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Abstract
Experts in machine learning leverage domain
knowledge to navigate decisions in model se-
lection, hyperparameter optimization, and re-
source allocation. This is particularly critical
for fine-tuning language models (LMs), where
repeated trials incur substantial computational
overhead and environmental impact. However,
no existing automated framework simultane-
ously tackles the entire model selection and
hyperparameter optimization (HPO) task for
resource-efficient LM fine-tuning. We intro-
duce XAutoLM, a meta-learning-augmented
AutoML framework that reuses past experi-
ences to optimize discriminative and generative
LM fine-tuning pipelines efficiently. XAutoLM
learns from stored successes and failures by ex-
tracting task- and system-level meta-features
to bias its sampling toward valuable configura-
tions and away from costly dead ends. On four
text classification and two question-answering
benchmarks, XAutoLM surpasses zero-shot op-
timizer’s peak F1 on five of six tasks, cuts
mean evaluation time of pipelines by up to 4.5x,
reduces search error ratios by up to sevenfold,
and uncovers up to 50% more pipelines above
the zero-shot Pareto front. In contrast, simpler
memory-based baselines suffer negative trans-
fer. We release XAutoLM and our experience
store to catalyze resource-efficient, Green AI
fine-tuning in the NLP community.

1 Introduction

Fine-tuning large language models (LLMs) has be-
come indispensable across natural language pro-
cessing (NLP) applications, yet even “small” mod-
els such as BERT (Devlin et al., 2018) or T5 (Raf-
fel et al., 2020) incur substantial computational
cost and carbon emissions (Wang et al., 2023b;
Schwartz et al., 2020). Rather than exhaustively
evaluating every model and hyperparameter combi-
nation, human experts draw on domain knowledge
to focus on promising regions of this vast design
space.

Automated Machine Learning (AutoML) seeks
to mimic expert intuition by automating the two
core stages of pipeline construction, model selec-
tion (MS) and hyperparameter optimization (HPO),
into a unified search loop (Hutter et al., 2019). Au-
toML techniques have matured in areas such as
tabular and vision tasks (Hutter et al., 2019), show-
ing competitive performance against human experts
(Estevez-Velarde et al., 2020). However, the joint
MS+HPO pipeline for language models presents
an ample, mixed discrete-continuous search space
whose repeated evaluations are prohibitively costly
(Wang et al., 2023b), thus posing a significant chal-
lenge for automation. While several recent efforts
address HPO for LMs in isolation (Mallik et al.,
2024), surveys highlight the underdevelopment
of full-pipeline AutoML in NLP (Tornede et al.,
2023), and no framework systematically unifies
model selection and HPO under tight compute and
Green AI constraints.

To address these shortcomings, we present XAu-
toLM, an AutoML framework that unifies model
selection and hyperparameter optimization for LM
fine-tuning via meta-learning. XAutoLM con-
structs an experience-aware prior from a repos-
itory of past pipeline evaluations annotated with
task- and system-level meta-features which steers
the search toward historically promising and away
from infeasible configurations. Empirically, across
four classification and two question-answering
benchmarks, our method yields pipelines with
stronger performance-time trade-offs than zero-
shot or naive baselines under identical wall-clock
budgets (Tables 5, 6). We release the code and the
full experience store1 to support sustainable, repro-
ducible LM fine-tuning in the NLP community.

We summarize our main contributions as fol-
lows:

• A unified, meta-learning–augmented AutoML
1https://github.com/EEstevanell/XAutoLM
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framework that integrates both model selec-
tion and hyperparameter optimisation for dis-
criminative and generative LM fine-tuning.

• An extensible, task- and model-agnostic
experience-aware prior that conditions the
search on task and system meta-features and
explicitly leverages negative traces to avoid
costly dead ends.

• A comprehensive evaluation on six bench-
marks showing consistent gains in F1, mean
pipeline evaluation time, and error ratio, and
stronger Pareto fronts than zero-shot and naive
memory baselines (see Section 4; Tables 5, 6).

We next review related work (Section 2), present
XAutoLM (Section 3), and report the experimental
setup and results (Section 4), followed by analysis
(Section 5) and, finally, conclusions and limitations
(Sections 6, 7).

2 Related Work

AutoML strategies in language modelling can be
divided into two (not necessarily disjoint) sub-
sets: AutoML for LLMs and LLMs for Au-
toML (Tornede et al., 2023). The former com-
prises AutoML techniques to produce optimal LM
pipelines tailored for specific scenarios, akin to
traditional AutoML. The latter employs language
models to enhance the AutoML process, for ex-
ample, by providing linguistic interfaces to config-
ure the optimisation process or leveraging them to
guide the search (e.g., using LMs to generate code
for optimal ML pipelines).

AutoML for LLMs in particular poses signif-
icant challenges (Tornede et al., 2023). Namely,
LMs are extremely resource-intensive (Bannour
et al., 2021), even when only considering their
later stages (e.g., fine-tuning, inference). Table 1
compares AutoML approaches that leverage LLMs
according to relevant features characterising their
responses to the field’s challenges.

We observe that there are more LLMs for Au-
toML systems than vice versa, likely due to the
proliferation of prompt engineering and increased
access to open-source LMs. For instance, Zhou
et al. (2022) developed the Automatic Prompt En-
gineer (APE) system, which achieved performance
competitive with human-generated instructions. In
contrast, systems such as GL-Agent (Wei et al.,
2023), AutoM3L (Luo et al., 2024) and GizaML
(Sayed et al., 2024) integrate language models
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APE ✓ ✓
GPT-NAS ✓ ✓ ✓ ✓
GL-Agent ✓
AutoGen ✓ ✓ ✓

EcoOptiGen ✓ ✓ ✓
AutoML-GPT ✓ ✓ ≈
HuggingGPT ≈ ✓ ✓ ✓

AutoM3L ✓ ✓ ✓ ≈
PriorBand ✓ ✓ ✓ ✓

GizaML ✓ ✓ ✓ ✓
GE ✓ ✓ ✓ ✓ ≈

AutoGOAL ✓ ✓ ✓ ✓
Introduced in this paper

XAutoLM ✓ ✓ ✓ ✓ ✓ ✓

Table 1: Comparison of systems for AutoML with
LLMs

into their optimization strategies to produce graph
learning pipelines, highly capable multi-modal ML
pipelines, and time-series forecasting pipelines, re-
spectively.

Systems like AutoGen (Wu et al., 2023), GPT-
NAS (Yu et al., 2024), GE (Morris et al., 2024),
AutoML-GPT (Zhang et al., 2023), and Hugging-
GPT (Shen et al., 2024) are hybrids that span both
categories; they leverage LMs to produce LM-
based solutions. However, the last two differ from
traditional AutoML (and NAS) systems: AutoML-
GPT does not evaluate solution candidates (only
simulates their training), and HuggingGPT pro-
duces responses to prompts without outputting the
pipelines capable of handling them.

