can grow larger later in training. This
is due to normalization, which stabilizes updates
but reduces gradient magnitude in the early stages.

Training Loss Across Steps. For
DAPEV2-Kerple, z · softmax(z) and

(z−min(zmin,0))
max(0,zmax)−min(zmin,0)

· softmax(z) can both
achieve lower loss than baseline softmax(z).
However, (z−min(zmin,0))

max(0,zmax)−min(zmin,0)
· softmax(z)

is better than baseline softmax(z) through the
whole training steps, while the z · softmax(z)
achieves better performance than baseline at
late training step. This may caused by that
the (z−min(zmin,0))

max(0,zmax)−min(zmin,0)
· softmax(z) is a

normalized version so that easier for optimizer.

D Risk

This work focuses on utilizing self-adjust softmax
to improve the transformer architecture. This is no
specific risk. Also, we use AI assistants for writing.

7830



E Time Cost

Table 10: The perplexity on Books3 dataset with three
random seeds.

Model Cost Softmax SA-Softmax

125M Time Cost (ms) 143.99 160.46
125M Memory Cost (GB) 2.67 2.67
350M Time Cost (ms) 284.92 342.47
350M Memory Cost (GB) 6.65 6.65
1.3B Time Cost (ms) 473.92 509.28
1.3B Memory Cost (GB) 16.19 16.19

7831



F Visualization of Attention Score

0 100 200 300 400 500
Relative Distance

10 15

10 13

10 11

10 9

10 7

10 5

10 3

10 1

At
te

nt
io

n 
Ou

tp
ut

Layer 1: softmax(z)
Head-0
Head-1
Head-2
Head-3
Head-4
Head-5
Head-6
Head-7
Head-8
Head-9
Head-10
Head-11

0 100 200 300 400 500
Relative Distance

100
10 1
10 2
10 3
10 4
10 5
10 6
10 7
10 8
10 9

10 10
0

10 10
10 9
10 8
10 7
10 6
10 5
10 4
10 3
10 2
10 1
100
101

At
te

nt
io

n 
Ou

tp
ut

Layer 1: z softmax(z)
Head-0
Head-1
Head-2
Head-3
Head-4
Head-5
Head-6
Head-7
Head-8
Head-9
Head-10
Head-11

0 100 200 300 400 500
Relative Distance

10 8

10 6

10 4

10 2

100

At
te

nt
io

n 
Ou

tp
ut

Layer 1: (z min(zmin, 0))
max(0, zmax) min(zmin, 0) softmax(z)

Head-0
Head-1
Head-2
Head-3
Head-4
Head-5
Head-6
Head-7
Head-8
Head-9
Head-10
Head-11

0 100 200 300 400 500
Relative Distance

10 10

10 8

10 6

10 4

10 2

100

At
te

nt
io

n 
Ou

tp
ut

Layer 2: softmax(z)
Head-0
Head-1
Head-2
Head-3
Head-4
Head-5
Head-6
Head-7
Head-8
Head-9
Head-10
Head-11

0 100 200 300 400 500
Relative Distance

100
10 1
10 2
10 3
10 4
10 5
10 6
10 7
10 8
10 9

10 10
0

10 10
10 9
10 8
10 7
10 6
10 5
10 4
10 3
10 2
10 1
100

At
te

nt
io

n 
Ou

tp
ut

Layer 2: z softmax(z)
Head-0
Head-1
Head-2
Head-3
Head-4
Head-5
Head-6
Head-7
Head-8
Head-9
Head-10
Head-11

0 100 200 300 400 500
Relative Distance

10 7

10 6

10 5

10 4

10 3

10 2

10 1

At
te

nt
io

n 
Ou

tp
ut

Layer 2: (z min(zmin, 0))
max(0, zmax) min(zmin, 0) softmax(z)

Head-0
Head-1
Head-2
Head-3
Head-4
Head-5
Head-6
Head-7
Head-8
Head-9
Head-10
Head-11

