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Abstract
Text-to-speech (TTS) has advanced from
generating natural-sounding speech to en-
abling fine-grained control over attributes
like emotion, timbre, and style. Driven by
rising industrial demand and breakthroughs
in deep learning, e.g., diffusion and large
language models (LLMs), controllable TTS
has become a rapidly growing research area.
This survey provides the first comprehensive
review of controllable TTS methods, from
traditional control techniques to emerging
approaches using natural language prompts.
We categorize model architectures, control
strategies, and feature representations, while
also summarizing challenges, datasets, and
evaluations in controllable TTS. This survey
aims to guide researchers and practitioners by
offering a clear taxonomy and highlighting
future directions in this fast-evolving field.
One can visit https://github.com/imxtx/
awesome-controllabe-speech-synthesis
for a comprehensive paper list and updates.

1 Introduction

Speech synthesis, also known as text-to-speech
(TTS), aims to generate human-like speech from
text (Dutoit, 1997), and has found broad ap-
plications in personal assistants (López et al.,
2018), entertainment (Wang et al., 2019), and
robotics (Marge et al., 2022). Recently, the success
of large language models such as ChatGPT (Ope-
nAI, 2022) has renewed interest in TTS for natural
and intuitive human-computer interaction. Mean-
while, fine-grained control over speech attributes,
such as emotion, timbre, and style, has become a
key focus in both academia and industry, unlocking
more expressive and personalized voice generation.

In the past decade, deep learning has driven re-
markable advances in TTS, enabling high-quality
synthesis (Tan et al., 2024; Ren et al., 2019; Du
et al., 2024) and stronger control over speech at-
tributes (Wang et al., 2018; Li et al., 2021; Zhou

et al., 2024). Recent methods have expanded TTS
to multi-modal inputs, including images (Rong
and Liu, 2025) and videos (Choi et al., 2023).
Meanwhile, the rise of LLMs (Zhao et al., 2023)
has enabled controllable TTS guided by language
prompts (Guo et al., 2023; Huang et al., 2024a),
opening new possibilities for customized voice syn-
thesis. Integrating TTS into LLMs has also gained
extensive attention (Peng et al., 2024a). This rapid
progress underscores the need for a comprehen-
sive and timely survey to clarify current trends and
guide future directions in controllable TTS.

While several surveys have examined paramet-
ric (Zen et al., 2009) and deep learning–based
TTS (Triantafyllopoulos et al., 2023), they over-
look TTS controllability and recent advances such
as description–based methods (Guo et al., 2023;
Yamamoto et al., 2024). The key differences be-
tween our survey and earlier work are: 1) Differ-
ent Scope: Klatt (1987) provided the first review
of formant-based, concatenative, and articulatory
TTS, with a strong focus on text analysis. Later,
Tabet and Boughazi (2011); King (2014) explored
statistics-based techniques. With the advent of neu-
ral networks, Ning et al. (2019); Tan et al. (2021b);
Zhang et al. (2023a) surveyed neural model–based
TTS, focusing on acoustics and vocoders. However,
they rarely discuss the controllability. 2) Closer to
Current Demands: The need for controllable TTS
is rapidly growing in industries like filmmaking,
gaming, robotics, and virtual assistants. Yet, exist-
ing surveys rarely explore the gaps between current
control techniques and real-world demands.

To fill this gap, we present the first comprehen-
sive survey of emerging controllable TTS meth-
ods. We first define the core tasks (Sec. 2) and,
as shown in Fig. 1, trace the evolution of meth-
ods across model architectures (Sec. 3.1), control
strategies (Sec. 3.2), and feature representations
(Sec. 3.3). We further summarize relevant datasets
and evaluation metrics (Sec. 4), and discuss current
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Statistics of controllable TTS methods from 2018 to 2025.03 (incomplete)

Methods that use flow-matching to convert acoustic tokens into 
mel-spectrograms are marked as discrete methods in this figure.

#Entries listed by DBLP with the keyword “controllable text-to-speech” from 2019 to 2025.03

(incomplete)

Figure 1: Recent trends in controllable TTS regarding architectures, feature representations, and control abilities.

challenges and future research directions (Sec. 5).
For a history of controllable TTS and an overview
of the TTS pipeline, see Appendices A.1 and A.2.

2 Main Tasks in Controllable TTS

Prosody Control is the most basic task in control-
lable TTS, aiming to manipulate low-level acous-
tic features such as pitch (Łańcucki, 2021), dura-
tion (Wang et al., 2025a), and energy (Chen et al.,
2025). Prosody control ensures naturalness and ex-
pressiveness in TTS and is essential for rendering
emphasis, rhythm, and nuance in speech.

Timbre Control aims to manipulate the acous-
tic characteristics that define voice quality (e.g.,
gender, age, nasality), enabling control over how
a voice sounds beyond content and prosody. It
supports personalized TTS (Du et al., 2024), voice
conversion (Zhang et al., 2025b), and speaker iden-
tity editing (Huang et al., 2024a).

Emotion Control aims to enable the synthesis
of emotional speech by manipulating the affective
state of the generated voice (Kim et al., 2021).
This improves human-computer interaction, sto-
rytelling (Rong et al., 2025b), and supports emo-
tionally adaptive systems such as virtual assistants.

Style Control aims to control higher-level at-
tributes of speech such as tone, formality, and dis-
course mode (e.g., newscast) (Zhou et al., 2024;
Yang et al., 2024b). This is critical for adapting
the speaking behavior of TTS systems to different
contexts, audiences, and communication goals.

Language Control aims to enable TTS systems

to synthesize speech in multiple languages (Zhang
et al., 2023d), dialects (Di et al., 2024), or code-
switched contexts (Chen et al., 2024d). It facilitates
cross-lingual communication, multilingual agents,
and regionally tailored speech applications.

Environment Control aims to simulate the
acoustic characteristics of a specific setting, such
as a park, office, or seaside, by conditioning syn-
thesis on background noise and spatial cues (Lee
et al., 2024; Kim et al., 2024b; Zhang et al., 2025c).
Speech environment control is useful in filmmak-
ing and audiobooks.

3 Methods in Controllable TTS

This section reviews controllable TTS from three
perspectives: model architectures, feature represen-
tations, and control strategies, as shown in Fig. 1.

3.1 Model Architectures
The architectures of controllable TTS are primar-
ily divided into two types, i.e., non-autoregressive
(NAR) and autoregressive (AR) (See Table 1).

3.1.1 Non-Autoregressive Approaches
Non-autoregressive TTS models generate the entire
output speech sequence y = (y1, y2, . . . , yT ) in
parallel given the input x = (x1, x2, . . . , xT ):

argmax
θ

= P (y|x; θ), (1)

where θ denotes model parameters. In this part, we
investigate the transformer, variational autoencoder
(VAE), diffusion, and flow-based methods.
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Method (Non-autoregressive) Zero-shot
Controlability Model Architectures

Feature Release
Pit. Ene. Spe. Pro. Tim. Emo. Env. Des. Acoustic Model Vocoder

FastSpeech (Ren et al., 2019) ✓ ✓ Transformer WaveGlow (Prenger et al., 2019) MelS 2019.05
FastSpeech 2 (Ren et al., 2021a) ✓ ✓ ✓ ✓ Transformer Parallel WaveGAN (Yamamoto et al., 2020) MelS 2020.06

FastPitch (Łańcucki, 2021) ✓ ✓ Transformer WaveGlow MelS 2020.06
Parallel Tacotron (Elias et al., 2021a) ✓ Transformer + VAE + CNN WaveRNN (Kalchbrenner et al., 2018) MelS 2020.10
StyleTagging-TTS (Kim et al., 2021) ✓ ✓ ✓ Transformer + CNN HiFi-GAN (Kong et al., 2020) MelS 2021.04
SC-GlowTTS (Casanova et al., 2021) ✓ ✓ Transformer + Flow HiFi-GAN MelS 2021.06
Meta-StyleSpeech (Min et al., 2021) ✓ ✓ Transformer MelGAN (Kumar et al., 2019) MelS 2021.06

DelightfulTTS (Liu et al., 2021) ✓ ✓ ✓ Transformer + CNN HiFiNet (Liu et al., 2021) MelS 2021.11
YourTTS (Casanova et al., 2022) ✓ ✓ Transformer + Flow HiFi-GAN LinS 2021.12

StyleTTS (Li et al., 2025b) ✓ ✓ CNN + RNN HiFi-GAN MelS 2022.05
GenerSpeech (Huang et al., 2022b) ✓ ✓ Transformer + Flow HiFi-GAN MelS 2022.05

Cauliflow (Abbas et al., 2022) ✓ ✓ BERT + Flow UP WaveNet (Jiao et al., 2021) MelS 2022.06
CLONE (Liu et al., 2022) ✓ ✓ ✓ Transformer + CNN WaveNet (Van Den Oord et al., 2016) MelS + LinS 2022.07

PromptTTS (Guo et al., 2023) ✓ ✓ ✓ ✓ ✓ ✓ ✓ BERT + Transformer HiFi-GAN MelS 2022.11
Grad-StyleSpeech (Kang et al., 2023) ✓ ✓ Score-based Diffusion HiFi-GAN MelS 2022.11
NaturalSpeech 2 (Shen et al., 2024) ✓ ✓ Diffusion RVQ-based (Shen et al., 2024) Latent Feature 2023.04

PromptStyle (Liu et al., 2023a) ✓ ✓ ✓ ✓ ✓ ✓ VITS + Flow HiFi-GAN MelS 2023.05
StyleTTS 2 (Li et al., 2023) ✓ ✓ ✓ ✓ Flow-based Diffusion + GAN HifiGAN / iSTFTNet (Kaneko et al., 2022) MelS 2023.06
VoiceBox (Le et al., 2024) ✓ ✓ Transformer + Flow HiFi-GAN MelS 2023.06

MegaTTS 2 (Jiang et al., 2024) ✓ ✓ ✓ ✓ Decoder-only Transformer + GAN HiFi-GAN MelS 2023.07
PromptTTS 2 (Leng et al., 2023) ✓ ✓ ✓ ✓ ✓ ✓ Diffusion RVQ-based (Leng et al., 2023) Latent Feature 2023.09

