DiscoSG: Towards Discourse-Level Text Scene Graph Parsing through
Iterative Graph Refinement

Shaoqing Lin', Chong Teng'’, Fei Li', Donghong Ji',
Lizhen Qu?, Zhuang Li%*

'Key Laboratory of Aerospace Information Security and Trusted Computing,
Ministry of Education, School of Cyber Science and Engineering, Wuhan University
Faculty of Information Technology, Monash University
3School of Computing Technologies, RMIT University
{sqlinn, tengchong,lifei_csnlp,dhji}@whu.edu.cn

lizhen.qu@monash.edu
Abstract

Vision-Language Models (VLMs) generate
discourse-level, multi-sentence visual descrip-
tions, challenging text scene graph parsers built
for single-sentence caption-to-graph mapping.
Current approaches typically merge sentence-
level parsing outputs for discourse input, often
missing phenomena like cross-sentence coref-
erence, resulting in fragmented graphs and de-
graded downstream VLM task performance.
We introduce a new task, Discourse-level text
Scene Graph parsing (DiscoSG), and release
DiscoSG-DS, a dataset of 400 expert-annotated
and 8,430 synthesised multi-sentence caption-
graph pairs. Each caption averages 9 sentences,
and each graph contains at least 3 x more triples
than those in existing datasets.

Fine-tuning GPT-40 on DiscoSG-DS yields
over 40% higher SPICE metric than the best
sentence-merging baseline. However, its high
inference cost and licensing restrict open-
source use. Smaller fine-tuned open-source
models (e.g., Flan-T5) perform well on sim-
pler graphs yet degrade on denser, more com-
plex graphs. To bridge this gap, we introduce
DiscoSG-Refiner, a lightweight open-source
parser that drafts a seed graph and iteratively
refines it with a novel learned graph-editing
model, achieving 30% higher SPICE than the
baseline while delivering 86x faster inference
than GPT-40. It generalises from simple to
dense graphs, thereby consistently improving
downstream VLM tasks, including discourse-
level caption evaluation and hallucination de-
tection, outperforming alternative open-source
parsers. Code and data are available at https:
//github.com/ShaoglLin/DiscoSG.

1 Introduction

Text scene graph parsing converts visual descrip-
tions into graphs of entities and their relations,

fCorresponding author.
Senior author.

zhuang.li@rmit.edu.au

Image.

Caption. A group of people are seen walking on a concrete
pier towards a ferry terminal ... In the distance,
tall buildings loom, indicating that the location is

near a city ... (details omitted for brevity)

Init. (people, walk on, pier), (people, walk towards,
ferry terminal), (people, move towards, destina-
tion), (pier, is, concrete), (buildings, is, tall)

Deletion. (people, walk on, pier), (people, walk towards
ferry terminal),

tien), (pier, is, concrete) (buildings, is, tall)

Insertion. (people, walk on, pier), (people, walk towards,

ferry terminal), (people,—walk—towards;-desti-
nation), (pier, is, concrete), (buildings, is, tall),

(people, is, group of)

Refined. (people, walk on, pier), (people, walk towards,
ferry terminal), (pier, is, concrete), (buildings, is,

tall), (people, is, group of)

Table 1: Illustration of the iterative scene graph refine-
ment process in the DiscoSG-Refiner framework.

supporting tasks like image captioning evalua-
tion (Dong et al., 2024), hallucination detec-
tion (Yu et al., 2024), and image retrieval (Johnson
et al., 2015). Traditional methods target single-
sentence captions, converting dependency parses
into graphs or fine-tuning Pre-trained Language
Models (PLMs) on sentence-level pairs. As Vision-
Language Models (VLMs) now generate detailed
discourse-level, multi-sentence captions with com-
plex inter-sentential dependencies (Cheng et al.,
2025), these methods are increasingly inadequate.

Processing discourse-level text introduces sev-
eral critical challenges for current sentence-level
parsers: First, cross-sentence coreference resolu-

7837

Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing, pages 7837-7862
November 4-9, 2025 ©2025 Association for Computational Linguistics

https://github.com/ShaoqLin/DiscoSG
https://github.com/ShaoqLin/DiscoSG

tion requires correctly linking entities across sen-
tences (e.g., “a woman” later as “she”). Second,
capturing long-range relations between entities in
different sentences. Third, inferring implicit re-
lationships not stated in any single sentence (e.g.,
(cat, near, window) from “The cat is on the
mat” and “The mat is under the window”). Finally,
ensuring graph coherence by producing a globally
consistent and complete scene representation. How-
ever, existing methods (Dong et al., 2024) typically
resort to heuristically merging sentence-level pars-
ing outputs, resulting in semantically inconsistent
graphs that ignore long-range dependencies.

To address these issues, we define Discourse-
level text Scene Graph parsing (DiscoSG), which
converts multi-sentence descriptions into scene
graphs. We release DiscoSG-DS, a dataset of 400
expert-annotated and 8,430 synthesised caption-
graph pairs. Each caption averages 9 sentences,
and each graph contains at least 3 more subject-
predicate-object triples than prior datasets (Li et al.,
2023a; Krishna et al., 2017; Yang et al., 2025).
Our annotation guidelines ensure graphs capture
cross-sentence coreference, long-range dependen-
cies, implicit relations, and global consistency.

However, standard approaches, such as end-to-
end fine-tuning of PLMs (Li et al., 2023a) on
caption-graph pairs, face challenges with DiscoSG-
DS. Fine-tuning large PLMs (e.g., GPT-40!) yields
over 40% higher SPICE (Anderson et al., 2016)
than the strongest sentence-merging baseline. How-
ever, it is impractical for open-source use due to
slow inference (about 30s per query), approxi-
mately $25 to $150 per run in API cost on VLM
benchmarks (Dong et al., 2024), and restrictive li-
censing. Few-shot prompting of large PLMs (Yang
et al., 2025) also underperforms their fine-tuned
counterparts on this discourse task because it lacks
task-specific adaptation. Naive fine-tuning of
smaller PLMs (e.g., Flan-T5 (Chung et al., 2024))
performs comparably to GPT-40 on the simple-
graph test set, yet degrades on the dense-graph set
by at least 15% SPICE, and falls significantly be-
hind the sentence-merging baseline on downstream
VLM tasks that involve a broad range of graph com-
plexities, including evaluation of VLM-generated
captions and hallucination detection.

To overcome the limitations, we propose
DiscoSG-Refiner, a lightweight iterative graph-
refinement framework (Table 1). Starting from a

"https://openai.com/index/hello-gpt-40/

base graph merged from sentence-level parses, an
encoder-decoder PLM “Programmer” proposes ed-
its to simplify dense graph construction. We disen-
tangle deletion and insertion so the decoder gener-
ates shorter edit sequences, which improves editing
performance: the encoder deletes erroneous triples,
and the decoder inserts triples to improve semantic
coverage. Trained on DiscoSG-ED, a synthetic cor-
pus of edit operations derived from DiscoSG-DS,
the Programmer learns to exploit the inter-sentence
context and task knowledge in DiscoSG-DS. Built
from two Flan-T5-base models totalling 0.5B pa-
rameters, DiscoSG-Refiner balances generalisa-
tion, performance, and cost. It achieves 30%
higher SPICE than the sentence-merging baseline
on both simple and dense graph test sets, without
degradation across graph densities; delivers 86 x
faster inference than GPT-40; and runs on a single
GPU at substantially lower cost. On downstream
VLM tasks, it consistently improves results, outper-
forming the strongest sentence-merging parser and
end-to-end Flan-T5 parsers.

Due to the lack of resources for discourse-level
hallucination detection in VLMs, we introduce D-
FOIL, a benchmark inspired by FOIL (Shekhar
et al., 2017), originally designed for sentence-level
detection. D-FOIL comprises 200 pairs of hallu-
cinated and human-corrected multi-sentence cap-
tions, with corrections made against a reference.

Overall, our main contributions are: (I) defin-
ing DiscoSG, a novel task for discourse-level
text scene graph parsing from multi-sentence vi-
sual descriptions; (II) introducing DiscoSG-DS, a
dataset of 400 expert-annotated and 8,430 synthe-
sised examples for discourse-level parsing; (III)
proposing DiscoSG-Refiner, a lightweight itera-
tive framework with a novel PLM-based “Pro-
grammer” trained on synthesised edits (DiscoSG-
ED) derived from DiscoSG-DS; (1V) demonstrat-
ing that our 0.5B open-source model outperforms
strongest sentence-merging baselines by 30%, and
is more resource-efficient than fine-tuned GPT-4o;
and (V) establishing D-FOIL, a new benchmark for
discourse-level hallucination detection.

2 DiscoSG-DS: Discourse-Level Scene
Graph Dataset

To study DiscoSG, we introduce the DiscoSG-DS
dataset, which consists of 400 manually annotated
gold-standard examples and 8,430 synthesised in-
stances. Each instance aligns a discourse-level

7838

https://openai.com/index/hello-gpt-4o/

image description * = (x1,...,z,) with a cor-
responding scene graph y. Each description & con-
tains n sentences that are contextually dependent,
requiring parsers to model discourse-level seman-
tics. Each graph (y) captures the semantics of
x through a set of structured triples representing
object relationships (€esup, 7, €opj) (such as (man,
wear, hat)) and attributes (e, a,v) (like (hat,
has_attribute, red)).

2.1 Source Data Selection

Descriptions (x) were sourced from the
SharedGPT4V dataset (Chen et al.,, 2024),
containing 1.2 million captions generated by GPT-
4 for images. These highly descriptive captions
span multiple sentences, making them suitable
for discourse-level analysis. We selected 40,000
diverse image-description pairs using diversity
sampling based on TF-IDF text embeddings,
adapting methods from Zhuo et al. (2023); Li
et al. (2023b). The selected descriptions were then
annotated either manually or via synthesis to form
the final DiscoSG-DS dataset.

2.2 Manual Annotation Pipeline

To construct high-quality ground truth data for Dis-
coSG, we manually annotated 400 descriptions ran-
domly selected from the pool of 40,000, using a
human-in-the-loop active learning framework.

Annotator Setup and Annotation Principles.
Annotation was conducted by two expert annota-
tors: a senior researcher with over three years of
relevant task experience and a trained postgraduate
student in computer science. To calibrate the post-
graduate annotator, we conducted a phased training
process in which the student annotated 40 examples
across four batches under the postdoc’s supervision.
By the final batch, the annotators had achieved 90%
inter-annotator agreement.

Text descriptions were first annotated using the
FACTUAL-MR intermediate representation (Li
et al., 2023a), which reduces annotation ambigu-
ity and enforces a standardised structure, and were
then converted into formal scene graphs. The an-
notation focused on resolving cross-sentence coref-
erence, correcting quantifier inconsistencies, cap-
turing missing long-range relational dependencies,
and identifying overlooked implicit relations and
semantic contradictions. To ensure the resulting
scene graphs accurately reflected the visual content,
the protocol also required annotators to correct fac-

tual inconsistencies or hallucinations found in the
source descriptions (x) by verifying against the cor-
responding images. Detailed annotation guidelines
are provided in Section B.2.

Initial Set Creation. We initiated the human-
in-the-loop process by generating draft scene
graphs for 102 image descriptions, created through
heuristic merging of sentence-level parses from
FACTUAL-TS (Li et al., 2023a). Each draft un-
derwent two-stage refinement: the postgraduate
annotator first edited the graph, followed by review
and finalisation by the postdoctoral researcher, with
consensus required for acceptance. From this cu-
rated set, 40 examples were reserved as a fixed
validation set (D,,;), and the remaining 62 formed
the seed training set (Dg..q) for active learning.

Active Learning. We adopted an iterative active
learning loop and carried out two iterations, as
validation gains plateaued and our annotation bud-
get was fixed (pseudocode in Algorithm 1, Ap-
pendix B.1). Starting from the initial GPT-40
model M), fine-tuned on the 62-example seed set
Dyeed, €ach iteration proceeded as follows:

I) Batch selection: We randomly sampled de-
scriptions, yielding batches B,y of 94 instances in
round 1 and 204 in round 2.

1) Draft generation: The current model M;
produced a scene graph draft for every selected
description in the batch.