0 100 200 300 400 500
Relative Distance

10 9

10 7

10 5

10 3

10 1

At
te

nt
io

n 
Ou

tp
ut

Layer 3: softmax(z)
Head-0
Head-1
Head-2
Head-3
Head-4
Head-5
Head-6
Head-7
Head-8
Head-9
Head-10
Head-11

0 100 200 300 400 500
Relative Distance

100
10 1
10 2
10 3
10 4
10 5
10 6
10 7
10 8
10 9

10 10
0

10 10
10 9
10 8
10 7
10 6
10 5
10 4
10 3
10 2
10 1
100
101

At
te

nt
io

n 
Ou

tp
ut

Layer 3: z softmax(z)
Head-0
Head-1
Head-2
Head-3
Head-4
Head-5
Head-6
Head-7
Head-8
Head-9
Head-10
Head-11

0 100 200 300 400 500
Relative Distance

10 8

10 6

10 4

10 2

100

At
te

nt
io

n 
Ou

tp
ut

Layer 3: (z min(zmin, 0))
max(0, zmax) min(zmin, 0) softmax(z)

Head-0
Head-1
Head-2
Head-3
Head-4
Head-5
Head-6
Head-7
Head-8
Head-9
Head-10
Head-11

0 100 200 300 400 500
Relative Distance

10 8

10 6

10 4

10 2

100

At
te

nt
io

n 
Ou

tp
ut

Layer 4: softmax(z)
Head-0
Head-1
Head-2
Head-3
Head-4
Head-5
Head-6
Head-7
Head-8
Head-9
Head-10
Head-11

0 100 200 300 400 500
Relative Distance

100
10 1
10 2
10 3
10 4
10 5
10 6
10 7
10 8
10 9

10 10
0

10 10
10 9
10 8
10 7
10 6
10 5
10 4
10 3
10 2
10 1
100
101

At
te

nt
io

n 
Ou

tp
ut

Layer 4: z softmax(z)
Head-0
Head-1
Head-2
Head-3
Head-4
Head-5
Head-6
Head-7
Head-8
Head-9
Head-10
Head-11

0 100 200 300 400 500
Relative Distance

10 9

10 7

10 5

10 3

10 1

At
te

nt
io

n 
Ou

tp
ut

Layer 4: (z min(zmin, 0))
max(0, zmax) min(zmin, 0) softmax(z)

Head-0
Head-1
Head-2
Head-3
Head-4
Head-5
Head-6
Head-7
Head-8
Head-9
Head-10
Head-11

0 100 200 300 400 500
Relative Distance

10 10

10 8

10 6

10 4

10 2

100

At
te

nt
io

n 
Ou

tp
ut

Layer 5: softmax(z)
Head-0
Head-1
Head-2
Head-3
Head-4
Head-5
Head-6
Head-7
Head-8
Head-9
Head-10
Head-11

0 100 200 300 400 500
Relative Distance

101
100

10 1
10 2
10 3
10 4
10 5
10 6
10 7
10 8
10 9

10 10
0

10 10
10 9
10 8
10 7
10 6
10 5
10 4
10 3
10 2
10 1
100
101

At
te

nt
io

n 
Ou

tp
ut

Layer 5: z softmax(z)
Head-0
Head-1
Head-2
Head-3
Head-4
Head-5
Head-6
Head-7
Head-8
Head-9
Head-10
Head-11

0 100 200 300 400 500
Relative Distance

10 11

10 9

10 7

10 5

10 3

10 1

At
te

nt
io

n 
Ou

tp
ut

Layer 5: (z min(zmin, 0))
max(0, zmax) min(zmin, 0) softmax(z)

Head-0
Head-1
Head-2
Head-3
Head-4
Head-5
Head-6
Head-7
Head-8
Head-9
Head-10
Head-11

Figure 2: The visualization of attention output, from left to right: 1) softmax(z); 2) x ∗ softmax(z); 3)
(z−min(zmin,0))

max(0,zmax)−min(zmin,0)
· softmax(z).