VoiceLDM (Lee et al., 2024) ✓ ✓ ✓ ✓ ✓ ✓ Diffusion HiFi-GAN MelS 2023.09
DurIAN-E (Gu et al., 2023) ✓ ✓ ✓ CNN + RNN HiFi-GAN MelS 2023.09

PromptTTS++ (Shimizu et al., 2024) ✓ ✓ ✓ ✓ ✓ ✓ Transformer + Diffusion BigVGAN (gil Lee et al., 2023) MelS 2023.09
SpeechFlow (Liu et al., 2024a) ✓ ✓ Transformer + Flow HiFi-GAN MelS 2023.10

P-Flow (Kim et al., 2024c) ✓ ✓ Transformer + Flow HiFi-GAN MelS 2023.10
E3 TTS (Gao et al., 2023) ✓ ✓ Diffusion Not required Waveform 2023.11

HierSpeech++ (Lee et al., 2023b) ✓ ✓ Transformer + VAE + Flow BigVGAN MelS 2023.11
Audiobox (Vyas et al., 2023) ✓ ✓ ✓ ✓ ✓ ✓ ✓ Transformer + Flow HiFi-GAN MelS 2023.12
FlashSpeech (Ye et al., 2024) ✓ ✓ Latent Consistency Model EnCodec Token 2024.04

NaturalSpeech 3 (Ju et al., 2024) ✓ ✓ ✓ ✓ Transformer + Diffusion FACodec (Ju et al., 2024) Token 2024.04
InstructTTS (Yang et al., 2024b) ✓ ✓ ✓ ✓ ✓ ✓ Transformer + Diffusion HiFi-GAN Token 2024.05
ControlSpeech (Ji et al., 2024c) ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ Transformer + Diffusion FACodec Token 2024.06
AST-LDM (Kim et al., 2024b) ✓ ✓ ✓ Diffusion + VAE HiFi-GAN MelS 2024.06

SimpleSpeech (Yang et al., 2024c) ✓ ✓ Transformer + Diffusion SQ Codec (Yang et al., 2024c) Token 2024.06
DiTTo-TTS (Lee et al., 2025) ✓ ✓ ✓ DiT + VAE BigVGAN MelS 2024.06
E2 TTS (Eskimez et al., 2024) ✓ ✓ Transformer + Flow BigVGAN MelS 2024.06
MobileSpeech (Ji et al., 2024a) ✓ ✓ Transformer Vocos (Siuzdak, 2024) Token 2024.06
DEX-TTS (Park et al., 2024a) ✓ ✓ Diffusion HiFi-GAN MelS 2024.06
ArtSpeech (Wang et al., 2024) ✓ ✓ RNN + CNN HiFI-GAN MelS + Energy + F0 2024.07

CCSP (Xiao et al., 2024) ✓ ✓ Diffusion RVQ-based (Xiao et al., 2024) Token 2024.07
SimpleSpeech 2 (Yang et al., 2024a) ✓ ✓ ✓ Flow-based DiT SQ Codec Token 2024.08

E1 TTS (Liu et al., 2025b) ✓ ✓ DiT + Flow BigVGAN Token + MelS 2024.09
StyleTTS-ZS (Li et al., 2024) ✓ ✓ Flow-based Diffusion + GAN Mel-based Decoder (Li et al., 2024) MelS 2024.09

NansyTTS (Yamamoto et al., 2024) ✓ ✓ ✓ ✓ ✓ ✓ Transformer NANSY++ (Yamamoto et al., 2024) MelS 2024.09
NanoVoice (Park et al., 2024b) ✓ ✓ Diffusion BigVGAN MelS 2024.09

MS2KU-VTTS (He et al., 2024) ✓ ✓ Transformer BigVGAN MelS 2024.10
MaskGCT (Wang et al., 2025b) ✓ ✓ ✓ Transformer + Flow Vocos Token 2024.10
EmoSphere++ (Cho et al., 2024) ✓ ✓ ✓ ✓ Transformer + Flow BigVGAN MelS 2024.11
EmoDubber (Cong et al., 2024) ✓ ✓ ✓ ✓ Transformer + Flow Flow-based (Cong et al., 2024) MelS 2024.12

HED (Inoue et al., 2024) ✓ ✓ Flow-based Diffusion Vocos MelS 2024.12
DiffStyleTTS (Liu et al., 2025a) ✓ ✓ ✓ ✓ ✓ Transformer + Diffusion HiFi-GAN MelS 2025.01
DrawSpeech (Chen et al., 2025) ✓ ✓ Diffusion HiFi-GAN MelS 2025.01
ProEmo (Zhang et al., 2025a) ✓ ✓ ✓ ✓ Transformer HiFi-GAN MelS 2025.01

Method (Autoregressive) Zero-shot
Controlability Model Architectures

Feature Release
Pit. Ene. Spe. Pro. Tim. Emo. Env. Des. Acoustic Model Vocoder

Prosody-Tacotron (Skerry-Ryan et al., 2018) ✓ ✓ RNN WaveNet MelS 2018.03
GST-Tacotron (Stanton et al., 2018) ✓ ✓ CNN + RNN Griffin-Lim LinS 2018.03
GMVAE-Tacotron (Hsu et al., 2018) ✓ ✓ ✓ ✓ VAE WaveRNN MelS 2018.12
VAE-Tacotron (Zhang et al., 2019) ✓ ✓ ✓ VAE + CNN + RNN WaveNet MelS 2019.02

DurIAN (Yu et al., 2020) ✓ ✓ ✓ CNN + RNN Multi-band WaveRNN (Yu et al., 2020) MelS 2019.09
Flowtron (Valle et al., 2020) ✓ ✓ ✓ CNN + RNN WaveGlow MelS 2020.07

MsEmoTTS (Lei et al., 2022) ✓ ✓ ✓ CNN + RNN WaveRNN MelS 2022.01
VALL-E (Wang et al., 2023a) ✓ ✓ Decoder-only Transformer EnCodec Token 2023.01

SpearTTS (Kharitonov et al., 2023) ✓ ✓ Decoder-only Transformer SoundStream (Zeghidour et al., 2021) Token 2023.02
VALL-E X (Zhang et al., 2023d) ✓ ✓ Decoder-only Transformer EnCodec Token 2023.03

Make-A-Voice (Huang et al., 2023b) ✓ ✓ Encoder-decoder Transformer Unit-based (Huang et al., 2023b) Token 2023.05
TorToise (Betker, 2023) ✓ Decoder-only Transformer + Diffusion UnivNet (Jang et al., 2021) MelS 2023.05

MegaTTS (Jiang et al., 2023) ✓ ✓ Decoder-only Transformer + GAN HiFi-GAN MelS 2023.06
SC VALL-E (Kim et al., 2023) ✓ ✓ ✓ ✓ ✓ ✓ Decoder-only Transformer EnCodec Token 2023.07

Salle (Ji et al., 2024b) ✓ ✓ ✓ ✓ ✓ ✓ ✓ Decoder-only Transformer EnCodec Token 2023.08
UniAudio (Yang et al., 2023b) ✓ ✓ ✓ ✓ ✓ ✓ Decoder-only Transformer EnCodec Token 2023.10
ELLA-V (Song et al., 2024) ✓ ✓ Decoder-only Transformer EnCodec Token 2024.01

Base TTS (Łajszczak et al., 2024) ✓ ✓ Decoder-only Transformer HiFi-GAN + BigVGAN Token 2024.02
CLaM-TTS (Kim et al., 2024a) ✓ ✓ Encoder-decoder Transformer BigVGAN Token + MelS 2024.04

RALL-E (Xin et al., 2024) ✓ ✓ Decoder-only Transformer SoundStream Token 2024.05
ARDiT (Liu et al., 2024b) ✓ ✓ ✓ Decoder-only DiT BigVGAN MelS 2024.06

VALL-E R (Han et al., 2024) ✓ ✓ Decoder-only Transformer Vocos Token 2024.06
VALL-E 2 (Chen et al., 2024a) ✓ ✓ Decoder-only Transformer Vocos Token 2024.06

Seed-TTS (Anastassiou et al., 2024) ✓ ✓ ✓ Decoder-only Transformer + DiT Unknown Latent Feature 2024.06
VoiceCraft (Peng et al., 2024b) ✓ ✓ Decoder-only Transformer HiFi-GAN Token 2024.06
XTTS (Casanova et al., 2024) ✓ ✓ Decoder-only Transformer HiFi-GAN-based (Casanova et al., 2024) Token + MelS 2024.06
CosyVoice (Du et al., 2024) ✓ ✓ ✓ ✓ ✓ ✓ ✓ Decoder-only Transformer + Flow HiFi-GAN Token 2024.07
MELLE (Meng et al., 2024) ✓ ✓ Decoder-only Transformer HiFi-GAN MelS 2024.07

VoxInstruct (Zhou et al., 2024) ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ Decoder-only Transformer Vocos Token 2024.08
Emo-DPO (Gao et al., 2024) ✓ Decoder-only Transformer HiFi-GAN Token + MelS 2024.09

FireRedTTS (Guo et al., 2024a) ✓ ✓ ✓ Decoder-only Transformer + Flow BigVGAN Token + MelS 2024.09
CoFi-Speech (Guo et al., 2024b) ✓ ✓ Decoder-only Transformer BigVGAN Token + MelS 2024.09

Takin (Chen et al., 2024b) ✓ ✓ ✓ ✓ ✓ ✓ ✓ Decoder-only Transformer + Flow HiFi-GAN Token + MelS 2024.09
HALL-E (Nishimura et al., 2024) ✓ ✓ Decoder-only Transformer EnCodec Token 2024.10

FishSpeech (Liao et al., 2024) ✓ ✓ Decoder-only Transformer Firefly-GAN (Liao et al., 2024) Token 2024.11
SLAM-Omni (Chen et al., 2024c) ✓ ✓ ✓ Decoder-only Transformer HiFi-GAN Token + MelS 2024.12

IST-LM (Yang et al., 2024e) ✓ ✓ ✓ Decoder-only Transformer HiFi-GAN Token + MelS 2024.12
KALL-E (Zhu et al., 2024) ✓ ✓ ✓ ✓ Decoder-only Transformer WaveVAE (Zhu et al., 2024) Latent Feature 2024.12
IDEA-TTS (Lu et al., 2025) ✓ ✓ ✓ Transformer Flow-based (Lu et al., 2025) LinS + MelS 2024.12
FleSpeech (Li et al., 2025a) ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ Flow-based DiT WaveGAN (Donahue et al., 2018) Latent Feature 2025.01

Step-Audio (Huang et al., 2025) ✓ ✓ ✓ ✓ ✓ Decoder-only Transformer Flow-based (Huang et al., 2025) Token 2025.02
Vevo (Zhang et al., 2025b) ✓ ✓ ✓ ✓ Decoder-only Transformer BigVGAN Token + MelS 2025.02

Spark-TTS (Wang et al., 2025a) ✓ ✓ ✓ ✓ ✓ Decoder-only Transformer BiCodec (Wang et al., 2025a) Token 2025.03
EmoVoice (Yang et al., 2025) ✓ ✓ Decoder-only Transformer HiFi-GAN Token 2025.04

Abbreviations: Pit(ch), Ene(rgy), Spe(ed), Pro(sody), Tim(bre), Emo(tion), Env(ironment), Des(cription). MelS: Mel Spectrogram. LinS: Linear Spectrogram.

