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Abstract

The softmax function is crucial in Transformer
attention, which normalizes each row of the
attention scores with summation to one. Usu-
ally, tokens with larger attention scores are
important for the final prediction. However,
the softmax function can face a gradient van-
ishing issue for such important tokens (e.g.,
probabilities close to one), leading to opti-
mization difficulties for the important tokens
so that the performance may not be better. In
this paper, we propose Self-Adjusting Softmax
(SA-Softmax) to address this issue by modi-
fying softmax(z) to z · softmax(z) and its
normalized variant (z−min(zmin,0))

max(0,zmax)−min(zmin,0)
·

softmax(z). We theoretically show that SA-
Softmax provides enhanced gradient proper-
ties compared to the vanilla softmax function.
Moreover, SA-Softmax Attention can be seam-
lessly integrated into existing Transformer mod-
els to their attention mechanisms with minor
adjustments. We conducted experiments to
evaluate the empirical performance of Trans-
former models using SA-Softmax compared
to the vanilla softmax function. These exper-
iments, involving models with up to 2.7 bil-
lion parameters, are conducted across diverse
datasets, language tasks, and positional encod-
ing methods.

1 Introduction

Transformer-based models (Vaswani et al., 2017)
have delivered exceptional performances across
widespread applications, including language pro-
cessing (Zhang et al., 2020; Guo et al., 2022;
Ainslie et al., 2023), computer vision (Alexey,
2020; Touvron et al., 2021; Liu et al., 2021b; Chen
et al., 2024b; Peebles and Xie, 2023), quantitative
research (Zhou et al., 2024; Liu et al., 2021c; Wu
et al., 2023), and scientific machine learning (Tay-
lor et al., 2022; Geneva and Zabaras, 2022). A
critical component of the Transformer is its atten-
tion mechanism, which computes the importance

and contribution of each token in a sequence for
next-token generation. Central to this mechanism
is the softmax function, a mathematical operation
that normalizes attention scores token-wise, en-
suring a summation of one. This property facil-
itates probabilistic interpretability and enables a
more expressive attention mechanism. For exam-
ple, Chen et al. (2024a); Xiao et al. (2024a); Xiong
et al. (2025) observed that most attention scores
are usually concentrated on specific tokens, allow-
ing for more efficient Transformer architectures by
discarding tokens with lower accumulative atten-
tion scores (Xiong et al., 2024). As a result, the
normalized attention scores produced by softmax
provide insights into the mechanism of next-token
generation in LLMs. Moreover, compared to other
attention functions, softmax exhibits some unique
and advantageous properties, which contribute to
the superior performance of softmax-based Trans-
former models (Han et al., 2024; Deng et al., 2023).

One of the primary limitations of softmax lies
in its susceptibility to the gradient vanishing prob-
lem. When input values to the softmax function
become highly polarized, i.e., extreme values that
are very large or small, the resulting probabilities
can exhibit extreme sparsity. This, in turn, leads
to gradients that approach zero, impeding effective
learning and optimization during backpropagation.
Such issues are particularly pronounced in deep
architectures, where the accumulation of small gra-
dients can hinder convergence and degrade model
performance (Vaswani et al., 2017; Duvvuri and
Dhillon, 2024). Several variations have been pro-
posed, including ReLU attention (Nair and Hinton,
2010; Chen et al., 2020; Wortsman et al., 2023;
Shen et al., 2023) or sigmoid attention (Ramapu-
ram et al., 2024). These alternatives aim to ad-
dress specific shortcomings of softmax, such as its
sensitivity to extreme input values or its restricted
output range, which may limit the behavior of the
attention mechanism. However, these approaches
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often fall short of achieving comparable stability,
interpretability, or general performance, especially
in large-scale models where softmax continues to
dominate due to its robustness and simplicity.

To address this limitation, we propose a novel
modification to the softmax function, introducing
Self-Adjusting Softmax (SA-Softmax), which en-
hances gradient propagation while preserving the
probabilistic properties and ranking order of tra-
ditional softmax. Our approach builds on theo-
retical insights and empirical observations. First,
we show theoretically that modifying the soft-
max function to z · softmax(z) amplifies gradient
magnitudes, addressing gradient saturation under
a range of typical conditions. Building on this
formulation, we further refine the formulation to

(z−min(zmin,0))
max(0,zmax)−min(zmin,0)

·softmax(z), incorporat-
ing the normalization while enhancing gradient
flow. It also maintains the relative ordering of input
values, which serves as a critical property for the
effectiveness of attention mechanisms. The pro-
posed modification of the vanilla softmax function
ensures compatibility with standard Transformer
architectures and facilitates seamless integration
into existing frameworks.

1. We propose z · softmax(z) as an alternative
to the vanilla softmax in the attention mecha-
nism to improve gradient magnitudes, thereby
enhancing backpropagation during training.
Additionally, we refine z · softmax(z) to

(z−min(zmin,0))
max(0,zmax)−min(zmin,0)

· softmax(z) with
normalization, preserving a critical property
of softmax while achieving superior perfor-
mance.

2. We conduct extensive experiments across vari-
ous datasets, tasks, and models, comparing the
proposed SA-Softmax and its variants with the
standard softmax(z). Results demonstrate
that our approach effectively mitigates gradi-
ent vanishing and consistently improves per-
formances across models with different scales.

3. We validate the proposed methods on large-
scale pre-training datasets with a training
length of 2048. Moreover, we also show the
effectiveness of the proposed method in down-
stream tasks.

2 Related Works

Transformer Attention. The Transformer
model, introduced by Vaswani et al. (Vaswani

et al., 2017), revolutionized the field of Natural
Language Processing (NLP) with its self-attention
mechanism. Unlike previous sequence models
such as RNNs and LSTMs (Graves and Graves,
2012), Transformer does not rely on recurrent
structures and instead uses self-attention to depict
relationships between input tokens in parallel.
Self-attention, also known as scaled dot-product
attention, computes attention scores between input
tokens using the query (Q), key (K), and value
(V ) vectors.