7832



0 100 200 300 400 500
Relative Distance

10 7

10 6

10 5

10 4

10 3

10 2

10 1

100

At
te

nt
io

n 
Ou

tp
ut

Layer 6: softmax(z)
Head-0
Head-1
Head-2
Head-3
Head-4
Head-5
Head-6
Head-7
Head-8
Head-9
Head-10
Head-11

0 100 200 300 400 500
Relative Distance

10 1
10 2
10 3
10 4
10 5
10 6
10 7
10 8
10 9

10 10
0

10 10
10 9
10 8
10 7
10 6
10 5
10 4
10 3
10 2
10 1
100
101

At
te

nt
io

n 
Ou

tp
ut

Layer 6: z softmax(z)
Head-0
Head-1
Head-2
Head-3
Head-4
Head-5
Head-6
Head-7
Head-8
Head-9
Head-10
Head-11

0 100 200 300 400 500
Relative Distance

10 7

10 6

10 5

10 4

10 3

10 2

10 1

100

At
te

nt
io

n 
Ou

tp
ut

Layer 6: (z min(zmin, 0))
max(0, zmax) min(zmin, 0) softmax(z)

Head-0
Head-1
Head-2
Head-3
Head-4
Head-5
Head-6
Head-7
Head-8
Head-9
Head-10
Head-11

0 100 200 300 400 500
Relative Distance

10 7

10 5

10 3

10 1

At
te

nt
io

n 
Ou

tp
ut

Layer 7: softmax(z)
Head-0
Head-1
Head-2
Head-3
Head-4
Head-5
Head-6
Head-7
Head-8
Head-9
Head-10
Head-11

0 100 200 300 400 500
Relative Distance

100
10 1
10 2
10 3
10 4
10 5
10 6
10 7
10 8
10 9

10 10
0

10 10
10 9
10 8
10 7
10 6
10 5
10 4
10 3
10 2
10 1
100
101

At
te

nt
io

n 
Ou

tp
ut

Layer 7: z softmax(z)
Head-0
Head-1
Head-2
Head-3
Head-4
Head-5
Head-6
Head-7
Head-8
Head-9
Head-10
Head-11

0 100 200 300 400 500
Relative Distance

10 9

10 7

10 5

10 3

10 1

At
te

nt
io

n 
Ou

tp
ut

Layer 7: (z min(zmin, 0))
max(0, zmax) min(zmin, 0) softmax(z)

Head-0
Head-1
Head-2
Head-3
Head-4
Head-5
Head-6
Head-7
Head-8
Head-9
Head-10
Head-11

0 100 200 300 400 500
Relative Distance

10 11

10 9

10 7

10 5

10 3

10 1

At
te

nt
io

n 
Ou

tp
ut

Layer 8: softmax(z)
Head-0
Head-1
Head-2
Head-3
Head-4
Head-5
Head-6
Head-7
Head-8
Head-9
Head-10
Head-11

0 100 200 300 400 500
Relative Distance

101
100

10 1
10 2
10 3
10 4
10 5
10 6
10 7
10 8
10 9

10 10
0

10 10
10 9
10 8
10 7
10 6
10 5
10 4
10 3
10 2
10 1
100
101

At
te

nt
io

n 
Ou

tp
ut

Layer 8: z softmax(z)
Head-0
Head-1
Head-2
Head-3
Head-4
Head-5
Head-6
Head-7
Head-8
Head-9
Head-10
Head-11

0 100 200 300 400 500
Relative Distance

10 8

10 6

10 4

10 2

100

At
te

nt
io

n 
Ou

tp
ut

Layer 8: (z min(zmin, 0))
max(0, zmax) min(zmin, 0) softmax(z)

Head-0
Head-1
Head-2
Head-3
Head-4
Head-5
Head-6
Head-7
Head-8
Head-9
Head-10
Head-11

0 100 200 300 400 500
Relative Distance

10 10

10 8

10 6

10 4

10 2

100

At
te

nt
io

n 
Ou

tp
ut

Layer 9: softmax(z)
Head-0
Head-1
Head-2
Head-3
Head-4
Head-5
Head-6
Head-7
Head-8
Head-9
Head-10
Head-11