Often, the choice of model is as, if not more,
critical than the hyperparameter configuration
used to produce responses. We found that Au-
toGOAL (Estevanell-Valladares et al., 2024) op-
timizes pipelines by balancing efficiency and per-
formance metrics, taking into account both model
selection and HPO, but only supports LMs for in-
ference. All other AutoML for LLMs systems we
surveyed, such as EcoOptiGen (Wang et al., 2023a)
and PriorBand (Mallik et al., 2024), focus solely
on HPO.

Nonetheless, we find no single framework that
simultaneously addresses model selection and hy-
perparameter optimization for LM fine-tuning, par-
ticularly when resource limitations exist.
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3 Proposal

We introduce XAutoLM, the first AutoML frame-
work that unifies model selection and hyperparam-
eter optimisation for both discriminative and gen-
erative language model fine-tuning. Our pipelines
are composed of (i) a base LM from a curated
pool of encoders and generators (Table 2), (ii)
one of three fine-tuning strategies; full, partial,
or LoRA (Hu et al., 2021), and (iii) a hyperpa-
rameter configuration. XAutoLM jointly explores
this mixed search space by reusing past experi-
ences, e.g., “LoRA-tuned DistilBERT achieved
high macro-F1 on SST-2 under low VRAM”, to
steer the optimizer toward high-utility regions and
away from error-prone configurations. This holistic
reuse enables XAutoLM to discover strong fine-
tuning pipelines under tight compute budgets.

Discriminative

BERT (Devlin et al., 2018)
DistilBERT (Sanh et al., 2020)
RoBERTa (Liu et al., 2019)
XLM-RoBERTa (Conneau et al., 2020)
DeBERTa (He et al., 2021)
DeBERTaV3 (He et al., 2023)
MDeBERTaV3 (He et al., 2023)
ALBERT-v1 (Lan et al., 2019)
ELECTRA (Clark et al., 2020)

Generative

T5 (Raffel et al., 2020)
FLAN-T5 (Chung et al., 2024)
GPT-2 (Radford et al., 2019)
PHI-3 (Abdin et al., 2024b)

New Additions

PHI-3.5 (Mini-Inst) (Abdin et al., 2024a)
PHI-4 (Mini-Inst, Reasoning) (Abdin et al., 2024a)
MIXTRAL (8x7B) (Mistral AI Team, 2023)
MISTRAL NEMO (Base-Inst) (Mistral AI Team, 2024)
Llama 3.1, 3.2 (1B - 70B) (Grattafiori et al., 2024)
DeepSeek R12 (DeepSeek-AI et al., 2025)

Table 2: LMs available in AutoGOAL’s algorithm pool.

Background XAutoLM builds on AutoGOAL’s3

probabilistic optimizer (Estevez-Velarde et al.,
2020). The optimizer represents every valid LM
pipeline c as a point in a mixed search space that
combines discrete choices (e.g. fine-tuning method,
model, tokenizer) with continuous hyperparame-
ters (e.g. learning rate, dropout). It maintains a
probability distribution P (c |θ) over that space. It

3Open-source available at: https://github.com/
autogoal/autogoal, licensed without restriction.

repeats a simple sample–evaluate–update loop: (1)
sample a batch of pipelines from P (c |θ); (2) eval-
uate them on the target task; and (3) update P (c |θ)
so that high-performing pipelines gain probability
mass while under-performing and failures lose it.
AutoGOAL always initializes this distribution uni-
formly, meaning every pipeline, adequate or not,
is equally likely at the first generation.

3.1 Process Overview

XAutoLM replaces this uniform cold start with an
experience-aware prior that follows a structured
meta-learning process. Initially, the framework re-
trieves relevant historical evaluations (experiences)
from a centralized repository (Section 3.2). Then,
it computes detailed task and system meta-features
(Section 3.2.1) to characterize the complexity and
available resources for the present optimisation
task. Leveraging this information, XAutoLM prob-
abilistically adjusts the AutoML search space (Sec-
tion 3.3), focusing on historically successful con-
figurations and reducing exploration of previously
unsuccessful paths. Once configured, the AutoML
optimisation starts, fine-tuning pipelines are evalu-
ated, and their outcomes, both successful and un-
successful, are recorded back into the experience
repository, to be used in future runs.

3.2 Experience Store

Our system learns from a growing repository of
experiences; past pipeline evaluations that capture
every factor influencing performance. Formally, an
experience is a 4-tuple e = ⟨c, m, t, s⟩ where c is
the complete pipeline configuration, m the vector
of recorded metrics (e.g. F1, ROUGE, evaluation
time), t a task meta-feature vector, and s straightfor-
ward system descriptors such as CPU cores, RAM,
and GPU memory.

We label an experience positive if all fitness
metrics are valid and negative otherwise, usually
due to errors occurring during evaluation (out-of-
memory, timeout, etc.). Both types are essential:
positives pull the search toward valuable regions,
and negatives push it away from costly dead-ends
(Section 3.3).

3.2.1 Meta-Features
We design two complementary meta-feature tem-
plates according to the nature of the output space
of a task. When the output is drawn from a closed
label set, as in text classification or sequence la-
belling, dataset difficulty is dominated by class
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imbalance and document-length variation. Con-
versely, tasks whose output is an open text se-
quence (question answering, summarisation, trans-
lation) demand features that capture the relation-
ship between the input prompt and the target text.
Table 3 lists the core features for each template;
the same templates can be reused for other label-
based or free-form generation tasks with minimal
adaptation.

Category/Feature
Dataset

Nr Samples
Nr Classes
Entropy
Min Cls Prob
Max Cls Prob
Imbalance Ratio

Documents
Avg. Length
Std. Length
Coef. Var. Length

Landmark
PCA + D.Tree Acc.

(a) Label-based

Category/Feature
Dataset

Nr Samples
Prompt

Avg.\Len (chars)
Std.\Len
Lexical Diversity (TTR)
Target
Avg.\Len (chars)
Std.\Len
Lexical Diversity (TTR)

Prompt–Target
Avg.\Len Ratio (T/P)
Vocabulary Novelty
Semantic Similarity
ROUGE-L F1

Semantic
Mean Prompt Embedding

(b) Generation

Table 3: Representative task meta-features.

Experiences record a minimal hardware profile
in s (CPU cores, CPU frequency, total RAM, GPU
VRAM) so similarity and feasibility reflect both
task and system characteristics. For instance, while
Llama 3.1 70B may yield superior results to smaller
alternatives, systems with low VRAM cannot uti-
lize its power.

XAutoLM constructs a holistic representation
of each optimization scenario by combining task-
specific and system-level meta-features, enabling
robust similarity assessments across diverse con-
texts.