Attention(Q,K, V ) = softmax

(
QKT

√
dk

)
V

where dk is the dimension of the key vectors
(Vaswani et al., 2017). There are also linearized
attention methods, such as the Linformer (Wang
et al., 2020) and Performer (Choromanski et al.,
2020), approximating the softmax attention func-
tion using low-rank approximations, reducing the
computational complexity from O(n2) to O(n).
Another approach to reduce computational com-
plexity is through sparse attention, where only a
subset of attention scores are computed. For ex-
ample, the Longformer (Beltagy et al., 2020) uses
a combination of local windowed attention and
global attention, reducing the attention complexity
to O(n) for sequences of length n.

Gradient Vanishing. The gradient vanishing
problem refers to the phenomenon where gradients
become exceedingly small during backpropagation
(Lillicrap et al., 2020). Several works have ex-
plored the causes and potential solutions to the gra-
dient vanishing problem. Gradient clipping (Zhang
et al., 2019) is one practical solution to mitigate
both vanishing and exploding gradients. This tech-
nique caps gradients at a maximum value to pre-
vent them from becoming too small or too large.
Pascanu (2013) explored gradient clipping in the
context of RNNs and found that it can help stabilize
training by preventing gradient explosions, which
often arise due to large gradients propagating back-
ward through deep networks. The skip connection
(He et al., 2016) is the potential way to mitigate
the gradient vanishing problem. For softmax atten-
tion, the gradient will become zero if one attention
probability is too large (Vaswani et al., 2017).

Normalization. Batch Normalization (BN)
(Ioffe, 2015) normalizes activations along the
batch dimension, while Layer Normalization (LN)

7817



(Ba, 2016) operates along the channel dimension,
and Instance Normalization (IN) (Huang and
Belongie, 2017) applies BN-like computations
independently for each sample. Weight Nor-
malization (WN) (Salimans and Kingma, 2016)
instead normalizes filter weights directly. Group
Normalization (GN) divides channels into groups,
normalizing each group independently, and its
computations are unaffected by batch size. Bjorck
et al. (2018) show that in networks without BN,
large gradient updates can cause diverging loss
and uncontrolled activation growth with network
depth, limiting learning rates. Similarly, Xu et al.
(2019) demonstrates that layer normalization
smooths gradients and highlights the importance
of mean and variance derivatives, which re-center
and re-scale backward gradients beyond forward
normalization.

3 Method

3.1 Softmax Attention Mechanism
In the attention mechanism, the weight αij repre-
sents the attention score between token i (the query)
and token j (the key). This score quantifies the rel-
ative importance of token j to token i, among all
tokens in the input sequence. It is formulated as

αij = softmax

(
qTi kj√
dk

)
=

exp
(
qTi kj√

dk

)

∑
j′ exp

(
qTi kj′√

dk

) ,

(1)
where qi and kj are the query and key vectors for to-
kens i and j, respectively, and dk is a scaling factor
based on the dimensionality of the keys (Vaswani
et al., 2017). The softmax function ensures that the
resulting attention scores αij are normalized and
can be interpreted as probabilities, summing to one
over all tokens j for a given query token i.

The final output of the attention mechanism for
each query token i is then calculated as a weighted
sum of the values vj corresponding to each token
j in the sequence, with the weight determined by
the attention scores αij . The output of the attention
mechanism for token i is defined as

Attentioni(Q,K, V ) =
∑

j

αijvj , (2)

where Q, K, and V are matrices representing all
queries, keys, and values for a given sequence.
This approach allows the model to focus selectively

on parts of the sequence that contribute meaning-
fully to the current query position (Bahdanau et al.,
2015).

3.2 Gradient of Softmax Attention
Training Transformer models involves updating all
trainable parameters using their gradients. The
backpropagation process, which relies on the chain
rule, requires the computation of the derivative
of the softmax function with respect to its inputs.
However, when the input values to the softmax
function become extremely large or small, the func-
tion can enter flat regions. This results in vanishing
gradients, which can hinder the efficient training of
model parameters.

We denote the pre-softmax attention scores (i.e.,
the input to the softmax function before normaliza-
tion) as

zi,j =
qTi kj√
dk

, (3)

then the derivative of the output attention scores
(after passing through the softmax function) with
respect to the input zi,j admits

∂αij

∂zi,j
= αij(1− αij),

∂αij

∂zi,j′
= −αijαij′ , for j′ ̸= j.

(4)

This Jacobian matrix structure implies that each
attention weight depends not only on its own value
but also on the values of all other weights. This
property, while beneficial for capturing complex
relationships, can also make optimization challeng-
ing in some scenarios, as explored in the next sec-
tion.

3.3 Gradient Vanishing in Softmax Attention
One notable issue with softmax attention is the van-
ishing gradient problem, especially when attention
scores become highly peaked. When the softmax
output approaches 1 for a specific score and 0 for
others, the gradients can become excessively small,
slowing down or even halting learning. This is
particularly problematic in deeper models where
multiple layers of attention are stacked.

The vanishing gradient issue arises from the
form of the softmax derivatives. We examine the
two cases: Consider the token i in the attention
mechanism, and let zi,j and αi,j represent the at-
tention scores of all tokens relative to token i, for
j = 1, 2, . . . , T . In the extreme case where one
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of the attention weights dominates, i.e., αi,j∗ ≈ 1
and αi,j ≈ 0, for j ̸= j∗. Then Equation 4 im-
plies that ∂αi,j

∂zi,j′
≈ 0 for all j, j′ = 1, 2, . . . , T .

