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Abstract

Large Language Models (LLMs) have become
indispensable tools across various applications,
making it more important than ever to ensure
the quality and the trustworthiness of their out-
puts. This has led to growing interest in un-
certainty quantification (UQ) methods for as-
sessing the reliability of LLM outputs. Many
existing UQ techniques rely on token probabili-
ties, which inadvertently introduces a bias with
respect to the length of the output. While some
methods attempt to account for this, we demon-
strate that such biases persist even in length-
normalized approaches. To address the prob-
lem, here we propose UNCERTAINTY-LINE
(Length-INvariant Estimation), a simple debias-
ing procedure that regresses uncertainty scores
on output length and uses the residuals as cor-
rected, length-invariant estimates. Our method
is post-hoc, model-agnostic, and applicable
to a range of UQ measures. Through exten-
sive evaluation on machine translation, sum-
marization, and question-answering tasks, we
demonstrate that UNCERTAINTY-LINE consis-
tently improves over even nominally length-
normalized UQ methods uncertainty estimates
across multiple metrics and models. We release
our code publicly.'

1 Introduction

Large Language Models (LLMs) have become es-
sential in a wide range of applications. However,
despite their impressive capabilities, LLMs can
sometimes generate misleading or outright incor-
rect information. Given their widespread adoption
in critical domains, ensuring the reliability of their
responses has become a pressing concern. This has
led to growing interest in uncertainty quantification
(UQ) to measure the confidence in model-generated
output (Gal, 2016; Hu et al., 2023; Kotelevskii
et al., 2025).

* These authors contributed equally.
"https://github.com/stat-ml/uncertainty-line
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Many existing UQ methods for LLMs rely on
token-level probabilities produced by LLM itself.
However, the log-probabilities of the generated to-
kens in autoregressive models are summed over the
sequence, meaning that the total sequence score
becomes increasingly negative as length increases,
leading to unreliable estimates (Murray and Chiang,
2018; Braverman et al., 2020; Zhao et al., 2023).
Some methods, such as perplexity and mean token
entropy, have been proposed as length-normalized
uncertainty measures (Fomicheva et al., 2020). Al-
ternatively, some work has focused on calibrating
model confidence scores using post-hoc methods
or on reformulating uncertainty estimation at the to-
ken level (Ren et al., 2023; Zhao et al., 2023; Gupta
et al., 2024). While this yields improvements, it
often requires additional supervision, architectural
changes, or tuning for specific tasks.

Here, we propose a simple and effective method
for detrending uncertainty estimates with respect to
output length, in both unsupervised and minimally
supervised settings. It is post-hoc, model-agnostic,
and applicable across a range of uncertainty mea-
sures. Our key contributions are as follows:

* We demonstrate that uncertainty estimation
metrics exhibit length bias, even when length-
normalization is applied; see Section 3.

* We propose Uncertainty-Length INvariant
Estimation (UNCERTAINTY-LINE), a simple
unsupervised detrending approach that fits a
regression between uncertainty scores and out-
put length, and uses the residuals as uncer-
tainty estimates. We also formulate a super-
vised extension for cases where the output
length correlates with quality; see Section 4.

* We evaluate our approach on machine trans-
lation, summarization, and mathematical rea-
soning tasks, showing improved performance
of the uncertainty estimates; see Section 5.
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2 Related Work

Length Bias in Sequence Likelihood. Early
work in sequence generation noted that sequence-
level likelihood (the joint probability of an output)
is biased with regards to the output length. Neural
models often assign disproportionately low proba-
bilities to longer outputs, causing shorter sequences
to appear “more likely” (Murray and Chiang, 2018;
Adiwardana et al., 2020). More recently, Santilli
et al. (2025) demonstrate that such length effects
also impact uncertainty evaluation, highlighting the
need for explicit length bias removal.

Length-Normalized Uncertainty Measures. A
common remedy is to use the average per token
confidence score (i.e. normalize overall confidence
by sequence length) instead of the raw sum. For ex-
ample, Perplexity or mean log-probability per token
is often used as a sequence-level confidence score
instead of raw joint probability (Fomicheva et al.,
2020). Another measure is Mean Token Entropy:
the average entropy of the model’s predictive distri-
bution at each time step of the output (Fomicheva
et al., 2020). On the other hand, Monte Carlo Se-
quence Entropy (MCSE) and its length-normalized
variant Monte Carlo Normalzied Sequence Entropy
(MCNSE) measure uncertainty by estimating the
entropy of predictive distribution using multiple
outputs sampled via stochastic decoding (Malinin
and Gales, 2021; Kuhn et al., 2023). Lastly, Token-
SAR provides a length-normalized measure that
reweights token log-probabilities based on their
importance to the meaning of an output (Duan
et al., 2024). However, naively dividing by length
can overcorrect: it can overly penalize shorter se-
quences, flipping the bias in the opposite direc-
tion (Gupta et al., 2024). These findings show that
while length normalization is a useful tool, it needs
careful consideration to avoid introducing a new
bias.

Uncertainty Calibration. Recent work (Ren
et al., 2023) shows that sequence-level confidence
scores remain poorly calibrated with output qual-
ity, even after applying length normalization. To
address this problem, various methods have been
proposed, including token-level self-evaluation, se-
quence likelihood calibration, language model cas-
cades that leverage token-level uncertainty and
post-hoc correctors for uncertainty estimates (Ren
et al., 2023; Zhao et al., 2023; Gupta et al., 2024;
Li et al., 2025).

While such techniques improve the alignment
between model confidence and human judgment,
they often require additional supervision or task-
specific tuning and, crucially, do not directly target
the problem of length bias.

Non-token likelihood based uncertainty mea-
sures. Consistency uncertainty measures have
emerged as a way to bypass token-level scores en-
tirely (Fomicheva et al., 2020; Lin et al., 2024;
Kuhn et al., 2023). By evaluating uncertainty as
a level of agreement between sampled outputs,
they provide a length-agnostic confidence estimate.
However, while these measures are designed to be
length-invariant, their practical application encoun-
ters several challenges. First, these methods rely on
sampling multiple outputs from the language model
to capture the distribution of possible generations.
This sampling process is computationally intensive,
especially for large models. Secondly, implemen-
tations often depend on pre-trained models, to as-
sess semantic similarity between generated outputs.
While effective for certain tasks, these models are
frequently trained on shorter texts, leading to less
reliable estimates for long generations.

Another approach that does not rely on token
likelihoods is verbalized uncertainty, where mod-
els express their confidence in natural language.
However, studies have shown that LLMs often ex-
hibit overconfidence in their verbalized uncertainty
assessments (Xiong et al., 2024). This overconfi-
dence suggests that without proper calibration or
fine-tuning, verbalized uncertainty may not reliably
reflect true predictive uncertainty (Liu et al., 2024).
Therefore, while verbalized uncertainty offers a
promising, length-invariant alternative, its practical
utility is limited unless accompanied by effective
calibration strategies.

These works highlight the limitations of existing
UQ methods, including length-normalized mea-
sures in addressing the length bias problem.

3 Length Bias in Uncertainty Measures
and Quality Metrics

We start by quantifying the degree to which uncer-
tainty quantification (UQ) measures applied to the
output of Llama 3.1 8B (Grattafiori et al., 2024)
model exhibit dependency on the length of gener-
ated sequences. We do that on a comprehensive set
of tasks that imply varying length of the generated
response: neural machine translation (NMT), math-
ematical reasoning, and abstractive summarization.