0 100 200 300 400 500
Relative Distance

100
10 1
10 2
10 3
10 4
10 5
10 6
10 7
10 8
10 9

10 10
0

10 10
10 9
10 8
10 7
10 6
10 5
10 4
10 3
10 2
10 1
100
101

At
te

nt
io

n 
Ou

tp
ut

Layer 9: z softmax(z)
Head-0
Head-1
Head-2
Head-3
Head-4
Head-5
Head-6
Head-7
Head-8
Head-9
Head-10
Head-11

0 100 200 300 400 500
Relative Distance

10 8

10 6

10 4

10 2

At
te

nt
io

n 
Ou

tp
ut

Layer 9: (z min(zmin, 0))
max(0, zmax) min(zmin, 0) softmax(z)

Head-0
Head-1
Head-2
Head-3
Head-4
Head-5
Head-6
Head-7
Head-8
Head-9
Head-10
Head-11

0 100 200 300 400 500
Relative Distance

10 8

10 6

10 4

10 2

100

At
te

nt
io

n 
Ou

tp
ut

Layer 10: softmax(z)
Head-0
Head-1
Head-2
Head-3
Head-4
Head-5
Head-6
Head-7
Head-8
Head-9
Head-10
Head-11

0 100 200 300 400 500
Relative Distance

101
100

10 1
10 2
10 3
10 4
10 5
10 6
10 7
10 8
10 9

10 10
0

10 10
10 9
10 8
10 7
10 6
10 5
10 4
10 3
10 2
10 1
100

At
te

nt
io

n 
Ou

tp
ut

Layer 10: z softmax(z)
Head-0
Head-1
Head-2
Head-3
Head-4
Head-5
Head-6
Head-7
Head-8
Head-9
Head-10
Head-11

0 100 200 300 400 500
Relative Distance

10 10

10 8

10 6

10 4

10 2

100

At
te

nt
io

n 
Ou

tp
ut

Layer 10: (z min(zmin, 0))
max(0, zmax) min(zmin, 0) softmax(z)

Head-0
Head-1
Head-2
Head-3
Head-4
Head-5
Head-6
Head-7
Head-8
Head-9
Head-10
Head-11

Figure 3: The visualization of attention output, from left to right: 1) softmax(z); 2) x ∗ softmax(z); 3)
(z−min(zmin,0))

max(0,zmax)−min(zmin,0)
· softmax(z).

7833



0 100 200 300 400 500
Relative Distance

10 8

10 6

10 4

10 2

100

At
te

nt
io

n 
Ou

tp
ut

Layer 11: softmax(z)
Head-0
Head-1
Head-2
Head-3
Head-4
Head-5
Head-6
Head-7
Head-8
Head-9
Head-10
Head-11

0 100 200 300 400 500
Relative Distance

100
10 1
10 2
10 3
10 4
10 5
10 6
10 7
10 8
10 9

10 10
0

10 10
10 9
10 8
10 7
10 6
10 5
10 4
10 3
10 2
10 1
100
101

At
te

nt
io

n 
Ou

tp
ut

Layer 11: z softmax(z)
Head-0
Head-1
Head-2
Head-3
Head-4
Head-5
Head-6
Head-7
Head-8
Head-9
Head-10
Head-11

0 100 200 300 400 500
Relative Distance

10 8

10 6

10 4

10 2

100

At
te

nt
io

n 
Ou

tp
ut

Layer 11: (z min(zmin, 0))
max(0, zmax) min(zmin, 0) softmax(z)

Head-0
Head-1
Head-2
Head-3
Head-4
Head-5
Head-6
Head-7
Head-8
Head-9
Head-10
Head-11

0 100 200 300 400 500
Relative Distance

10 7

10 6

10 5

10 4

10 3

10 2

10 1

100

At
te

nt
io

n 
Ou

tp
ut

Layer 12: softmax(z)
Head-0
Head-1
Head-2
Head-3
Head-4
Head-5
Head-6
Head-7
Head-8
Head-9
Head-10
Head-11