3.3 Warm-Start optimization
XAutoLM maintains a probabilistic model P (c | θ)
(Estevez-Velarde et al., 2020) over pipeline config-
urations c. When a new task T arrives, we retrieve
a set of past experiences E = {e1, . . . , en} and
update the model in two sweeps; one for positive
experiences, one for negatives:

P (c | θ)← (1− α+
i )P (c | θ) + α+

i Pi(c | θ), (1)

P (c | θ)← (1 + α−
i )P (c | θ)− α−

i Pi(c | θ) (2)

where Pi(c | θ) is the empirical distribution in-
duced by configuration c in experience ei. There-
fore pull the search toward successful regions and
push it away from unsuccessful ones. The strength
of each pull/push is governed by the learning rates
α+
i and α−

i .
We compute experience-specific learning rates

considering their similarity to the current task and
historical performance. Specifically, these rates are
computed as follows:

α+
i = α+

max ui e
−β di , (3)

α−
i = α−

max e−β di . (4)

Here α+
max and α−

max are predefined maximum
learning rates, ui ∈ [0, 1] is a utility score (defined
below) assigned only to positive experiences, and
di is the distance between the current task and the
one that generated experience ei. The exponential
kernel e−βdi down-weights experiences that are
less similar to the current task; β > 0 is an adaptive
decay factor.

Task Similarity. Each task is described by a
meta-feature vector t. Similarity is measured with
a distance di = Dist(tT , ti) (e.g., Euclidean or
Cosine). β is set automatically to compensate for
scale:

β =
βscale

σd + ε
, σd = Std

(
{d1, . . . , dn}

)
, (5)

where ε>0 prevents division by zero.

Utility Score. The utility function ui quantifies
the quality of each positive experience ei relative
to others from the same task. XAutoLM sup-
ports three distinct utility computation strategies:
(i) Weighted Sum, (ii) Linear Front, and (iii) Loga-
rithmic Front:

Weighted Sum. Let M denote the set of
recorded performance metrics for each experience,
such as F1, accuracy, evaluation time, or ROUGE-
L. Each metric m ∈ M is associated with a known
optimisation direction (maximize or minimize) and
an importance weight wm. For each positive expe-
rience ei, we first normalize its metric value mi:

m′
i =





mi −mmin

mmax −mmin
, if maximized,

1− mi −mmin

mmax −mmin
, if minimized,

(6)
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where mmin and mmax denote the minimum and
maximum values observed across all positive ex-
periences for the metric m. If all metric values are
identical, we default to a neutral utility score of 0.5
to avoid division by zero. The overall weighted
utility score is computed as:

ui =

∑
m∈Mwm ·m′

i∑
m∈Mwm

, (7)

Linear Front. In the Linear Front utility
scheme, we first apply non-dominated sorting
(NSGA-II style (Deb et al., 2002)) to all positive
experiences, creating N Pareto fronts based on the
recorded metrics in M. Experiences in front 0 are
non-dominated, followed by those in front 1, and
so forth. Each positive experience ei in front fi is
assigned a utility score inversely proportional to its
front rank:

ui =
N − fi

N
, (8)

Logarithmic Front. Using non-dominated
sorting, the Logarithmic Front approach similarly
ranks experiences into N Pareto fronts. How-
ever, to amplify the distinction among the highest-
performing experiences (i.e., those in lower-
numbered fronts), utilities decrease logarithmically
with rank:

ui =
ln(N − fi + 1)

ln(N + 1)
, (9)

These three utility functions provide comple-
mentary strategies for prioritizing past experiences.
This flexibility allows XAutoLM to adapt effec-
tively across diverse AutoML scenarios.

4 Experimentation

We report results from two independent trans-
fer experiments designed to isolate knowledge
reuse within a task family. The first study targets
text classification. LIAR (Wang, 2017), SST-2
(Socher et al., 2013), MELD (Poria et al., 2018)
and AG News (Zhang et al., 2015) present a de-
liberate gradient in sample size, label entropy, and
average document length: LIAR (6 classes, 13k
claims) and MELD (7 emotions, 14k utterances)
are notoriously low-resource, whereas the polarity
benchmark SST-2 (68k) and the large-scale news

corpus AG (128k) approach the upper bound of
single-GPU throughput. Previous work shows peak
F1macro to vary from 0.23 (LIAR) to 0.93 (AG)
(Reusens et al., 2024), offering a realistic range for
efficiency–performance trade-offs.

The second experiment focuses on question an-
swering. We select SQuAD 1.1 (Rajpurkar et al.,
2016) and DROP (Dua et al., 2019) because they
share the same input modality yet differ sharply
in answer type, extractive spans versus multi-step
numerical reasoning, making them a challenging
test-bed for generative pipelines. For both studies,
experiences are only exchanged among tasks of the
same family; classification traces are invisible to
QA runs and vice-versa. This constraint ensures
that the reported gains stem from task-relevant
meta-knowledge rather than accidental data leak-
age.

Hardware. All classification experiments run on
an i9-9900K (16 threads, 35 GB RAM cap) paired
with a single RTX TITAN (24 GB). QA experi-
ments require larger context windows and execute
on an AMD EPYC 7742 (64 threads, identical RAM
cap) with an A100 40 GB.

Baselines. Every run is compared against Zero-
Shot AutoGOAL, the original optimizer with a
uniform sampling distribution; in this setting, the
update rules of equations (1)–(9) are never trig-
gered.

In the text classification study, we include a naive
kNN-50 memory baseline for comparing against
a naive experience retrieval method. For every
target task, we assemble a query vector that con-
catenates (a) the task meta-features, (b) the current
system profile, and (c) the best metric values ob-
served across all stored traces; this encourages the
search to drift toward high-performing regions. Dis-
tances to positive traces are computed on the full
feature+metric space, whereas distances to nega-
tive traces ignore metrics (errors lack valid scores).
The k nearest positives and k nearest negatives are
selected; all receive the same fixed learning rate
α±
i = 1/k. Setting ui = 1 and β = 0 in equa-

tions (3)–(4) reduces our framework to this simple
neighbour rule. For question answering the reposi-
tory contains only between 5 and 10 positive traces
per source task, making a neighbour count unreli-
able; therefore Zero-Shot remains the sole baseline
in that study.
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Warm-Start Priors. Throughout the paper,
a pipeline configuration is a concrete tuple
(LM,fine-tuning recipe, hyperparameters) that the
AutoML engine executes and evaluates. A warm-
start prior (WS prior) instead parameterizes the ini-
tial sampling distributions used by the meta-learner;
it is defined by the distance type, utility scheme,
decay factor βscale, and pull limits (kpos, kneg).