This result indicates that, under such circumstances,
the derivative of the output attention weights with
respect to the input pre-softmax attention scores
vanishes, leading to gradient vanishing across all
tokens. Moreover, in a milder case where αi,j ≈ 0

holds for some j, we have ∂αi,j

∂zi,j′
≈ 0 and

∂αi,j′
∂zi,j

≈ 0

for j′ = 1, 2, . . . , T . This means that the derivative
of the softmax function partially vanishes, if input
and output correspond to αi,j and zi,j of token j,
resulting in gradient vanishing for those specific
tokens.

In summary, when the extreme case arises where
one attention score dominates while others ap-
proach zero, the softmax mechanism suffers from
complete gradient vanishing for all tokens, leading
to slow training and failure in gradient backprop-
agation. In the milder case, where some attention
scores are close to zero, the derivatives associated
with these tokens and their attention scores still
vanish, causing suboptimal training performance.

The extreme case, where some attention scores
approach zero, frequently occurs in attention mech-
anisms due to the exponential function’s sensitiv-
ity to large values. In the following section, we
first introduce a modification to the vanilla soft-
max, called Self-Adjusting Softmax (SA-Softmax),
which is theoretically guaranteed to enhance and
amplify gradient propagation. Additionally, we
propose several variants of SA-Softmax, designed
to further improve the effectiveness and stability
of Transformer models by incorporating normaliza-
tion techniques.

3.4 Self-Adjusting Softmax
To address the issue of potential gradient vanishing
of the softmax function, we propose modifying the
attention mechanism by scaling the softmax output
with its input, called Self-Adjusting Softmax (SA-
Softmax). Specifically, we redefine the output of
attention scores as follows:

βi,j = zi,j · softmax(zi,j), (5)

where zi,j is the pre-softmax attention score of the
token i corresponding to the token j. This modi-
fication introduces an additional scaling term zi,j
to calculate the final attention scores besides the
standard softmax function, amplifying the gradient
propagation compared to the original formulation.

Gradient Analysis of SA-Softmax. Let us eval-
uate the gradient of the modified attention scores
βi,j with respect to the input zi,j′ . Differentiating
βi,j = zi,j ·softmax(zi,j) with respect to zi,j′ , we
have

∂βi,j
∂zi,j

= softmax(zi,j) + zi,j ·
∂softmax(zi,j)

∂zi,j

= αi,j + zi,j · αi,j(1− αi,j),

(6)

and

∂βi,j
∂zi,j′

= zi,j′ ·
∂softmax(zi,j)

∂zi,j′

= −zi,j · αi,jαi,j′ ,

(7)

with j′ ̸= j.

Implications for Gradient Vanishing. Accord-
ing to Equation 6, considering the extreme case
where αi,j∗ ≈ 1, the gradient is amplified as the
first term αi,j∗ is dominant and governs the gradi-
ent. Moreover, for tokens where αi,j ≈ 0, the gra-
dient is enhanced by the dynamic and self-adjusting
scaler zi,j , as demonstrated in Equations 6 and 7.
Therefore, our method significantly enhances the
gradient propagation for tokens with αi,j′ ≈ 1 and
improves the gradient for tokens satisfying αi,j ≈ 0
through the dynamic and self-adjusting scalers.

Comparison with Standard Softmax. In the
standard softmax attention, the gradient softmax
output αi,j with respect to the input zi,j tends to
vanish when αi,j approaches 0 or 1. By introducing
an additional self-adjusting term in the attention
score computation (i.e., modifying softmax(z) to
z · softmax(z)), we allow for a more resilient gra-
dient. As shown in Equations 6 and 7, this approach
may not completely eliminate the gradient vanish-
ing problem, it significantly mitigates its effects,
especially in cases with long sequences or deep
networks, where gradients from softmax attention
typically diminish (Vaswani et al., 2017).

3.5 Variants of SA-Softmax
In this section, we further develop some variants of
SA-Softmax, by utilizing normalization techniques
on the self-adjusting term to further stabilize the
training process.

Variant 1: (z − zmin) · softmax(z) A notable
potential inconsistency in SA-Softmax arises from
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the negative attention scores, which can lead to
unpredictable and difficult-to-interpret behavior in
the attention mechanism.

To address this issue, we propose a modified
approach that shifts the self-adjusting term by
its minimum value along the sequence. Specifi-
cally, we reformulate the attention computation as
(z − zmin) · softmax(z), where zmin represents
the minimum value of z across the sequence. This
modification ensures that all attention scores are
non-negative, thereby stabilizing the scaling effect
across different zi:

γi,j = (zi,j − zi,min) · softmax(zi,j) (8)

where zi,min := min{zi,j : j = 1, 2, . . . , T} de-
notes the minimum values of zi,j along the se-
quence. This adjustment enhances the robustness
of the attention mechanism by ensuring consistency
and stability in the scaling of attention scores.

Variant 2: z−zmin
zmax−zmin

·softmax(z) The first vari-
ant introduced a shift in the self-adjusting term to
ensure the non-negativity of attention scores. Build-
ing on this idea, a more widely used technique is
normalization. To further stabilize training, we nor-
malize the self-adjusting term to z−zmin

zmax−zmin
∈ [0, 1].

Therefore, the attention scores are calculated as fol-
lows:

δi,j =
zi,j − zi,min

zi,max − zi,min
· softmax(zi,j), (9)

where zi,max = max{zi,j : j = 1, 2, . . . , T}
denotes the maximum value of zi,j along the se-
quence, and zi,min := min{zi,j : j = 1, 2, . . . , T}
represents the minimum value. This normaliza-
tion ensures that the self-adjusting term (z−zmin)

zmax−zmin

lies within the bounded region [0, 1], resulting in a
stable scaling effect across different input distribu-
tions. This formulation provides a stable gradient
computation, as the adjusting term, normalized by
xmax−xmin, prevents excessively large values and
ensures all values fall within a bounded range.