1) Two-stage review: The student annotator
corrected each draft and the postdoc validated it,
yielding refined graphs Biefined, Which were then
added to the training set (Dyain = Dirain U Brefined)-

V) Model update: GPT-40 was fine-tuned on
the updated training set Dy, to obtain the next
model Mi+1.

After two rounds, the training set size |Dirin|
increased from 62 to 360 examples while the an-
notation time per instance fell from ~30 min to 10
min. Correspondingly, GPT-40’s SPICE on the val-
idation set Dy, increased from 70.8 to 73.3 to 76.1.
We merged Dy,in and Dy, and created two 300/100
train-test splits of the 400 human-annotated graphs.

2.3 Synthesis Annotation Pipeline

To further scale the data, we first used GPT-40
to filter out descriptions that showed hallucination
errors when compared with their images, retain-
ing 8,430 high-quality descriptions. We then used
the teacher model, a GPT-40 fine-tuned on 300
human-annotated training examples, to generate

7839

Dataset #Inst. | Avg Len | Avg Trp | Avg Obj | Avg Rel | Total Trp
VG 2,966,195 5.34 1.53 1.69 1.22 | 4,533,271
FACTUAL 40,369 6.08 1.76 2.12 1.57 71,124
TSGBench 2,034 12.23 5.81 5.63 3.65 11,820
DiscoSG-DS
Human 400 181.15 20.49 10.11 6.54 8,195
Synthetic 8,430| 163.07 19.41 10.06 6.39 163,640

Table 2: Comparison of dataset statistics. Columns de-
tail the number of instances (# Inst.), average description
length in words (Avg Len), average counts per instance
for triples (Avg Trp), unique objects (Avg Obj), and
unique relations (Avg Rel), along with the total number
of triples (Total Trp).

scene graph annotations for the remaining descrip-
tions. The teacher model achieves a high SPICE
score (F1 triple matching) of 73% on the test set.

2.4 Dataset Statistics and Analysis

The resulting DiscoSG-DS dataset comprises 300
human-annotated training and 100 test instances,
along with 8,430 synthesised examples. Each in-
stance includes an average of 9.3 sentences. Ta-
ble 2 compares DiscoSG-DS with other datasets
that contain only single-sentence captions, includ-
ing Visual Genome (VG) (Krishna et al., 2017),
FACTUAL (Liet al., 2023a), and TSGBench (Yang
et al., 2025). On average, each DiscoSG-DS graph
contains roughly 15x more triples than those in
VG or FACTUAL and 3 x than those in TSGBench,
and demonstrates greater lexical diversity across
longer spans of caption text (see Appendix C), high-
lighting its discourse-level complexity.

3 DiscoSG-Refiner: Iterative Graph
Refinement for Scene Graph Parsing

Formally, given a multi-sentence image descrip-
tion @, the goal of DiscoSG is to learn a parame-
terised model that predicts the most probable scene
graph y' = argmax,cy P(y | =;0), where)
is the set of all possible scene graphs. Existing
approaches include fine-tuning small PLMs (Li
et al., 2023a; Sharifzadeh et al., 2022), few-shot
prompting with large PLMs (Yang et al., 2025), or
fine-tuning large PLMs such as our teacher model.
However, these methods either perform poorly on
discourse-level inputs or incur high computational
costs. The approach of merging sentence-level
parser outputs (Dong et al., 2024) offers a better
performance-efficiency trade-off but still fails to
capture inter-sentence dependencies.

We propose DiscoSG-Refiner, a novel iterative
refinement method using small open-source PLMs
that mirrors our human annotation workflow. In-
spired by machine translation post-editing (Vu and

Haffari, 2018; Li et al., 2024) and text-to-graph
generation (Han et al., 2024), it first produces a
flawed initial parse and then applies targeted edits
to yield the final scene graph, dramatically reduc-
ing the required generation overhead.

3.1 Framework Overview

DiscoSG-Refiner extends the Generator-
Programmer-Interpreter framework (Vu and
Haffari, 2018; Li et al., 2024) with task-specific
adaptations across its three modules, placing
particular focus on a novel Programmer optimised
for refining long discourse-level scene graphs.
The process begins with an initial graph
generated by the Generator. Then, over T steps,
the Programmer proposes actions a' which a
deterministic Interpreter applies to produce y'*!,
iterating until the final graph y = y” is obtained.
Formally, the probability of generating the final
graph y = y” given the input x is defined as:

P(y"|2;6) = Poen(y’|)

T—1
)]
H PProg y T, 9) PIl\ﬁP(yt+1‘yt7a't))

3.1.1 Generator

The initial graph y° probability is derived from ap-
plying a sentence-level parser Psepe independently
to each sentence ; € @, such that Pg., (y°|z) o
[Ti- Psent(yilzi). Operationally, we generate y
using FACTUAL-TS as Psey to parse each z; into
sentence-level graphs {y1, ..., yn}, which are then
merged (treating nodes with identical names as co-
referent) to form the initial graph. This provides
broad coverage of explicit mentions but often in-
troduces errors of commission (redundancies) and
omission (missing cross-sentence or implicit rela-
tions), requiring subsequent refinement.

3.1.2 Programmer

At each step ¢, Programmer (Pp,og(a’|y’, z; 9)),
our core learnable component with parameters 6,
generates a set of edit actions a’ = (D?, I*), which
includes deletion D? and insertion I' operations
based on the current graph ¢ and the input x.
Directly applying previous post-editing tech-
niques is suboptimal. Methods generating com-
bined deletion/insertion sequences (Li et al., 2024)
require overly long generation for small PLM
decoders, while insert-only methods (Han et al.,
2024), although having shorter generation length,
cannot correct the errors of commission present in

7840

our initial y°. We observe that approximately 1/3
of the initial graph triples require deletion.
Therefore, we propose a novel Programmer ar-
chitecture using an encoder-decoder PLM (e.g.,
Flan-T5) that disentangles deletion and insertion
prediction to reduce decoder generation length:
Deletion Prediction (Encoder-based): The en-
coder takes = and y' as input. The objective
is to identify which triples to delete, with each
triple represented by the average of contextual rep-
resentations of tokens between its opening and
closing brackets. Specifically, the encoder pre-
dicts KEEP[¢;] (0) or DELETE[#;] (1) action flags
through a binary classification layer for each triple
t; in the flattened representation of ',
Insertion Generation (Decoder-based): The de-
coder, conditioned on the encoder’s representation
of and y', generates token sequences forming
unseen graph triples, each generated token ¢; im-
plicitly representing an INSERT[?;] action. This
approach significantly reduces generation length
compared to regenerating the entire graph.

3.1.3 Interpreter

The Interpreter (Plntp(:lﬂJrl lyt,at)) applies the
edit actions a® = (D! I!) to transform y' into
y't1. Because this process is deterministic, the
probability P, (y'ty?, a?) is simply 1 for the
unique resulting state y'*! (and 0 otherwise). The
Interpreter operates in two stages:
Deletion: With deletion flags D?, the Interpreter
removes the identified triples Dy, . from y".
Insertion: The token sequence I' generated by the
decoder is parsed into candidate triples. The Inter-
preter then validates these for structural correctness
(e.g., subject-relation-object format) and filters out
any malformed or incomplete ones. This yields the
set of valid triples Ifriples, which are subsequently
inserted into ¢ as an unordered collection.

The resulting graph state for the next iteration
follows a delete-first-then-insert heuristic: y‘*t! =
(yt \ ,Dfriples) UZy,

triples *

3.2 Training the Programmer

Edit-Annotated Data (DiscoSG-ED) Generation.
Training requires editing annotations derived from
DiscoSG-DS. For each instance (x, ygo1q) from
both the manual and synthetic sets, we generate the
initial graph y° given & using Generator. We also
create alternative versions of y(°) by synthetically
corrupting Ygo1q Via the random deletion or inser-
tion of graph triples. The ground-truth edit actions

(Dgt, I4t) are derived by comparing both types of
y° against ygor4.

The ground-truth deletion flags D, are derived
by finding the set of triples D,; present in y° but
not in y4.q. For insertion, after identifying triples
1, present in ¢ 4,4 but not in y, we convert triples
into token sequences to form the ground-truth in-
sertions I to train the decoder. These derived
tuples (z,y", Dy, 1) form our training dataset,
DiscoSG-ED. If we generate N corrupted versions
per gold graph, the size of DiscoSG-ED becomes
N times that of DiscoSG-DS.

Loss Functions and Optimisation. The Pro-
grammer’s encoder and decoder are jointly trained
via multitask learning, optimising separate super-
vised objectives. The encoder is trained using a
binary cross-entropy 10ss (Lgelete). The decoder
is trained using a standard sequence-to-sequence
cross-entropy loss (Linsert) to generate the target
insertion sequence I ;. The final loss is a weighted
sum (£ = AdetLdelete + Ains Linsert)-

4 Experiments

We evaluate DiscoSG-Refiner through three com-
plementary analyses: (i) benchmark performance
on the DiscoSG-DS test set, (ii) impact on down-
stream parsing tasks, and (iii) ablation studies to
isolate the contribution of each component.

4.1 Discourse-Level Text Scene Graph
Parsing Evaluation

Dataset. We evaluate on the DiscoSG-DS Ran-
dom and Length test sets (100 each). Random is a
uniform split, while Length sorts by the number of
graph triples, so training covers fewer-triple graphs
and testing targets more complex graphs, assessing
generalisation to long, complex graphs.

Metrics. Parser performance is measured by
comparing the predicted scene graph against the
gold graph using these metrics: 1) SPICE (Ander-
son et al., 2016), an F1 score for exact-match triple
overlap; 2) Bi-SoftSPICE (BSSPICE), a sym-
metrized version of SoftSPICE (Li et al., 2023a)
using semantic similarities between triple embed-
dings measuring graph similarities; 3) computa-
tional efficiency metrics (i.e., inference time? and
model parameter count); and 4) discourse-specific

For methods using models >70B parameters and GPT-4o,
inference time is measured via API call time per query.

7841

error rate (%), measuring four types of discourse-
level parsing errors based on GPT-40 and human
assessments. For each instance, if an error type
is present in the graph, it is counted as one error
regardless of how many times it occurs. Detailed
error definitions are provided in Section A.3.
Methods Compared. We compare DiscoSG-
Refiner against 21 methods across 5 categories.

(1) Sentence Parsing & Merging methods parse
each sentence in a multi-sentence caption indepen-
dently, then merge the resulting scene graphs. The
parsers include Stanford-Parser (Schuster et al.,
2015), as used in the original SPICE implemen-
tation (Anderson et al., 2016), as well as VG-
T5-base (Sent+Merge) (Sharifzadeh et al., 2022)
and FACTUAL-T5-base (Sent+Merge) (Li et al.,
2023a), which use Flan-T5-base models fine-tuned
on sentence-level data from VG and FACTUAL.

(11) End-to-End (Sentence) methods, including
VG-T5-base (Direct) and FACTUAL-TS (Direct),
apply these sentence-trained TS5 models directly to
full discourse inputs without intermediate merging.

(111) End-to-End (Discourse) methods in-
clude DiscoSG-T5 (base/large/x]) and DiscoSG-
Qwen2.5 (0.5B/1.5B/7B parameters), which are
Flan-T5 and Qwen2.5 (Bai et al., 2023) variants
fine-tuned on the full DiscoSG-DS training set
(8,730 examples). We also report DiscoSG-GPT-40
(Teacher) and DiscoSG-T5-large (300), i.e., GPT-
40 and Flan-T5-large fine-tuned on 300 expert-
curated examples only.

(1v) Few-Shot Prompting baselines use large
instruction-tuned PLMs, including Qwen2.5-72B-
Instruct, Llama-3.3-70B-Instruct (Grattafiori et al.,
2024), and GPT-40 (text-only and multimodal).
We use 3-shot prompts, each a caption-graph pair
from DiscoSG-DS. We also report a 3-shot GPT-4o-
based GraphRAG (Edge et al., 2024) variant, where
each shot includes the caption, extracted objects
and relations, and the reference graph.

(v) Iterative Refinement methods, including
PiVe (Han et al., 2024), Self-Refine (Madaan et al.),
and Prog-Refine (Li et al., 2024), all employ 3-shot
GPT-40 as both Generator and Interpreter, differing
only in their Programmer implementations.