For each task, we enumerate ≈ 180 WS-prior
parameterizations. For a given candidate prior to
a task, we apply it with the fixed experience store
(leaving the experience for the current task out)
to obtain the induced sampling distribution p over
fine-tuning methods on that task. We then compute
the total-variation (TV) distance between this in-
duced marginal and the uniform distribution over
the same method set. We rank candidates by TV
and split them into three data-driven strata (low |
moderate | high bias) at prominent TV gaps (≈ 2×).
In classification, we select per strata the median-
TV and max-TV priors (six priors total). In QA,
we select only the max-TV prior per strata (three
priors) to respect the compute budget. Full prob-
ability plots of the induced method distributions
and the selected prior identifiers are provided in
Appendix B.

Execution protocol. For each task, we first ran
the Zero-shot configuration for 48 hours to pop-
ulate the experience store. Table 4 reports the
positive/negative traces generated by this baseline
run on each task. We then executed the kNN-50
baseline and all WS-prior variants for 24 hours
of wall-clock time each. The warm-start mecha-
nism accesses only experiences originating from
other tasks within the same study (clean cross-task
transfer; see Table 4). For fairness in reporting,
Zero-shot metrics are computed from the first 24
hours of their 48 hours runs, matching the wall-
time allocated to WS-priors and kNN-50. This pro-
tocol isolates whether experience improves both
effectiveness and efficiency under the same time
budget.

In every AutoML run, each discovered LM
pipeline has up to 1.5 GPU-hours in Text Clas-
sification and 2 GPU-hours in QA for evaluation.
Objectives are ⟨F1macro, ET ⟩ for classification and
⟨F1, ET ⟩ for QA, where ET is the wall-clock eval-
uation time of a pipeline (in seconds). All searches
share a fixed random seed (42) and the same hard-
ware; therefore, differences arise solely from the
chosen warm-start prior.

Dataset
Generated Available

Pos Neg Total Pos Neg Total
LIAR 100 236 336 116 480 596
SST2 33 122 155 183 594 777
MELD 68 190 258 148 526 674
AG NEWS 15 168 183 216 548 764
SQUAD 5 124 129 10 160 170
DROP 10 160 170 5 124 129

Table 4: Disposition of experiences participating in the
experiments.

4.1 Text Classification Results

Table 5 summarizes the effect of WS-priors on
the four classification benchmarks. We report
both performance and efficiency: max and mean
F1macro reflect peak and average classification qual-
ity; mean evaluation time (ET) captures resource
cost; the error ratio indicates the share of failed
pipeline evaluations; and hypervolume (HV) mea-
sures Pareto-front coverage in objective space (Zit-
zler and Thiele, 1998). Mean ET is averaged over
successfully completed pipeline evaluations only
(i.e., runs that return valid fitness metrics); failed
evaluations (e.g., out-of-memory, timeouts, run-
time errors) are excluded from ET and are ac-
counted for by the error ratio. All methods are
run under the same 24 hours single-GPU budget
(cf. Execution protocol), so ET differences reflect
pipeline runtime rather than total search compute.

Across datasets, WS priors either match or sur-
pass the best Zero-shot F1m while systematically
improving efficiency. On LIAR, a HIGH prior lifts
peak F1m from 0.24 to 0.26, cuts the mean ET by
a factor of 3.5, and lowers the error ratio by seven-
fold. A similar pattern emerges on MELD, where
HIGH drives the error ratio from 0.77 to 0.10 and
reduces mean ET 4.5×, while keeping F1m above
the baseline. On SST-2, the Zero-shot baseline gen-
erated the highest F1m and lowest ET out of all
variants.

Zero-shot runs exhibit high error ratios across
all benchmarks (e.g., 0.73-0.92); the WS priors cut
these failure rates dramatically, down to 0.09-0.90.
Moreover, non-naive warm-started runs showed a
sensible reduction in mean ET while maintaining
peak F1m. On AG News, all WS runs improve
max F1m while several improve ET , HV and Error
Ratio, showing that better performance–time trade-
offs are discoverable even in large-scale settings.

The naive kNN-50 baseline, although in SST-2
case attains large HV values, degrades performance
on three datasets and notably obtains the worst
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WS Prior
Max
F1m

Mean
F1m

Min
ET

Mean
ET

HV
No.
Eval

Error
Ratio

L
IA

R

Zero-shot 0.24 0.10 12 537 0.06 202 0.73
kNN (50) 0.24 0.10 28 451 0.11 240 0.44
Low (LIAR) 0.26 0.10 16 480 0.10 197 0.70
Low (Med) 0.25 0.09 31 380 0.36 220 0.69
Low (Max) 0.25 0.09 21 410 0.08 190 0.66
Mod (LIAR) 0.26 0.10 36 462 0.01 132 0.53
Mod (Med) 0.24 0.10 13 469 0.04 146 0.61
Mod (Max) 0.25 0.08 44 516 0.05 121 0.39
High (LIAR) 0.25 0.10 6 153 0.20 302 0.09
High (Med) 0.25 0.10 9 277 0.12 193 0.33
High (Max) 0.26 0.09 12 252 0.09 208 0.25

SS
T

2

Zero-shot 0.94 0.69 97 1297 0.02 76 0.77
kNN (50) 0.93 0.59 326 1758 0.54 72 0.62
Low (LIAR) 0.90 0.48 373 1148 0.15 87 0.82
Low (Med) 0.90 0.52 227 840 0.02 62 0.83
Low (Max) 0.94 0.58 252 784 0.01 98 0.81
Mod (LIAR) 0.93 0.56 245 996 0.20 59 0.64
Mod (Med) 0.94 0.52 132 1030 0.04 34 0.55
Mod (Max) 0.93 0.52 184 1170 0.06 58 0.51
High (LIAR) 0.92 0.62 365 1160 0.02 42 0.61
High (Med) 0.94 0.53 164 844 0.09 52 0.68
High (Max) 0.94 0.61 320 857 0.16 53 0.79

M
E

L
D

Zero-shot 0.41 0.15 39 808 0.11 161 0.77
kNN (50) 0.37 0.11 52 768 0.00 59 0.54
Low (LIAR) 0.46 0.14 20 532 0.06 150 0.64
Low (Med) 0.45 0.11 17 387 0.30 229 0.64
Low (Max) 0.39 0.09 30 477 0.36 186 0.65
Mod (LIAR) 0.40 0.11 26 514 0.00 106 0.39
Mod (Med) 0.40 0.11 36 546 0.03 130 0.52
Mod (Max) 0.38 0.09 24 590 0.08 110 0.52
High (LIAR) 0.44 0.14 7 179 0.09 260 0.10
High (Med) 0.43 0.13 21 466 0.27 124 0.45
High (Max) 0.42 0.12 12 322 0.01 233 0.51