Table 1: A summary of existing controllable neural-based methods.

Transformer-based Methods. Transformers en-
able efficient context modeling and parallel TTS.
FastSpeech (Ren et al., 2019) introduced a non-
autoregressive transformer that improves inference
speed and stability via duration prediction. Fast-
Speech 2 (Ren et al., 2021a) adds pitch and en-
ergy control, removing the need for distillation and
boosting voice quality. FastPitch (Łańcucki, 2021)
further incorporates direct pitch prediction into its
architecture, enabling pitch manipulation.

VAE-based Methods. VAEs enable structured,
continuous latent representations by optimizing a
variational lower bound. VAEs have been lever-
aged to enhance prosody, emotion, and style con-

trol. Hsu et al. (2018) proposed a hierarchical VAE
to control noise and speaking rate. Zhang et al.
(2019) introduced disentangled VAE representa-
tions for effective prosody and emotion transfer.
Parallel Tacotron (Elias et al., 2021b) uses a VAE-
based residual encoder with iterative spectrogram
loss to improve speech naturalness. CLONE (Liu
et al., 2022) further improves prosody and energy
modeling using conditional VAEs with normaliz-
ing flows (Kobyzev et al., 2020) and adversarial
training, achieving state-of-the-art quality and con-
trol. These advances underscore VAEs’ versatility
in expressive and controllable speech synthesis.

Diffusion-based Methods. Diffusion mod-
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els (Ho et al., 2020) generate speech by revers-
ing a noise injection process: noise is gradually
added during the forward phase and removed in
the reverse phase to synthesize high-quality au-
dio. NaturalSpeech 2 (Shen et al., 2024) uses
a latent diffusion-based codec with quantized la-
tent vectors, while NaturalSpeech 3 (Ju et al.,
2024) decomposes speech into independent at-
tribute subspaces with factorized diffusion-based
codecs. DEX-TTS (Park et al., 2024a) improves
diffusion transformer (DiT)-based networks via
overlapping patches and frequency-aware embed-
dings. E3 TTS (Gao et al., 2023) eliminates in-
termediate features by directly modeling wave-
forms through diffusion. Text-to-audio models
such as AudioLDM (Liu et al., 2023b) and Make-
An-Audio (Huang et al., 2023a) can also generate
speech using latent diffusion models.

Flow-based Methods. Flow models use invert-
ible flows (Rezende and Mohamed, 2015; Lipman
et al., 2023) to map speech features to simple distri-
butions, typically Gaussians (Prenger et al., 2019),
enabling direct, high-fidelity generation via inver-
sion. Recent models adopt flow-matching (Lipman
et al., 2023) for efficient, non-autoregressive syn-
thesis: Audiobox (Vyas et al., 2023), P-Flow (Kim
et al., 2024c), and VoiceBox (Le et al., 2024)
consider TTS as speech infilling tasks, predicting
masked mel-spectrograms. FlashSpeech (Ye et al.,
2024) trains a latent consistency model using adver-
sarial training, achieving one- or two-step synthesis.
Inspired by audio infilling, E2 TTS (Eskimez et al.,
2024) uses filler-augmented text sequences to gen-
erate mel-spectrograms with human-level quality.
F5-TTS (Chen et al., 2024d) builds on this with
ConvNeXt v2 (Woo et al., 2023) to enhance text-
speech alignment by directly learning flows condi-
tioned on text and reference speech. E1 TTS (Liu
et al., 2025b) distills rectified flow-based diffusion
models (Liu et al., 2023c) into one-step generators
via distribution matching, reducing sampling cost.

3.1.2 Autoregressive Approaches
Autoregressive TTS models predict the speech se-
quence y = (y1, . . . , yT ) given input x as:

argmax
θ

=

T∏

t=1

P (yt|y<t,x; θ), (2)

where each frame yt depends on all previous out-
puts y<t and the transcript x. While this enables
effective modeling of implicit duration and long-
range context, autoregressive TTS models suffer

Reference SpeechText / Instruction

Text Encoder Speech Encoder

<SBOS>

<SEOS>

<TBOS>

<SEOS>

Decoder-only Transformer

Speech Decoder

Waveform

A man happily says:
"Thank you!"

Text tokens

Audio tokens

<BOS> and <EOS> tokens of text

<BOS> and <EOS> tokens of audio

Figure 2: The typical architecture of LLM-based TTS.

from slower inference, making them more suitable
for applications where flexibility is prioritized over
speed. This part investigates recurrent neural net-
works (RNN) and LLM-based methods.

RNN-based Methods. RNNs enable natural-
sounding speech synthesis with adjustable prosody,
pitch, and emotion. Prosody-Tacotron (Skerry-
Ryan et al., 2018) extends Tacotron (Wang et al.,
2017) by introducing explicit prosodic controls.
Wang et al. (2018) proposed Global Style To-
kens (GST), enabling unsupervised style trans-
fer. Emotion-controllable models such as Li et al.
(2021) introduced emotion embeddings and style
alignment to modulate emotional intensity. MsE-
moTTS (Lei et al., 2022) refined this with a hierar-
chical structure capturing emotion at global, utter-
ance, and local levels, enabling more nuanced syn-
thesis. These developments bring synthetic speech
significantly closer to human expressiveness.

LLM-based Methods. LLM-based TTS is in-
spired by the success of in-context learning in
LLMs. As illustrated in Fig. 2, these approaches
typically input target text or instructions with an
optional reference speech, using autoregressive
decoder-only transformers to generate speech to-
kens or features, which are then decoded into
waveforms. VALL-E (Wang et al., 2023a) pio-
neered LLM-based zero-shot TTS by framing it as
a conditional language modeling task. It uses En-
Codec (Défossez et al., 2023a) to discretize wave-
forms into tokens and adopts a two-stage pipeline:
an autoregressive model generates coarse audio
tokens, followed by a non-autoregressive model
for iterative refinement. This hierarchical model-
ing of semantic and acoustic tokens has laid the
groundwork for many subsequent methods, such as
VALL-E X (Zhang et al., 2023d), ELLA-V (Song
et al., 2024), RALL-E (Xin et al., 2024), VALL-E
R (Han et al., 2024), MELLE (Meng et al., 2024),
and HALL-E (Nishimura et al., 2024). Beyond
the VALL-E series, recent work has further im-
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proved text-speech alignment, quality, and robust-
ness. SpearTTS (Kharitonov et al., 2023) and
Make-a-Voice (Huang et al., 2023b) leverage se-
mantic tokens to better bridge text and acoustic fea-
tures. FireRedTTS (Guo et al., 2024a) refines the
tokenizer architecture for improved reconstruction
quality. CoFi-Speech (Guo et al., 2024b) adopts
a coarse-to-fine, multi-scale generation strategy to
produce natural, intelligible speech.

3.1.3 Research Trend

Traditional CNN/RNN TTS models face inher-
ent constraints. RNNs (e.g., Tacotron) are slow
due to autoregressive inference and struggle with
long-term dependencies. CNNs (e.g., Deep Voice)
lack global prosody modeling. Both require ex-
plicit feature engineering for attributes like emo-
tion and often trade synthesis quality for effi-
ciency (e.g., WaveNet’s high fidelity but high la-
tency). Flow-based models (e.g., Matcha-TTS,
F5-TTS) enable non-autoregressive, parallel syn-
thesis with probabilistic control over acoustic fea-
tures, improving speed and flexibility but increas-
ing training complexity and dataset requirements.
LLM-based models (e.g., VALL-E, InstructTTS)
offer natural language-driven control and zero-shot
voice cloning, supporting context-aware synthe-
sis, but suffer from high computational cost and
potential acoustic artifacts from discrete tokeniza-
tion. Hybrid architectures (e.g., CosyVoice) inte-
grate LLM-guided semantic conditioning into flow-
based generators, combining high-fidelity synthesis
with intuitive, instruction-based control. Users can
specify attributes like emotion or speaking style
in natural language without compromising audio
quality. Future controllable TTS should balance
efficiency, fidelity, and expressiveness, generaliz-
ing across voices, styles, and languages. Bridging
instruction-based control and acoustic precision
remains a key challenge, motivating advances in
modular architectures, instruction grounding, and
speech-text-instruction alignment. Fig. 3 summa-
rizes the evolution and future direction of TTS
model architectures.

3.2 Control Strategies

As illustrated in Fig. 4, control strategies in TTS
can be broadly categorized into four types: style
tagging, reference speech prompt, natural language
descriptions, and instruction-guided control.

Traditional models (CNN/RNN): limited controlability (e.g., Tacotron, DeepVoice)

Flow-based models: fast with less intuitive
control (e.g., Matcha-TTS, F5-TTS)

LLM-based models: slow with intuitive
control (e.g., VALL-E, Instruct-TTS)

Hybrid Architecture: Intuitive Control & High-Fidelity Synthesis (e.g., CosyVoice).