All baseline details are in Section A.1.

4.1.1 Results and Analysis

DiscoSG-DS often enhances discourse parsing,
with gains depending on model capacity, archi-
tecture, and training strategy. As shown in Ta-
ble 3, few-shot Llama-3.3-70B-Instruct reaches

52.0/53.5 SPICE on Random/Length, surpass-
ing FACTUAL-T5-base (Sent+Merge) (49.4/52.7),
the strongest baseline without using DiscoSG-DS.
Larger gains come from fine-tuning: the encoder-
decoder DiscoSG-T5-x1 (3B) attains 76.8/66.0
SPICE (+55% over 49.4 on Random; +25% over
52.7 on Length), the decoder-only DiscoSG-GPT-
40 achieves 73.1/74.5 (+48%/+41% over the respec-
tive baselines), and our DiscoSG-Refiner-base (two
fine-tuned Flan-T5-base models) yields 64.3/67.3
SPICE, about +30% over the sentence-merging
baselines on both splits.

However, discourse-level supervision alone is
insufficient: robust performance across graph com-
plexities requires either higher-capacity PLMs of
the right architecture with fine-tuning, or spe-
cialised procedures such as our iterative refine-
ment. For example, within encoder-decoder mod-
els, scaling with fine-tuning yields the largest im-
provements, whereas naive end-to-end fine-tuning
of small PLMs generalises poorly and is sensitive
to graph complexity: DiscoSG-T5-base (0.25B)
and -large (0.78B) score 52.7 and 69.4 on Ran-
dom but drop to 38.4 and 53.0 on Length, respec-
tively. Decoder-only fine-tuned PLMs also under-
perform on Length unless scaled to GPT-40-level
sizes. DiscoSG-Qwen2.5 at 0.5B, 1.5B, and 7B
yields SPICE scores of 48.5, 51.6, and 47.3, each
below the 52.7 baseline on Length split.
DiscoSG-Refiner achieves the best balance of
performance, generalisation, and cost. DiscoSG-
Refiner models of all sizes outperform all other
baselines on Length, including those requiring
vastly more computational resources (>70B vs. our
max 3.25B parameters), except for DiscoSG-GPT-
4o0. Nevertheless, DiscoSG-Refiner-large scores
around 7 SPICE and 1.2 BSSPICE points be-
low DiscoSG-GPT-40 on both splits while being
50 x faster, and our base version achieves an 86 x
speedup. Beyond speed, our approach offers signif-
icant cost benefits: running DiscoSG-GPT-40 on
image captioning benchmarks DetailCaps (Dong
et al., 2024) and CapArena (Cheng et al., 2025)
would cost an estimated $25-150 in API fees,
whereas all versions of our approach can execute lo-
cally on a single RTX 4090, eliminating API costs
and network latency. DiscoSG-GPT-40 cannot be
released due to licensing restrictions, while our
models are open-source. Compared to similar-cost
methods like DiscoSG-T5 variants, our approach
demonstrates superior generalisation: DiscoSG-T5
models perform well on Random but suffer degra-

7842

Random Length

Category Method SPICE1T BSSPICE1 SPICE{ BSSPICE{ Time (s)] Param.|
Stanford-Parser 17.0 81.5 19.5 83.1 ~0.21s -
Sentence Parsing & Merging VG-T5-base (Sent+Merge) 45.3 89.4 459 90.1 ~0.19s 0.25B
FACTUAL-T5-base (Sent+Merge) 49.4 90.9 52.7 92.0 ~0.19s 0.25B
VG-T5-base (Direct) 15.3 82.5 13.8 82.4 ~0.07s 0.25B
End-to-End (Sentence) FACTUAL-T5 (Direct) 37.6 88.0 322 87.5 ~0.07s 0.25B
DiscoSG-T5-base 52.7 91.7 38.4 88.5 ~0.07s 0.25B
DiscoSG-T5-large (8730) 69.4 95.1 53.0 91.8 ~0.32s 0.78B
End-to-End (Discourse) DiscoSG-T5-x1 76.8 96.8 66.0 94.9 ~0.39s 3B
DiscoSG-DS (8730 examples) DiscoSG-Qwen2.5-0.5B 54.2 90.1 48.5 90.0 ~0.39s 0.5B
DiscoSG-Qwen2.5-1.5B 65.2 94.3 51.6 89.5 ~0.77s 1.5B
DiscoSG-Qwen2.5-7B 20.8 75.0 473 90.6 ~3.27s 7B
End-to-End (Discourse) DiscoSG-T5-large (300) 45.4 90.1 34.2 87.8 ~0.71s 0.78B
DiscoSG-DS (300 examples) DiscoSG-GPT-40 (Teacher) 73.1 96.0 74.5 96.4 ~36.9s -
Qwen?2.5-72B-Instruct 48.0 90.2 50.1 91.2 ~10.4s 72B
Few-Shot Prompting Llama-3.3-70B-Instruct 52.0 91.6 53.5 92.4 ~14.1s 70B
(3-shot) GPT-4o0 (text-only) 53.2 91.7 52.5 92.0 ~19.8s -
GPT-40 (multimodal) 55.6 92.3 54.4 92.4 ~33.2s -
GraphRAG-GPT-4o (text-only) 47.7 90.9 414 90.0 ~71.7s -
. PiVe 54.0 92.0 52.1 92.0 ~60.8s -
gﬁ;f%i;:;fmemem Self-Refine 37.2 86.2 34.6 83.5 ~99.0s .
Prog-Refine 534 90.9 52.5 92.1 ~60.8s -
Iterative Refinement D?scoSG—Ret:mer—base 64.3 94.3 67.3 95.1 ~0.43s 0.5B
Our Method DiscoSG-Refiner-large 66.2 94.7 67.3 95.2 ~0.71s 1.03B
DiscoSG-Refiner-xl 66.7 94.9 68.6 95.4 ~2.17s 3.25B

Table 3: Comparison of methods on DiscoSG-DS Random and Length test sets. Bold values denote the best results
among our method variants, while underlined values show overall top performance.

Cross.| Long.| Impl.| Graph.||Avg. |
FACTUAL-T5-base (Sent+Merge) 61.0 97.0 77.0 93.0 |82.00
DiscoSG-T5-base 67.0 100.0 96.0 100.0 | 90.75
GPT-4o (text-only) 36.0 81.0 83.0 65.0 |66.25
DiscoSG-GPT-40 (Teacher) 28.0 86.0 76.0 81.0 |67.75
DiscoSG-Refiner-large 43.0 85.0 74.0 79.0 |70.25
Average 47.0 89.8 81.2 83.6 754

Table 4: Discourse error rates (%) identified by GPT-
4o-based annotation across four error categories: Cross-
Sentence Coreference Resolution (Cross.), Long-Range
Relational Dependency (Long.), Implicit Information
Inference (Impl.), and Graph Coherence (Graph.). See
human evaluation results in Appendix A.3.

dation on Length (11-16 SPICE point drops). In
contrast, our models maintain high performance
(64 to 68 SPICE) across both test splits.

Cross-sentence coreference resolution is the
least difficult among the discourse parsing chal-
lenges. Table 4 highlights clear differences across
error types in parser outputs. Parsers achieve the
lowest error rates regarding linking entities across
sentences, ranging from 28% to 61%. In contrast,
the other three categories prove far more difficult,
with rates clustering around 80% to 90%. The
small DiscoSG-T5-base model shows the high-
est errors in every category and even exceeds
the sentence-level baseline, confirming that small
PLMs require specialised designs for discourse
tasks. Overall, existing methods identify coref-
erent entities reasonably well, yet still struggle to

maintain relational consistency, recover implicit
information, and preserve graph coherence.

4.2 Evaluation on Downstream VLM Tasks

We evaluate the impact of different automated met-
rics on image captioning assessment and hallucina-
tion detection across three benchmark datasets.

Benchmarks. For Image Captioning, we use
CapArena (Cheng et al., 2025), which includes
6,000 human-written reference captions, each com-
pared against outputs from 14 VLMs based on
human preferences, and used to rank VLM per-
formance. DetailCaps (Dong et al., 2024) pro-
vides 4,870 images with captions rated 1-5 by GPT-
40. For Hallucination Detection, we introduce
D-FOIL, a new benchmark designed to evaluate
how well different metrics detect hallucinations
in discourse-level outputs from VLMs. Inspired
by FOIL (Shekhar et al., 2017), D-FOIL contains
200 multi-sentence captions from SharedGPT4V
with subtle hallucinated entities or relations. Each
hallucinated caption is paired with a minimally cor-
rected version annotated by humans, along with a
reference caption generated by GPT-4.1. See Sec-
tion B.3 for collection details.

Metrics. We evaluate using graph-based met-
rics including SPICE, BSSPICE, and CAP-
TURE (Dong et al., 2024), which measure sim-

7843

Detail Caps CapArena D-FOIL Avg.
Metric Tt pT 771 p7T Acc.T Acc.T Rank]
Token Length 8.8 122 582 71.0 68.3 2.00 12.0
N-gram
BLEU-4 25.6 364 319 424 474 53.8 14.3
METEOR 277 394 56.0 77.1 612 61.3 7.5
ROUGE-L 236 334 1.1 -64 48.0 50.2 17.7
CIDEr 247 35.1 -27.9 -209 384 52.0 19.5
Embedding-based
RefCLIPScore 304 44.6 -45.1 -574 325 37.5 19.0
Polos 34.8 533 363 42.0 479 75.5 10.8
VLM-based
FLEUR -3.5 2.0 29.7 393 458 18.0 19.3
GPT-40 Eval - - 943 846 627 915 -
Graph-based
SPICE w/

FACTUAL (S+M)! 407 55.1 363 468 528 86.5 8.2
DiscoSG-T5-base 254 352 23.1 367 377 420 17.8
DiscoSG-T5-large 31.8 435 33 99 424 530 15.8
DiscoSG-Refiner-base 41.9 56.6 385 473 53.0 86.5 6.7
DiscoSG-Refiner-large 42.2 56.9 40.7 50.8 53.5 86.5 5.8
BSSPICE w/

FACTUAL (S+M)t 38.8 56.6 49.5 622 545 83.0 6.2
DiscoSG-T5-base 252 36.3 34.1 455 471 495 153
DiscoSG-T5-large 306 439 7.7 130 475 575 14.0
DiscoSG-Refiner-base 40.0 58.0 51.6 662 552 87.5 5.0
DiscoSG-Refiner-large 40.3 58.5 53.8 70.5 554 89.0 3.7
CAPTURE w/

FACTUAL (S+M)! 39.6 545 538 613 57.6 69.5 7.2
DiscoSG-T5-base 180 260 -33 5.1 451 435 19.8
DiscoSG-T5-large 227 325 -18.7 -17.8 46.1 55.0 18.7
DiscoSG-Refiner-base 40.7 559 51.6 609 584 71.0 6.2
DiscoSG-Refiner-large 40.8 56.0 58.2 74.1 58.2 74.0 4.0

Table 5: Downstream task evaluation results.
TFACTUAL-TS5-base (Sent+Merge).

ilarity between the scene graphs of candidate
and reference captions. Specifically, we compare
these metrics when using scene graphs parsed by
DiscoSG-Refiner versus those from the FACTUAL-
T5-base (Sent+Merge) baseline. Other metrics
include: RefCLIPScore (Hessel et al., 2021) and
POLOS (Wada et al., 2024) (embedding-based),
FLEUR (Lee et al., 2024) and zero-shot GPT-40
(VLM-based), BLEU-4 (Papineni et al., 2002), ME-
TEOR (Banerjee and Lavie, 2005), ROUGE-L (Lin,
2004), and CIDEr (Vedantam et al., 2015) (n-gram),
and caption length (longer captions preferred).

Evaluation Setup. For image captioning, we
compute Kendall’s 7 and Spearman’s p correla-
tions between metric scores and gold-standard judg-
ments (GPT-4o ratings for DetailCaps, human pref-
erences for CapArena). For CapArena, we also
report agreement accuracy (Acc.), defined as the
percentage of metric predictions that match hu-
man preferences. For hallucination detection on
D-FOIL, we report classification accuracy (Acc.)
in distinguishing hallucinated captions from their
corrected versions. Finally, we compute the aver-
age performance rank of each metric (excluding
GPT-40 Eval) by ordering methods by correlation
or accuracy across all evaluation scenarios.