7882



MSP vs. Length

0.6 [Slope: 0.45 0.375 [ Slope: -0.08
p-value: 0.00

p-value: 0.00

0.350
0.5

0.325
0.4 0.300

0.3 0.275

0.250
0.2
—— AVG metric value 0.225

0.1 -- Regression line

0.200

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4
MSP vs. Length
Slope: 0.14 Slope: -0.26
6 p-value: 0.00 0.5 | p-value: 0.00

0.5

0.4

0.3

0.2 —— AVG metric value

-~ Regression line 0.1

0.1

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4

MSP vs. Length

0-50 S1ope: -0.11

0.45 | p-value: 0.00

0.8 |Slope: 0.42
p-value: 0.00

0.7
0.40

06
0.35
05 0.30

0.4 0.25

0.3 0.20

—— AVG metric value 0.15
-~ Regression line

0.2

0.10
0.1

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4

PPL vs. Length

PPL vs. Length

PPL vs. Length

i MTE vs. Length
0.375

Slope: -0.11
p-value: 0.00

0.350

0.325
0.300
0.275
0.250

0.225
—— AVG metric value
-- Regression line

—— AVG metric value 0.200

-- Regression line
gression = 0.175

0.6 0.8 1.0 0.0 0.2 04 0.6 0.8 1.0
PPL vs. Length

Slope: -0.26
0.5 |p-value: 0.00

0.4

0.3

—— AVG metric value
-~ Regression line

— AVG metric value
-~ Regression line
0.6 0.8 1.0 0.0 0.2 04 0.6 0.8 1.0
MTE vs. Length

oo [Some 030
045
0.40
035
0.30

0.25

—— AVG metric value 0.20

-~ Regression line 0.15

—— AVG metric value
-~ Regression line

0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

Figure 1: Trends in UQ scores with respect to normalized sequence length for WMT14 De-En, GSM8K and XSum
(Model — Llama 3.1 8B). Each subplot shows a linear regression fit over binned scores. The slope indicates the
strength and direction of correlation, p-value reflects statistical significance.

For NMT, we used four language pairs from
WMT14 and WMT19, GSM8K for mathematical
reasoning, and XSum for ATS (Bojar et al., 2014;
Barrault et al., 2019; Cobbe et al., 2021; Narayan
et al., 2018). We performed estimation on the ran-
dom subset of 2000 points from each dataset.

The level of dependency is expressed as the slope
of a linear regression fit by ordinary least squares
(OLS), with the UQ values as the response variable
and the generated sequence length as a predictor.
The significance of the obtained linear trend was
assessed using the Wald test and corresponding
p-value was calculated along with the slope.

Uncertainty Measures are Strongly Length-
Dependent. Figure 1 presents results on one of
the machine translation datasets (WMT14 De-En),
XSum and GSM8K. The UQ measures show clear
and significant trends. For the Maximum Sequence
Probability (MSP), the average UQ score increases
with sequence length, indicating that longer gener-
ations are assigned lower model confidence, which
is potentially misleading, as longer outputs may
simply reflect more confident token-level predic-
tions. Both Perplexity (PPL) and Mean Token En-
tropy (MTE) exhibit the opposite trend, with aver-
age uncertainty decreasing as length increases.

This is notable, as both measures were designed
to normalize for length-related effects, yet the
trends persist. In the majority of cases, the p-values
of regression coefficients are below 0.05, confirm-
ing that the observed relationships are statistically
significant. This highlights a key concern: although
these UQ measures are widely used, they may con-
flate uncertainty with sequence length in practice.

Results for the rest of the datasets, models and
UQ methods can be found in Appendix A.2.

Quality Metrics for Machine Translation are
Largely Length-Agnostic. Performance of the
UQ method is largely defined by the extent of its
correlation with some meaningful measure of pre-
diction quality. Thus, having assessed relationship
of UQ with generation length, we perform a similar
analysis of the behavior of several quality metrics
for the same selection of tasks.

For NMT, Figure 2 shows Comet WMT 22,
XComet XXL and Metric X XXL scores over nor-
malized generation lengths (Rei et al., 2022; Guer-
reiro et al., 2024; Juraska et al., 2024). Across
datasets, the fitted linear regression lines exhibit
near-zero slopes, and the associated p-values ex-
ceed the standard 0.05 threshold in the majority of
cases.
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Figure 2: Trends for Comet WMT 22, XComet XXL and Metric X XXL scores with respect to normalized sequence
length for WMT14 De-En machine translation dataset (Model - Llama 3.1 8B). Each subplot shows a linear
regression fit over binned scores. The slope indicates the strength and direction of correlation, p-value reflects

statistical significance.
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Figure 3: Trends in AlignScore and Accuracy scores with respect to normalized sequence length for XSum and
GSMBK datasets respectively (Model — Gemma 2 9B). Each subplot shows a linear regression fit over binned scores.
The slope indicates the strength and direction of correlation, p-value reflects statistical significance.

This suggests that there is no statistically sig-
nificant correlation between generation length and
quality scores. In the few cases where a trend is
observed, the magnitude of the slope is quite small,
especially when compared to the slopes observed in
uncertainty measures. This is expected: in machine
translation, the length of the output is strongly de-
termined by the length of the input sentence, and
thus variation in output length does not reflect vari-
ation in task difficulty or translation quality. We
conclude that translation quality metrics are effec-
tively length-invariant for given datasets and robust
to variations in output length.

Quality Metrics for Summarization and Mathe-
matical Reasoning are Length-Dependent. Fig-
ure 3 reports quality metric trends for XSum
(summarization) and GSMS8K (arithmetic ques-
tion answering). Unlike machine translation, these
tasks show noticeable correlations between qual-
ity scores and output length: quality (measured by
Accuracy) tends to decrease with longer outputs
in GSMSK, while in summarization (XSum), qual-
ity (measured by AlignScore (Zha et al., 2023))
slightly increases with length.

This observation aligns with intuition: in
GSMBSK, more complex problems often require
longer reasoning chains, increasing the likelihood
of errors; in XSum, longer summaries may better
capture essential content, improving quality scores.
These findings suggest that, unlike for translation
task, it is important to take into account that the
quality is correlated with the length of an output,
even if not as strongly as uncertainty measures.

For detailed results on the relationship between
quality metrics and generation length, refer to Ap-
pendix A.1.

4 Method

Building on our analysis of length-dependent
trends in Section 3, we introduce a simple post-
hoc correction method UNCERTAINTY-LINE de-
signed to remove spurious correlations between
uncertainty scores and output sequence length. Our
approach consists of two main stages: fitting a bias
model on unlabeled data and debiasing uncertainty
estimates at inference time.
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4.1 Problem Setup

Consider a dataset
_ _ N
Dirain = {Xi, ¥4, ui = u(yi) }iz1s

where x is the input sequence, y is the model out-
put, and u(y) is the associated uncertainty score.
We consider two settings. In the first one, there
is no systematic correlation between output length
and quality (e.g., in machine translation). In the
second one, quality is length-dependent (e.g., in
summarization or reasoning tasks), and we use
quality labels y; for Dyrain to fit a quality—length
model. In this case, labels are used for estimating
the task-specific length-induced quality trend.

Our goal is to adjust uncertainty estimates u(y)
such that they are no longer spuriously correlated
with the length |y| of the generated sequence.

4.2 Debiasing of UQ Scores

On the training set Dy;qin, Wwe model the relation-
ship between uncertainty scores and output lengths
by fitting a simple linear regression:

uy) = aly[ + 5. (1)

We adopt a linear regression model for debiasing
based on the empirical observations in Section 3.
As shown in Figure 1, UQ scores such as MSP,
PPL, and MTE exhibit strong linear trends with
respect to output length. In addition, Appendix D.1
presents the results of experiments using second-
and third-degree polynomials. As shown, these do
not provide any significant or consistent improve-
ment over the linear fit. All of this suggests that a
linear correction is both sufficient and preferable to
avoid overfitting. This model captures the system-
atic trend between uncertainty scores and sequence
length, which we aim to remove.