Future Direction: High-Fidelity, Instruction-Aware Frameworks

Figure 3: The evolution of TTS model architectures

3.2.1 Style Tagging
This paradigm enables the adjustment of key at-
tributes such as pitch, energy, speech rate, and
emotion, which can be controlled using either cat-
egorical labels or continuous values. “Tagging”
refers to using a control signal to control a spe-
cific speech attribute. 1) Some approaches use dis-
crete labels to control speech attributes. For exam-
ple, StyleTagging-TTS (Kim et al., 2021) denotes
speech styles with short phrases or words (e.g.,
angry, happy), learning the relationship between
linguistic and style embeddings. Emo-DPO (Gao
et al., 2024) enables emotion control through Direct
Preference Optimization (DPO) (Rafailov et al.,
2023) with LLMs. Spark-TTS (Wang et al., 2025a)
provides coarse and fine-grained control, allow-
ing pitch and speaking rate modifications via spe-
cially designed tokens and reference speech. 2)
Other methods adjust continuous input signals.
DiffStyleTTS (Liu et al., 2025a) models prosody
hierarchically, enabling control over pitch, en-
ergy, duration, and style via guiding scale fac-
tors. DrawSpeech (Chen et al., 2025) lets users
sketch prosody contours, which are refined and con-
verted into detailed speech by a diffusion model,
offering control over intonation. 3) Speech at-
tributes can be controlled by modifying latent fea-
tures. Cauliflow (Abbas et al., 2022) adjusts speech
rate and pausing through a flow-based model
conditioned on user-defined parameters. DiTTo-
TTS (Lee et al., 2025) uses a DiT to control speech
rate by modifying latent length predictions. These
methods show great potential in controlling speech
attributes by adjusting input signals or latent vari-
ables. However, these methods are limited in ex-
pressive diversity, as they can only model a small
set of pre-defined attributes.

3.2.2 Reference Speech Prompt
This paradigm aims to customize the synthesized
voice using only a few seconds of reference speech.
Similar to LLM-based methods, it takes both text
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Style Tagging

StyleTagging-TTS (Kim et al., 2021), Emo-DPO (Gao et al., 2024), Spark-TTS (Wang
et al., 2025a), DiffStyleTTS (Liu et al., 2025a), DrawSpeech (Chen et al., 2025),

Cauliflow (Abbas et al., 2022), DurIAN-E (Gu et al., 2023), DiTTo-TTS (Lee et al., 2025)

Reference
Speech Prompt

MetaStyleSpeech (Min et al., 2021), StyleTTS (Li et al., 2025b), GenerSpeech (Huang et al., 2022b), SC VALL-
E (Kim et al., 2023), ArtSpeech (Wang et al., 2024), CCSP (Xiao et al., 2024), DEX-TTS (Park et al., 2024a),

StyleTTS-ZS (Li et al., 2024), NaturalSpeech 3 (Ju et al., 2024), MegaTTS 2 (Jiang et al., 2024), ControlSpeech (Ji
et al., 2024c), VoiceCraft (Peng et al., 2024b), Vevo (Zhang et al., 2025b), Spark-TTS (Wang et al., 2025a)

Natural Language
Descriptions

PromptTTS (Guo et al., 2023), InstructTTS (Yang et al., 2024b), PromptStyle (Liu et al., 2023a), Salle (Ji et al.,
2024b), NansyTTS (Yamamoto et al., 2024), PromptTTS++ (Shimizu et al., 2024), PromptSpeaker (Zhang et al., 2023c),
PromptTTS 2 (Leng et al., 2023), ControlSpeech (Ji et al., 2024c), Audiobox (Vyas et al., 2023), Takin (Chen et al.,

2024b), VoiceLDM (Lee et al., 2024), AST-LDM (Kim et al., 2024b), FleSpeech (Li et al., 2025a), MS2KU-VTTS (He
et al., 2024), Parler-TTS (Lyth and King, 2024), ProEmo (Zhang et al., 2025a), EmoVoice (Yang et al., 2025)

Instruction-
Guided Control

VoxInstruct (Zhou et al., 2024), AudioGPT (Huang et al., 2024b), SpeechGPT (Zhang et al.,
2023b), FunAudioLLM (An et al., 2024), CosyVoice (Du et al., 2024), VoiceCraft (Peng

et al., 2024b), InstructSpeech (Huang et al., 2024a), Step-Audio (Huang et al., 2025)

Figure 4: A taxonomy of controllable TTS from the perspective of control strategies.

and reference speech as input to a conditional
TTS model, which generates speech based on
both semantic and acoustic features. MetaStyle-
Speech (Min et al., 2021) employs adaptive nor-
malization for style conditioning, enabling robust
zero-shot performance. GenerSpeech (Huang et al.,
2022b) introduces a multilevel style adapter for im-
proved zero-shot style transfer to out-of-domain
custom voices. SC VALL-E (Kim et al., 2023) inte-
grates style tokens and scale factors for controlling
emotion, speaking style, and other acoustic features
in the generated speech. DEX-TTS (Park et al.,
2024a) separates time-invariant and time-variant
style components, allowing the extraction of di-
verse styles. StyleTTS-ZS (Li et al., 2024) uses
distilled time-varying style diffusion to capture var-
ied speaker identities and prosodies. MegaTTS
2 (Jiang et al., 2024) introduces an acoustic autoen-
coder to separate prosody and timbre in the latent
space, enabling style transfer to any timbre. Con-
trolSpeech (Ji et al., 2024c) employs bidirectional
attention and parallel decoding to control timbre,
style, and content in a zero-shot manner.

3.2.3 Natural Language Descriptions

Recent studies have explored controlling speech at-
tributes using natural language descriptions, offer-
ing better user-friendliness. PromptTTS (Guo et al.,
2023) uses manually annotated prompts to describe
five key speech attributes. InstructTTS (Yang et al.,
2024b) introduces a three-stage training proce-
dure to extract semantics from natural language
prompts. NansyTTS (Yamamoto et al., 2024) en-
ables cross-lingual control by pairing a TTS model
with a description controller trained on a differ-
ent language using shared timbre and style rep-
resentations. To address the limitations of tex-
tual prompts in capturing speaker characteristics,

PromptTTS++ (Shimizu et al., 2024) enhances
prompt richness by using additional speaker de-
scription prompts. PromptTTS 2 (Leng et al., 2023)
introduces a variation network to model residual
variability beyond the prompt. Further efforts ex-
tend controllability to the environmental context.
VoiceLDM (Lee et al., 2024) and AST-LDM (Kim
et al., 2024b) extend AudioLDM (Liu et al., 2023b)
by incorporating content prompts to enable envi-
ronmental conditioning. MS2KU-VTTS (He et al.,
2024) further enhances environmental perception
by mixing environmental images into the prompt,
enabling more immersive speech generation.

3.2.4 Instruction-Guided Synthesis

Description-based TTS methods separate inputs
into content and description prompts, diverging
from the unified instruction formats used in chat-
bots. To address this, VoxInstruct (Zhou et al.,
2024) reframes TTS as a general instruction-to-
speech task, where a single natural language
prompt conveys both content and style descrip-
tions. CosyVoice (Du et al., 2024) enhances this
paradigm using supervised semantic tokens derived
from ASR models. It combines LLM-driven to-
ken generation with flow-matching synthesis, en-
abling precise control over speaker identity, emo-
tion, pitch, speed, and paralinguistic cues through
natural language instructions. AudioGPT (Huang
et al., 2024b) is a multimodal LLM-based agent,
incorporating multiple modules for speech under-
standing, synthesis, and style conversion. StepAu-
dio (Huang et al., 2025) introduces a speech-text
model with an instruction-driven TTS module, en-
abling dynamic control over dialects, emotions,
singing, rapping, and speaking styles. These ad-
vancements push toward more intuitive, instruction-
driven speech generation.
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3.2.5 Instruction-Guided Editing
Some methods also support speech editing via user
instructions. VoiceCraft (Peng et al., 2024b) uses
a decoder-only transformer with causal masking
and delayed stacking for bidirectional, context-
aware instruction-guided editing, such as insertion,
deletion, and substitution, while maintaining high
naturalness. InstructSpeech (Huang et al., 2024a)
trains a multi-task LLM on <instruction, input, out-
put> triplets with task embeddings and hierarchical
adapters, allowing content and acoustic attributes
control. It supports flexible, free-form speech edit-
ing and task adaptation by multi-step reasoning.

3.2.6 Research Trend
The evolution of TTS control has moved from basic
attribute manipulation to sophisticated, instruction-
guided synthesis, reflecting AI’s trend toward in-
tuitive, fine-grained control. Early methods like
style tagging controlled predefined attributes (e.g.,
pitch, emotion) but offered limited expressive di-
versity. Reference speech prompts enabled zero-
shot TTS and voice cloning, separating timbre
from style for greater personalization. To improve
user-friendliness, natural language descriptions
(e.g., PromptTTS) allowed users to specify vocal
characteristics through text. The latest advance,
instruction-guided control, leverages LLMs to
interpret free-form instructions combining content
and style. Systems like VoxInstruct and CosyVoice
generate nuanced speech, including paralinguis-
tic sounds, enabling highly precise, user-centric
synthesis. Overall, the progression from tags to
natural instructions shows a clear trajectory to-
ward more expressive, personalized, and intu-
itive TTS, driven by LLM integration. Table 2 in
the Appendix provides a summary of the strengths
and weaknesses of each control strategy.

3.3 Feature Representations

The learning and choice of feature representations
critically affect flexibility, naturalness, and control-
lability. This subsection discusses speech attribute
disentanglement and compares continuous and dis-
crete representations, highlighting their trade-offs.

Speech Attribute Disentanglement. Attribute
disentanglement aims to isolate distinct speech fac-
tors, such as speaker identity, emotion, prosody,
and content, into separate latent representations.
The two main approaches are: 1) Adversarial train-
ing (Goodfellow et al., 2020) uses auxiliary classi-
fiers to penalize the presence of unwanted attributes

in a latent space. An encoder learns to “fool” these
classifiers, resulting in representations that are in-
variant to specific attributes like speaker (Yang
et al., 2021; Hsu et al., 2019; Lee et al., 2021),
emotion (Li et al., 2022), and style (Li et al., 2023).
2) Information bottleneck uses small-capacity or in-
dependent encoder branches to isolate attributes.
Each branch encodes one factor (e.g., content,
prosody) (Ju et al., 2024), often with adversarial or
reconstruction losses to discourage leakage of other
information. These methods are often combined.
Regularization via KL divergence (Lu et al., 2023)
or quantization (Zhang et al., 2025b) also plays a
key role in enforcing disentanglement.