4.2.1 Results and Analysis

Scene graphs from DiscoSG-Refiner enhance
graph-based metrics across tasks. Table 5 shows
that replacing FACTUAL-T5-base (Sent+Merge)
with DiscoSG-Refiner-large improves SPICE, rais-
ing Kendall’s 7 from 40.7 to 42.2 on DetailCaps
and from 36.3 to 40.7 on CapArena. BSSPICE
also improves, with 7 rising from 38.8 to 40.3 on
DetailCaps, from 49.5 to 53.8 on CapArena, and
classification accuracy increasing from 88.0% to
89.0% on D-FOIL. CAPTURE increases from 53.8
to 58.2 in 7 on CapArena and from 69.5% to 74.0%
in accuracy on D-FOIL. Even the smaller DiscoSG-
Refiner-base surpasses the baseline in nearly all set-
tings, and, on average, replacing the sentence-level
parser with DiscoSG-Refiner improves the rank of
each graph-based metric by about one to two po-
sitions. In contrast, replacing FACTUAL-T5-base
(Sent+Merge) with DiscoSG-TS5 parsers reduces
performance for all graph-based metrics across all
tasks. These results indicate that our refinement
architecture produces higher-quality scene graphs,
which in turn enable more accurate evaluation of
image captioning and hallucination detection.
Graph-based metrics with DiscoSG-Refiner-
large achieve top performance among all auto-
mated metrics. BSSPICE attains the best average
rank of 3.7, closely followed by CAPTURE at 4.0.
These results outperform commonly used metrics
such as METEOR, with an average rank of 7.5,
and RefCLIPScore, which ranks 19.0. On D-FOIL,
BSSPICE achieves 89.0 percent accuracy, second
only to GPT-40 Eval at 91.5 percent, while ME-
TEOR and RefCLIPScore reach only 61.3 and 37.5
percent, respectively. This indicates that graph-
based metrics are more effective at detecting sub-
tle semantic issues, such as incorrect entities or
relations, which are often missed by n-gram or
embedding-based metrics.

4.3 Ablation Study

Evaluation Setup. Table 6 probes three design
axes of DiscoSG-Refiner-large. The Default row
derives DiscoSG-ED from the full DiscoSG-DS
(300 expert + 8,430 synthetic instances) with 15 x
augmentation, executes two refinement iterations,
and employs a disentangled Programmer (encoder-
deletion, decoder-insertion). Each variant changes
exactly one of these factors while holding the oth-
ers fixed. (1) Training-data source: Expert-only
DiscoSG-ED 15 x removes the synthetic portion

7844

DiscoSG-DS (Random) DetailCaps

System / Condition SPICEt BSSPICEtT 71 p 1

DiscoSG-Refiner-large (Default) 66.2 94.7 422 569
Ablation: Training—data source / augmentation
Expert-only (300) DiscoSG-ED 15x 52.1 91.8 42.1 56.9
Expert+Synth. (8730) DiscoSG-ED 1x 62.9 94.0 419 565
Expert+Synth. (8730) DiscoSG-ED 5x 64.4 94.3 41.8 56.5
Ablation: Refinement depth
1 iteration 63.5 94.2 42.1 56.8
3 iterations 66.7 94.8 423 57.1
Ablation: Programmer edit modality
Deletion-only 48.9 90.4 419 56.7
Insertion-only 53.4 92.1 42.1 56.7

Ablation: Action-generation architecture
Monolithic (no disentangle) 519 91.6 41.7 554

Table 6: Ablation studies on DiscoSG-Refiner-large.

of DiscoSG-DS. (1I) Augmentation scale: using
the full DiscoSG-DS data, we reduce the number
of edit instances by setting the augmentation mul-
tiplier to 1x or 5x. (II1) Refinement depth: we
run a single or three iterations. (IV) Programmer
edit modality: we activate only deletion or only in-
sertion edits. (V) Action-generation architecture:
a Monolithic Encoder-Decoder variant replaces the
disentangled design, using one decoder for both
edit types. Results are reported with SPICE and
BSSPICE on the DiscoSG-DS test, and SPICE’s
Kendall’s 7 / Spearman’s p on DetailCaps.

4.3.1 Results and Analysis

Synthetic data, augmentation scale, refinement
depth, and disentangled edit actions are the
main drivers of performance. I) Using Expert-
only DiscoSG-ED 15x lowers SPICE by 14 points,
confirming that synthetic examples in DiscoSG-
DS add crucial graph coverage beyond what expert
data provides. I1) Expanding augmentation from
1x to 15x yields steady yet diminishing SPICE
gains (62.9 to 66.2) and marginal BSSPICE im-
provements, indicating that moderate edit opera-
tion expansion is already beneficial. ITT) Increasing
refinement iterations from 1 to 3 boosts all metrics,
with 3 passes achieving the overall best scores. We
default to 2 mainly for efficiency. I1V) Activating
only deletion or insertion edits reduces SPICE by
12 to 17 points, showing the importance of their
combination for good graph correction. V) Replac-
ing the disentangled Programmer with a monolithic
encoder-decoder degrades performance, as gener-
ating long, combined edit sequences proves too
challenging for Flan-T5-large decoder.

5 Related Work

Scene Graph Parsing Methods. Scene graph
parsing has been explored in images (Zellers et al.,

2018; Tang et al., 2020; Xu et al., 2017; Zhang
et al., 2019; Cong et al., 2022; Li et al., 2022; Im
et al., 2024; Wu et al., 2025b), video (Rodin et al.,
2024), and multimodal inputs (Wu et al., 2025a).
Our work focuses on text-based parsing, where
two primary strategies exist. The most common
approach uses direct generation: encoder-decoder
models are fine-tuned on datasets like VG (Wang
et al., 2018; Choi et al., 2022) and FACTUAL (Li
et al., 2023a), or PLMs are prompted with few-shot
examples from benchmarks like TSGBench (Yang
et al., 2025). The second strategy converts text into
an intermediate representation, such as dependency
parses or AMR, which is then transformed into a
scene graph (Schuster et al., 2015; Anderson et al.,
2016; Choi et al., 2022). Existing datasets like
FACTUAL enable strong sentence-level parsing
but focus on isolated sentences, causing trained
parsers to overlook discourse context.

Downstream Applications. Scene graphs have
been successfully applied in vision-language tasks.
They improve image retrieval (Johnson et al., 2015;
Andrews et al., 2019) and guide structured image
caption generation (Zhong et al., 2020; Zeng et al.,
2024). Scene graphs also serve as a foundational
representation for evaluating caption factual ac-
curacy via metrics like SPICE (Anderson et al.,
2016), SoftSPICE (Li et al., 2023a), and CAP-
TURE (Dong et al., 2024). They are also used for
identifying and mitigating hallucinations in VLM
outputs (Yu et al., 2024).

6 Conclusion

We introduce DiscoSG, a new task for discourse-
level text scene graph parsing, along with DiscoSG-
DS, a dataset of 8,830 VLM-generated captions
annotated with semantically coherent scene graphs
by human experts and fine-tuned GPT-40, where
the graphs capture key discourse phenomena. To
achieve high performance at low cost, we propose
DiscoSG-Refiner, an efficient iterative refinement
framework that uses small PLMs for initial graph
generation and then refines graphs through triple in-
sertion and deletion. Our smallest model achieves
a 30% SPICE improvement over the best sentence-
level baseline on two test splits while significantly
reducing inference costs compared to the GPT-40
parser. We demonstrate the framework’s effective-
ness on downstream vision-language tasks and in-
troduce D-FOIL, a benchmark for evaluating hallu-
cination detection in discourse-level VLM outputs.

7845

Limitations

Despite including images in our dataset, our cur-
rent approach operates in a text-only setting for
discourse-level scene graph parsing. All parsing
methods except GPT-40 (multimodal) rely solely
on textual descriptions without incorporating vi-
sual cues from the original images. While this
presents an opportunity for future work, our eval-
uation of SOTA multimodal parsers like GPT-40
(multimodal), as well as findings from Universal
Scene Graph Generation (Wu et al., 2025a), sug-
gest that current models incorporating additional
visual information do not yield significant improve-
ments over the best text-only approaches. This
indicates that effectively leveraging multimodal in-
formation to boost text scene graph parsing still
remains challenging.

Acknowledgments

This work is a collaboration across Wuhan Uni-
versity, Monash University, and RMIT University.
We thank Wuhan University for access to GPU re-
sources. OpenAl API costs were primarily paid
from Zhuang Li’s personal account.

Author Contributions

e Zhuang Li (RMIT University; senior author).
Led the core idea and methodology; authored
the main draft and edited most subsequent drafts;
oversaw project execution and advised the stu-
dent on this project (informal supervision); con-
tributed to and oversaw data annotation (e.g.,
graph validation and student annotator training);
conducted a small set of experiments; covered
most API fees.

* Shaoqing Lin (Wuhan University; student au-
thor). Led experimental investigation and per-
formed most data annotation; contributed ad-
ditional ideas and methodological details; con-
tributed to manuscript drafting and review.

* Chong Teng (Wuhan University; correspond-
ing author). Managed project administration
and correspondence; student’s supervisor; coor-
dinated access to computational resources and
GPU.

* Donghong Ji (Wuhan University). Provided
computational resources and GPU access; co-
supervises the student.

¢ Lizhen Qu (Monash University). Provided dis-
cussions and high-level suggestions.

* Fei Li (Wuhan University). Co-supervises the
student.

References

Peter Anderson, Basura Fernando, Mark Johnson, and
Stephen Gould. 2016. Spice: Semantic proposi-
tional image caption evaluation. In Computer Vision—
ECCV 2016: 14th European Conference, Amsterdam,
The Netherlands, October 11-14, 2016, Proceedings,
Part V 14, pages 382-398. Springer.

Martin Andrews, Yew Ken Chia, and Sam Witteveen.
2019. Scene graph parsing by attention graph. arXiv
preprint arXiv:1909.06273.

Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang,
Xiaodong Deng, Yang Fan, Wenbin Ge, Yu Han, Fei
Huang, and 1 others. 2023. Qwen technical report.
arXiv preprint arXiv:2309.16609.

Satanjeev Banerjee and Alon Lavie. 2005. Meteor: An
automatic metric for mt evaluation with improved cor-
relation with human judgments. In Proceedings of
the acl workshop on intrinsic and extrinsic evaluation
measures for machine translation and/or summariza-
tion, pages 65-72.

Lin Chen, Jinsong Li, Xiaoyi Dong, Pan Zhang, Con-
ghui He, Jiaqi Wang, Feng Zhao, and Dahua Lin.
2024. Sharegpt4v: Improving large multi-modal
models with better captions. In European Confer-
ence on Computer Vision, pages 370-387. Springer.

Kanzhi Cheng, Wenpo Song, Jiaxin Fan, Zheng Ma,
Qiushi Sun, Fangzhi Xu, Chenyang Yan, Nuo Chen,
Jianbing Zhang, and Jiajun Chen. 2025. CapArena:
Benchmarking and analyzing detailed image caption-
ing in the LLM era. In Findings of the Association
for Computational Linguistics: ACL 2025, pages
14077-14094, Vienna, Austria. Association for Com-
putational Linguistics.

Woo Suk Choi, Yu-Jung Heo, Dharani Punithan, and
Byoung-Tak Zhang. 2022. Scene graph parsing via
Abstract Meaning Representation in pre-trained lan-
guage models. In Proceedings of the 2nd Workshop
on Deep Learning on Graphs for Natural Language
Processing (DLG4NLP 2022), pages 30-35, Seattle,
Washington. Association for Computational Linguis-
tics.

Hyung Won Chung, Le Hou, Shayne Longpre, Barret
Zoph, Yi Tay, William Fedus, Yunxuan Li, Xuezhi
Wang, Mostafa Dehghani, Siddhartha Brahma, and
1 others. 2024. Scaling instruction-finetuned lan-
guage models. Journal of Machine Learning Re-
search, 25(70):1-53.