At inference time, we apply the learned linear
model to debias raw uncertainty scores on the test
set. To achieve this, for each test example, we
compute a length-debiased uncertainty score by
subtracting the length-predicted component from
its raw score:

u(y) = u(y) — aly). (2)

This subtraction step is equivalent to computing the
residuals from the fitted regression, a standard ap-
proach in statistics for removing systematic linear
trends from data.

Preserving Quality-Based Trends. However,
not all length effects are spurious. As demonstrated
in Section 3, for tasks like summarization or QA,
quality of an output is correlated with its length
and final uncertainty score should reflect this. To
preserve this meaningful length-dependence, we
explicitly model how quality varies with length.
Let y* be the gold-standard reference for the in-
put x and let us consider the quality score ¢(y,y™)
between y* and model generation y. We treat
the negated quality score —¢q(y,y™) as a proxy
for ground-truth uncertainty, assuming that higher-
quality outputs are less uncertain. We then fit
a second linear model on an extended dataset

*

train — {Xi?Yiach = Q(yu}’;'k) i]il:
a(y) = dlyl[ + 1, 3)

where ¢ and - describe the quality-induced length
effect.

At test time, we debias the uncertainty score
by subtracting the spurious trend 4 (y) and adding
back the quality-based trend —¢(y):

w(y) = uly) —a(y) — d(y). @

This procedure retains task-relevant length depen-
dencies while removing confounding biases un-
related to quality. While this method requires
reference-based quality scores at training time, it
can be applied to unlabeled data at inference, mak-
ing it practical for real-world settings.

S Experiments

5.1 Experimental Setup

To perform our evaluation, we extended the
LM-Polygraph library (Fadeeva et al., 2023;
Vashurin et al., 2025) by integrating our debias-
ing approach into its evaluation framework. The
library provides built-in implementations of var-
ious uncertainty metrics, making it a convenient
foundation for conducting experiments and ensur-
ing consistent comparisons across methods.

Datasets. Tasks and dataset selection was based
on the need for long-form generation tasks, in or-
der to meaningfully analyze the relationship be-
tween generation length, uncertainty, and quality
in tasks where length varies naturally. We conduct
our experiments on a set of machine translation
benchmarks from the WMT14 and WMT19 shared
tasks (Bojar et al., 2014; Barrault et al., 2019).
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Specifically, we evaluate on four language pairs
from each benchmark: Cs—En, De-En, Fr-En,
and Ru—-En from WMT14; and De-En, Fi—-En,
Lt—En, and Ru-En from WMT19. Each dataset
includes source inputs, model-generated transla-
tions, and reference outputs for evaluation. In ad-
dition to translation, we include two open-ended
generation tasks: XSum for abstractive summa-
rization and GSMS8K for arithmetic question an-
swering (Narayan et al., 2018; Cobbe et al., 2021).
XSum consists of document-summary pairs fo-
cused on single-sentence summaries of BBC ar-
ticles. GSM8K contains grade-school-level math
word problems requiring multi-step reasoning to
generate a final numerical answer.

For translation, we apply the debiasing formula-
tion described in equation (2). For summarization
and mathematical reasoning, we use equation (4).
These formulations are chosen to align with the
specific characteristics of each task: as translation
quality is largely independent of output length, it
is sufficient to simply remove the length-induced
trend. In contrast, for tasks like summarization and
mathematical reasoning, where quality often corre-
lates with length, we retain the quality-associated
component and eliminate only the spurious bias.

Models. We use three base versions of multilin-
gual generative language models to generate out-
puts for all datasets: Llama 3.1 8B (Grattafiori
et al., 2024), Gemma 2 9B (Riviere et al., 2024),
and EuroLLM 9B (Martins et al., 2025). These
models were selected to represent a diversity of
open-source architectures. While Llama 3.1 8B
and Gemma 2 9B are used across all tasks, Eu-
roLLM 9B is only evaluated on translation datasets
due to its limited support for an open-ended genera-
tion tasks such as summarization and mathematical
reasoning.

UQ measures. We evaluate the following uncer-
tainty quantification (UQ) measures, commonly
used in sequence generation tasks: Maximum Se-
quence Probability (MSP), Perplexity (PPL), Mean
Token Entropy (MTE), Monte Carlo Sequence
Entropy (MCSE), Monte Carlo Normalized Se-
quence Entropy (MCNSE), Lexical Similarity with
Rouge L as similarity function (LSRL) and Token-
SAR (Duan et al., 2024). They capture different
aspects of model uncertainty: MSP and MCSE re-
flect aggregate confidence in the full sequence and
are not length-normalized, while PPL, MTE and
MCNSE explicitly normalize for output length.

—— Oracle
— UE
—— Random

Accuracy

PRR_norm = —

Rejection rate

Figure 4: Illustration of the Prediction-Rejection Ratio
(PRR). The PR curve plots the output quality against the
rejection rate. The oracle curve ranks outputs perfectly
by quality, while the random curve represents a random
uncertainty score. The area between the UQ curve and
random baseline (numerator) is normalized by the area
between the oracle and random curves (denominator),
yielding a PRR score between 0 and 1.

TokenSAR also normalizes for output length, but
while accounting for each token’s relevance weight,
i.e., how important the token is to the overall mean-
ing of the generation. LSRL is based on sample di-
versity, providing non-likelihood-based perspective
on length bias in uncertainty. Detailed description
of each measure is given in Appendix B.

Evaluation. We evaluate uncertainty estimates
using the Prediction Rejection (PR) curve,
which measures how the average output quality
Q(f(x:),yi) changes as uncertain examples are
rejected (Malinin et al., 2017; Malinin and Gales,
2021). For a given uncertainty threshold a, it shows
the average quality over all instances where the un-
certainty U (x;) < a. To quantify the effectiveness
of an uncertainty measure, we use the Prediction-
Rejection Ratio (PRR). It compares the area under
the PR curve (AUC) to that of a random baseline
and an oracle that ranks instances perfectly by their
actual output quality (see Figure 4):
AUCypc — AUCyg

PRR = : (5)
AUCoracle - AUCmd

A higher PRR indicates better alignment be-
tween the uncertainty estimate and the actual model
quality. We use PRR as our primary evaluation
measure, as it captures the utility of uncertainty
scores for selective prediction in generation tasks.
PRR measures how well uncertainty estimates
rank outputs by quality, and is more appropri-
ate than classification or calibration measures for
continuous-valued evaluation (Fadeeva et al., 2023;
Vashurin et al., 2025).
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WMT14 WMT19
Model Cs-En De-En Ru-En Fr-En De-En Fi-En Lt-En Ru-En
Base LINE Base LINE Base LINE Base LINE Base LINE Base LINE Base LINE Base LINE
MetricX XXL
Llama3.18B 047 0.541 048 0511 046 0541 039 0431 043 0471 052 051 049 049 036 0457
Gemma29B 045 0467 047 0491 042 0467 036 0371 044 0477 045 045 034 0377 038 0417
EuroLLM 9B  0.54 0557 0.54 0.55t 048 047 046 046 050 0511 049 047 042 0471 036 0421
XComet XXL
Llama3.18B 040 048t 037 047t 041 0531 033 0421 034 0447 051 049 053 052 037 0511
Gemma29B 035 037t 035 0381t 039 048F 027 0341 034 038 042 040 030 0327 035 0377
EuroLLM 9B 043 0461 042 0461 039 05117 035 0421 043 0471 045 042 039 038 036 0441
Comet WMT22
Llama3.18B 048 0.58t 048 0.561 045 0591 037 048F 046 0551 054 0561 052 0561 043 0.531
Gemma29B 044 049t 050 0.541 043 053T 037 0441 049 053 049 049 035 0367 040 0417
EuroLLM 9B 052 057t 0.52 0.55t 046 0561 047 0521 052 058t 051 0521 037 0451 043 0457

Table 1: Comparison between best raw and detrended PRR scores across all metrics and models for translation
datasets. Arrows indicate improvements in detrended over raw method.