Continuous Representations. Continuous rep-
resentations model speech in a continuous feature
space, preserving acoustic details. The key ad-
vantages are: 1) Fine-grained detail retention for
natural and expressive synthesis; 2) Inherent en-
coding of prosody, pitch, and emotion, aiding con-
trollable and emotional TTS; 3) Enable smooth
audio reconstruction without quantization artifacts.
GAN-based (Kong et al., 2020; Yamamoto et al.,
2020), VAE-based (Lee et al., 2023b, 2025), flow-
based (Kim et al., 2024d; Casanova et al., 2022),
and diffusion-based methods (Kong et al., 2021;
Huang et al., 2022a) often utilize continuous fea-
ture representations. However, they are computa-
tionally intensive and demand large models and
datasets for high-fidelity audio generation.

Discrete Tokens. Discrete token-based TTS
uses quantized units or phoneme-like tokens as
acoustic features, which are often derived from
quantization (Zeghidour et al., 2021) or learned
embeddings (Hsu et al., 2021). The advantages of
discrete tokens are: 1) Discrete tokens can encode
phonemes or sub-word units, making them con-
cise and computationally efficient. 2) Discrete to-
kens often allow TTS systems to require fewer sam-
ples to learn and generalize, compared with con-
tinuous features. 3) Using discrete tokens simpli-
fies cross-modal TTS applications like description-
based TTS, as they are suitable for LLM training.
LLM-based methods (Zhou et al., 2024; Yang et al.,
2024b; Du et al., 2024) often adopt discrete tokens
as acoustic features. However, discrete feature
learning may cause information loss or lack the
nuanced details in continuous features.

Table 1 summarizes the features used in existing
methods. We also compare speech quantization
and tokenization in Appendix A.3 and summarize
open-source methods in Table 5 in the Appendix.
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4 Datasets and Evaluation Methods

4.1 Datasets
Fully controllable TTS systems require large, di-
verse, and finely annotated datasets to generate
expressive, attribute-controllable speech. There are
mainly three types of datasets for controllable TTS:

Tag-based Datasets. Tag-based datasets contain
speech recordings annotated with predefined dis-
crete attribute labels that describe various aspects
of the speech audio (Zhou et al., 2022; Busso et al.,
2008; Ringeval et al., 2013; Bagher Zadeh et al.,
2018). Common attributes include pitch, energy,
speaking rate, age, gender, emotion, emphasis, ac-
cent, and topic. By leveraging attribute labels, mod-
els can dynamically adjust specific speech charac-
teristics, enabling more expressive synthesis.

Description-based Datasets. Description-based
datasets pair speech samples with rich, free-form
textual descriptions that capture nuanced attributes
such as intonation, prosody, speaking style, and
emotional tone (Guo et al., 2023; Ji et al., 2024b;
Jin et al., 2024; Lyth and King, 2024). Unlike tag-
based datasets with predefined categorical labels,
these datasets allow models to interpret and gener-
ate speech from natural language prompts, enabling
context-aware and highly expressive synthesis.

Dialogue Datasets. Dialogue datasets (Byrne
et al., 2019; Lee et al., 2023a; Yang et al., 2022)
contain multi-turn conversational speech involving
two or more speakers, emphasizing natural inter-
action features such as turn-taking, contextual de-
pendencies, speaker intent, pauses, and prosodic
variation. These datasets are essential for generat-
ing dynamic and contextually appropriate speech
for interactive systems.

By leveraging these datasets, researchers can de-
velop more expressive, context-aware, and highly
controllable TTS models. Table 3 in the Appendix
summarizes publicly available datasets.

4.2 Evaluation Methods
4.2.1 Objective and Subjective Metrics
Objective Metrics. Objective metrics enable auto-
mated and reproducible evaluation. Mel Cepstral
Distortion (MCD) (Kominek et al., 2008) quan-
tifies spectral distance between synthesized and
reference speech. MCD below 4 suggests good
synthesis, while values above 6 imply distortion.
Fréchet DeepSpeech Distance (FDSD) (Bińkowski
et al., 2020) evaluates speech quality by measur-
ing the distributional distance between synthesized

and real speech in the embedding space of a pre-
trained speech recognition model, such as Deep-
Speech (Hannun et al., 2014). It compares the
mean and covariance of extracted features; thus, a
lower FDSD indicates higher perceptual similar-
ity. Word Error Rate (WER) (Wikipedia, 2024)
quantifies speech intelligibility by comparing rec-
ognized and reference transcripts. Cosine Simi-
larity assesses speaker similarity by comparing
speaker embeddings (extracted using models like
ECAPA-TDNN (Desplanques et al., 2020) or x-
vectors (Snyder et al., 2018)) of synthesized and
reference speech. Higher values indicate better
voice cloning. Perceptual Evaluation of Speech
Quality (PESQ) (Rix et al., 2001) evaluates the in-
telligibility and distortion of synthesized speech by
modeling human auditory perception.

Subjective Metrics. Subjective metrics assess
the perceptual quality of synthesized speech based
on human judgments, capturing aspects like ex-
pressiveness and style similarity. Mean Opinion
Score (MOS) rates synthesized speech (e.g., natu-
ralness) on a 1–5 scale. Though effective in cap-
turing human perception, MOS is costly for large-
scale use. Comparison MOS (CMOS) (Loizou,
2011) assesses relative quality by asking partici-
pants compare paired samples. Both are averaged
across listeners. AB/ABX Tests present listeners
with two samples (AB) by different methods or
two plus a reference (ABX) to judge preference or
closeness to the reference. They are very common
in evaluating fine-grained or zero-shot TTS. Ap-
pendix A.4 details the metric computations, while
Table 4 summarizes the most commonly used ones.

4.2.2 Model-based Evaluation
Model-based evaluation is also an emerging tech-
nique, e.g., automatic MOS evaluation (Lian et al.,
2025) and GPT-based evaluation (Rong et al.,
2025b,a). To evaluate the controllability of existing
TTS models, we designed a pipeline using Google
Gemini to assess synthesized speech along three
dimensions, i.e., instruction following, naturalness,
and expressiveness, which are not well captured by
traditional metrics. Details of this evaluation are
provided in Appendix A.5.

5 Challenges and Future Directions

5.1 Challenges

Fine-Grained Attribute Control. Emotion and
other vocal traits are often intertwined and span
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multiple granularities, making fine-grained control
especially difficult. This requires high-resolution
annotations and advanced models capable of cap-
turing subtle attribute variations. While description-
based methods like VoxInstruct (Zhou et al., 2024)
allow control via attribute descriptions, precisely
targeting a specific granularity or enabling multi-
scale, fine-grained control remains a big challenge.

Feature Disentanglement. Fully controllable
TTS requires effective feature disentanglement, yet
extracting meaningful and independent speech at-
tributes is challenging due to their interdependence
and context sensitivity. For instance, modifying
pitch can also affect emotion and naturalness. To
address this, prior work (An et al., 2022; Wang
et al., 2023b) leverages pre-trained models on tasks
like emotion classification and adversarial training
to guide feature separation. However, designing
disentanglement methods for more subtle prosodic
attributes, such as sarcasm, remains an open chal-
lenge and merits further research.

Scarcity of Datasets. Effective control requires
training data that spans a wide range of styles,
emotions, accents, and prosodic patterns. Large-
scale datasets like GigaSpeech (Chen et al., 2021)
and TextrolSpeech (Ji et al., 2024b) exist, but lack
the content and scenario diversity, e.g., comedies,
thrillers, and cartoons. Fine-grained, attribute-
specific annotations are another bottleneck. Man-
ual labeling is expensive, laborious, requires ex-
pertise, and is often inconsistent, especially for
subjective traits like emotion. Most datasets offer
only coarse labels (e.g., gender, age, emotions).
While datasets like SpeechCraft (Jin et al., 2024)
and Parler-TTS (Lyth and King, 2024) include tex-
tual descriptions, none provide annotations across
varying conditions within the same speaker.

5.2 Future Directions
Instruction-Guided Fine-Grained Speech Syn-
thesis and Editing. Natural language-driven con-
trol of fine-grained speech attributes remains un-
derexplored. Most existing methods support only
a limited set of controllable attributes. While
models like VoxInstruct (Zhou et al., 2024) and
CosyVoice (Du et al., 2024) show promise in con-
trolling emotion, timbre, and style, they often pro-
duce speech that deviates from user intent, requir-
ing multiple synthesis attempts. Similarly, speech
editing methods (Tae et al., 2022; Tan et al., 2021a)
typically rely on conditional models with fixed in-
puts, offering limited flexibility for fine-grained,

instruction-guided modifications. Thus, developing
disentangled representations that support precise
control through user instructions is promising.

Expressive Multimodal Speech Synthesis.
Synthesizing speech from multimodal inputs such
as texts, images, and videos has broad industrial ap-
plications in storytelling, film, and gaming. While
prior work (Goto et al., 2020; Lu et al., 2022; Rong
and Liu, 2025) explores this direction, current meth-
ods struggle to effectively extract and utilize rich
multimodal information. Generating expressive,
engaging speech for complex visual content re-
mains a promising area for future research.

Zero-shot Long Speech and Conversational
Synthesis with Emotion Consistency. Zero-shot
TTS enables voice cloning and style transfer with-
out fine-tuning (Wang et al., 2025b; Chen et al.,
2024d; Du et al., 2024), yet struggles with gener-
ating long, content-emotion consistent speech due
to limited reference input. Overcoming this chal-
lenge is key to advancing long speech synthesis.
Besides, conversational TTS, often cascaded and
context-unaware, produces robotic and unexpres-
sive speech. Recent advances leverage LLMs and
discrete speech tokens (Fang et al., 2025; Zhang
et al., 2023b), but context-aware, emotionally rich
conversational TTS remains underexplored.

Large-Scale Dataset Generation. Dataset con-
struction is critical for both fine-grained control and
editing tasks. Researchers can leverage pre-trained
speech analysis models to annotate attributes like
pitch, energy, emotion, gender, and age. From these
annotations, tools like ChatGPT can generate di-
verse natural language descriptions of speech char-
acteristics. For speech editing, pre-trained mod-
els can assist with tasks such as word substitution,
pitch adjustment, and emotion conversion, while
ChatGPT can provide varied and semantically rich
editing instructions for training and evaluation. In
addition, multi-agent systems can also be utilized
to generate long-form and diverse speech content.