Variant 3: z−min(zmin,0)
max(0,zmax)−min(zmin,0)

· softmax(z)
To make it easier for the model optimization, we
add a threshold to further normalize the (z−zmin)

zmax−zmin

z − zmin to z−min(zmin,0)
max(0,zmax)−min(zmin,0)

∈ [0,1].

δi =
z −min(zmin, 0)

max(0, zmax)−min(zmin, 0)
·softmax(zi)

(10)

where zmax = max(z) and zmin = min(z). When
the z becomes positive and zmax − xmin ≫ 0 ,

z−min(zmin,0)
max(0,zmax)−min(zmin,0)

will close to 1 so that the
z−min(zmin,0)

max(0,zmax)−min(zmin,0)
·softmax(zi) degrades to

softma(z).

4 Experiment

Datasets. We use the Arxiv and Books3 dataset
for our experiments. The training is conducted
using a batch size of 512 or 1024 sequences, each
with a sequence length from length 128 to length
2048. The models are trained for 50000 iterations.
Throughout the training process, we monitor both
the training and the gradient. We also evaluate our
methods in downstream datasets, such as sequence
classification and machine translation.

Experiment Setting. We begin by conducting
experiments on the Arxiv and Books datasets,
evaluating model performance across training se-
quence lengths ranging from 128 to 1024 with
various positional encodings. Next, we validate
our method on models of varying scales, from
125M to 2.7B parameters. Following this, we an-
alyze the performance of different model variants
and assess their ability to extrapolate to longer
sequence lengths. Subsequently, we further val-
idate the method on downstream tasks, including
text classification and machine translation. Lastly,
we visualize the gradient behavior across differ-
ent methods to provide deeper insights into their
effectiveness. The experiment setting details are
presented in Appendix A. By default, we use the

z−min(zmin,0)
max(0,zmax)−min(zmin,0)

· softmax(z).

4.1 Compare with Baseline Performance

The SA-Softmax could improve performance
across different position encoding. The results
in Table 1 highlight the effectiveness of SA-
Softmax in improving perplexity for Kerple (Chi
et al., 2022), FIRE (Li et al., 2023), RoPE (Su
et al., 2024) and DAPEV2-Kerple (Zheng et al.,
2024b). Without SA-Softmax (✕), RoPE achieves
perplexities of 89.60, 38.29, and 28.78 for sequence
lengths 128, 512, and 1024, respectively. With SA-
Softmax (✓), these values drop to 89.36, 37.57,
and 27.57, showcasing its contribution. DAPEV2-
Kerple exhibits more significant improvements,
with perplexities dropping from 84.33, 36.25, and
26.86 to 83.63, 35.93, and 26.56 across the respec-
tive sequence lengths when SA-Softmax is applied.
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Table 1: The perplexity on Arxiv and Books dataset
with different position encodings.

Data PE SA-Softmax 128 512 1024

Arxiv Kerple ✕ 14.61 6.70 5.47
Arxiv Kerple ✓ 14.51 6.66 5.44
Arxiv FIRE ✕ 14.76 6.67 5.43
Arxiv FIRE ✓ 14.46 6.59 5.38
Arxiv RoPE ✕ 14.86 6.70 5.52
Arxiv RoPE ✓ 14.62 6.63 5.49
Arxiv DAPEV2-Kerple ✕ 14.27 6.63 5.26
Arxiv DAPEV2-Kerple ✓ 14.10 6.36 5.20

Books Kerple ✕ 88.88 38.46 28.65
Books Kerple ✓ 87.56 37.95 28.37
Books FIRE ✕ 88.48 38.12 28.57
Books FIRE ✓ 87.98 37.34 28.00
Books RoPE ✕ 89.60 38.29 28.78
Books RoPE ✓ 89.36 37.57 28.57
Books DAPEV2-Kerple ✕ 84.33 36.25 26.86
Books DAPEV2-Kerple ✓ 83.63 35.93 26.56

This demonstrates the universal applicability of SA-
Softmax to enhance position encoding methods.

DAPEV2-Kerple achieves the best performance,
especially with SA-Softmax. Among all tested
configurations, DAPEV2-Kerple combined with
SA-Softmax yields the lowest perplexity scores,
outperforming both the baseline RoPE and RoPE
with SA-Softmax. For instance, at a sequence
length of 1024, DAPEV2-Kerple with SA-Softmax
achieves a perplexity of 26.56, compared to 30.29
for RoPE with SA-Softmax. This superiority is
consistent across shorter sequence lengths as well,
with DAPEV2-Kerple maintaining its advantage
even without SA-Softmax. These results confirm
that DAPEV2-Kerple is the most effective posi-
tion encoding method for reducing perplexity in
language modeling tasks.

The proposed SA-Softmax improves both short
and long-sequence modeling. The analysis in-
dicates that SA-Softmax enhances performance at
all sequence lengths, demonstrating its ability to
handle both short-range and long-range dependen-
cies effectively. The reductions in perplexity are
kept at longer sequence lengths, particularly for
DAPEV2-Kerple (e.g., a drop from 26.86 to 26.56
for length 1024), suggesting that SA-Softmax still
provides better optimization for long contexts. This
capability is critical for modern language models
that often deal with extensive input sequences.

The SA-Softmax still works well on longer train-
ing length. The results in Table 2 demonstrate
the impact of using SA-Softmax (SA-Softmax, in-
dicated by ✓) versus not using it (✕) on the Arxiv

Table 2: The perplexity on the Arxiv and Books dataset
with training length 2048, evaluated from length 128 to
length 2048.