0 100 200 300 400 500
Relative Distance

100
10 1
10 2
10 3
10 4
10 5
10 6
10 7
10 8
10 9

10 10
0

10 10
10 9
10 8
10 7
10 6
10 5
10 4
10 3
10 2
10 1
100
101

At
te

nt
io

n 
Ou

tp
ut

Layer 12: z softmax(z)
Head-0
Head-1
Head-2
Head-3
Head-4
Head-5
Head-6
Head-7
Head-8
Head-9
Head-10
Head-11

0 100 200 300 400 500
Relative Distance

10 13

10 11

10 9

10 7

10 5

10 3

10 1

At
te

nt
io

n 
Ou

tp
ut

Layer 12: (z min(zmin, 0))
max(0, zmax) min(zmin, 0) softmax(z)

Head-0
Head-1
Head-2
Head-3
Head-4
Head-5
Head-6
Head-7
Head-8
Head-9
Head-10
Head-11

Figure 4: The visualization of attention output, from left to right: 1) softmax(z); 2) x ∗ softmax(z); 3)
(z−min(zmin,0))

max(0,zmax)−min(zmin,0)
· softmax(z).

7834



G Implementation

In this section, we present the implementation of the proposed SA-Softmax module in PyTorch which
allows for research purpose (Paszke et al., 2019).

import t o r c h
import t o r c h . nn as nn

class SA−Softmax ( nn . Module ) :
def _ _ i n i t _ _ ( s e l f , o p e r a t i o n _ n a m e ) :

"""

Args:
operation_name: "softmax","v1","v2","v3", or "v4"

"""
super (SA−Softmax , s e l f ) . _ _ i n i t _ _ ( )

s e l f . o p e r a t i o n _ n a m e = o p e r a t i o n _ n a m e :

def f o r w a r d ( s e l f , a t t e n t i o n : t o r c h . Tensor , b i a s : t o r c h . Tensor ) :
"""
Args:

attention: input sequence , which is q^T * k,
shape [bsz , num_heads , seq_len , seq_len]

bias: bias matrix , which can be generated by ALiBi , Kerple
FIRE or other additive position encodings

shape [1,num_heads , seq_len , seq_len]

Returns:
attention with SA-Softmax ,
shape [bsz , num_heads , seq_len , seq_len]

"""
a t t e n t i o n _ p r o b s = so f tmax ( a t t e n t i o n _ s c o r e s , a t t e n t i o n _ m a s k )

if s e l f . g r a d i e n t _ n a m e =="v1" :
a t t e n t i o n _ p r o b s = a t t e n t i o n _ p r o b s * a t t e n t i o n _ s c o r e s
a t t e n t i o n _ p r o b s = t o r c h . t r i l ( a t t e n t i o n _ p r o b s )

elif s e l f . g r a d i e n t _ n a m e =="v2" :
B , H, T , _ = a t t e n t i o n _ s c o r e s . shape
# C r e a t e a mask f o r t h e lower t r i a n g u l a r p a r t ( i n c l u d i n g d i a g o n a l )
mask = t o r c h . t r i l ( t o r c h . ones ( T , T , d t y p e = t o r c h . bool , d e v i c e =

a t t e n t i o n _ s c o r e s . d e v i c e ) )
# Apply mask t o g e t lower t r i a n g u l a r v a l u e s , r e p l a c e uppe r t r i a n g l e

wi th i n f ( so i t doesn ' t a f f e c t min )
x _ l o w e r _ t r i = a t t e n t i o n _ s c o r e s . m a s k e d _ f i l l (~ mask , float ( 'inf' ) )
# Get t h e minimum v a l u e a l o n g t h e l a s t d imens ion
m i n _ a t t e n t i o n _ s c o r e , _ = x _ l o w e r _ t r i . min ( dim = −1 , keepdim=True )
a t t e n t i o n _ s c o r e s = t o r c h . t r i l ( a t t e n t i o n _ s c o r e s )
a t t e n t i o n _ p r o b s = a t t e n t i o n _ p r o b s * ( a t t e n t i o n _ s c o r e s − m i n _ a t t e n t i o n _ s c o r e )
a t t e n t i o n _ p r o b s = t o r c h . t r i l ( a t t e n t i o n _ p r o b s )

elif s e l f . g r a d i e n t _ n a m e =="v3" :
B , H, T , _ = a t t e n t i o n _ s c o r e s . shape