XSum GSMS8k
Model Base LINE Base LINE
Llama3.18B 037 0.37 0.36 0.407
Gemma29B 0.35 0387 0.39 0407

Table 2: Comparison between best raw and detrended
PRR scores for summarization and mathematical reason-
ing tasks. Arrows indicate improvements in detrended
over raw method.

Quality Metrics. To evaluate the output quality,
we use the following measures: COMET, XComet-
XXL and MetricX-XXL (Rei et al., 2022; Guerreiro
et al., 2024; Juraska et al., 2024), which represent a
diverse set of neural quality estimation models. We
use Accuracy for GSMS8K, and AlignScore (Zha
et al., 2023) to measure semantic alignment be-
tween input and output for summarization task.

5.2 Results

For each dataset, Tables 1 and 2 present the PRR
score of the best-performing UQ method and
best-performing UNCERTAINTY-LINE variation.
Across both translation and open-ended generation
tasks, we consistently observe improvements in
PRR scores when applying our detrending proce-
dure, demonstrating its effectiveness in mitigating
length-related bias and enhancing the reliability of
uncertainty estimates. However, it is important to
note that there are a few cases — particularly in
XSum for Llama 3.1 8B or WMT 19 Fi-En for all
considered models — where the gains are marginal
or the detrended score does not outperform the raw
variant.

This suggests that while length-induced bias is
a prevalent issue, the extent of its impact can vary
by task and model, and in some settings, additional
sources of uncertainty may dominate. Detailed ex-
perimental results with breakdown of PRR scores
before and after UNCERTAINTY-LINE transforma-
tion for each of the UQ methods are provided in
Appendix C.

Table 3 reports improvements in PRR scores af-
ter UNCERTAINTY-LINE transformation for each
UQ method, average over all tasks. As evident
from the table, the most substantial gains occur
in uncertainty estimation methods that are highly
sensitive to sequence length, such as MSP and PPL.
Detrending enhances their ability to discriminate
between high- and low-quality generations. In con-
trast, methods like LSRL, which estimate uncer-
tainty based on the semantic similarity of sampled
outputs, exhibit far smaller improvements, if any.
This is expected, as can be seen in Appendix A.2,
LSRL exhibits the smallest trends with respect to
length.

Figure 5 offers an illustration of the impact of
our detrending procedure on three uncertainty esti-
mation scores for translation tasks. For MSP, PPL
and MTE, we observe a strong correlation between
sequence length and raw uncertainty scores, indi-
cating a clear length-induced bias. We can see
that, after detrending, these trends are largely elim-
inated, as shown by the near-zero slopes. On the
other hand, after applying the equation (4) for the
summarization and mathematical reasoning tasks,
the detrended uncertainty scores exhibit a length
bias that is comparable to that of the quality evalu-
ation measure itself.
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Method WMT XSum GSMSK
Comet WMT22 XComet XXL MetricX-XXL  Align Score  Accuracy
MSP 0.09 £ 0.02 0.09 £ 0.02 0.18 £0.01 0.03£0.00 0.00=£0.01
PPL 0.05 £ 0.01 0.05 £0.01 0.02+£0.00 0.01£0.01 0.09=£0.02
MTE 0.08 £ 0.01 0.07 £ 0.01 0.03£0.01 0.01£0.01 0.08£0.02
MCSE 0.07 £ 0.02 0.07 £ 0.02 0.16£0.01 0.02£0.01 0.00=£0.00
MCNSE 0.02 £0.01 0.02 £ 0.01 0.00£0.00 0.01 £0.00 0.02=£0.00
LSRL 0.00 £ 0.01 0.01 £0.01 0.00£0.00 0.03£0.02 0.00=£0.00
TokenSAR 0.05 £ 0.01 0.05 £ 0.01 0.02+£0.01 0.00£0.01 0.09=£0.02

Table 3: Average improvement across datasets and models in PRR scores after detrending for three tasks: WMT
(machine translation), XSum (summarization), and GSM8K (mathematical reasoning). Values are reported as mean
improvements with their associated standard error of the mean (SEM).

MSP vs. Length

Raw
--- Raw Fit (slope=0.45)
0.8 Detrended X 1.00
0.6 - Detr. Fit (slope=0.00) -
'e

" oA

Raw

Detrended

0.0 0.2 0.4 0.6 0.8 1.0

PPL vs. Length

--- Raw Fit (slope=-0.14)

s DLtr Fll(slop(, -0.06)

MTE vs. Length

Raw
--- Raw Fit (slope=-0.18)

1.0 Detrended

08 - D(,tr Fit (slope=-0.07)

| ?!!lm' II!!HE!HLW“'L i

0.6 0.8 1.0 0.8 1.0

Figure 5: Example of how detrending removes length-related bias from uncertainty estimates. Shown for MSP, PPL,
and MTE on WMT14 De-En (Model - Llama 3.1 8B), the raw scores exhibit clear length dependency, which is

largely reduced after detrending.

6 Conclusion

We introduced UNCERTAINTY-LINE, a simple
yet effective framework for removing generation
length effects from uncertainty estimates. Through
extensive analysis across tasks (translation, summa-
rization, and mathematical reasoning), we demon-
strated that uncertainty scores are often confounded
by output length, and that correcting for this bias
improves the reliability of uncertainty-based rejec-
tion. Our method is lightweight, model-agnostic,
and requires minimal supervision only when known
quality-length correlation is present. While certain
assumptions limit its applicability in more com-
plex settings, UNCERTAINTY-LINE offers a strong
foundation for more interpretable and trustworthy
uncertainty estimation in text generation.

Future work could explore addressing length
bias directly during model training, rather than cor-
recting it in a post-hoc manner.

7 Limitations

While UNCERTAINTY-LINE offers a simple and
effective correction for length-induced bias, several
important considerations remain.

We assume a linear relationship between uncer-
tainty scores and output length, as well as quality
scores and length. While this simplifies both imple-
mentation and interpretation, it may not fully cap-
ture the complexity of interactions between length
and uncertainty. However, as demonstrated in Sec-
tion D.1, linear approximation is a reasonable and
effective first-order correction. Nonetheless, in
tasks such as multi-step reasoning, where uncer-
tainty may follow phase-specific patterns, a linear
fit may be insufficient.

Our method requires a small number of quality-
labeled examples to estimate the quality-length re-
lationship. However, this only applies when there
is a known or observed correlation between output
length and quality. Moreover, in Appendix D.2 we
demonstrate that the quality trend can be estimated
using as little as 500 generations. In tasks where
quality is largely length-independent, our method
can be applied without any quality annotations.

This leads to another consideration - we assume
prior knowledge of quality-length relationship. In
tasks where this relationship is unclear or poorly
understood, effectiveness may be reduced.
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Ethical Considerations

UNCERTAINTY-LINE improves uncertainty quan-
tification by removing spurious correlations be-
tween output length and estimated uncertainty.
This helps to prevent misleading high- or low-
uncertainty signals that often affect longer genera-
tions. However, it does not prevent the generation
of incorrect or harmful content, and low uncer-
tainty scores do not guarantee factuality. Moreover,
it does not address factors such as prompt phrasing
or out-of-domain data.