Dataset PE SA-Softmax 128 256 512 1024 2048

Arxiv RoPE ✕ 9.14 7.53 5.42 5.00 4.95
Arxiv RoPE ✓ 9.05 7.46 5.38 4.96 4.92
Arxiv DAPEV2-Kerple ✕ 8.80 7.22 5.16 4.74 4.64
Arxiv DAPEV2-Kerple ✓ 8.70 7.15 5.13 4.72 4.61

Books RoPE ✕ 35.99 31.32 25.97 24.32 22.65
Books RoPE ✓ 35.71 31.15 25.906 24.23 22.63
Books DAPEV2-Kerple ✕ 34.13 29.54 24.28 22.60 20.85
Books DAPEV2-Kerple ✓ 33.60 29.16 24.06 22.40 20.71

and Books datasets under different positional en-
codings (RoPE and DAPEV2-Kerple) across eval-
uation lengths from 128 to 2048, with a training
length of 2048. For both datasets and positional
encodings, SA-Softmax consistently improves per-
formance, as evidenced by lower perplexity values.
On the Arxiv dataset, DAPEV2-Kerple with SA-
Softmax achieves the best results, with perplexity
decreasing from 8.70 at length 128 to 4.61 at length
2048, outperforming baseline DAPEV2-Kerple in
all cases. For the Books dataset, DAPEV2-Kerple
combined with SA-Softmax achieves the lowest
perplexity. Similarly, RoPE with SA-Softmax also
achieves better performance than baseline RoPE on
the Arxiv and Books dataset from evaluation length
128 to length 2048. These results indicate that SA-
Softmax effectively enhances model performance,
and works well on longer training lengths.

4.2 The performance on Larger Model Size

Table 3: The perplexity on the Arxiv and Books dataset
with different model sizes, with training length 512.

PE Dataset SA-Softmax 125M 350M 1.3B 2.7B

RoPE Arxiv ✕ 6.70 6.26 6.01 5.93
RoPE Arxiv ✓ 6.63 6.20 5.92 5.83

DAPEV2-Kerple Arxiv ✕ 6.63 6.02 5.79 5.70
DAPEV2-Kerple Arxiv ✓ 6.36 5.97 5.74 5.65

RoPE Book ✕ 38.29 33.81 30.94 29.98
RoPE Book ✓ 37.57 33.17 30.24 29.15

DAPEV2-Kerple Book ✕ 36.25 32.20 29.32 28.15
DAPEV2-Kerple Book ✓ 35.93 31.82 28.91 27.75

SA-Softmax still enhances performance for
larger model sizes. Table 3 demonstrates the ef-
fectiveness of SA-Softmax across different model
sizes, ranging from 125M to 2.7B parameters, on
the Books and Arxiv datasets. The results show
that, as model size increases, the integration of
SA-Softmax consistently improves performance
compared to the baseline (✕). For example, with
RoPE on the Books dataset, the perplexity at 2.7B

7821



parameters decreases from 29.98 to 29.15 when SA-
Softmax is applied. Similarly, for DAPEV2-Kerple
on the same dataset, perplexity improves from
28.15 to 27.75 at the largest model size, highlight-
ing the compatibility of SA-Softmax with large-
scale models.

SA-Softmax delivers consistent improvements
across datasets. The results are consistent across
both the Books and Arxiv datasets, confirming
the generalizability of SA-Softmax. On the Arxiv
dataset, for instance, RoPE with SA-Softmax re-
duces perplexity across all model sizes, from 6.70
to 6.63 at 125M parameters and from 5.93 to 5.83
at 2.7B parameters. Similar trends are observed
for DAPEV2-Kerple, where the improvements are
slightly less pronounced but still consistent. These
findings indicate that SA-Softmax is robust and
effective across diverse text corpora and model
configurations.

4.3 The Performance of Different Variants

Table 4: The perplexity on the Books dataset with train-
ing length 512, compared to baselines.

Length Variant RoPE DAPEV 2−Kerple

128 softmax(z) 89.60 84.33
128 z ∗ softmax(z) 85.98 82.63
128 (z − zmax) ∗ softmax(z) 86.10 82.08
128 (z−zmin)

zmax−zmin
· softmax(z) 89.36 84.21

128 (z−min(zmin,0))
max(0,zmax)−min(zmin,0)

· softmax(z) 89.36 83.63

512 softmax(z) 38.29 36.25
512 z ∗ softmax(z) 38.07 35.82
512 (z − zmax) ∗ softmax(z) 39.47 35.70
512 (z−zmin)

zmax−zmin
· softmax(z) 37.93 36.21

512 (z−min(zmin,0))
max(0,zmax)−min(zmin,0)

· softmax(z) 37.57 35.93

1024 softmax(z) 28.78 26.86
1024 z ∗ softmax(z) 28.96 26.62
1024 (z − zmax) ∗ softmax(z) 30.26 26.78
1024 (z−zmin)

zmax−zmin
· softmax(z) 28.73 26.74

1024 (z−min(zmin,0))
max(0,zmax)−min(zmin,0)

· softmax(z) 28.57 26.56

The (z−min(zmin,0))
max(0,zmax)−min(zmin,0)

· softmax(z) variant
is a robust default choice. Table 4 shows that
this variant consistently improves perplexity across
all sequence lengths (128, 512, and 1024) and for
both RoPE and DAPEV2-Kerple position encod-
ings. For RoPE, this variant achieves the best
performance at 128, 512, and 1024 lengths, and
for DAPEV2-Kerple, it also achieves better per-
formance than baseline from length 128 to length
1024. This suggests that the variant balances per-
formance improvements across different configu-
rations, making it a reliable choice when specific
experimental conditions are not predefined.