# C r e a t e a mask f o r t h e lower t r i a n g u l a r p a r t ( i n c l u d i n g d i a g o n a l )
mask = t o r c h . t r i l ( t o r c h . ones ( T , T , d t y p e = t o r c h . bool , d e v i c e =

a t t e n t i o n _ s c o r e s . d e v i c e ) )
# Apply mask t o g e t lower t r i a n g u l a r v a l u e s , r e p l a c e uppe r t r i a n g l e

wi th i n f ( so i t doesn ' t a f f e c t min )
x _ l o w e r _ t r i = a t t e n t i o n _ s c o r e s . m a s k e d _ f i l l (~ mask , float ( 'inf' ) )
# Get t h e minimum v a l u e a l o n g t h e l a s t d imens ion
m i n _ a t t e n t i o n _ s c o r e , _ = x _ l o w e r _ t r i . min ( dim = −1 , keepdim=True )
# Apply mask t o g e t lower t r i a n g u l a r v a l u e s , r e p l a c e uppe r t r i a n g l e

wi th i n f ( so i t doesn ' t a f f e c t min )

7835



x _ l o w e r _ t r i = a t t e n t i o n _ s c o r e s . m a s k e d _ f i l l (~ mask , float ( '-inf' ) )
m a x _ a t t e n t i o n _ s c o r e , _ = x _ l o w e r _ t r i . max ( dim = −1 , keepdim=True )

a t t e n t i o n _ p r o b s = a t t e n t i o n _ p r o b s * ( ( a t t e n t i o n _ s c o r e s − m i n _ a t t e n t i o n _ s c o r e )
/ ( m a x _ a t t e n t i o n _ s c o r e − m i n _ a t t e n t i o n _ s c o r e +1e −10) )

elif s e l f . g r a d i e n t _ n a m e =="v4" :
a t t e n t i o n _ s c o r e s _ t r i l _ t h i s = t o r c h . t r i l ( a t t e n t i o n _ s c o r e s )
m i n _ a t t e n t i o n _ s c o r e = t o r c h . min ( a t t e n t i o n _ s c o r e s _ t r i l _ t h i s , −1 , keepdim=

True ) [ 0 ]
m a x _ a t t e n t i o n _ s c o r e = t o r c h . max ( a t t e n t i o n _ s c o r e s _ t r i l _ t h i s , −1 , keepdim=

True ) [ 0 ]
m i n _ a t t e n t i o n _ s c o r e = t o r c h . minimum ( m i n _ a t t e n t i o n _ s c o r e , t o r c h . z e r o s ( 1 ,

d e v i c e = a t t e n t i o n _ s c o r e s . d e v i c e ) )
m a x _ a t t e n t i o n _ s c o r e = t o r c h . maximum ( m a x _ a t t e n t i o n _ s c o r e , t o r c h . z e r o s ( 1 ,

d e v i c e = a t t e n t i o n _ s c o r e s . d e v i c e ) )
a t t e n t i o n _ p r o b s = a t t e n t i o n _ p r o b s * ( ( a t t e n t i o n _ s c o r e s − m i n _ a t t e n t i o n _ s c o r e )

/ ( m a x _ a t t e n t i o n _ s c o r e − m i n _ a t t e n t i o n _ s c o r e +1e −10) )

` a t t e n t i o n _ p r o b s = t o r c h . t r i l ( a t t e n t i o n _ p r o b s )
return a t t e n t i o n _ p r o b s

7836