6 Conclusion

This survey provides a comprehensive review of
controllable TTS methods, covering model archi-
tectures, control strategies, and feature representa-
tions. We also summarize commonly used datasets
and evaluation metrics, discuss major challenges,
and highlight promising future directions. To the
best of our knowledge, this is the first comprehen-
sive survey dedicated to controllable TTS.
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7 Limitations

We acknowledge several limitations that may af-
fect the completeness of our survey. First, this
survey does not explore the interactions between
controllable attributes. Most existing studies focus
on modeling each factor, such as emotion, speaker
identity, or prosody, as an independent variable.
However, understanding how these attributes in-
fluence one another during synthesis could lead
to more effective and flexible control strategies.
Second, we do not address the efficiency of cur-
rent controllable TTS systems. It is important
to note that approaches guided by descriptions or
instructions often involve considerable computa-
tional cost, largely due to their reliance on large
language model-based codecs and complex cross-
modal architectures. Third, we have not discussed
the broader societal implications of controllable
TTS, such as the risks associated with deepfake
generation or adversarial attacks. Finally, this
survey does not cover related research areas, in-
cluding speech enhancement, speech separation,
speech pretraining, and speech-to-speech transla-
tion, which may offer valuable insights or comple-
mentary techniques. Overcoming these limitations
presents important opportunities for future research
to deepen our understanding and improve the de-
sign of controllable TTS systems.
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A Appendix

A.1 The History of Controllable TTS
Controllable TTS aims to steer various aspects of
synthesized speech, including pitch, energy, speed,
prosody, timbre, emotion, gender, and speaking
style. This subsection briefly reviews its develop-
ment, from early methods to recent advancements.
Early Methods. Early controllable TTS systems
were primarily based on rule-based, concatena-
tive, and statistical approaches. Rule-based sys-
tems, such as formant synthesis (Rabiner, 1968;
Allen et al., 1987; Purcell and Munhall, 2006),
used handcrafted rules to adjust acoustic parame-
ters like pitch and duration, enabling basic prosody
control. Concatenative systems (Hunt and Black,
1996; Wouters and Macon, 2001; Bulut et al., 2002)
generated speech by stitching pre-recorded speech
units together, allowing prosody modifications
through pitch and timing adjustments. Later, Hid-
den Markov model (HMM)-based statistical meth-
ods (Nose et al., 2007; Ling et al., 2009; Tokuda
et al., 2000) modeled the relationship between
linguistic features and acoustic outputs, offering
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Control Strategy Core Idea Key Features Pros & Cons

Style Tagging Control specific attributes
using predefined tags.

Direct control over at-
tributes like emotion and
pitch.

Pros: Simple to implement. Cons: Limited expres-
sive diversity, cannot achieve fine-grained or com-
bined control.

Reference Speech
Prompts

Use a short audio clip as a
reference for style.

Enables zero-shot TTS
and voice cloning; sepa-
rates timbre and style.

Pros: High degree of personalization, more flexible
control. Cons: Relies on high-quality reference au-
dio, less intuitive control dimensions.

Natural Language
Descriptions

Describe desired voice
characteristics in text.

User-friendly control via
natural language (e.g.,
"speak calmly").

Pros: High interpretability, user-friendly. Cons: Lim-
ited freedom and accuracy of description, potential
for model misunderstanding.

Instruction-Guided
Control

Use LLMs to interpret
free-form instructions.

Combines content and
style instructions; can
generate paralinguistic
sounds.

Pros: Extremely high control precision and freedom,
understands complex instructions. Cons: Strong de-
pendency on LLMs, high system complexity.

Table 2: Summary of the pros and cons of each control strategy.

Dataset
Hours

(at least)
#Speakers
(at least)

Labels
Lang

Release
TimePit. Ene. Spe. Age Gen. Emo. Emp. Acc. Top. Des. Dia.

IEMOCAP (Busso et al., 2008) 12 10 ✓ ✓ ✓ ✓ ✓ en 2008
RECOLA (Ringeval et al., 2013) 3.8 46 ✓ fr 2013

RAVDESS (Livingstone and Russo, 2018) / 24 ✓ ✓ en 2018
CMU-MOSEI (Bagher Zadeh et al., 2018) 65 1,000 ✓ en 2018

Taskmaster-1 (Byrne et al., 2019) / / ✓ en 2019
AISHELL-3 (Shi et al., 2021) 85 218 ✓ ✓ ✓ zh 2020

Common Voice (Ardila et al., 2020) 2,500 50,000 ✓ ✓ ✓ multi 2020
ESD (Zhou et al., 2022) 29 10 ✓ en,zh 2021

GigaSpeech (Chen et al., 2021) 10,000 / ✓ en 2021
WenetSpeech (Zhang et al., 2022) 10,000 / ✓ zh 2021
PromptSpeech (Guo et al., 2023) / / ✓ ✓ ✓ ✓ ✓ en 2022

MagicData-RAMC (Yang et al., 2022) 180 663 ✓ ✓ zh 2022
DailyTalk (Lee et al., 2023a) 20 2 ✓ ✓ ✓ en 2023

TextrolSpeech (Ji et al., 2024b) 330 1,324 ✓ ✓ ✓ ✓ ✓ ✓ en 2023
CLESC (Toloka, 2024) <1 / ✓ ✓ ✓ ✓ en 2024

VccmDataset (Ji et al., 2024c) 330 1,324 ✓ ✓ ✓ ✓ ✓ ✓ en 2024
MSceneSpeech (Yang et al., 2024d) 13 13 ✓ zh 2024
Parler-TTS (Lyth and King, 2024) 50,000 / ✓ ✓ ✓ ✓ ✓ ✓ en 2024

SpeechCraft (Jin et al., 2024) 2,391 3,200 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ en,zh 2024

Abbreviations: Pit(ch), Ene(rgy)=volume, Spe(ed), Gen(der), Emo(tion), Emp(hasis), Acc(ent), Top(ic), Des(cription), Dia(logue).

Table 3: A summary of publicly available speech datasets for controllable TTS.

Metric Type Eval Target GT Required

MCD (Kominek et al., 2008)↓ Objective Acoustic similarity ✓

FDSD (Bińkowski et al., 2020)↓ Objective Acoustic similarity ✓

WER (Wikipedia, 2024)↓ Objective Intelligibility ✓

Cosine (Desplanques et al., 2020)↓ Objective Speaker similarity ✓

PESQ (Rix et al., 2001)↑ Objective Perceptual quality ✓

MOS (Wikipedia, 2025)↑ Subjective Preference
CMOS (Loizou, 2011)↑ Subjective Preference

AB Test Subjective Preference
ABX Test Subjective Perceptual similarity ✓

GT: Ground truth, ↓: Lower is better, ↑: Higher is better.

Table 4: Widely used evaluation metrics.

greater flexibility in controlling prosody and speak-
ing rate. These systems also introduced speaker
adaptation (Yamagishi et al., 2009) and limited
emotional control (Yamagishi et al., 2003), and re-
quire less storage and provide smoother transitions
than concatenative methods.

Neural Synthesis. The emergence of deep learning
revolutionized TTS, leading to the development of

neural model-based systems capable of producing
more natural, expressive, and controllable speech.
Early models like WaveNet (Van Den Oord et al.,
2016) and Tacotron (Wang et al., 2017) demon-
strated the potential for prosody control through
explicit conditioning (Shen et al., 2018; Ren et al.,
2021b). Neural TTS further enhanced speaker con-
trol through speaker embeddings and adaptation
techniques (Fan et al., 2015; Casanova et al., 2022),
while advances in emotional modeling (Lei et al.,
2022; Um et al., 2020) enabled the synthesis of
speech with specific affective tones. Recent models
have also achieved manipulation of timbre (Wang
et al., 2025b; Shen et al., 2024) and style (Li et al.,
2025b; Huang et al., 2022b), fostering the research
in zero-shot TTS and voice cloning (Cooper et al.,
2020). In addition, methods for fine-grained con-
tent control (Peng et al., 2024b; Tan et al., 2021a)
have made it possible to emphasize or edit specific
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words in synthesized speech.
LLM-based Synthesis. More recently, LLM-
based approaches have further advanced control-
lable TTS. Leveraging models like BERT (Devlin
et al., 2019), GPT (Brown et al., 2020), T5 (Raffel
et al., 2020), and PaLM (Chowdhery et al., 2023),
LLMs bring superior context modeling and intu-
itive control to speech synthesis (Guo et al., 2023;
Zhou et al., 2024). By interpreting natural language
prompts, such as describing a speaker’s emotion,
age, or style, LLMs can infer nuanced attributes
and steer the generation process accordingly. This
enables dynamic, fine-grained control over prosody,
emotion, style, and speaker identity (Yang et al.,
2024b; Gao et al., 2024), marking a big step toward
more flexible and intuitive TTS systems.

A.2 Overview of the TTS Pipeline
In this section, we provide an overview of the gen-
eral pipeline that supports controllable TTS tech-
nologies. Fig. 5 depicts the general pipeline of
controllable TTS, containing various model archi-
tectures and feature representations.

A TTS pipeline generally contains three key
components, i.e., linguistic analyzer, acoustic
model, and speech vocoder, where a conditional in-
put, e.g., prompts, can be processed for controllable
speech synthesis. Linguistic analyzer aims to ex-
tract linguistic features, e.g., phoneme duration and
position, syllable stress, and utterance level, from
the input text, which is a necessary step in HMM-
based methods (Yoshimura et al., 1999; Tokuda
et al., 2000) and a few neural model-based meth-
ods (Zen et al., 2013; Fan et al., 2014), but is time-
consuming and error-prone. Acoustic model is a
parametric or neural model that predicts the acous-
tic features from the input texts. Modern neural
acoustic models like Tacotron (Wang et al., 2017)
and later works (Ren et al., 2019, 2021b; Jeong
et al., 2021) directly take character (Chen et al.,
2015) or word embeddings (Almeida and Xexéo,
2019) as input, which is much more efficient than
previous methods. Speech vocoder is the last com-
ponent that converts the intermediate acoustic fea-
tures into a waveform that can be played back. This
step bridges the gap between the acoustic features
and the actual sounds produced, helping to gen-
erate high-quality, natural-sounding speech (Van
Den Oord et al., 2016; Kong et al., 2020). Besides,
some end-to-end methods use a single model to
encode the input and decode the speech waveforms
without generating intermediate features like mel-

spectrograms. One can refer to Tan et al. (2021b)
for a more comprehensive and detailed review of
acoustic models and vocoders.