Optimal SA-Softmax variants depend on the ex-
perimental setup and position encoding method.
The results reveal that different variants perform
best under different conditions. For example, the
(z − zmax) · softmax(z) variant achieves the low-
est perplexity for DAPEV2-Kerple at lengths 128
(82.08) and 512 (35.70), outperforming all other
configurations for these specific setups. Similarly,
the standard z ·softmax(z) variant shows competi-
tive performance at 1024-length sequences, achiev-
ing 26.62 for DAPEV2-Kerple. These variations
highlight that while certain formulations may work
well across the board, optimal performance often
depends on the interaction between the sequence
length and the positional encoding technique.

4.4 Performance on Downstream Tasks

Table 5: The performance on downstream tasks, with
125M model size and 300B training tokens.

Dataset Metrics Softmax SA-Softmax

Lambda ppl↓ 21.63 20.43
WikiText ppl↓ 27.57 27.47
ARCEasy acc↑ 45.92 47.52
HellaSwag acc↑ 30.34 30.42

PiQA acc↑ 64.64 64.69
OpenBookQA acc↑ 16.80 18.00

SciQ acc↑ 76.80 77.60
Winogrande acc↑ 51.54 51.85

Pretrain Setting. We pre-train a 125M model
with 300B tokens from the Pile dataset and evaluate
the performance on the downstream tasks (Black
et al., 2022). Following the setting of previous
works (Black et al., 2022), the training steps are
143000 with a training length of 2048 and a global
batch size 1024.

The SA-Softmax achieves better performance
than baseline softmax. As shown in Table 5,
SA-Softmax demonstrates superior performance
compared to the baseline Softmax model across
a wide range of tasks. The improvements are
particularly notable in tasks requiring language
modeling and reasoning. For instance, on the
Lambda dataset (Paperno et al., 2016), SA-Softmax
achieves a significant reduction in perplexity (ppl)
from 21.63 to 20.43. Similarly, on WikiText (Mer-
ity et al., 2017), SA-Softmax reduces perplex-
ity from 27.57 to 27.47. Additionally, it attains
higher accuracy (acc) on several datasets, includ-
ing ARCEasy (Clark et al., 2018b), HellaSwag
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(Zellers et al., 2019), PiQA(Clark et al., 2018b),
OpenBookQA(Bisk et al., 2020), SciQ (Welbl et al.,
2017), and Winogrande (Kocijan et al., 2020).
These results underscore the effectiveness of SA-
Softmax, even with a relatively small model size,
when trained on a large-scale corpus. with potential
for further improvements through increased model
size and training data.

5 The Performance on Classification and
Translation Taks

Table 6: Accuracy achieved on various downstream
classification tasks. The Improve ∆ column shows
the improvement in percentage points when using SA-
Softmax compared to Softmax.

Dataset Softmax SA-Softmax ∆

AG-News 93.75 95.83 2.08
DBPedia 99.11 100 0.09

Yelp-Review 65.00 67.50 2.50
YahooNews 72.92 73.96 1.04

AmazonNews 62.50 68.75 6.25

Table 7: Performance comparison on IWSLT2017 ma-
chine translation tasks. Bold values indicate the best
performance for each pair.

Input SA-Softmax en nl de it ro

en ✕ - 25.98 22.53 24.08 21.98
en ✓ - 26.25 23.57 24.67 22.21

nl ✕ 31.43 - 18.57 15.89 14.67
nl ✓ 32.10 - 19.21 16.14 15.04

de ✕ 26.83 18.44 - 14.55 13.72
de ✓ 27.49 18.76 - 14.76 13.57

it ✕ 28.31 15.50 15.65 - 15.77
it ✓ 28.55 15.65 15.97 - 16.09

ro ✕ 28.75 15.42 15.72 18.27 -
ro ✓ 29.21 16.71 16.11 18.54 -

The Performance on Classification and Transla-
tion Tasks, the experiment setting is presented
in Appendix A. The results across both classifi-
cation and machine translation tasks indicate the
consistent effectiveness of SA-Softmax over tradi-
tional methods such as Softmax. On classification
tasks (Table 6), SA-Softmax achieves notable im-
provements across all datasets, with the highest im-
provement observed on the AmazonNews dataset
(+6.25 percentage points) and significant gains on
AG-News (+2.08), Yelp-Review (+2.50), and Ya-
hooNews (+1.04). On machine translation tasks
(Table 7), SA-Softmax consistently outperforms

baseline methods across multiple language pairs.
These results collectively indicate that SA-Softmax
enhances both the accuracy and generalization ca-
pabilities of models, making it a promising alterna-
tive to traditional Softmax-based approaches.

5.1 Visualization of Attention Output
We also visualize the attention probability for dif-
ferent methods in Appendix F.

(z−min(zmin,0))
max(0,zmax)−min(zmin,0)

· softmax(z) and
softmax(z) present similar pattern, compared
to z · softmax(z) . As shown Appendix
F, the (z−min(zmin,0))

max(0,zmax)−min(zmin,0)
· softmax(z)

range may be larger than baseline
softmax(z). Also, the softmax(z) and

(z−min(zmin,0))
max(0,zmax)−min(zmin,0)

· softmax(z) are more
similar, compared to z ∗ softmax(z). The
z ∗ softmax(z) may have some special attention
patterns, as shown in layer 3 and layer 10.

Attention scores can be negative, contrary to
previous beliefs that attention scores must be
positive. In prior work, the research community
has attempted to replace softmax attention with
ReLU attention or Sigmoid attention, operating
under the assumption that attention scores should
always be positive (Nair and Hinton, 2010; Chen
et al., 2020; Wortsman et al., 2023; Shen et al.,
2023) (Ramapuram et al., 2024) However, in this
work, we successfully demonstrate that attention
scores can indeed take on negative values. As
shown in Appendix F, we observe that transform-
ers can still be effectively trained even when the
attention scores contain negative elements and the
sum of each row is not strictly equal to one.