A
G

N
E

W
S

Zero-shot 0.90 0.62 424 1043 0.00 108 0.92
kNN (50) 0.67 0.28 478 1881 0.09 22 0.77
Low (LIAR) 0.93 0.73 349 1183 0.01 93 0.90
Low (Med) 0.92 0.65 665 1589 0.20 83 0.89
Low (Max) 0.93 0.60 560 1164 0.00 77 0.90
Mod (LIAR) 0.92 0.46 404 1345 0.12 50 0.80
Mod (Med) 0.93 0.59 484 1102 0.01 48 0.79
Mod (Max) 0.92 0.56 249 1402 0.01 57 0.73
High (LIAR) 0.93 0.46 318 1437 0.00 45 0.71
High (Med) 0.93 0.51 253 833 0.09 58 0.86
High (Max) 0.92 0.54 350 1576 0.01 46 0.73

Table 5: Results overview in text classification. Priors
with “(LIAR)” suffix were calibrated during a single-
objective pilot on LIAR. The same meta-parameters
are then applied unchanged to every new target task.
Full probability curves and all prior IDs are listed in
Appendices B-C.

results out of all priors in AG NEWS (0.90 → 0.67
F1m) and MELD (0.41 → 0.37 F1m).

4.2 Question Answering Results

Table 6 reports results on the generative SQuAD 1.1
and DROP datasets. Knowledge reused from a sin-
gle related task already yields substantial gains.
For SQuAD, WS priors outperform the baseline in
almost all metrics. The HIGH-MAX prior, in partic-
ular, raises F1 from 0.34 to 0.89 while shrinking

WS Prior
Max
F1

Mean
F1m

Min
ET

Mean
ET

HV
No.
Eval

Error
Ratio

SQ
U

A
D Zero-shot 0.34 0.23 2189 4081 0.25 71 0.95

Low (Max) 0.89 0.33 1435 3150 0.03 30 0.76
Mod (Max) 0.86 0.41 1468 1953 0.01 32 0.90
High (Max) 0.89 0.87 1195 1337 0.0 15 0.8

D
R

O
P

Zero-shot 0.39 0.18 2114 3556 0.11 96 0.94
Low (Max) 0.18 0.11 4995 5929 0.05 32 0.90
Mod (Max) 0.40 0.23 775 2259 0.29 66 0.86
High (Max) 0.40 0.28 783 1881 0.13 34 0.82

Table 6: Results overview in Question Answering.

mean ET from 4081s to 1337s (-3×). Similarly
to the text classification results, WS priors bring
error ratios down from 0.94–0.95 (zero-shot) to
0.76–0.90.

On DROP, the LOW prior illustrates negative
transfer, yet both MODERATE and HIGH priors
outperform Zero-shot on every metric; peak F1
improves slightly (0.39→0.40) and mean ET falls
by 47%. These outcomes confirm that cross-task
meta-knowledge generalizes beyond classification
and that the adaptive pull/push schedule mitigates
catastrophic transfers.

5 Discussion

Warm-start priors consistently steer the search to-
ward stronger performance–time trade-offs across
all six benchmarks. Figure 1 reports the winning
ratio: the share of evaluated LM pipelines that im-
prove upon the zero-shot Pareto front.
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Figure 1: Ratio of discovered pipelines outperforming
the Zero-shot baseline in Text Classification and QA.

The HIGH–MAX prior is the most stable, win-
ning about 20% of pipelines on SQuAD, LIAR,
MELD, and DROP, and 10–15% on SST-2 and
AG News. On the LIAR and MELD pair, the
HIGH–LIAR prior achieves winning ratios near
50% and 40%, respectively, while cutting the error
rate by a factor of seven (Table 5). For clarity, all
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Figure 2: Pareto Fronts discovered by the different Priors on SST2 (a) and SQUAD (b).

ET values are computed only on successful evalua-
tions, while failure rates are captured by the Error
Ratio, with all methods allotted an identical 24
GPU-hour wall-clock budget per run.
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Figure 3: Distance between Text Classification Tasks
according to their meta-features (Section 3.2.1).

These results show that combining experience
discrimination with adaptive probability shifts
yields the best of both worlds: rapid convergence
when relevant meta-knowledge exists yet robust-
ness when it does not. Whenever the experi-
ence store contained closely related traces, e.g.,
MELD–LIAR (Figure 3), the similarity-aware pri-
ors trimmed average evaluation time by up to 4.5x
and increased peak F1m (Table 5). Even on sparsely
related tasks such as SST-2 and AG News, softer
pulls uncovered superior Pareto trade-offs by mod-
erating exploration strength (Figure 2a).

The baseline performance of kNN highlights the
significance of selective memory. While it has
access to both positive and negative examples, it
assigns equal weight to all neighbors, failing to
demote weak configurations and causing accuracy
to fall on three of four classification datasets. In
contrast, XAutoLM’s asymmetric pull–push update
penalizes both past failures and underperforming

successes. DROP, for example, illustrates the need
to learn from failures: a low-bias prior that ignores
negatives collapses to F1 = 0.18, whereas reinstat-
ing the push restores F1 = 0.40 and halves mean
evaluation time.

Our findings further show that transfer using our
method extends beyond classification. With barely
a handful of relevant experience, a high-bias prior
multiplies SQuAD F1 from ≈ 0.3 to ≈ 0.9 and
compresses evaluation time by threefold, producing
a dominant Pareto front (Figure 2b). On the other
hand, DROP illustrates the importance of negative
experiences: a low-bias prior that ignores negatives
collapses to F1 = 0.18, whereas reinstating the
push restores F1 = 0.40 and cuts mean evaluation
time by 50 % (Table 6).

A core motivation of our framework is to re-
duce the carbon footprint and environmental toll
of repeated large-scale language model fine-tuning.
By systematically reusing insights from past runs,
XAutoLM significantly reduces redundant evalu-
ations and lowers the overall error rate during the
search. Beyond simply lowering compute hours,
this approach aligns with the growing Green AI
ethos in NLP (Wang et al., 2023b; Schwartz et al.,
2020), emphasizing the importance of responsi-
ble resource usage. Our experiments demonstrate
that our warm-start strategy enhances performance
and streamlines the search process, resulting in
algorithms that strike a better balance between effi-
ciency and performance.

6 Conclusions

XAutoLM converts the costly trial–and–error of
language model fine-tuning into a guided, resource-
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aware search. By seeding the optimizer with a
similarity-weighted prior built from past successes
& failures, the framework consistently uncovers
pipelines with superior performance–time trade-
offs. Across four text-classification corpora and
two generative QA benchmarks, it surpasses the
best zero-shot F1 on five tasks, matching it on SST-
2, while cutting mean pipeline evaluation time by
up to a factor of four and reducing error rates by
as much as sevenfold. These gains hold across a
refreshed model pool that ranges from lightweight
discriminative to compact generative models. Be-
cause every recovered pipeline reuses information
already paid for, XAutoLM advances the Green
AI agenda (Schwartz et al., 2020), delivering com-
petitive results in less search time, while avoiding
redundant computation.