A.3 Speech Quantization vs. Tokenization.

It is worth noting that quantization and tokeniza-
tion serve distinct purposes in speech processing.
Quantization is primarily used for high-fidelity
compression, reducing the precision of numeri-
cal representations (e.g., from 32-bit floating point
to 8-bit integers) while preserving model perfor-
mance. In speech synthesis, quantization is often
used in waveform generation (e.g., codec-based
approaches like EnCodec (Défossez et al., 2023b))
and neural vocoders to compress audio signals
without significant loss of perceptual quality. To-
kenization, on the other hand, is a discretization
process that segments continuous data into mean-
ingful units. In speech tasks, tokenization ex-
tracts semantically relevant representations such
as phonemes, characters, or learned speech units
(e.g., HuBERT (Hsu et al., 2021) and Wav2Vec
2.0 (Baevski et al., 2020b)). This makes tokeniza-
tion particularly suitable for speech-to-text (ASR),
TTS, and multimodal NLP tasks, where aligning
speech with textual information is crucial. Tok-
enization also facilitates training language models
on speech data by enabling linguistic or learned
unit-based processing rather than raw audio wave-
form modeling. Table 5 in Appendix A.3 sum-
marizes popular open-source speech quantization
and tokenization methods. Table 1 summarizes the
acoustic features of representative methods.

A.4 Evaluation Metric Computations

The performance of controllable TTS often requires
objective and subjective evaluation. We introduce
common evaluation metrics in this subsection.

Objective Evaluation Metrics. Objective met-
rics offer automated and reproducible evaluations.
Mel Cepstral Distortion (MCD) (Kominek et al.,
2008) measures the spectral distance between
synthesized and reference speech, reflecting how
closely the generated audio matches the target in
terms of acoustic features. A lower MCD value in-
dicates a higher similarity between synthesized and
reference speech, meaning better speech synthesis
quality. Typically, an MCD value below 4 suggests
good quality, while values above 6 may indicate
significant distortion. The MCD is computed as
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Figure 5: General pipeline of controllable TTS from the perspective of network structure. Linguistic analysis is
necessary for parametric and a few neural methods but is no longer needed for most modern neural methods. In this
paper, we only review neural model-based controllable TTS methods and do not investigate acoustic features (e.g.,
MFCC (Fukada et al., 1992), LSP (Itakura, 1975), F0 (Kawahara et al., 1999)) used in early TTS methods.

Method Modeling Code Year

VQ-Wav2Vec (Baevski et al., 2020a) SSCP https://github.com/facebookresearch/fairseq/tree/main/examples/wav2vec#vq-wav2vec 2019
Wav2Vec 2.0 (Baevski et al., 2020b) SSCP https://github.com/facebookresearch/fairseq/tree/main/examples/wav2vec 2019

HuBERT (Hsu et al., 2021) SSCP https://github.com/facebookresearch/fairseq/tree/main/examples/hubert 2021
Whisper Encoder (Radford et al., 2023) SSCP https://github.com/openai/whisper 2022

Data2vec (Baevski et al., 2022) SSCP https://github.com/facebookresearch/fairseq/tree/main/examples/data2vec 2022
W2v-BERT 2.0 (Barrault et al., 2023) SSCP https://huggingface.co/facebook/w2v-bert-2.0 2023

SoundStream (Zeghidour et al., 2021) RVQ-GAN https://github.com/wesbz/SoundStream 2021
Encodec (Défossez et al., 2023b) RVQ-GAN https://github.com/facebookresearch/encodec 2022
HiFi-Codec (Yang et al., 2023a) RVQ-GAN https://github.com/yangdongchao/AcademiCodec 2023

SpeechTokenizer (Zhang et al., 2024) RVQ-GAN https://github.com/ZhangXInFD/SpeechTokenizer 2023
Descript Audio Codec (Kumar et al., 2024) RVQ-GAN https://github.com/descriptinc/descript-audio-codec 2023

Mimi Codec (Défossez et al., 2024) RVQ-GAN https://github.com/kyutai-labs/moshi 2024
WavTokenizer (Ji et al., 2025) VQ-GAN https://github.com/jishengpeng/WavTokenizer 2024

SSCP: Self-supervised context (token) prediction, RVQ: Residual vector quantization (Zeghidour et al., 2021).

Table 5: Popular open-source speech quantization and tokenization methods.

follows:

MCD =
10

ln 10
·

√√√√2
D∑

d=1

(c
(syn)
d − c

(ref)
d )2, (3)

where c
(syn)
d represents the d-th Mel Cepstral Co-

efficient (MCC) of the synthesized speech, c(ref)d

represents the d-th MCC of the reference speech,
D is the number of MCC, and 10

ln 10 ≈ 4.342 is
a constant factor that converts the logarithm to a
decibel scale.

Fréchet DeepSpeech Distance
(FDSD) (Bińkowski et al., 2020) is another
metric designed to evaluate the quality and
naturalness of synthesized speech. It is inspired
by the Fréchet Inception Distance (FID) (Heusel
et al., 2017) used in image generation but adapted
to speech by leveraging a deep speech recognition
model. FDSD measures the statistical distance
between the distributions of real (reference) and
synthesized speech in the feature space of a

pretrained speech recognition model, such as Deep
Speech (Hannun et al., 2014). By comparing
the mean and covariance of the extracted feature
representations, FDSD provides a perceptually
relevant assessment of speech synthesis quality. A
lower FDSD means the synthesized speech is more
similar to real speech. FDSD can be computed as:

FDSD = ||µs−µr||2+Tr(Σs+Σr−2(ΣsΣr)
1/2),

(4)
where µs and Σs are the mean and covariance of
the embeddings from the synthesized speech, µr

and Σr are the mean and covariance of the embed-
dings from the real (reference) speech, ||µs −µr||2
represents the squared Euclidean distance between
the means, Tr(·) denotes the trace of a matrix, and
(ΣsΣr)

1/2 is the geometric mean of the covariance
matrices.

For intelligibility, the Word Error Rate
(WER) (Wikipedia, 2024) is used. It measures the
difference between the recognized transcript and
the reference transcript by computing the number
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of errors made in the transcription process. WER
is computed as:

WER =
S +D + I

N
, (5)

where S is the number of substitutions (wrong word
in place of the correct word), D is the number
of deletions (missed words), I is the number of
insertions (extra words added), and N is the total
number of words in the reference transcript.

Cosine similarity (on speaker embeddings) mea-
sures similarity between the speaker embeddings
of synthesized and reference speech. It can be used
to evaluate zero-shot TTS (voice cloning) methods,
where higher values indicate better speaker simi-
larity. Given two speaker embeddings, e1 and e2,
their cosine similarity is defined as:

CosSim(e1, e2) =
e1 · e2

∥e1∥∥e2∥
, (6)

where speaker embeddings can be extracted from
a pre-trained speaker embedding model (e.g.,
ECAPA-TDNN (Desplanques et al., 2020) and x-
vectors (Snyder et al., 2018)).

Perceptual Evaluation of Speech Quality
(PESQ) (Rix et al., 2001) is another objective met-
ric designed to evaluate speech quality by com-
paring degraded audio with a clean reference. It
is widely used in telecommunications and speech
synthesis. PESQ models human auditory percep-
tion, producing a score in the range [−0.5,−4.5]
that reflects intelligibility and distortion under var-
ious conditions, including noise or compression.
PESQ involves complex perceptual modeling, its
core components can be summarized as:

PESQ = a0 + a1 ·Dframe + a2 ·Dtime, (7)

where Dframe is the frame-by-frame perceptual
distortion, Dtime is the time-domain distortion, and
a0, a1, a2 are regression coefficients. One can refer
to (Rix et al., 2001) for details.

Signal-to-Noise Ratio (SNR) measures the ratio
of signal power to noise power. A higher SNR
indicates a cleaner signal with less noise, while a
lower SNR suggests that noise is dominating the
signal. However, in TTS, noise can come from
different sources, such as artifacts from vocoders,
neural network distortions, or background noise in
dataset recordings. A direct computation of SNR in
TTS requires a reference clean speech signal (x[n]),
a synthesized (or noisy) speech signal (y[n]), and

extracting the noise component (e[n] = y[n] −
x[n]) from the synthesized signal. The SNR for
TTS systems can be computed as:

SNR = 10 log10

(
Psignal

Pnoise

)
, (8)

where Psignal = 1
N

∑N
n=1 x[n]

2 and Pnoise =
1
N

∑N
n=1 e[n]

2.
Subjective Evaluation Metrics. The Mean

Opinion Score (MOS) (Wikipedia, 2025) is the
most commonly used subjective metric. In MOS
evaluations, listeners rate various aspects, such as
naturalness, expressiveness, quality, intelligibility,
et al., of synthesized speech on a scale from 1 to 5,
where higher scores indicate better quality. MOS
captures human perception effectively, but is ex-
pensive for large-scale evaluations.

Comparison Mean Opinion Score
(CMOS) (Loizou, 2011) further evaluates
relative quality differences between two TTS audio
samples. Participants listen to paired samples
and rate their preference on a scale (e.g., -3 to
+3, where negative values favor the first sample).
CMOS is used to measure subtle improvements
in TTS systems, complementing absolute MOS
ratings. MOS and CMOS scores are computed as
the average scores across all listeners:

MOS/CMOS =
1

N

N∑

i=1

si, (9)

where si is the score given by the i-th listener, and
N is the number of listeners.

AB and ABX tests are also popular in evaluating
TTS methods. An AB test involves presenting two
versions of a synthesized speech (from different
TTS models) to human listeners and asking them
to choose which they prefer. The goal is to as-
sess which model produces better-sounding speech
based on certain criteria, such as naturalness, intel-
ligibility, or clarity. In an ABX test, listeners com-
pare two synthesized speech samples to a reference
speech sample and determine which one is closer
in terms of timbre, prosody, emotion, and other
relevant features. ABX tests are widely used in
evaluating zero-shot TTS methods. The AB/ABX
test score for a model m is:

ScoreAB/ScoreABX =
Nm

N
, (10)

where Nm represents the number of listeners who
prefer the speech synthesized by model m, and N
denotes the total number of listeners.
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Table 4 summarizes widely used metrics for
TTS.