6 Conclusion

We propose Self-Adjusting Softmax, a modifica-
tion designed to improve gradient dynamics and
enhance performance in transformers. To demon-
strate the effectiveness of SA-Softmax, we conduct
extensive experiments, including analyses with var-
ious positional encodings, training lengths, and
model sizes and different variants. Additionally, we
evaluate SA-Softmax on downstream tasks, where
the variant (z−min(zmin,0))

max(0,zmax)−min(zmin,0)
· softmax(z)

consistently proves to be the most effective across
diverse settings. This powerful adjustment signifi-
cantly enhances transformer scalability and gener-
alization, offering promising potential for a wide
range of applications.
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Limitations

The proposed method needs to find the max and
min values first for the normalization. Therefore,
there may be additional costs.
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A Model Configuration

Pretrain Setting. All experiments are conducted
on 8 GPUs. The 125M and 350M model configura-
tions are the following.

Table 8: Model Configurations.

125M 350M

Training sequence length 512 512
Batch size 2 × 8 2 × 8

Number of iterations 50k 50k
Dropout prob. 0.0 0.0

Attention dropout prob. 0.0 0.0
Attention head 12 16

Feature dimension 768 1024
Layer number 12 24

Optimizer Adam Adam
Optimizer parameter betas [0.9, 0.95] [0.9, 0.95]

Learning rate 6e− 4 3e− 4
Precision float132 float32

Experiment Setting for Classification and Trans-
lation tasks. For the sequence classification tasks
presented in Table 6, the feature dimension is set
to 128, with 2 attention heads and 6 layers. The
datasets are AGNews, DBPedia, Yelp-Review, Ya-
hooNews, AmazonNews (Zhang et al., 2015). In
contrast, for the machine translation tasks shown in
Table 7, the feature dimension is increased to 512,
with 8 attention heads and 12 layers. The dataset
comes from IWSLT2017 datasets (Cettolo et al.,
2017).

B Error Bar

Table 9: The perplexity on Books3 dataset with three
random seeds.

Method SA-Softmax Mean Std

Kerple ✕ 38.21 0.3873
Kerple ✓ 37.71 0.3826
FIRE ✕ 38.00 0.2211
FIRE ✓ 37.24 0.2786
RoPE ✕ 38.03 0.2165
RoPE ✓ 37.48 0.3287

DAPEV2-Kerple ✕ 35.92 0.3821
DAPEV2-Kerple ✓ 35.58 0.4037
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Figure 1: The loss difference and gradient difference between
our methods and baseline.

C Analyze the Training Loss and
Gradient

Optimizer Gradient. As shown in Figure 1,
comparing the gradients of softmax(z) and z ·
softmax(z), the latter shows larger gradients ini-
tially due to the multiplicative factor of z. A de-
tailed analysis in the methodology section confirms
this behavior. In contrast, the normalized variant,

(z−min(zmin,0))
max(0,zmax)−min(zmin,0)

· softmax(z), produces
gradients similar to or smaller than softmax(z)
early on but can grow larger later in training. This
is due to normalization, which stabilizes updates
but reduces gradient magnitude in the early stages.

Training Loss Across Steps. For
DAPEV2-Kerple, z · softmax(z) and

(z−min(zmin,0))
max(0,zmax)−min(zmin,0)

· softmax(z) can both
achieve lower loss than baseline softmax(z).
However, (z−min(zmin,0))

max(0,zmax)−min(zmin,0)
· softmax(z)

is better than baseline softmax(z) through the
whole training steps, while the z · softmax(z)
achieves better performance than baseline at
late training step. This may caused by that
the (z−min(zmin,0))

max(0,zmax)−min(zmin,0)
· softmax(z) is a

normalized version so that easier for optimizer.

D Risk

This work focuses on utilizing self-adjust softmax
to improve the transformer architecture. This is no
specific risk. Also, we use AI assistants for writing.
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E Time Cost

Table 10: The perplexity on Books3 dataset with three
random seeds.

Model Cost Softmax SA-Softmax

125M Time Cost (ms) 143.99 160.46
125M Memory Cost (GB) 2.67 2.67
350M Time Cost (ms) 284.92 342.47
350M Memory Cost (GB) 6.65 6.65
1.3B Time Cost (ms) 473.92 509.28
1.3B Memory Cost (GB) 16.19 16.19
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F Visualization of Attention Score
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Figure 2: The visualization of attention output, from left to right: 1) softmax(z); 2) x ∗ softmax(z); 3)
(z−min(zmin,0))

max(0,zmax)−min(zmin,0)
· softmax(z).
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Figure 3: The visualization of attention output, from left to right: 1) softmax(z); 2) x ∗ softmax(z); 3)
(z−min(zmin,0))

max(0,zmax)−min(zmin,0)
· softmax(z).
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Figure 4: The visualization of attention output, from left to right: 1) softmax(z); 2) x ∗ softmax(z); 3)
(z−min(zmin,0))

max(0,zmax)−min(zmin,0)
· softmax(z).
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G Implementation

In this section, we present the implementation of the proposed SA-Softmax module in PyTorch which
allows for research purpose (Paszke et al., 2019).

import t o r c h
import t o r c h . nn as nn

class SA−Softmax ( nn . Module ) :
def _ _ i n i t _ _ ( s e l f , o p e r a t i o n _ n a m e ) :

"""

Args:
operation_name: "softmax","v1","v2","v3", or "v4"

"""
super (SA−Softmax , s e l f ) . _ _ i n i t _ _ ( )

s e l f . o p e r a t i o n _ n a m e = o p e r a t i o n _ n a m e :

def f o r w a r d ( s e l f , a t t e n t i o n : t o r c h . Tensor , b i a s : t o r c h . Tensor ) :
"""
Args:

attention: input sequence , which is q^T * k,
shape [bsz , num_heads , seq_len , seq_len]

bias: bias matrix , which can be generated by ALiBi , Kerple
FIRE or other additive position encodings

shape [1,num_heads , seq_len , seq_len]