Reliable uncertainty estimates are crucial for en-
abling selective generation, abstention, or human-
in-the-loop review, especially in tasks where cor-
rectness cannot be easily verified. UNCERTAINTY-
LINE improves robustness to length-related bias,
but it should be used as part of a broader reliability
strategy, especially in critical applications.
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A Length Bias Analysis
A.1 Response Quality vs Generation Length

In this section we report the detailed relation between performance metrics for various tasks and length
of the generated output. Figures 6, 7 and 8 show average normalized values of performance metrics for
NMT tasks at each generated sequence length, as well as a linear OLS fit to this dependency. Figure 9
contains similar charts for the QA and ATS tasks.
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Figure 6: Comet score trends with respect to normalized generated sequence length across four machine translation
datasets. Each subplot shows a linear regression fit over binned Comet scores.
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Dataset COMET MetricX XCOMET
slope  p-val | slope  p-val | slope  p-val

Llama 3.1 8B

WMT14 Cs-En | -0.032 0.019 | 0.039 0.008 | -0.033 0.092
WMT14 De-En | -0.027 0.176 | 0.009 0.651 | -0.073 0.004
WMT14 Fr-En | -0.043 0.002 | 0.014 0.404 | -0.077 0.002
WMT14 Ru-En | -0.100 0.000 | -0.088 0.000 | -0.029 0.272
WMT19 De-En | -0.176  0.000 | -0.057 0.000 | -0.118 0.000
WMT19 Fi-En | -0.016 0.288 | 0.042 0.012 | 0.067  0.005
WMT19 Lt-En | -0.018 0.223 | 0.014 0.382 | 0.093  0.000
WMT19 Ru-En | -0.030 0.011 | 0.042 0.001 | 0.090 0.000

Gemma 2 9B

WMT14 Cs-En | -0.033 0.018 | 0.046 0.001 | -0.047 0.018
WMT14 De-En | -0.023 0.251 | 0.009 0.636 | -0.053 0.027
WMT14 Fr-En | -0.028 0.048 | 0.024 0.139 | -0.051 0.035
WMT14 Ru-En | -0.103 0.000 | -0.093 0.000 | -0.021 0.404
WMT19 De-En | -0.154  0.000 | -0.044 0.000 | -0.095 0.000
WMT19 Fi-En | -0.006 0.647 | 0.061 0.000 | 0.121  0.000
WMT19 Lt-En | -0.022 0.108 | -0.000 0.998 | 0.110  0.000
WMT19 Ru-En | -0.034 0.004 | 0.051 0.000 | 0.120  0.000

EuroLLM 9B

WMT14 Cs-En | -0.047 0.001 | 0.033 0.010 | -0.011 0.572
WMT14 De-En | -0.016 0413 | 0.005 0.779 | -0.035 0.157
WMT14 Fr-En | -0.029 0.042 | 0.017 0.294 | -0.034 0.152
WMT14 Ru-En | -0.101  0.000 | -0.102 0.000 | -0.031 0.250
WMT19 De-En | -0.156  0.000 | -0.050 0.000 | -0.096 0.000
WMT19 Fi-En 0.007 0.648 | 0.065 0.000 | 0.170  0.000
WMT19 Lt-En | -0.027 0.053 | 0.009 0.523 | 0.156 0.000
WMT19 Ru-En | -0.034 0.003 | 0.059 0.000 | 0.135 0.000

Table 4: Regression slopes and p-values measuring the correlation between output length and three machine
translation quality metrics (Comet, MetricX-XXL, Xcomet-XXL) across different translation datasets and models.
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Figure 9: Align Score and Accuracy trends with respect to normalized generated sequence length across four
machine translation datasets. Each subplot shows a linear regression fit over binned Align Score and Accuracy

SCOres.

Dataset AlignScore
slope  p-val

Llama 3.1 8B
XSum | 0.062 0.042
Gemma 2 9B
XSum | 0.126  0.000

Table 5: Regression slopes and p-values measuring the correlation between output length and summarization quality
metric (Align Score).

Dataset Accuracy
slope  p-val

Llama 3.1 8B
GSMSk | -0.277  0.000
Gemma 2 9B
GSM8k | -0.190  0.000

Table 6: Regression slopes and p-values measuring the correlation between output length and QA quality metric
(Accuracy).
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A.2 UQ Values vs Generation Length

Figures 10, 11 and 12 depict the length bias of various UQ methods under consideration. Specifics of the

charts are the same as in A.1.
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Figure 10: Uncertainty metric trends for model LLAMA across all datasets.
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Figure 11: Uncertainty metric trends for model GEMMA across all datasets.
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Figure 12: Uncertainty metric trends for mode]l EUROLLM across all datasets.
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Dataset MSP PPL MTE MCSE MCNSE LSRL TokenSAR
slope  p-val | slope p-val | slope p-val | slope p-val | slope p-val | slope p-val | slope p-val

Llama 3.1 8B

WMT14 CS-EN | 047 0.00 | -0.07 0.00 | -0.08 0.00 | 045 0.00 | -0.00 0.76 | 0.05 0.00 | -0.10 0.00
WMT14 DE-EN | 045 0.00 | -0.08 0.00 | -0.11 0.00 | 043 0.00 | -0.01 0.67 | 0.06 0.00 | -0.08 0.00
WMTI4 FR-EN | 052 0.00 | -0.08 0.00 | -0.10 0.00 | 048 0.00 | -0.05 0.00 | 0.05 0.00 | -0.06 0.00
WMTI4RU-EN | 033 0.00 | -0.07 0.00 | -0.12 0.00 | 0.39 0.00 | -0.09 0.00 | -0.15 0.00 | -0.07 0.00
WMT19 DE-EN | 045 000 | -0.05 0.00 | -0.13 0.00 | 031 0.00 | -0.03 0.06 | 0.09 0.00 | -0.07 0.00
WMT19 FI-EN 048 0.00 | -0.01 0.15 | -0.08 0.00 | 039 0.00 | -0.00 0.74 | 0.08 0.00 | -0.03 0.00
WMT19 LT-EN 043 0.00 | -0.05 000 | -0.08 0.00 | 045 0.00 | -0.00 0.73 | 0.09 0.00 | -0.06 0.00
WMTI19 RU-EN | 046 000 | -0.09 0.00 | -0.14 0.00 | 036 0.00 | -0.10 0.00 | -0.06 0.00 | -0.09 0.00

Gemma 2 9B

WMT14 CS-EN | 055 0.00 | -0.05 0.00 | -0.10 0.00 | 059 0.00 | 0.02 023 | 004 0.00 | -0.08 0.00
WMT14 DE-EN | 040 000 | -0.08 0.00 | -0.12 0.00 | 049 0.00 | 0.01 053 | 005 0.00 | -0.09 0.00
WMTI14 FR-EN | 049 000 | -0.09 000 | -0.14 0.00 | 057 000 | -005 000 | 003 0.04 | -0.09 0.00
WMTI4RU-EN | 038 0.00 | -0.17 0.00 | -024 0.00 | 049 0.00 | -0.14 0.00 | -0.17 0.00 | -0.18 0.00
WMT19 DE-EN | 038 0.00 | -0.03 0.01 | -0.09 0.00 | 032 0.00 | -0.03 0.03 | 005 0.00 | -0.06 0.00
WMT19 FI-EN 051  0.00 | -0.00 0.79 | -0.06 0.00 | 051 0.00 | 0.00 084 | 0.09 0.00 | -0.03 0.01
WMT19 LT-EN 057 0.00 | -0.02 0.03 | -006 0.00 | 040 0.00 | 0.00 096 | 0.09 0.00 | -0.03 0.00
WMTI19 RU-EN | 0.63 0.00 | -0.06 0.00 | -0.11 0.00 | 059 0.00 | -0.07 0.00 | -0.02 0.08 | -0.07 0.00