A.5 A Google Gemini-Based Experimental
Evaluation of TTS Controllability

We designed an evaluation pipeline using Gemini
to assess synthesized speech in terms of instruc-
tion following, naturalness, and expressiveness,
because these dimensions are not well captured by
traditional metrics. Conventional scores like MCD,
WER, PESQ, speaker similarity, and MOS/CMOS
are excluded, as our goal is to explore the feasi-
bility of using multimodal large language models
(MLLMs) as subjective evaluators.

A.5.1 Implementation details
Models. Due to time constraints, we only evalu-
ate a total of 10 models: 8 open-source systems
(F5-TTS, CosyVoice, CosyVoice2, Vevo, Spark-
TTS, MaskGCT, PromptTTS, and VoxInstruct) and
2 commercial TTS systems (ElevenLabs and Mini-
Max TTS).

Tasks. Zero-shot TTS and description-based
synthesis. For each model, we synthesize 20 speech
samples (10 in English and 10 in Chinese) for each
task.

Dataset. For zero-shot TTS, we sampled 10 En-
glish utterances from the MSP-Podcast dataset and
10 Chinese utterances from Emo-Emilia to serve as
reference speech prompts. For description-based
synthesis, we used ChatGPT to generate diverse
textual descriptions as shown in Fig. 6.

Metrics Clarification:

• Instruction Following

– Purpose: To assess how accurately the
synthesized audio follows the given in-
struction regarding speech characteristics
such as timing, emphasis, and pacing.

– Focus: Measures the controllability and
fidelity of the model in executing user-
specified directives.

• Naturalness

– Purpose: To evaluate how natural the au-
dio sounds—whether it resembles human
speech or exhibits synthetic, robotic qual-
ities.

– Focus: Measures the perceptual audio
quality and realism of the synthesized
speech.

• Expressiveness

– Purpose: To judge the emotional richness
and prosodic variation in the audio, such
as tone, intensity, and nuance.

– Focus: Measures the model’s ability to
convey expressive and emotionally en-
gaging speech.

Gemini Prompts.
The prompt we use for the evaluation is as fol-

lows:
SYSTEM_PROMPT: You are a strict quality eval-

uator for synthesized speech. Given an audio file
of a speech sample, its transcript, and an instruc-
tion describing the intended speech characteris-
tics, please rate the audio based on the following
three aspects, using the defined criteria. Output
ONLY a JSON dictionary with the keys instruc-
tion_following, naturalness, and expressiveness,
each assigned an integer value from 1 to 5. The
evaluation rubrics are as follows:

1. Instruction Following (1–5):

• 1 point: The audio completely ignores
the instruction; it does not follow the in-
tended timing, emphasis, or pacing.

• 2 points: It loosely follows the instruc-
tions but misses key elements or timing
in parts.

• 3 points: Generally follows the instruc-
tion with minor lapses in emphasis or
pacing.

• 4 points: Clearly follows the instruction
with only slight deviations.

• 5 points: Perfectly follows every aspect
of the instruction with clear emphasis
and precise pacing.

2. Naturalness (1–5):

• 1 point: The audio sounds fully synthetic
or robotic; extremely unnatural.

• 2 points: Noticeably synthetic; some un-
natural artifacts remain.

• 3 points: Moderately natural with occa-
sional synthetic artifacts.

• 4 points: Largely natural sounding with
minor imperfections.

• 5 points: Completely natural; indistin-
guishable from a human recording.

3. Expressiveness (1–5):
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English synthesis prompts: 

1. Read the sentence with a cheerful and energetic tone, like you’re announcing good news to a 
friend.

2. Speak softly and sadly, as if recalling a painful memory.

3. Say the sentence with anger and frustration, as if you’re arguing in a heated moment.

4. Use a calm and professional tone, like a news anchor reading the evening report. 

5. Read this like you’re telling a bedtime story to a child, with warmth and gentleness

6. Speak quickly and excitedly, as if you’re sharing a thrilling discovery.

7. Use a robotic and monotone voice, as if you’re an AI assistant reading a command

8. Deliver the line as a shy teenager, nervous but trying to sound confident. 

9. Speak as if you’re giving instructions in an emergency, firm and urgent.

10.Read the sentence with a sarcastic tone, like you’re not taking the situation seriously.

Chinese synthesis prompts: 

1. 请⽤开⼼活泼的语⽓朗读这句话，就像在和朋友分享喜讯。(Please read this sentence in a 
happy and lively tone, as if sharing good news with a friend.)

2. 以低沉悲伤的语调说出这句话，仿佛在回忆⼀段伤感往事。(Speak this sentence in a low 
and sad tone, as if recalling a sentimental past.)

3. ⽤愤怒且激动的语⽓说这句话，好像正在和⼈争吵。(Say this sentence in an angry and 
excited tone, as if arguing with someone.)

4. 以正式、冷静的播报⻛格朗读，像新闻主播那样。(Read it in a formal and calm 
broadcasting style, like a news anchor.)

5. 模仿⽗⺟给孩⼦讲睡前故事的⽅式，温柔缓慢地朗读。(Imitate the way parents read 
bedtime stories to children, gently and slowly.)

6. ⽤快速⽽兴奋的语⽓说这句话，好像你发现了⼀个惊喜。(Say this sentence quickly and 
excitedly, as if you’ve found a surprise.)

7. ⽤没有情感的语⾳助⼿语⽓朗读这句话，保持平稳。(Read this sentence in the emotionless 
tone of a voice assistant, maintaining a steady pace.)

8. 以害羞但努⼒镇定的语⽓说这句话，像⻘少年表⽩时那样。(Speak this sentence in a shy but 
determined tone, like a teenager confessing their feelings.)

9. 像紧急情况下的指挥员⼀样，冷静⽽坚定地给出指令。(Give the instruction calmly and firmly, 
like a commander in an emergency.)

10.以带点嘲讽和不屑的语⽓说这句话，表现出讽刺的情绪。(Say this sentence with a hint of 
mockery and disdain, expressing ironic emotion.)

Figure 6: Textual descriptions generated by ChatGPT

• 1 point: The audio is flat and monotone;
no emotional variation.

• 2 points: Minimal expressiveness; emo-
tions are weak or inconsistent.

• 3 points: Reasonably expressive with
some highlights, but could be stronger.

• 4 points: Clearly expressive with only
slight under- or over-emphasis.

• 5 points: Exceptionally expressive; full
emotional richness and nuance.

USER_PROMPT: The synthesized speech is {au-
dio}. The transcript of the audio is: “{transcript}".
The instruction for the audio is: “{instruction}".

A.5.2 Results: Model-level Performance
Comparison

As shown in Table 6, in the zero-shot setting,
among the six models, Vevo performs best in
both naturalness (4.43±0.55) and expressiveness
(4.32±0.75), indicating strong general quality with-
out explicit guidance. CosyVoice, CosyVoice 2,
and F5-TTS follow closely with similar scores
( 4.2), while SparkTTS and MaskGCT lag behind,
especially in naturalness.

In the instruction-based setting, all models show
a clear improvement across all metrics. CosyVoice
achieves the highest overall scores, with instruction
following at 4.81±0.28, naturalness at 4.92±0.24,
and expressiveness at 4.78±0.29. Other strong per-
formers include MiniMax TTS and EmoVoice, both
exceeding 4.6 in most dimensions. Even the lowest-
scoring instruction-based method (VoxInstruct) out-
performs the best zero-shot model in every aspect.

A.5.3 Results: The Reliability of Multimodal
LLM-based Evaluation

We also compare the proposed metrics with
existing automated evaluation methods, namely
NISQA (Mittag et al., 2021) and UTMOS (Saeki
et al., 2022). Specifically, we use 96 synthesized
samples to compute the Pearson correlation coef-
ficients between the predicted scores from each
method and human ratings, aiming to assess how
well each method aligns with human perception.

As shown in Table 7, although the absolute Pear-
son correlation coefficients of our method are rel-
atively modest, our approach consistently outper-
forms both NISQA and UTMOS across all three
evaluation dimensions: instruction following, natu-
ralness, and expressiveness.

These results suggest that existing automated
metrics like NISQA and UTMOS, which are pri-
marily designed for general speech quality assess-
ment, may not capture nuanced attributes such as
speaker intent or expressive delivery in controllable
TTS tasks.

In contrast, our metric, tailored for instruction-
based synthesis evaluation, better reflects human
judgments, particularly in aspects beyond raw au-
dio quality. This supports the need for task-specific
evaluation frameworks when benchmarking mod-
ern controllable TTS systems.

A.5.4 Conclusion
To some extent, the proposed MLLM-based eval-
uation pipeline is able to predict human-aligned
scores for instruction following, naturalness, and
expressiveness. We also find that it offers promis-
ing potential for automated evaluation of control-

790



Task Method
Instruction Following

(Gemeni 2.5 Flash / Human)
Naturalness

(Gemeni 2.5 Flash / Human)
Expressiveness

(Gemeni 2.5 Flash / Human)

Zero-shot

F5-TTS - 4.27±0.87 4.21±0.78
CosyVoice - 4.20±0.82 4.17±0.83

CosyVoice 2 - 4.25±0.58 4.20±0.63
Vevo - 4.43±0.55 4.32±0.75

SparkTTS - 3.68±0.80 3.83±0.79
MaskGCT - 3.91±0.88 4.08±0.81

Instruction-based

CosyVoice 4.81±0.28 4.92±0.24 4.78±0.29
CosyVoice 2 4.61±0.49 4.85±0.31 4.63±0.52
EmoVoice 4.67±0.44 4.80±0.36 4.67±0.44

VoxInstruct 4.45±0.50 4.83±0.32 4.50±0.52
ElevenLabs 4.52±0.67 4.85±0.31 4.63±0.57

MiniMax TTS 4.67±0.36 4.87±0.27 4.63±0.44

Table 6: The evaluation of the controllability of open-source and commercial TTS systems.

Instruction Following Naturalness Expressiveness

NISQA (Mittag et al., 2021) - 0.01 -0.03
UTMOS (Saeki et al., 2022) - -0.10 -0.17

Ours 0.12 0.17 0.14

Table 7: The alignment between model-based evaluation
and human preference.

lable TTS.
In future work, we plan to enhance our survey by

designing a more robust and reliable MLLM-based
evaluation framework and conducting a compre-
hensive benchmark of existing controllable TTS
methods.
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