7846

https://doi.org/10.18653/v1/2025.findings-acl.724
https://doi.org/10.18653/v1/2025.findings-acl.724
https://doi.org/10.18653/v1/2025.findings-acl.724
https://doi.org/10.18653/v1/2022.dlg4nlp-1.4
https://doi.org/10.18653/v1/2022.dlg4nlp-1.4
https://doi.org/10.18653/v1/2022.dlg4nlp-1.4

Yuren Cong, Michael Ying Yang, and Bodo Rosenhahn.
2022. Reltr: Relation transformer for scene graph
generation. arXiv preprint arXiv:2201.11460.

Michael A Covington and Joe D McFall. 2010. Cutting
the gordian knot: The moving-average type—token

ratio (mattr). Journal of quantitative linguistics,
17(2):94-100.

Hongyuan Dong, Jiawen Li, Bohong Wu, Jiacong Wang,
Yuan Zhang, and Haoyuan Guo. 2024. Benchmark-
ing and improving detail image caption. arXiv
preprint arXiv:2405.19092.

Darren Edge, Ha Trinh, Newman Cheng, Joshua
Bradley, Alex Chao, Apurva Mody, Steven Truitt,
Dasha Metropolitansky, Robert Osazuwa Ness, and
Jonathan Larson. 2024. From local to global: A
graph rag approach to query-focused summarization.
arXiv preprint arXiv:2404.16130.

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri,
Abhinav Pandey, Abhishek Kadian, Ahmad Al-
Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten,
Alex Vaughan, and 1 others. 2024. The llama 3 herd
of models. arXiv preprint arXiv:2407.21783.

Jiuzhou Han, Nigel Collier, Wray Buntine, and Ehsan
Shareghi. 2024. Pive: Prompting with iterative verifi-
cation improving graph-based generative capability
of llms. In Findings of the Association for Computa-
tional Linguistics ACL 2024, pages 6702—-6718.

Jack Hessel, Ari Holtzman, Maxwell Forbes, Ronan
Le Bras, and Yejin Choi. 2021. Clipscore: A
reference-free evaluation metric for image captioning.
In Proceedings of the 2021 Conference on Empiri-
cal Methods in Natural Language Processing, pages
7514-7528.

Jinbae Im, JeongYeon Nam, Nokyung Park, Hyungmin
Lee, and Seunghyun Park. 2024. Egtr: Extracting
graph from transformer for scene graph generation.
In Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition, pages 24229—
24238.

Justin Johnson, Ranjay Krishna, Michael Stark, Li-Jia
Li, David Shamma, Michael Bernstein, and Li Fei-
Fei. 2015. Image retrieval using scene graphs. In
Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 3668-3678.

Ranjay Krishna, Yuke Zhu, Oliver Groth, Justin John-
son, Kenji Hata, Joshua Kravitz, Stephanie Chen,
Yannis Kalantidis, Li-Jia Li, David A Shamma, and 1
others. 2017. Visual genome: Connecting language
and vision using crowdsourced dense image anno-

tations. International journal of computer vision,
123(1):32-73.

Yebin Lee, Imseong Park, and Myungjoo Kang. 2024.
Fleur: An explainable reference-free evaluation met-
ric for image captioning using a large multimodal
model. In Proceedings of the 62nd Annual Meet-
ing of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 3732-3746.

Rongjie Li, Songyang Zhang, and Xuming He. 2022.
Sgtr: End-to-end scene graph generation with trans-
former. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages

19486-19496.

Zhuang Li, Yuyang Chai, Terry Yue Zhuo, Lizhen
Qu, Gholamreza Haffari, Fei Li, Donghong Ji, and
Quan Hung Tran. 2023a. Factual: A benchmark for
faithful and consistent textual scene graph parsing.
In Findings of the Association for Computational
Linguistics: ACL 2023, pages 6377-6390.

Zhuang Li, Levon Haroutunian, Raj Tumuluri, Philip R
Cohen, and Reza Haf. 2024. Improving cross-
domain low-resource text generation through llm
post-editing: A programmer-interpreter approach. In
Findings of the Association for Computational Lin-

guistics: EACL 2024, pages 347-354.

Zhuang Li, Lizhen Qu, Philip R Cohen, Raj Tumuluri,
and Gholamreza Haffari. 2023b. The best of both
worlds: Combining human and machine translations
for multilingual semantic parsing with active learning.
In Proceedings of the 61st Annual Meeting of the
Association for Computational Linguistics (Volume
1: Long Papers), pages 9511-9528.

Chin-Yew Lin. 2004. Rouge: A package for automatic
evaluation of summaries. In Text summarization
branches out, pages 74-81.

Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler
Hallinan, Luyu Gao, Sarah Wiegreffe, Uri Alon,
Nouha Dziri, Shrimai Prabhumoye, Yiming Yang,
and 1 others. Self-refine: Iterative refinement
with self-feedback, 2023. URL https://arxiv.
org/abs/2303.17651.

Philip M McCarthy. 2005. An assessment of the range
and usefulness of lexical diversity measures and the
potential of the measure of textual, lexical diversity
(MTLD). Ph.D. thesis, The University of Memphis.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic evalu-
ation of machine translation. In Proceedings of the
40th annual meeting of the Association for Computa-
tional Linguistics, pages 311-318.

Nils Reimers and Iryna Gurevych. 2019. Sentence-bert:
Sentence embeddings using siamese bert-networks.
In Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the 9th
International Joint Conference on Natural Language
Processing (EMNLP-IJCNLP), pages 3982—-3992.

Ivan Rodin, Antonino Furnari, Kyle Min, Subarna Tri-
pathi, and Giovanni Maria Farinella. 2024. Action
scene graphs for long-form understanding of egocen-
tric videos. In Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition,
pages 18622—18632.

7847

Sebastian Schuster, Ranjay Krishna, Angel Chang,
Li Fei-Fei, and Christopher D Manning. 2015. Gen-
erating semantically precise scene graphs from tex-
tual descriptions for improved image retrieval. In
Proceedings of the fourth workshop on vision and
language, pages 70-80.

Sahand Sharifzadeh, Sina Moayed Baharlou, Martin
Schmitt, Hinrich Schiitze, and Volker Tresp. 2022.
Improving scene graph classification by exploiting
knowledge from texts. In Proceedings of the AAAI
conference on artificial intelligence, volume 36,
pages 2189-2197.

Ravi Shekhar, Sandro Pezzelle, Yauhen Klimovich, Au-
relie Herbelot, Moin Nabi, Enver Sangineto, Raf-
faella Bernardi, and 1 others. 2017. Foil it! find one
mismatch between image and language caption. In
ACL 2017 The 55th Annual Meeting of the Associa-
tion for Computational Linguistics: Proceedings of
the Conference, Vol. 1 (Long Papers), pages 255-265.
Association for Computational Linguistics (ACL).

Kaihua Tang, Yulei Niu, Jiangiang Huang, Jiaxin Shi,
and Hanwang Zhang. 2020. Unbiased scene graph
generation from biased training. In Conference on
Computer Vision and Pattern Recognition.

Ramakrishna Vedantam, C Lawrence Zitnick, and Devi
Parikh. 2015. Cider: Consensus-based image de-
scription evaluation. In Proceedings of the IEEE

conference on computer vision and pattern recogni-
tion, pages 4566—4575.

Thuy-Trang Vu and Reza Haffari. 2018. Automatic post-
editing of machine translation: A neural programmer-
interpreter approach. In Empirical Methods in Nat-
ural Language Processing 2018, pages 3048-3053.
Association for Computational Linguistics (ACL).

Yuiga Wada, Kanta Kaneda, Daichi Saito, and Komei
Sugiura. 2024. Polos: Multimodal metric learning
from human feedback for image captioning. In Pro-
ceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 13559-13568.

Yu-Siang Wang, Chenxi Liu, Xiaohui Zeng, and Alan
Yuille. 2018. Scene graph parsing as dependency
parsing. In Proceedings of NAACL-HLT, pages 397—
407.

Shengqiong Wu, Hao Fei, and Tat-Seng Chua. 2025a.
Universal scene graph generation. In CVPR.

Shengqiong Wu, Hao Fei, Jingkang Yang, Xiangtai Li,
Juncheng Li, Hanwang Zhang, and Tat-Seng Chua.
2025b. Learning 4d panoptic scene graph generation
from rich 2d visual scene. In CVPR.

Danfei Xu, Yuke Zhu, Christopher B Choy, and Li Fei-
Fei. 2017. Scene graph generation by iterative mes-
sage passing. In Proceedings of the IEEE conference

on computer vision and pattern recognition, pages
5410-5419.

Dongil Yang, Minjin Kim, Sunghwan Kim, Beong-woo
Kwak, Minjun Park, Jinseok Hong, Woontack Woo,
and Jinyoung Yeo. 2025. Llm meets scene graph:
Can large language models understand and gener-
ate scene graphs? a benchmark and empirical study.
arXiv preprint arXiv:2505.19510.

Qifan Yu, Juncheng Li, Longhui Wei, Liang Pang, Wen-
tao Ye, Bosheng Qin, Siliang Tang, Qi Tian, and
Yueting Zhuang. 2024. Hallucidoctor: Mitigating
hallucinatory toxicity in visual instruction data. In
Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition, pages 12944—
12953.

Rowan Zellers, Mark Yatskar, Sam Thomson, and Yejin
Choi. 2018. Neural motifs: Scene graph parsing
with global context. In Proceedings of the IEEE con-
ference on computer vision and pattern recognition,
pages 5831-5840.

Zequn Zeng, Yan Xie, Hao Zhang, Chiyu Chen,
Bo Chen, and Zhengjue Wang. 2024. Meacap:
Memory-augmented zero-shot image captioning. In
Proceedings of the IEEE/CVF conference on com-
puter vision and pattern recognition, pages 14100-
14110.

Ji Zhang, Kevin J Shih, Ahmed Elgammal, Andrew Tao,
and Bryan Catanzaro. 2019. Graphical contrastive
losses for scene graph parsing. In Proceedings of
the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 11535-11543.

Yiwu Zhong, Liwei Wang, Jianshu Chen, Dong Yu, and
Yin Li. 2020. Comprehensive image captioning via
scene graph decomposition. In European Conference
on Computer Vision, pages 211-229. Springer.

Terry Yue Zhuo, Zhuang Li, Yujin Huang, Fatemeh
Shiri, Weiqing Wang, Gholamreza Haffari, and Yuan-
Fang Li. 2023. On robustness of prompt-based se-
mantic parsing with large pre-trained language model:
An empirical study on codex. In Proceedings of the
17th Conference of the European Chapter of the As-
sociation for Computational Linguistics, pages 1090—
1102.

7848

Appendix
A Parsing Evaluation Details

A.1 Complete Baseline Descriptions

We give detailed descriptions of every baseline
used in our comparisons.

Sentence Parsing & Merging Methods. These
methods first parse each sentence in a multi-
sentence caption with a sentence-level parser,
then merge the resulting graphs by concatenat-
ing triples and removing duplicates. The parsers
include Stanford-Parser (Schuster et al., 2015),
which converts dependency parses into scene
graphs and underlies the original SPICE imple-
mentation (Anderson et al., 2016), as well as
VG-T5-base (Sent+Merge) and FACTUAL-TS5-
base (Sent+Merge). The latter two use VG-T5-
base (Sharifzadeh et al., 2022) and FACTUAL-TS5-
base (Li et al., 2023a), respectively, both of which
are Flan-T5-base models fine-tuned on the VG and
FACTUAL datasets, respectively.

End-to-End (Sentence) Methods. VG-T5-base
(Direct) and FACTUAL-TS (Direct) apply VG-T5-
base and FACTUAL-T5-base directly to full cap-
tions without using the sentence-level parsing and
graph merging pipeline.

End-to-End (Discourse) Methods. These mod-
els are fine-tuned on caption-graph pairs from
DiscoSG-DS. DiscoSG-T5 variants are Flan-T5
models in base (0.25B), large (0.78B), and xl
(3B) sizes, while DiscoSG-Qwen2.5 variants are
Qwen2.5 models with 0.5B, 1.5B, and 7B param-
eters. Unless noted, all are trained on 8,730 ex-
amples combining human and synthetic data. We
also include DiscoSG-T5-large (300), trained on
300 expert curated examples to control for training
size, and DiscoSG-GPT-40, a GPT-40 teacher fine-
tuned on the same 300 examples used to generate
the 8,730 synthetic instances.