EuroLLM 9B

WMTI14 CS-EN | 030 0.00 | -0.06 0.00 | -0.09 0.00 | 042 0.00 | -0.06 0.00 | -0.01 043 | -0.06 0.00
WMT14 DE-EN | 036 0.00 | -0.08 0.00 | -0.12 0.00 | 034 0.00 | -0.02 0.11 | 0.01 0.55 | -0.09 0.00
WMTI4 FR-EN | 037 0.00 | -0.12 0.00 | -0.14 0.00 | 0.17 0.00 | -0.04 0.00 | 0.00 099 | -0.12 0.00
WMTI4RU-EN | 027 0.00 | -0.14 0.00 | -0.19 0.00 | 023 0.00 | -0.17 0.00 | -0.16 0.00 | -0.16 0.00
WMT19 DE-EN | 020 0.00 | -0.04 0.00 | -0.11 0.00 | 027 0.00 | -0.07 0.00 | -0.02 043 | -0.05 0.00
WMT19 FI-EN 046 0.00 | -0.04 0.00 | -0.07 0.00 | 031 0.00 | -0.04 0.00 | 005 0.01 | -0.05 0.00
WMT19 LT-EN 032 0.00 | -0.06 000 | -0.12 0.00 | 028 0.00 | -0.07 0.00 | 002 023 | -0.06 0.00
WMTI9RU-EN | 045 0.00 | -0.08 0.00 | -0.14 0.00 | 036 0.00 | -0.12 0.00 | -0.09 0.00 | -0.09 0.00

Table 7: Regression slopes and p-values measuring the correlation between output length and various uncertainty
metrics on machine translation datasets.

Dataset MSP PPL MTE MCSE MCNSE LSRL TokenSAR
slope  p-val | slope p-val | slope p-val | slope p-val | slope p-val | slope p-val | slope p-val
Llama 3.1 8B
XSUM ‘ 0.142  0.000 ‘ -0.261  0.000 ‘ -0.283  0.000 ‘ 0.042  0.008 ‘ -0.026  0.096 ‘ 0.029  0.025 ‘ -0.264 0.0
Gemma 2 9B

XSUM | 0.054 0.001 | -0.295 0.000 | -0.320 0.000 | 0.036 0.007 | -0.041 0.001 | 0.019 0.067 | -0.307 0.0

Table 8: Regression slopes and p-values measuring the correlation between output length and various uncertainty
metrics on XSUM dataset.

Dataset MSP PPL MTE MCSE MCNSE LSRL TokenSAR
slope  p-val | slope p-val | slope p-val | slope p-val | slope p-val | slope p-val | slope p-val
Llama 3.1 8B
GSMSK ‘ 0.418  0.000 ‘ -0.109  0.000 ‘ -0.098  0.000 ‘ 0.273  0.000 ‘ 0.096  0.000 ‘ 0.219  0.000 ‘ -0.109 0.0
Gemma 2 9B

GSMSK | 0.322  0.000 | -0.100  0.000 | -0.092 0.000 | 0.266 0.000 | 0.085 0.000 | 0277 0.000 | -0.1 0.0

Table 9: Regression slopes and p-values measuring the correlation between output length and various uncertainty
metrics on GSM8k dataset.
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B Detailed Description of Uncertainty Quantification Methods

Here, we provide details of the UQ methods used in the experiments omitted from the main part of the
paper.

Maximum Sequence Probability (MSP) is one of the simplest and most direct methods for estimating
uncertainty. It measures the negative log-likelihood of the most likely output sequence given a specific
input. Under the assumption that the model is most confident in its most probable output, lower values
indicate higher confidence:

Uwmsp(y | x) = —log P(y | x). (6)

Perplexity (PPL) is a widely used metric for evaluating uncertainty in autoregressive models (Fomicheva
et al., 2020). It computes the negative average log-likelihood per token, making it explicitly length-
normalized. Lower perplexity indicates higher model confidence:

1
UppL(Y | x) = —7 log P(y | %), (7

where L is the length of the output sequence y.
Mean Token Entropy (MTE) captures the average uncertainty at the token level. It measures how peaked
or flat the model’s predicted distribution is at each decoding step:

L
1
Umte(Y | x) = 7 E H(y | y<i,x), (8)
=1

where H(y; | y<i,x) = —>_, Plyi = v | y<1,x)1log P(y; = v | y<i,X) is the entropy of the token
distribution at position /.

Monte Carlo Sequence Entropy (MCSE) estimates sequence-level uncertainty via sampling. We
draw M sequences y()i = 1M from the model’s output distribution and compute their average negative
log-likelihood:

Uwmcse(x) = —— Z log P(y'") | x). €))

Monte Carlo Normalized Sequence Entropy (MCNSE) is a length-normalized variant of MCSE. For
each sampled sequence y(?), we normalize the log-likelihood by its length L(9):

UmcNsE(X) = i Z 108;P @] x). (10)

Lexical Similarity with ROUGE-L (LSRL) measures the average pairwise lexical similarity between
all sampled sequences. Unlike the previous methods, which rely on model probabilities, LSRL captures
diversity among generated hypotheses by comparing their surface forms:

2

IR R MORE)
Ursrr(x) = 1 AT ;ROUGEL( ). (11)

TokenSAR computes relevance-weighted average of the negative log probabilities of generated tokens:

UtokenSAR (X (1, y,x)1og P(y; | y<1,%), (12)

IIMh

where the normalized relevance weight for each token y; is given by RT(yk, y,X) =
fracRr(yi,y, X)ZZL:1 Ry (yi,y,x). and Ry (-) denotes the token relevance function, derived from
a sentence similarity function g(-,-) as Rr(yg,y,x) =1 —g(xUy,xUy \ yx).
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C Detailed Experimental Results

Tables 10, 12 and 11 contain PRR scores for all UQ methods, along with their LINE counterparts for
NMT datasets. Table 13 contains the same data for summarization and mathematical reasoning.

WMT14 WMT19
Cs-En  De-En  Ru-En Fr-En De-En Fi-En Lt-En  Ru-En

Llama 3.1 8B
MSP 0.42 0.39 0.45 0.35 0.46 0.19 0.29 0.43
MSP-LINE 0.47 0.49 0.48 0.40 0.51 0.47 0.47 041
PPL 0.42 0.46 0.37 0.31 0.41 0.52 0.47 0.32
PPL-LINE 0.52 0.51 0.53 0.41 0.46 0.52 0.49 0.46
MTE 0.44 0.48 0.41 0.37 0.42 0.54 0.52 0.33
MTE-LINE 0.58 0.56 0.59 0.48 0.55 0.56 0.56 0.53
MCSE 0.36 0.32 0.35 0.30 0.36 0.08 0.20 0.36
MCSE-LINE 0.38 0.36 0.33 0.28 0.38 0.32 0.36 0.32
MCNSE 0.48 0.44 0.40 0.36 0.43 0.46 0.48 0.35
MCNSE-LINE 0.49 0.44 0.47 0.39 0.45 0.46 0.48 0.44
LSRL 0.45 0.44 0.38 0.35 0.46 0.37 0.42 0.35
LSRL-LINE 0.41 0.41 0.44 0.32 0.40 0.37 0.40 0.38
TokenSAR 0.44 0.45 0.37 0.35 0.40 0.52 0.46 0.32
TokenSAR-LINE 0.51 0.52 0.52 0.41 0.47 0.53 0.49 0.46