7 Limitations

We identify some limitations to our study that high-
light avenues for further investigation:

Scaling to bigger LLMs

XAutoLM is scale-agnostic: the optimizer treats
candidates as black-box fit/evaluate calls and does
not rely on model internals. Our open-source im-
plementation presently evaluates on a single GPU,
which constrained the largest models tested; this is
a property of the evaluator backend, not of the opti-
mization method. The experience store logs a mini-
mal hardware profile (Section 3.2), which helps
steer the search away from infeasible pipelines
under a given machine with a single GPU setup.
Supporting larger models, therefore, amounts to
adding multi-GPU meta-features and swapping in
a larger-model evaluator (e.g., parameter-efficient
(Hu et al., 2021)/quantized (Nagel et al., 2021;
Dettmers et al., 2023) or distributed evaluators
(Zhao et al., 2023)) in future releases; the search
algorithm and experience-based priors remain un-
changed. We leave such engineering backends to
future work and keep our claims limited to the
single-GPU setting evaluated here.

Multimodality

The current experience store and benchmarks are
text-only; verifying that the warm-start prior trans-
fers to dialogue, speech, or multimodal pipelines is
an essential next step.

Statistical Tests

Statistical support is available only for the single-
objective probes archived in Appendix C. Extend-
ing significance testing to the multi-objective fronts
of Tables 5 and 6 would require many repeated runs
and is left for future work, where bootstrap or fully
Bayesian analyses are planned.

Efficiency Measures

Our energy discussion rests on the empirical link
between execution time and power draw reported
by prior work (Wang et al., 2023b; Estevanell-
Valladares et al., 2024); we did not log wattage
directly. The next release of XAutoLM will record
real-time power and emit CO2 estimates alongside
performance metrics.
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A Additional Implementation Details and
Experimental Configurations

In this section, we provide key implementation
details to ensure that our work is fully repro-
ducible. All configuration candidates used in our
multi-objective and single-objective experiments
are available in Appendix B and Appendix C due to
the extremely high number of tested configurations.
In our evaluations, candidate configurations were
designed with two distinct learning rate schemes
and distance discrimination strategies, as detailed
below.

A.1 Learning Rate Configuration and Update
Strategy

We adopt a dual-mode configuration for the learn-
ing rate updates applied to the probabilistic model.
In experiments employing fixed learning rates, we
set the parameters to

α+
max = 0.05 and α−

max = −0.02.

For configurations using adaptive learning rates,
the values are computed as

α+
max =

1

Npos
and α−

max = − 1

Nneg

Where Npos and Nneg denote the number of positive
and negative experiences, respectively. Although
these rates are expressed with positive and nega-
tive signs to indicate the direction of the update
(reinforcing or de-emphasizing a configuration), all
update steps are executed using the absolute values.

A.2 Normalization of Meta-Features
All meta-features used for computing distances are
standardized using a standard scaler normalizer.
This normalizer computes the mean and standard

deviation of the feature vectors (with a small ep-
silon added to avoid division by zero) and returns
the standardized data. This ensures that distance
computations are robust and comparable across fea-
tures.

A.3 Beta Scale and Utility Functions

For the decay parameter β, two formulations are
employed: the std-only beta scale is used in single-
objective experiments, whereas the std-plus-mean
beta scale is applied in multi-objective settings.

All candidates for the single-objective experi-
ments (Appendix C) utilize a weighted sum ap-
proach with the F1 score weight set to 1 and the
evaluation time weight set to 0. Detailed specifi-
cations of candidate configurations can be found
in the visualizations provided in the respective sec-
tions (Appendix C for single-objective, and Ap-
pendix B for multi-objective).

A.4 Experimental Setup and Computational
Resources

The main text fully discloses our experimental
setup (Section 4).

A.5 Framework Overview and Dependencies

XAutoLM is implemented on top of the Auto-
GOAL framework (Estevanell-Valladares et al.,
2024; Estevez-Velarde et al., 2020), leveraging its
optimization strategy and abstractions. Our im-
plementation is developed in Python and utilizes
the HuggingFace Transformers library (Wolf et al.,
2019) to access pre-trained language models. A
complete list of dependencies, environment setup
instructions, and detailed documentation on how
to run the experiments (and statistical testing), re-
produce the results, and navigate the codebase is
provided in the repository.

The code and all associated materials can be ac-
cessed at the following GitHub repository: https:
//github.com/EEstevanell/XAutoLM.

B Multi-Objective Initial Probabilities

This appendix visualizes the initial probability dis-
tributions over fine-tuning methods induced by dif-
ferent meta-learning configurations (Prior) in our
multi-objective experiments (see Section4). Each
configuration is defined by:

1. Inclusion of positive and/or negative experi-
ences,
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2. Utility function (Weighted Sum, Linear Front,
Logarithmic Front),

3. Distance metric (Euclidean, Cosine) with scal-
ing, and

4. Pull/push limits kpos, kneg and learning-rate
scheme (fixed/adaptive).

Recall that we generated up to 180 candidate
configurations per dataset by systematically vary-
ing:

1. Inclusion/exclusion of positive (successful)
and negative (error) past experiences,

2. Utility functions (e.g., weighted sum, linear
front, logarithmic front),

3. Distance metrics (Euclidean, Cosine) and
their scaling,

4. α+
max and α−

max values (fixed or adaptive)
(Section 3.3).

Each configuration yields a distinct initial proba-
bility vector for the available fine-tuning methods,
with deviations from the baseline distribution mea-
sured via Total Variation (TV). Grouping config-
urations by TV allows us to categorize them into
low, moderate, and high bias levels relative to the
baseline’s uniform initialisation.

B.1 Classification Tasks

For each classification dataset (LIAR, SST-2,
MELD, AG News), Figures 4–7 plot the initial
probabilities for representative configurations at
each bias level. In each figure:

• Blue: Uniform baseline.

• Green, Orange, Red: Increasing TV distance
(Low, Moderate, High).

• Patterned Bars: Selected Max-TV configura-
tion within each bin.

LIAR. Figure 4 shows the initial probabilities of
using each fine-tuning method for the LIAR dataset,
sorted by their overall difference from the base-
line. Blue bars indicate the baseline configuration,
whereas green, orange, and red bars represent con-
figurations increasingly diverging from the base-
line. We marked selected representative configura-
tions (patterned bars) for each bias level.

SST2. Figure 5 illustrates the same analysis on
SST2. Although the dataset differs substantially
from LIAR regarding meta-features (e.g., number
of classes, data size, label distribution), we observe
a similar pattern in how the bias level shifts proba-
bilities among alternative fine-tuning methods. The
High (Max) configuration notably shows more ag-
gressiveness than LIAR’s.