Few-Shot Prompting (3 shot). We evaluate large
instruction tuned PLMs, including Qwen2.5-72B-
Instruct, Llama-3.3-70B-Instruct (Grattafiori et al.,
2024), and GPT-40 (text-only and multimodal).
For each test caption, generation is conditioned
on three in-context examples formatted as caption-
scene graph pairs; the examples are retrieved from
DiscoSG-DS using cosine similarity of TF-IDF
vectors. We also evaluate a GraphRAG variant
with GPT-4o (text) that first extracts entities and

relations from captions and then conditions graph
generation on these cues, using 3-shot prompts
where each shot provides the caption, its extracted
entities and relations, and the reference graph.

Iterative Refinement Methods. All iterative
baselines use 3-shot GPT-40 as Generator and In-
terpreter, differing only in the Programmer com-
ponent. The three examples for the Generator are
retrieved from DiscoSG-DS and those for the In-
terpreter are retrieved from DiscoSG-ED using the
same TF-IDF cosine similarity retrieval method
described above.

* PiVe (Han et al., 2024): The Programmer is
a Flan-T5 model fine-tuned on DiscoSG-ED
that proposes insertion actions only.

* Self-Refine (Madaan et al.): The Program-
mer is GPT-4o that generates self-feedback
containing insertion and deletion suggestions
based on three feedback examples retrieved
from DiscoSG-ED using cosine similarities
between TE-IDF vectors of captions.

* Prog-Refine (Li et al.,, 2024): The Pro-
grammer is a Flan-T5 model fine-tuned on
DiscoSG-ED that requires the decoder to di-
rectly predict both insertion and deletion ac-
tions, unlike other methods that use the en-
coder for deletion and decoder for insertion.

All methods run two refinement iterations for a
fair comparison with our framework.

A.2 Metric Definitions

SPICE (Anderson et al., 2016) evaluates the pars-
ing performance by computing an F1 score for each
caption based on the overlap between predicted
triples (7}req) and gold standard triples (Tgo1q). To
better capture semantic equivalence, it uses both
exact string and synonym matching for entity nodes
within triples. The score is the harmonic mean of
precision (P) and recall (R), defined as:

SPICE = %f, where:
p— |Tpred N Tgold|
|Tpred|
R— |Tpred N Tgold‘
|Tgold|

Bi-SoftSPICE (BSSPICE) is a symmetric version
of SoftSPICE (Li et al., 2023a) that replaces ex-
act matching with semantic similarity. SoftSPICE

7849

computes cosine similarities between Sentence-
BERT embeddings (Reimers and Gurevych, 2019)
of triple phrases from the predicted (Gpreq) and
gold (Ggolq) graphs, then aggregates these triple
similarities into a final graph-level score.

BSSPICE is the harmonic mean of the forward
(Spg) and backward (Sgp) SoftSPICE scores:

Spg = SOftSPICE(GPred, Ggold)
Sgp = SOftSPICE(Ggold, Gpred)
2- Spg i Sgp

BSSPICE =
Spg + Sep

Inference Time (s) is reported as the average run-
time per sample, computed over 100 test captions.
For open-source PLMs with fewer than 70 bil-
lion parameters, inference is performed on a single
NVIDIA RTX 4090 GPU. For API-based models,
the runtime is measured using OpenAI’s endpoints
for GPT-40-based models and Alibaba’s public end-
points for Llama-3.3-70B-Instruct and Qwen2.5-
72B-Instruct.

Although DiscoSG-GPT-40 and GPT-40 (text-
only) are both based on GPT-40, DiscoSG-GPT-40
has approximately twice the inference time of GPT-
40 (text-only). This is consistent with OpenAl’s
documentation, which notes that fine-tuned mod-
els often experience increased latency due to being
hosted on separate infrastructure. As we do not
have access to the backend deployment configura-
tions of these proprietary APIs, our measurements
serve as an approximate but practical basis for com-
paring inference efficiency.

A.3 Discourse Error Analysis Methodology

Error Type Taxonomy. To systematically anal-
yse the outputs of discourse-level scene graph
parsers, we developed a structured error analysis
methodology using GPT-40 as an automated anno-
tator and a human annotator. GPT-40 is guided by
a detailed prompt (see Appendix 12). The GPT-
40 and human annotators evaluate candidate scene
graphs against ground-truth graphs and their source
captions. The analysis focuses on four principal
categories of discourse-level errors:

* Cross-Sentence Coreference Resolution: Fail-
ure to correctly resolve anaphoric references,
where an entity is mentioned across multiple sen-
tences.

Example: Not linking "a woman" in one sentence
to "she" in a subsequent sentence.

* Long-Range Relational Dependency: Omis-
sion or misidentification of relationships between
entities that span different sentences.

Example: A connection between two objects men-
tioned in separate sentences is missing from the
graph.

e Implicit Information Inference: Failure to find
relationships or attributes that are logically im-
plied by the combined context of multiple sen-
tences but not explicitly stated.

Example: Not inferring the triple (cat, near, win-
dow) from the explicit statements (cat, on, mat)
and (mat, under, window).

¢ Graph Coherence: The generation of a struc-
turally flawed graph that is fragmented, inconsis-
tent, or incomplete at the discourse level.
Example: The final graph consists of discon-
nected subgraphs or omits entities and relations
crucial for a unified representation.

For our quantitative analysis, we calculate the
prevalence of each error type across the dataset.
Each graph is evaluated for the presence or absence
of each error type. If one or more instances of a
specific error type occur within a graph, that graph
is marked as exhibiting that error type and the count
for that error type is incremented by one. We then
compute the percentage of graphs in the dataset
that exhibit each error type.

Analysis. Our results reveal a consistent perfor-
mance ranking across both automated and human
evaluation methods. The GPT-40-based annota-
tions separate the models into two clear perfor-
mance tiers. The top tier comprises GPT-4o0 (text-
only), DiscoSG-GPT-40 as the teacher model, and
DiscoSG-Refiner-large, all of which achieve com-
parable average error rates in the range of 66%
to 70%. The second tier includes FACTUAL-T5-
base (Sent+Merge), which has an average error rate
of 82.0%, and DiscoSG-T5-base, which reaches
90.75%. This reflects a performance gap of more
than 12 percentage points between the two groups.
The findings suggest that leveraging discourse-level
data from DiscoSG-DS enhances parsing quality
at the discourse level, although smaller PLMs re-
quire specialised architectures to remain compet-
itive. Human annotation further confirmed this
performance disparity, with evaluators identifying
errors in 92.5% of graphs produced by FACTUAL-
T5-base (Sent+Merge) and 100% of graphs gener-
ated by DiscoSG-T5-base.

7850

GPT-40-Annotated Human-Annotated

Cross.| Long.| Impl.| Graph.| Avg.| | Cross.| Long.| Impl.| Graph.| Avg.|
FACTUAL-T5-base (Sent+Merge) 61.0 97.0 77.0 93.0 82.00 | 100.0 100.0 70.0 100.0 92.5
DiscoSG-T5-base 67.0 100.0 96.0 100.0 90.75 100.0 100.0 100.0 100.0 100.0
GPT-4o0 (text-only) 36.0 81.0 83.0 65.0 66.25 60.0 80.0 80.0 90.0 71.5
DiscoSG-GPT-40 (Teacher) 28.0 86.0 76.0 81.0 67.75 50.0 80.0 80.0 100.0 71.5
DiscoSG-Refiner-large 43.0 85.0 74.0 79.0 70.25 30.0 100.0 100.0 80.0 71.5
Average 47.0 89.8 81.2 83.6 75.4 68.0 92.0 86.0 94.0 85.0

Table 7: Discourse parsing error rates (%) for each parsing method, comparing automated error analysis by GPT-40
(left) against manual annotation (right). Lower values indicate better performance. Error categories are abbreviated
as follows: Cross. (Cross-Sentence Coreference), Long. (Long-Range Dependency), Impl. (Implicit Inference),
and Graph. (Graph Coherence). The automated analysis used the prompt shown in Appendix 12.

To validate our automated evaluation, we mea-
sured inter-annotator agreement between GPT-40
and human experts on a subset of 50 samples. The
analysis yielded a Jaccard score of 70.9% and an
F1 score of 74.4%, indicating substantial agree-
ment and demonstrating that GPT-4o serves as a
reliable proxy for human judgment. This valida-
tion enables scalable and reproducible assessment
of discourse-level phenomena, which would other-
wise be infeasible to evaluate manually at scale.

A.4 Implementation Details

We implement all models using the Hugging Face
Transformers® library and conduct experiments
on a single NVIDIA A100 80GB or RTX 4090
GPU. To ensure fair inference time comparisons,
all speed measurements for open-source models
with fewer than 70 billion parameters are con-
ducted exclusively on the RTX 4090 GPU. Our
Programmer models are trained for 3 epochs with
a batch size of 2. For the composite loss func-
tion, the deletion 10ss (Lgejete) and insertion loss
(Linsert) are weighted equally, using coefficients
>\del = /\ins = 0.5.

Human annotators involved in the manual data
labelling process were compensated at a rate com-
mensurate with the average local salary to ensure
fair labour practices.

A.5 Case Study

We present a visual example to illustrate the itera-
tive refinement process of the DiscoSG framework.
At the top, we show the input image (for reference
only) alongside its multi-sentence textual descrip-
tion. The middle section displays the initial scene
graph parsed from the description. At the bottom,
we show the refined graph after applying the dele-
tion and insertion modules, which remove redun-

Shttps://huggingface.co/

dant or irrelevant triples and add new, contextually
appropriate ones. This example highlights how our
framework enhances the accuracy and coherence
of discourse-level scene graphs for complex image
descriptions. See Figure 1 for details.

B Data Collection Details

B.1 Active Learning Annotation for
DiscoSG-DS

The pseudocode for our active learning annotation
process is detailed in Algorithm 1.

Algorithm 1: Active Learning Pipeline

Input: Seed training set Dgeeq (| Dseed| = 62);
fixed validation set Dy, (| Dya| = 40);
unlabeled data pool U; number of
iterations Ny, = 2; batch sizes per
iteration S = {94, 204}.

Output: Expanded training set Dy.,i,; sequence

of fine tuned models { M, } N
validation scores { P; } V.
1 Diain = Dseeds
2 My < FineTune(GPT-40, Dyin);
Py + Evaluate(My, Dy,); /* initial SPICE
score */
for i + 0 to Ny, — 1 do
Braw < Sample(S[i], U);
U <= U\ Braw;
Byrate <+ Predict(M;, Bry);
Bicfinea + HumanRefine(Byrar);
stage expert refinement x/
9 Drrain < Dirain U Brefined;
10 M1 < FineTune(GPT-40, Dyin);
11 P, 1 « Evaluate(M; 11, Dya);
12 end
13 return D,.;,, {Ml}i\[:’0 , {Pi}gvz”g

“w

® N w»n B

/* two

B.2 Annotation Guidelines for DiscoSG-DS

Annotation was conducted using Amazon Mechan-
ical Turk’s sandbox interface. Given the minimal

7851

https://huggingface.co/

Image:

Caption:

In the image, a group of people are seen walking on a concrete pier towards a ferry terminal. The pier is equipped with
a metal railing on the left side, providing safety for the pedestrians. The individuals are casually dressed, suitable for a
summer day, and are carrying various bags and backpacks, suggesting they might be travelers or commuters. Two red
flags are flying on the left side of the image, possibly indicating some sort of warning or information. Further ahead, a
blue and white canopy can be seen, likely providing shelter at the ferry terminal. The sky above is hazy, creating a
serene atmosphere. In the distance, tall buildings loom, indicating that the location is near a city or urban area. The
image does not contain any discernible text. The relative positions of the objects suggest a typical scene at a ferry
terminal: people moving towards their destination, the safety measures in place, and the urban backdrop adding context
to the setting. The image captures a moment of everyday life, with each element playing its part in the narrative.