Gemma 2 9B
MSP 0.40 0.37 0.43 0.29 0.49 0.18 0.35 0.40
MSP-LINE 0.48 0.50 0.47 0.38 0.53 0.42 0.36 0.41
PPL 0.44 0.48 0.38 0.36 0.44 0.46 0.30 0.31
PPL-LINE 0.46 0.51 0.50 0.40 0.47 0.46 0.32 0.35
MTE 0.44 0.49 0.38 0.37 0.44 0.49 0.30 0.30
MTE-LINE 0.49 0.54 0.53 0.44 0.51 0.49 0.36 0.40
MCSE 0.32 0.31 0.35 0.28 0.41 0.09 0.29 0.36
MCSE-LINE 0.39 0.43 0.38 0.35 0.47 0.31 0.29 0.39
MCNSE 0.44 0.50 0.42 0.37 0.47 0.41 0.35 0.37
MCNSE-LINE 0.44 0.50 0.48 0.39 0.49 0.41 0.35 041
LSRL 0.40 0.47 0.40 0.33 0.43 0.40 0.34 0.34
LSRL-LINE 0.38 0.46 0.45 0.32 0.41 0.40 0.28 0.35
TokenSAR 0.41 0.46 0.36 0.37 0.42 0.45 0.29 0.28
TokenSAR-LINE 0.45 0.50 0.49 0.41 0.46 0.45 0.35 0.34

EuroLLM 9B
MSP 0.29 0.33 0.42 0.24 0.40 0.16 0.28 0.43
MSP-LINE 0.37 0.46 0.50 0.34 0.51 0.39 0.34 0.44
PPL 0.51 0.50 0.43 0.44 0.52 0.48 0.36 0.32
PPL-LINE 0.53 0.53 0.54 0.47 0.54 0.49 0.40 0.39
MTE 0.52 0.52 0.46 0.47 0.51 0.51 0.37 0.34
MTE-LINE 0.57 0.55 0.56 0.52 0.58 0.52 0.45 0.45
MCSE 0.35 0.36 0.42 0.28 0.41 0.21 0.34 0.42
MCSE-LINE 0.46 0.47 0.46 0.40 0.49 0.40 0.37 0.39
MCNSE 0.23 0.36 0.28 0.22 0.34 0.36 0.28 0.24
MCNSE-LINE 0.22 0.36 0.33 0.22 0.34 0.35 0.28 0.29
LSRL 0.32 0.38 0.31 0.29 0.40 0.35 0.32 0.26
LSRL-LINE 0.32 0.37 0.36 0.29 0.41 0.35 0.31 0.29
TokenSAR 0.42 0.47 0.42 0.40 0.44 0.46 0.31 0.34

TokenSAR-LINE ~ 0.42 0.49 0.53 0.41 0.45 0.46 0.35 0.41

Table 10: Detailed PRR scores for all methods and their LINE counterparts. Metric: Comet WMT22.
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WMT14 WMT19
Cs-En  De-En  Ru-En Fr-En De-En Fi-En Lt-En  Ru-En

Llama 3.1 8B
MSP 0.21 0.22 0.31 0.19 0.23 0.08 0.12 0.26
MSP-LINE 0.40 0.42 0.44 0.31 0.40 0.41 0.38 0.35
PPL 0.43 0.45 0.41 0.32 0.39 0.48 0.43 0.31
PPL-LINE 0.48 0.47 0.49 0.36 0.40 0.48 0.44 0.40
MTE 0.47 0.48 0.46 0.39 0.43 0.52 0.49 0.36
MTE-LINE 0.54 0.51 0.54 0.43 0.47 0.51 0.49 0.45
MCSE 0.16 0.14 0.20 0.16 0.14 -0.00 0.07 0.21
MCSE-LINE 0.29 0.29 0.30 0.25 0.32 0.29 0.29 0.27
MCNSE 0.42 0.38 0.40 0.32 0.38 0.39 0.44 0.32
MCNSE-LINE 0.42 0.38 0.43 0.34 0.39 0.39 0.44 0.36
LSRL 0.39 0.35 0.37 0.30 0.36 0.32 0.42 0.31
LSRL-LINE 0.38 0.35 0.38 0.29 0.35 0.33 0.40 0.33
TokenSAR 0.46 0.45 0.41 0.34 0.39 0.49 0.44 0.32
TokenSAR-LINE 0.49 0.47 0.48 0.36 0.41 0.49 0.44 0.40

Gemma 2 9B
MSP 0.19 0.22 0.29 0.13 0.28 0.06 0.24 0.27
MSP-LINE 0.39 0.45 0.41 0.29 0.45 0.35 0.35 0.39
PPL 0.42 0.47 0.41 0.33 0.42 0.41 0.33 0.34
PPL-LINE 0.43 0.48 0.43 0.33 0.43 0.41 0.34 0.37
MTE 0.45 0.47 0.42 0.36 0.44 0.45 0.34 0.35
MTE-LINE 0.46 0.49 0.46 0.37 0.47 0.45 0.37 0.41
MCSE 0.11 0.15 0.21 0.12 0.20 -0.03 0.17 0.23
MCSE-LINE 0.31 0.36 0.33 0.28 0.40 0.27 0.25 0.35
MCNSE 0.38 0.43 0.40 0.33 0.43 0.36 0.32 0.38
MCNSE-LINE 0.38 0.43 0.41 0.33 0.44 0.36 0.32 0.40
LSRL 0.35 0.38 0.36 0.26 0.36 0.34 0.34 0.34
LSRL-LINE 0.35 0.38 0.37 0.26 0.36 0.36 0.31 0.34
TokenSAR 0.42 0.46 0.39 0.33 0.42 0.41 0.31 0.32
TokenSAR-LINE 0.43 0.47 0.41 0.34 0.44 0.41 0.35 0.37

EuroLLM 9B
MSP 0.13 0.23 0.30 0.11 0.23 0.04 0.15 0.28
MSP-LINE 0.32 0.44 0.45 0.27 0.43 0.34 0.31 0.38
PPL 0.51 0.52 0.45 0.41 0.48 0.44 0.40 0.33
PPL-LINE 0.52 0.53 0.46 0.42 0.48 0.44 0.42 0.37
MTE 0.54 0.54 0.48 0.46 0.50 0.49 0.42 0.36
MTE-LINE 0.55 0.55 0.47 0.46 0.51 0.47 0.47 0.42
MCSE 0.20 0.24 0.28 0.16 0.25 0.10 0.25 0.27
MCSE-LINE 0.42 0.42 0.39 0.36 0.40 0.36 0.36 0.34
MCNSE 0.23 0.33 0.29 0.22 0.28 0.32 0.26 0.21
MCNSE-LINE 0.21 0.33 0.28 0.21 0.26 0.30 0.25 0.23
LSRL 0.29 0.34 0.30 0.27 0.31 0.30 0.31 0.20
LSRL-LINE 0.29 0.34 0.30 0.27 0.30 0.32 0.31 0.21
TokenSAR 0.44 0.49 0.45 0.39 0.43 0.43 0.35 0.35

TokenSAR-LINE  0.41 0.49 0.44 0.37 0.43 0.42 0.36 0.39

Table 11: Detailed PRR scores for all methods and their LINE counterparts. Metric: MetricX XXL.
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WMT14 WMT19
Cs-En  De-En  Ru-En Fr-En De-En Fi-En Lt-En  Ru-En

Llama 3.1 8B
MSP 0.25 0.35 0.41 0.33 0.31 0.04 0.15 0.37
MSP-LINE 0.33 0.38 0.41 0.33 0.37 0.39 0.38 0.34
PPL 0.36 0.35 0.30 0.24 0.33 0.49 0.49 0.27
PPL-LINE 0.42 0.43 0.47 0.35 0.37 0.49 0.48 0.42
MTE 0.40 0.37 0.33 0.30 0.34 0.51 0.53 0.32
MTE-LINE 0.48 0.47 0.53 0.42 0.44 0.49 0.52 0.51
MCSE 0.20 0.29 0.33 0.29 0.24 -0.04 0.06 0.31
MCSE-LINE 0.26 0.27 0.28 0.24 0.29 0.27 0.28 0.28
MCNSE 0.36 0.34 0.32 0.27 0.33 0.38 0.43 0.32
MCNSE-LINE 0.36 0.35 0.39 0.31 0.35 0.38 0.42 0.40
LSRL 0.34 0.35 0.29 0.27 0.30 0.30 0.32 0.30
LSRL-LINE 0.33 0.31 0.38 0.24 0.25 0.33 0.34 0.33
TokenSAR 0.38 0.34 0.31 0.27 0.32 0.50 0.48 0.27
TokenSAR-LINE 0.43 043 0.49 0.34 0.37 0.49 0.48 043