MELD. Figure 6 shows the MELD dataset’s ini-
tial distributions. As discussed in Section 4, MELD

shares some meta-feature similarities with LIAR

(Figure 3), causing some distributions to concen-
trate around methods found promising in LIAR’s
prior runs.

AG News. Lastly, Figure 7 displays the candidate
configurations for AG NEWS, a large corpus with
four news categories.

B.2 QA Tasks
Figures 8a and 8b show the analogous distributions
for DROP and SQuAD. Despite fewer experiences,
meta-learning concentrates probability mass on the
partial and traditional fine-tuning strategy while
avoiding Lora.

These visualizations underscore how our meta-
learning strategy adapts the search space before
optimization begins. By systematically adjusting
the initial probabilities, XAutoLM avoids mind-
lessly searching all possibilities and exploits task
similarities to emphasize configurations that are
historically more successful or resource-feasible.
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Initial Prob. of Fine-tuning Method/Model Type (LIAR)

Baseline (max, Var: 0.000)
liar - no-pos a-neg euc  k(0.5) - utility (linear_front) (median, Var: 0.028)
liar - no-pos a-neg - utility (weighted_sum) (max, Var: 0.050)
liar - a-pos a-neg euc  k(0.5) - utility (weighted_sum) (median, Var: 0.222)
liar - no-pos f-neg cos  k(1) - utility (weighted_sum) (max, Var: 0.389)
liar - no-pos f-neg euc  k(0.5) - utility (linear_front) (median, Var: 0.993)
liar - f-pos f-neg - utility (weighted_sum) (max, Var: 1.023)

Figure 4: Initial probability distributions for fine-tuning methods on LIAR.
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Initial Prob. of Fine-tuning Method/Model Type (SST2)
Baseline (max, Var: 0.000)
sst2 - no-pos a-neg euc  k(0.5) - utility (linear_front) (median, Var: 0.032)
sst2 - no-pos a-neg - utility (weighted_sum) (max, Var: 0.057)
sst2 - a-pos no-neg euc  k(0.5) - utility (linear_front) (median, Var: 0.272)
sst2 - f-pos a-neg - utility (logarithmic_front) (max, Var: 0.451)
sst2 - a-pos f-neg euc  k(0.5) - utility (weighted_sum) (median, Var: 0.998)
sst2 - no-pos f-neg cos  k(0.5) - utility (weighted_sum) (max, Var: 1.590)

Figure 5: Initial probability distributions for fine-tuning methods on SST2
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Initial Prob. of Fine-tuning Method/Model Type (MELD)

Baseline (max, Var: 0.000)
meld - no-pos a-neg euc  k(0.5) - utility (linear_front) (median, Var: 0.033)
meld - no-pos a-neg - utility (weighted_sum) (max, Var: 0.059)
meld - a-pos no-neg cos  k(0.5) - utility (linear_front) (median, Var: 0.262)
meld - no-pos f-neg euc  k(1) - utility (weighted_sum) (max, Var: 0.538)
meld - no-pos f-neg euc  k(0.5) - utility (linear_front) (median, Var: 0.992)
meld - f-pos f-neg - utility (logarithmic_front) (max, Var: 0.999)

Figure 6: Initial probability distributions for fine-tuning methods on MELD
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Initial Prob. of Fine-tuning Method/Model Type (AG_NEWS)
Baseline (max, Var: 0.000)
ag_news - no-pos a-neg euc  k(0.5) - utility (linear_front) (median, Var: 0.044)
ag_news - no-pos a-neg - utility (weighted_sum) (max, Var: 0.079)
ag_news - a-pos no-neg cos  k(0.5) - utility (linear_front) (median, Var: 0.298)
ag_news - f-pos a-neg - utility (logarithmic_front) (max, Var: 0.474)
ag_news - no-pos f-neg euc  k(0.5) - utility (linear_front) (median, Var: 0.994)
ag_news - no-pos f-neg - utility (weighted_sum) (max, Var: 1.444)

Figure 7: Initial probability distributions for fine-tuning methods on AG News

C Single-Objective Warm Start
Evaluation

This appendix reports single-objective experiments
optimizing the macro-F1 score alone. We compare
the Zero-shot AutoGOAL baseline against three
representative warm-start priors, Low, Moderate,
and High bias, selected from fourteen candidate
configurations grouped by total variation (TV) dis-
tance. All priors use the std-only β scale, Euclidean
distance, and fixed learning rates (α+

max = 0.05,

α−
max = 0.02).

C.1 Initial Probability Distributions
Figure 9 shows LIAR’s initial fine-tuning method
distributions under the fourteen meta-learning pri-
ors, sorted by TV relative to the uniform baseline.
The solid blue bar indicates the baseline; patterned
green, orange, and red bars mark the chosen Low,
Moderate, and High priors.

C.2 Performance Results
Table 7 reports our results. We conducted a detailed
statistical analysis across six independent runs per
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Probabilities of Fine-tuning Method/Model Type (DROP)

uniform (Var: 0.000)
drop - a-pos no-neg cos k(0.5) - utility (logarithmic_front) (Var: 0.099)
drop - f-pos f-neg - utility (logarithmic_front) (Var: 0.240)
drop - a-pos f-neg - utility (linear_front) (Var: 0.460)
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Probabilities of Fine-tuning Method/Model Type (SQUAD)
uniform (Var: 0.000)
squad - a-pos no-neg - utility (weighted_sum) (Var: 0.099)
squad - a-pos f-neg cos k(0.5) - utility (weighted_sum) (Var: 0.277)
squad - a-pos f-neg - utility (logarithmic_front) (Var: 0.665)

(b)

Figure 8: Initial probability distributions for fine-tuning methods on DROP (a) and SQUAD (b)
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Probabilities of Fine-tuning Method/Model Type (LIAR)
0 - LIAR baseline (Var: 0.000)
1 - LIAR adaptative-pos + fixed-neg (no distance) (Var: 0.000)
2 - LIAR fixed-pos (euc, k=1.0) (Var: 0.008)
3 - LIAR fixed-pos + fixed-neg (euc, k=1, f1 + eval time) (Var: 0.008)
4 - LIAR fixed-pos (euc, k=0.5) (Var: 0.046)
5 - LIAR fixed-pos (cos, k=1.0) (Var: 0.055)
6 - LIAR adaptive-pos (Var: 0.059)
7 - LIAR fixed-pos + fixed-neg (cos, k=1, f1 + eval time) (Var: 0.061)
8 - LIAR fixed-pos + fixed-neg (euc, k=0.5, f1 + eval time) (Var: 0.074)
9 - LIAR adaptive-pos + adaptive-neg (Var: 0.111)
10 - LIAR fixed-pos (cos, k=0.5) (Var: 0.116)
11 - LIAR fixed-pos + fixed-neg (cos, k=0.5, f1 + eval time) (Var: 0.221)
12 - LIAR fixed-pos (no distance) (Var: 0.262)
13 - LIAR fixed-pos + adaptive-neg (no distance) (Var: 0.324)
14 - LIAR fixed-pos + fixed-neg (no distance) (Var: 1.269)

Figure 9: Initial fine-tuning probabilities for LIAR under fourteen priors, sorted by TV. Solid blue denotes the
uniform baseline; patterned green, orange, and red denote the Low, Moderate, and High bias priors, respectively

configuration on LIAR and SST-2, evaluating per-
formance, convergence time, and reliability. Nor-
mality was tested using Shapiro–Wilk, followed
by ANOVA (McHugh, 2011) for normal metrics,
and Friedman tests (Pereira et al., 2015) for non-
parametric ones. We report Cohen’s d and Cliff’s δ
as effect-size measures; power analyses accompany
each test in the repository.