Initial Graph:

(people , walk on , pier) , (people , walk towards , ferry terminal) , (pier, is , concrete) , (railing , at the left of , pier
), (railing , is , metal) , (individuals , carry , backpacks) , (individuals , carry , bags) , (individuals , is , casually
dressed) , (flags , fly at the left of , image) , (flags,is,2), (flags,is,red), (canopy , at, ferry terminal) , (canopy
,is, blue), (canopy , is, white) , (sky , is , hazy), (sky, is, serene) , (buildings , is , tall) , (buildings , near , city)
, (image) , (backdrop , is , urban) , (objects , at, terminal) , (objects , in , setting) , (objects , is , relative) , (people
, move towards , destination) , (terminal , is , ferry) , (element, play in , narrative) , (image , capture , narrative) , (
narrative , is , everyday)

Deletion Prediction:

(people , walk on , pier) , (people , walk towards , ferry terminal) , (pier, is , concrete) , (railing , at the left of , pier
), (railing , is , metal) , (individuals , carry , backpacks) , (individuals , carry , bags) , (individuals , is, casually
dressed), (flags, fly at the left of , image), (flags,is,2), (flags,is,red), (canopy , at, ferry terminal) , (canopy
,is, blue) , (canopy , is , white) , (sky, is, hazy), (sky , is, serene) , (buildings, is , tall) , (buildings , near , city)
, Himage), (backdrop , is , urban) , i —— i - : — i - : —— i -

Insertion Generation:

(railing , at the left of , pier) , (sky , is , hazy) , (people , walk on , pier) , (flags , is, 2), (individuals , carry ,
backpacks) , (buildings , near , ferry terminal) , (pier, is , concrete) , (railing , is , metal) , (buildings , near , city),
(‘backdrop , is , urban) , (individuals , is , casually dressed) , (individuals , carry , bags), (sky , is, serene) , (flags,
fly at the left of , image) , (people , walk towards , ferry terminal) , (canopy , is , white) , (canopy , is , blue), (
canopy , at , ferry terminal) , (flags , is, red), (buildings , is , tall) , (people , is , group of)

Figure 1: Visualisation of the iterative scene graph refinement process in the DiscoSG-Refiner framework.

7852

risk associated with scene graph annotation tasks
(extracting object relationships from visual descrip-
tions), no additional risk disclaimers were required
beyond standard research participation protocols.

To ensure the quality and consistency of our
dataset, we established comprehensive guidelines
for annotating scene graphs (y) from discourse de-
scriptions (x) and images. The key principles and
procedures are summarised below.

Core Task & Principles. The primary objec-
tive is to extract a scene graph grounded in both
the text and the image. This involves identifying
object-attribute-value triples, such as (mast, is,
wooden), and object-relation-object triples, like
(mast, on, deck). All relations derived from
verbs are explicitly marked with a v: prefix (e.g.,
v:rest on). The v: prefix is only applied during
annotation to align with the FACTUAL-MR for-
mat (Li et al., 2023a) and is later removed. Only
objects clearly visible or unambiguously inferable
from the image are included as nodes. Abstract con-
cepts (e.g., “game”), viewpoint references (“cam-
era”), and non-localizable elements are excluded.

Annotation Workflow and Quality Control.
The annotation process follows a structured work-
flow to maximise factual accuracy and consistency.

* Hallucination Handling: Annotators first cross-
reference the text description () with the image
to detect factual inconsistencies (hallucinations),
such as incorrect object counts or non-existent re-
lations. Instances with significant hallucinations
that compromise core scene understanding are
flagged and typically excluded from full annota-
tion. Minor descriptive errors are corrected by
the annotators.

* Refinement Process: Annotation is performed
using a dedicated interface on Amazon Me-
chanical Turk* where annotators refine initial
draft graphs generated by FACTUAL-T5-base
(Sent+Merge) or DiscoSG-GPT-40. This in-
volves adding, deleting, or modifying nodes (en-
tities) and edges (relations).

* Expert Review: All manual annotations undergo
a two-stage expert review that requires consensus
for finalisation, ensuring high-quality outputs.

* Intermediate Representation: To reduce ambi-
guity during annotation, we use the FACTUAL-

*https://www.mturk.com/

MR format (Li et al., 2023a), which is then
programmatically converted into the final scene
graph structure.

Semantic Representation Rules. Specific rules
are applied to the representation of object attributes
and relations:

* Attributes: Object attributes are represented
using either the explicit form (object,
has_attribute, attribute_value)
or the shorthand form (object, is,
attribute_value).

* Relations: Relations between objects or nodes
follow the FACTUAL-MR convention, consist-
ing of verbs and prepositions, with a preference
for active voice where applicable. For example,
(court, v:separate by, 1lines) is rewrit-
ten as (lines, v:separate, court) to ensure
consistency, following the annotation guidelines
of FACTUAL (Li et al., 2023a).

Handling Discourse Phenomena. To address
key discourse-level challenges such as Cross-
Sentence Coreference, Long-Range Relational De-
pendencies, Implicit Inference, and Graph Coher-
ence, our annotation guidelines emphasise the fol-
lowing procedures:

* Entity Disambiguation and Coreference: To
resolve ambiguity, annotators create unique
nodes for each distinct object, even if they share
the same name. For instance, in “Two cats are
visible: one is sleeping, the other is playing,”
the cats are annotated as separate nodes (e.g.,
cat:1, cat:2). Similarly, collective nouns like
“dogs” are disaggregated into individual nodes
when described with different attributes or rela-
tions. For example, the phrase “There are two
dogs, one brown and one white” results in dis-
tinct triples (dog:1, is, brown) and (dog:2,
is, white).

* Quantifier Annotation: Annotators capture the
quantity of objects mentioned in the text (e.g., ‘2
people”, “several cats”) using a predefined set
of labels (e.g., 1, 2, many, uncountable) associ-
ated with the corresponding entity nodes. To han-
dle discourse-level counts, annotators aggregate
these quantifiers across sentences. For instance,
if one sentence mentions “a cat” and a later sen-
tence mentions “another cat,” the final count for
the “cat” entity is consolidated to the quantifier
label 2.

7853

Implicit Relation Inference: Annotators enrich
the graph by inferring and adding relations that
are logically implied by the context but not ex-
plicitly stated in a single sentence. For example,
given the statements (cat, on, mat) and (mat,
under, window), the implicit spatial relation
(cat, near, window) is added to the graph.

Entity Specificity and Semantic Precision: An-
notators are guided to use the most specific en-
tity representation available (e.g., preferring “cat”
over “animal”) and to resolve semantic redun-
dancy by merging nodes where appropriate (e.g.,
representing “a husband and a wife” as a single
“couple” node).

B.3 Construction of the D-FOIL Dataset

The D-FOIL dataset was constructed through a
multi-stage process designed to create a corpus of
hallucinated captions, their corrected counterparts
with minimal editing, and factually grounded refer-
ence captions.

1. Initial Data Collection: We first gathered
410 image-text pairs where the captions were
identified as containing discourse-level hallu-
cinations. We also annotated the locations of
these hallucinated entities or relations.

2. Reference Generation: To establish a
hallucination-free ground truth for each im-
age, we employed GPT-4.1 to generate a
new, detailed description. To maintain con-
sistency with existing datasets, we used the
same prompt as the SharedGPT4V dataset:

Reference Generation Prompt

Create detailed captions describing the
contents of the given image. Include
the object types and colours, counting
the objects, object actions, precise ob-
ject locations, texts, double-checking
relative positions between objects, etc.

These generated descriptions served as the fac-
tual references for the subsequent correction
step.

3. Human Correction: Using the generated ref-
erences as a guide, our annotators manually
revised and corrected a subset of 200 of the
original hallucinated captions. This step en-
sured that the final corrected captions were
factually aligned with the image content.

Datasets Captions Graph
MATTR 1t MTLD 1 A MATTR1 MTLD 1
VG 0.3682 13.5043 0.3563 12.5834
FACTUAL 0.3536 13.1511 0.3549 12.3893
TSGBench 0.5168 9.8000 0.5137 9.2154
DiscoSG-DS 0.3809 14.1317 0.3596 13.1562
DiscoSG-ED 15x 0.3809 14.1317 0.3603 12.4330

Table 8: Evaluation of lexical diversity in captions and
scene graphs across different datasets.

Each finalised instance in the D-FOIL dataset
comprises three key components: 1) the original
caption containing hallucinations, 2) the corrected
hallucination-free version of the hallucinated cap-
tion, and 3) the hallucination-free reference descrip-
tion generated by GPT-4.1.

B.4 Annotator Recruitment and
Compensation

Annotators were recruited from the research team
based on their specialised expertise in scene graph
parsing. All annotators were compensated through
their regular institutional salaries with no additional
per-annotation payments, ensuring fair labour prac-
tices. The recruitment of internal team members
was necessary due to the specialised knowledge
required for discourse-level scene graph annota-
tion. To mitigate potential bias from this arrange-
ment, we implemented rigorous quality control
measures, including inter-annotator agreement as-
sessment and two-stage expert review.

B.5 Dataset Licensing

The DiscoSG-DS and D-FOIL datasets will be re-
leased under [MIT/Apache 2.0/CC BY 4.0] license
for research purposes. The dataset includes expert
annotations and synthesised examples that build
upon existing research datasets, with appropriate
consent obtained from research team members who
participated in annotation. The dataset is intended
for academic research use only and builds upon
publicly available research datasets where consent
was handled during original collection.

C Lexical Diversity Evaluation

To quantify linguistic diversity, we evaluate both
the caption text and the linearised graph tokens of
each dataset using two length-insensitive measures
derived from the type-token ratio (TTR), the pro-
portion of unique words (types) to total words (to-
kens). Because raw TTR declines with increasing

7854

text length, we adopt two widely accepted alterna-
tives that offer more stable estimates:

* Moving-Average TTR (MATTR) (Covington
and McFall, 2010) : computes the average TTR
within a sliding window, reducing sensitivity to
text length.

* Measure of Textual Lexical Diversity
(MTLD) (McCarthy, 2005): measures the
average number of tokens needed before the
running TTR drops below a threshold, with
higher scores indicating greater vocabulary
diversity and lower redundancy.

To reduce the impact of varying average cap-
tion and graph token lengths across datasets, we
compute diversity scores at the corpus level by con-
catenating all captions and all graph tokens, respec-
tively, into single text sequences before computing
diversity scores. This approach ensures a fair com-
parison across datasets. For both metrics, higher
scores indicate greater lexical variety. Results are
shown in Table 8.

Analysis. Table 8 shows that DiscoSG-DS
achieves the highest MTLD scores, with 14.13 for
captions and 13.16 for graph tokens, reflecting its
strongest long-range lexical diversity among all
datasets. While TSGBench records the highest
MATTR values, at 0.517 for captions and 0.514 for
graphs, its much lower MTLD scores, 9.80 for cap-
tions and 9.22 for graphs, indicate that its lexical
variety is not sustained over longer sequences. In
contrast, DiscoSG-DS maintains a strong balance
of both local and global diversity, making it partic-
ularly suitable for discourse-level modelling. The
synthetic extension, DiscoSG-ED, preserves this
lexical richness, demonstrating that data augmenta-
tion does not diminish linguistic diversity.

D Prompt Descriptions

Table 9 provides an overview of the prompt tem-
plates and example inputs used in our experiments.
These templates standardize input formats and task-
specific instructions across diverse scene graph
parsing and caption analysis tasks, ensuring consis-
tency in model prompting and evaluation.