Returns:
attention with SA-Softmax ,
shape [bsz , num_heads , seq_len , seq_len]

"""
a t t e n t i o n _ p r o b s = so f tmax ( a t t e n t i o n _ s c o r e s , a t t e n t i o n _ m a s k )

if s e l f . g r a d i e n t _ n a m e =="v1" :
a t t e n t i o n _ p r o b s = a t t e n t i o n _ p r o b s * a t t e n t i o n _ s c o r e s
a t t e n t i o n _ p r o b s = t o r c h . t r i l ( a t t e n t i o n _ p r o b s )

elif s e l f . g r a d i e n t _ n a m e =="v2" :
B , H, T , _ = a t t e n t i o n _ s c o r e s . shape
# C r e a t e a mask f o r t h e lower t r i a n g u l a r p a r t ( i n c l u d i n g d i a g o n a l )
mask = t o r c h . t r i l ( t o r c h . ones ( T , T , d t y p e = t o r c h . bool , d e v i c e =

a t t e n t i o n _ s c o r e s . d e v i c e ) )
# Apply mask t o g e t lower t r i a n g u l a r v a l u e s , r e p l a c e uppe r t r i a n g l e

wi th i n f ( so i t doesn ' t a f f e c t min )
x _ l o w e r _ t r i = a t t e n t i o n _ s c o r e s . m a s k e d _ f i l l (~ mask , float ( 'inf' ) )
# Get t h e minimum v a l u e a l o n g t h e l a s t d imens ion
m i n _ a t t e n t i o n _ s c o r e , _ = x _ l o w e r _ t r i . min ( dim = −1 , keepdim=True )
a t t e n t i o n _ s c o r e s = t o r c h . t r i l ( a t t e n t i o n _ s c o r e s )
a t t e n t i o n _ p r o b s = a t t e n t i o n _ p r o b s * ( a t t e n t i o n _ s c o r e s − m i n _ a t t e n t i o n _ s c o r e )
a t t e n t i o n _ p r o b s = t o r c h . t r i l ( a t t e n t i o n _ p r o b s )

elif s e l f . g r a d i e n t _ n a m e =="v3" :
B , H, T , _ = a t t e n t i o n _ s c o r e s . shape

# C r e a t e a mask f o r t h e lower t r i a n g u l a r p a r t ( i n c l u d i n g d i a g o n a l )
mask = t o r c h . t r i l ( t o r c h . ones ( T , T , d t y p e = t o r c h . bool , d e v i c e =

a t t e n t i o n _ s c o r e s . d e v i c e ) )
# Apply mask t o g e t lower t r i a n g u l a r v a l u e s , r e p l a c e uppe r t r i a n g l e

wi th i n f ( so i t doesn ' t a f f e c t min )
x _ l o w e r _ t r i = a t t e n t i o n _ s c o r e s . m a s k e d _ f i l l (~ mask , float ( 'inf' ) )
# Get t h e minimum v a l u e a l o n g t h e l a s t d imens ion
m i n _ a t t e n t i o n _ s c o r e , _ = x _ l o w e r _ t r i . min ( dim = −1 , keepdim=True )
# Apply mask t o g e t lower t r i a n g u l a r v a l u e s , r e p l a c e uppe r t r i a n g l e

wi th i n f ( so i t doesn ' t a f f e c t min )
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x _ l o w e r _ t r i = a t t e n t i o n _ s c o r e s . m a s k e d _ f i l l (~ mask , float ( '-inf' ) )
m a x _ a t t e n t i o n _ s c o r e , _ = x _ l o w e r _ t r i . max ( dim = −1 , keepdim=True )

a t t e n t i o n _ p r o b s = a t t e n t i o n _ p r o b s * ( ( a t t e n t i o n _ s c o r e s − m i n _ a t t e n t i o n _ s c o r e )
/ ( m a x _ a t t e n t i o n _ s c o r e − m i n _ a t t e n t i o n _ s c o r e +1e −10) )

elif s e l f . g r a d i e n t _ n a m e =="v4" :
a t t e n t i o n _ s c o r e s _ t r i l _ t h i s = t o r c h . t r i l ( a t t e n t i o n _ s c o r e s )
m i n _ a t t e n t i o n _ s c o r e = t o r c h . min ( a t t e n t i o n _ s c o r e s _ t r i l _ t h i s , −1 , keepdim=

True ) [ 0 ]
m a x _ a t t e n t i o n _ s c o r e = t o r c h . max ( a t t e n t i o n _ s c o r e s _ t r i l _ t h i s , −1 , keepdim=

True ) [ 0 ]
m i n _ a t t e n t i o n _ s c o r e = t o r c h . minimum ( m i n _ a t t e n t i o n _ s c o r e , t o r c h . z e r o s ( 1 ,

d e v i c e = a t t e n t i o n _ s c o r e s . d e v i c e ) )
m a x _ a t t e n t i o n _ s c o r e = t o r c h . maximum ( m a x _ a t t e n t i o n _ s c o r e , t o r c h . z e r o s ( 1 ,

d e v i c e = a t t e n t i o n _ s c o r e s . d e v i c e ) )
a t t e n t i o n _ p r o b s = a t t e n t i o n _ p r o b s * ( ( a t t e n t i o n _ s c o r e s − m i n _ a t t e n t i o n _ s c o r e )

/ ( m a x _ a t t e n t i o n _ s c o r e − m i n _ a t t e n t i o n _ s c o r e +1e −10) )

` a t t e n t i o n _ p r o b s = t o r c h . t r i l ( a t t e n t i o n _ p r o b s )
return a t t e n t i o n _ p r o b s
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