On LIAR, while none of the warm-start pri-
ors significantly outperformed the baseline in peak
F1macro (ANOVA p = 0.856, Friedman p = 0.94),
we observed a significant overall improvement in
mean performance across groups (ANOVA p =
0.005, Friedman p = 0.004). Post-hoc compar-
isons, however, were not significant after correc-
tion, likely due to limited sample size. More no-

tably, the error ratio, the share of failed evaluations,
dropped dramatically from 0.69 (baseline) to 0.24
(High WS), a difference found to be statistically sig-
nificant (Friedman p = 0.031) with a large effect
size (Cohen’s d = 3.39). Convergence time met-
rics (TT50, TT75, TT90) also trended lower, with
moderate effect sizes, although these differences
did not reach statistical significance.

On SST-2, the Mod WS prior achieved the high-
est max F1macro (0.941), and the ANOVA test con-
firmed a significant group effect (p = 0.031). The
error ratio again showed a significant overall ef-
fect (Friedman p = 0.038), improving from 0.83
(baseline) to 0.58 (High WS). Convergence time re-
ductions were most pronounced with the High WS
prior, which reached 50% of peak F1 four times
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Dataset Config. Max F1m Mean F1m TT50 (h) TT75 (h) TT90 (h) No. Eval E. Ratio

LIAR

Baseline 0.248 ±0.018 0.09 ±0.004 2.00 6.38 8.15 173 0.69
Low WS 0.253 ±0.006 0.11 ±0.008 1.35 4.10 9.05 166 0.61
Mod WS 0.251 ±0.015 0.11 ±0.008 1.57 4.88 6.43 165 0.46
High WS 0.247 ±0.006 0.10 ±0.009 1.37 5.42 10.74 156 0.24

SST2

Baseline 0.928 ±0.018 0.56 ±0.053 1.69 2.07 4.64 85 0.83
Low WS 0.917 ±0.016 0.59 ±0.063 1.28 2.41 5.09 98 0.80
Mod WS 0.941 ±0.004 0.56 ±0.064 0.70 3.88 5.21 55 0.69
High WS 0.932 ±0.002 0.56 ±0.058 0.41 0.41 2.23 58 0.58

Table 7: Overview of XAutoLM performance on optimising F1macro for LIAR and SST2. Results are averaged
over six runs with different seeds. ‘Max F1m’ and ‘Mean F1m’ show the mean and standard deviation, respectively;
‘TT50’, ‘TT75’, and ‘TT90’ report the average time to reach 50%, 75%, and 90% F1m; and ‘No. Eval’ and ‘E.
Ratio’ indicates the average number of pipeline evaluations and the ratio of such evaluations that were errors.

faster than the baseline (0.41h vs. 1.69h). While
these improvements showed large effect sizes (e.g.,
TT50 d = 0.55), they were not statistically sig-
nificant in pairwise tests, most likely due to low
sample power (n = 6).

In summary, warm-start priors consistently
yielded practical convergence speed and robustness
benefits. While not all improvements were statis-
tically significant, expected under a small-sample
regime, our analysis shows that key metrics such
as error ratio and mean F1 on LIAR and max F1
on SST-2 do reach significance. Full results, post
hoc comparisons, and power analyses are available
in our open-source repository.

D Pareto Front Visualizations

Figure 10 presents the Pareto fronts obtained on
each benchmark under the zero-shot baseline and
three representative warm-start bias levels (Low,
Moderate, High).

Across all datasets, warm-start priors shift the
search toward regions that often dominate zero-
shot pipelines in both evaluation time (ET ) and
task performance (F1macro or F1). Below we high-
light key observations: Points that lie to the left of
or above the baseline front dominate the baseline
in at least one objective. In most cases, WS solu-
tions (e.g., High WS - Median, Mod WS - LIAR)
simultaneously improve upon the baseline’s ET
and F1macro, indicating superior pipelines. Below,
we discuss notable observations by dataset.

LIAR. High-bias priors calibrated on LIAR pro-
duce up to 40% of pipelines that dominate the
baseline, reducing error rates by roughly sevenfold
(cf. Table 5). Due to the substantial meta-feature
similarity between LIAR and MELD (Figure 3),

both tasks see rapid convergence to high-F1macro
regions.

SST2. With fewer closely related experiences,
Moderate bias yields the best trade-offs, uncover-
ing pipelines that match or slightly exceed base-
line F1macro in less time, demonstrating robustness
against negative transfer.

MELD. Figure 10c demonstrates how MELD,
like LIAR, sees numerous WS-discovered solutions
outclassing the baseline. These configurations of-
ten exploit shared meta-features between MELD

and LIAR (see Figure 3), culminating in faster con-
vergence and higher accuracy, with fewer errors
during the search. Mirroring LIAR, HIGH WS -
LIAR dominates, diminishing the error ratio by
sevenfold and almost getting 50% winning ratio
(Figure 1).

AG News. Figure 10d shows that while AG NEWS

has only moderate overlap with other tasks, WS
still yields solutions that meet or beat baseline per-
formance in time-accuracy trade-offs. Notably,
MOD and HIGH-bias configurations reduce error
rates (see Table 5 in the main text), suggesting
that historical knowledge, even if partially relevant,
helps prune more obviously unproductive hyperpa-
rameter regions.

DROP and SQuAD For QA, High bias priors
achieve dramatic gains on SQuAD, raising F1
from 0.34 to 0.89 and cutting mean ET by 3×.
On DROP, Moderate and High priors both improve
F1 and reduce evaluation time, confirming cross-
family transfer efficacy (Table 6).
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Figure 10: Comparison of Pareto fronts for zero-shot baseline (solid blue line) and warm-start priors at Low (green),
Moderate (orange), and High (red) bias levels. Each point plots (ET, F1macro) for classification tasks (a–d) or
(ET, F1) for QA tasks (e–f). Points to the left or above the baseline outperforms the zero-shot Pareto front.
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