7855

Template Name Description Link
DiscoSG-Refiner Deletion Provides instructions for identifying and removing incorrect or irrelevant triplets ~ Figure 2
Prediction Template from a candidate scene graph, based on a given caption.
DiscoSG-Refiner Deletion Shows a concrete input example used in the Deletion Prediction task. Figure 3
Prediction Example
DiscoSG-Refiner Insertion Guides the model to add missing but contextually appropriate triplets to an Figure 4
Generation Template incomplete scene graph, based on the caption and current graph.
DiscoSG-Refiner Insertion Provides an example input for the Insertion Generation task. Figure 5
Generation Example
Hallucination = Detection Instructs the vision-language model to detect hallucinated content by comparing Figure 6
Template a caption to image content, producing a binary decision. This is used to filter data
during synthetic data collection for DiscoSG-DS.
PiVe Prompt Template Guides GPT-40 to generate initial scene graphs via few-shot prompting, then = Figure 7
refine them using feedback from the DiscoSG-Refiner Programmer, conditioned
on the caption.
D-FOIL Hallucination De- Prompts GPT-40 to determine which of two candidate captions is more semanti- Figure 8
tection Template cally aligned with a reference caption, helping detect hallucinations.
Self-Refine Feedback Gen- Instructs GPT-40 to generate self-feedback on a scene graph, suggesting triplet ~ Figure 9
eration Template insertions or deletions.
Self-Refine Refinement Prompts GPT-40 to revise a previous scene graph based on generated self- Figure 10
Template feedback.
Prog-Refine Template Applies a sequence of edits—insertions and deletions—predicted by DiscoSG- Figure 11
Refiner to update a scene graph.
Discourse-Level Error Anal- Prompts the model to analyze and classify scene graph errors by comparing with ~ Figure 12

ysis Template

ground truth, focusing on coreference, relational dependencies, implicit inference,
and coherence.

Table 9: Descriptions of the prompt templates used in our experiments.

Delete Task:
Caption:

{Caption}
Candidate Graph:
{Graph needs refine}

Figure 2: Prompt template for deletion prediction in DiscoSG-Refiner

Delete Task:

Caption: The image captures a serene scene in a park. A gravel path, dappled with sunlight filtering through the tall
trees on either side, winds its way towards a white bridge. The bridge arches over a small body of water, possibly a
stream or a pond. The sky above is a clear blue, with a few clouds scattered across it. The predominant colors in the
image are the lush greens of the trees and grass, and the blue of the sky. The perspective of the image follows the path,
leading the viewer’s eye towards the bridge in the distance. The image exudes a sense of tranquility and invites one to
take a leisurely stroll down the path.
Candidate Graph: (path, is, gravel), (trees , is, lush), (trees , is, tall) , (path , wind towards , bridge) , (bridge ,
is , white) , (sky, is, gray), (bridge , arch over , water) , (sky , is, clear), (sky, is , blue) , (clouds , scatter across
,sky), (grass,is, lush), (trees, on either side of , path) , (water , is , small) , (sunlight , dapple , path), (sunlight ,

filter through , trees)

Figure 3: Example input prompt for deletion prediction in DiscoSG-Refiner

7856

Insert Task:

Caption:

{Caption}

Corrupted Graph:

{Graph needs refine / Graph refined by deletion prediction task}

Figure 4: Template input prompt for insertion generation in DiscoSG-Refiner

Insert Task:

Caption: The image captures a serene scene in a park. A gravel path, dappled with sunlight filtering through the tall
trees on either side, winds its way towards a white bridge. The bridge arches over a small body of water, possibly a
stream or a pond. The sky above is a clear blue, with a few clouds scattered across it. The predominant colors in the
image are the lush greens of the trees and grass, and the blue of the sky. The perspective of the image follows the path,
leading the viewer’s eye towards the bridge in the distance. The image exudes a sense of tranquility and invites one to
take a leisurely stroll down the path.

Corrupted Graph: (path, is, gravel), (trees , is, lush), (trees , is , tall) , (path , wind towards , bridge) , (bridge ,
is , white) , “skyis—grayyDeleted by Deletion Prediction" , (bridge , arch over , water), (sky , is, clear) , (sky , is
, blue), (clouds, scatter across , sky), (grass , is , lush), (trees , on either side of , path) , (water , is , small) , (
sunlight , dapple , path), (sunlight , filter through , trees)

Figure 5: Example prompt for the insertion-generation step in DiscoSG-Refiner

You are given an image and its description.

Analyse the description in detail to determine if it includes any hallucinations (information not present in the
image).

Provide a detailed explanation of your reasoning.
At the end, provide a binary decision in the format:
""Final Decision: [Yes/No]".

Description:

{description}
{image upload here}

Figure 6: Prompt template for detecting hallucinations by comparing a caption to its corresponding image.

7857

Transform the following text into a complete semantic graph and add the provided triple to the generated
semantic graph.

Example 1:

Caption: {Caption}

Incomplete semantic graph: {incomplete scene graph}
Triple to add: {triple to add}

Complete semantic graph: {complete graph}
Example 2:

Caption: {Caption}

Incomplete semantic graph: {incomplete scene graph}
Triple to add: {triple to add}

Complete semantic graph: {complete graph}
Example 3:

Caption: {Caption}

Incomplete semantic graph: {incomplete scene graph}
Triple to add: {triple to add}

Complete semantic graph: {complete graph}

Now, transform the following caption into a complete semantic graph:

Caption: caption

Incomplete semantic graph:
{incomplete graph}

Triple to add:
{triple need to add} # Generated by our Refiner

Complete semantic graph:

Figure 7: Prompt template used by PiVe to complete a scene graph by adding a specified triplet.

You are given a ground truth image caption and two candidate captions. Your task is to choose which candidate
caption (Candidate 1 or Candidate 2) is closer in meaning and detail to the ground truth caption. Only output
""Candidate 1" or '"Candidate 2''. Do not provide any explanation or analysis.

Ground truth caption: {ground truth}
Candidate 1: {candl}
Candidate 2: {cand2}

Which candidate is closer to the ground truth caption?

Figure 8: Prompt template for identifying hallucinations in candidate captions by selecting the one that best aligns
with the ground truth in D-FOIL.

7858

You are an expert at analyzing scene graphs for accuracy and completeness. Your task is to evaluate a scene
graph based on an image caption and suggest improvements.

A scene graph consists of triples in the format (subject, relation, object) that represent the entities and
relationships in an image.

For the given caption and scene graph, identify:
1. Triples that need to be added (entities or relationships mentioned in the caption but missing from the graph)

2. Triples that need to be removed (incorrect, irrelevant, or redundant entries) Here are some examples of how to
provide refinement suggestions:

Example 1:

Caption: {caption}

Scene Graph: {scene graph}

insert triples: {triples need to insert}
delete triples: {triples need to delete}

Example 2:

Caption: {caption}

Scene Graph: {scene graph}

insert triples: {triples need to insert}
delete triples: {triples need to delete}

Example 3:

Caption: {caption}

Scene Graph: {scene graph}

insert triples: {triples need to insert}
delete triples: {triples need to delete}

Now, please analyze this new case:
Caption: {caption}
Scene Graph: {scene graph}

Provide your recommendations in this format:
insert triples: { All triples that should be added}
delete triples: {All triples that should be removed}

Figure 9: Prompt template for Self-Refine that guides GPT-40 to generate feedback by identifying insertions and
deletions needed to improve a scene graph based on a caption.

7859

Parse the following image description into a scene graph. A scene graph consists of triplets in the format (subject,
relation, object).

I’ll provide examples that show how to refine scene graphs based on feedback suggestions:
Example 1:

Caption: {caption}

Corrupted Graph: {Corrupted scene graph}
Refinement Suggestion:

insert triples: {all triples that should be added}
delete triples: {all triples that should be removed}
Improved Scene Graph: {Target scene graph}

Example 2:

Caption: {caption}

Corrupted Graph: {Corrupted scene graph}
Refinement Suggestion:

insert triples: {all triples that should be added}
delete triples: {all triples that should be removed}
Improved Scene Graph: {Target scene graph}

Example 3:

Caption: {caption}

Corrupted Graph: {Corrupted scene graph}
Refinement Suggestion:

insert triples: {all triples that should be added}
delete triples: {all triples that should be removed}
Improved Scene Graph: {Target scene graph}

Now, generate an accurate scene graph for the following description:

Description:
{input_caption}

Previous Graph:
{previous_graph}

Refinement Suggestion:
{Self-Feedback from Self-Refine}

Generate an improved scene graph below:

Figure 10: Prompt template used in Self-Refine for revising a scene graph according to GPT-40-generated feedback.

7860

You are an expert at improving scene graphs based on edit actions. A scene graph consists of triples in the format
(subject, relation, object).

Here are some examples of how to improve scene graphs based on edit actions:
Example 1:

Caption: {caption}

Scene Graph: {scene graph}

Edit Actions:

INSERT: {target triples need to insert}
DELETE: {target triples need to delete}
Improved Scene Graph: {original scene graph}

Example 2:

Caption: {caption}

Scene Graph: {scene graph}

Edit Actions:

INSERT: {target triples need to insert}
DELETE: {target triples need to delete}
Improved Scene Graph: {original scene graph}

Example 3:

Caption: {caption}

Scene Graph: {scene graph}

Edit Actions:

INSERT: {target triples need to insert}

DELETE: {target triples need to delete}
Improved Scene Graph: {original scene graph}

Now, please improve this new scene graph:
Caption: {caption}

Scene Graph: {scene graph}

Edit Actions: {programmer output}

Improved Scene Graph:

Figure 11: Prompt template used in Prog-Refine for applying edit actions to revise a scene graph.

7861

Given the following inputs:

1. caption: A textual description of a scene

2. ground truth graph: The correct reference scene graph
3. candidate graph: The scene graph being evaluated

Analyze the scene graph parsing error by comparing the candidate graph against the ground truth graph and the
caption. Determine which of the following error types best describes the primary issue. **For each error type,
consider both errors of commission (incorrect outputs) and errors of omission (missing outputs that should be
present).** Pay special attention to cases where the candidate graph fails to produce entities, links, or relations
that are present in the ground truth graph or are required by the caption.

1. Cross-Sentence Coreference Resolution Error

Definition: Failure to correctly identify and link mentions of the same entity across different sentences, including
both incorrect links and entirely missing coreference chains.

- Omission focus: Also count cases where coreference chains are completely absent because the parser failed to
produce the necessary entities or links.

- Example: If '"a woman'' is mentioned in one sentence and later referred to as ''she' or '"the artist'' in another,
but the candidate graph either mislinks or fails to link these as the same entity, or does not produce the entities at
all.

2. Long-Range Relational Dependency Error

Definition: Missing or incorrect relationships between entities mentioned in separate, potentially distant sen-
tences.

- Omission focus: Count not only incorrect relations, but also missing long-range dependencies—i.e., when the
candidate graph produces very few or no relations that should span across sentences.

- Example: If an object is introduced in one sentence and its relationship to another object is described in a
different sentence, but the candidate graph fails to connect these entities, or omits the relationship entirely.

3. Implicit Information Inference Error

Definition: Failure to infer and represent relationships or attributes not explicitly stated but apparent from
broader context.

- Omission focus: This category is inherently about omissions—specifically, failure to cover information that
should be inferred based on the combined information in the caption and ground truth graph.

- Example: If the ground truth graph contains a relationship or attribute not textually explicit in the caption
(e.g., inferring (cat, near, window) from ''The cat is on the mat." and ''The mat is under the window.'"), but the
candidate graph omits this, it is an omission error.

4. Graph Coherence Error

Definition: Failures in producing a globally consistent representation of the entire scene, including contradictions,
fragmentation, or incompleteness.

- Omission focus: Include cases of ''graph incompleteness''—that is, when the overall graph lacks sufficient
entities, links, or triplets to represent the complete scene described in the text.

- Example: The candidate graph only contains disconnected subgraphs or lacks key triplets, failing to provide a
unified and comprehensive scene graph.

5. Others

Any error type that doesn’t fit into the categories above.

For each error category that applies, do the following:

- State the category name as a section heading.

- Only consider the differences between the candidate graph and the ground truth graph, and between the
candidate graph and the caption, strictly based on the provided data. Do not incorporate any information or
assumptions beyond what is explicitly given in the data.

- Provide detailed reasoning, including:

- Specific evidence from the graph (e.g., which triples or nodes are missing or illustrate the error).

- An explanation of why this constitutes the given error type (refer to the definitions and examples above, including
omission criteria).

- An example or clarification if helpful.

At the end, under the heading '"Applicable Error Categories', list all applicable error category labels (using the
exact English names, separated by commas).

Inputs:

Caption:

{caption}

Ground Truth Graph:
{ground truth graph}
Candidate Graph:
{candidate graph}

Figure 12: Prompt template for analysing discourse-level scene graph errors, including coreference, long-range
relations, implicit inference, and coherence, by comparing candidate graphs with ground truth graphs and captions.

7862