Gemma 2 9B
MSP 0.20 0.35 0.39 0.27 0.34 0.00 0.15 0.35
MSP-LINE 0.29 0.38 0.38 0.29 0.38 0.29 0.22 0.33
PPL 0.32 0.34 0.29 0.25 0.33 0.37 0.28 0.27
PPL-LINE 0.33 0.37 0.45 0.30 0.35 0.37 0.28 0.33
MTE 0.35 0.33 0.29 0.25 0.32 0.42 0.29 0.27
MTE-LINE 0.37 0.38 0.48 0.34 0.37 0.40 0.31 0.37
MCSE 0.15 0.30 0.34 0.26 0.27 -0.07 0.09 0.32
MCSE-LINE 0.23 0.32 0.34 0.26 0.33 0.20 0.12 0.32
MCNSE 0.28 0.34 0.33 0.25 0.32 0.29 0.19 0.33
MCNSE-LINE 0.28 0.33 0.40 0.27 0.33 0.29 0.19 0.36
LSRL 0.26 0.30 0.30 0.20 0.28 0.29 0.19 0.27
LSRL-LINE 0.25 0.28 0.38 0.19 0.26 0.32 0.16 0.29
TokenSAR 0.32 0.31 0.28 0.23 0.31 0.40 0.30 0.26
TokenSAR-LINE 0.34 0.36 0.45 0.30 0.35 0.39 0.32 0.33

EuroLLM 9B
MSP 0.13 0.31 0.38 0.21 0.27 -0.03 0.06 0.36
MSP-LINE 0.24 0.38 0.42 0.25 0.38 0.26 0.19 0.37
PPL 0.39 0.40 0.38 0.33 0.43 0.40 0.33 0.31
PPL-LINE 0.41 0.43 0.50 0.37 0.44 0.38 0.34 0.39
MTE 0.43 0.42 0.39 0.35 0.43 0.45 0.39 0.32
MTE-LINE 0.46 0.46 0.51 0.42 0.47 0.42 0.38 0.44
MCSE 0.19 0.31 0.35 0.26 0.30 -0.01 0.08 0.34
MCSE-LINE 0.31 0.36 0.38 0.33 0.38 0.28 0.20 0.32
MCNSE 0.19 0.28 0.23 0.17 0.26 0.30 0.22 0.21
MCNSE-LINE 0.18 0.28 0.29 0.17 0.25 0.28 0.19 0.26
LSRL 0.23 0.28 0.22 0.23 0.28 0.24 0.18 0.18
LSRL-LINE 0.23 0.28 0.26 0.23 0.28 0.26 0.18 0.22
TokenSAR 0.34 0.38 0.37 0.30 0.37 0.40 0.30 0.34

TokenSAR-LINE  0.34 0.41 0.49 0.32 0.38 0.39 0.30 0.41

Table 12: Detailed PRR scores for all methods and their LINE counterparts. Metric: XComet XXL.
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XSum GSMS8k

Llama 3.1 8B
MSP 0.33 0.32
MSP-LINE 0.36 0.33
PPL 0.37 0.30
PPL-LINE 0.37 0.38
MTE 0.36 0.34
MTE-LINE 0.35 0.40
MCSE 0.03 0.35
MCSE-LINE 0.04 0.35
MCNSE 0.02 0.34
MCNSE-LINE 0.03 0.36
LSRL 0.09 0.36
LSRL-LINE 0.10 0.36
TokenSAR 0.37 0.30
TokenSAR-LINE 0.37 0.38

Gemma 2 9B
MSP 0.35 0.30
MSP-LINE 0.38 0.30
PPL 0.35 0.25
PPL-LINE 0.37 0.36
MTE 0.33 0.29
MTE-LINE 0.36 0.40
MCSE 0.00 0.39
MCSE-LINE 0.03 0.40
MCNSE 0.02 0.36
MCNSE-LINE 0.03 0.37
LSRL 0.04 0.39
LSRL-LINE 0.09 0.39
TokenSAR 0.32 0.24

TokenSAR-LINE  0.33 0.36

Table 13: Detailed PRR scores for all methods and their LINE counterparts. Metrics: AlignScore (XSum) and
Accuracy (GSMS8k).
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D Ablation
D.1 Polynomial Detrending

Tables 14, 15, 16 contain comparison in PRR scores between first, second and third degree LINE correction
to the considered base UQ methods.

WMT14 WMT19
Cs-En  De-En Ru-En Fr-En De-En Fi-En Lt-En Ru-En
Llama 3.1 8B
MSP 0.42 0.39 0.45 0.35 0.46 0.19 0.29 0.43
MSP-LINE; 0.47 0.49 0.48 0.40 0.51 0.47 0.47 0.41
MSP-LINE, 0.50 0.52 0.52 0.41 0.51 0.50 0.47 0.47
MSP-LINE; 0.53 0.53 0.51 0.34 0.53 0.48 0.47 0.48
PPL 0.42 0.46 0.37 0.31 0.41 0.52 0.47 0.32
PPL-LINE; 0.52 0.51 0.53 0.41 0.46 0.52 0.49 0.46
PPL-LINE; 0.42 0.47 0.42 0.32 0.44 0.53 0.48 0.39
PPL-LINE;3 0.54 0.52 0.51 0.42 0.48 0.54 0.49 0.45
MTE 0.44 0.48 0.41 0.37 0.42 0.54 0.52 0.33
MTE-LINE; 0.58 0.56 0.59 0.48 0.55 0.56 0.56 0.53
MTE-LINE, 0.46 0.51 0.48 0.38 0.51 0.53 0.53 0.45
MTE-LINE3 0.59 0.57 0.57 0.48 0.55 0.55 0.55 0.51
MCSE 0.36 0.32 0.35 0.30 0.36 0.08 0.20 0.36
MCSE-LINE; 0.38 0.36 0.33 0.28 0.38 0.32 0.36 0.32
MCSE-LINE; 0.42 0.40 0.36 0.28 0.39 0.32 0.35 0.32
MCSE-LINE3 0.48 0.40 0.39 0.28 0.42 0.31 0.36 0.38
MCNSE 0.48 0.44 0.40 0.36 0.43 0.46 0.48 0.35
MCNSE-LINE; 0.49 0.44 0.47 0.39 0.45 0.46 0.48 0.44

MCNSE-LINE; 0.42 0.46 0.37 0.30 0.42 0.45 0.47 0.37
MCNSE-LINE3 0.53 0.46 0.46 0.40 0.47 0.47 0.49 0.43

LSRL 0.45 0.44 0.38 0.35 0.46 0.37 0.42 0.35
LSRL-LINE; 0.41 0.41 0.44 0.32 0.40 0.37 0.40 0.38
LSRL-LINE, 0.45 0.44 0.31 0.29 0.42 0.39 0.41 0.31
LSRL-LINE3 0.46 0.38 0.43 0.35 0.44 0.39 0.41 0.37
TokenSAR 0.44 0.45 0.37 0.35 0.40 0.52 0.46 0.32

TokenSAR-LINE; 0.51 0.52 0.52 0.41 0.47 0.53 0.49 0.46
TokenSAR-LINE>  0.39 0.47 0.41 0.31 0.44 0.54 0.47 0.38
TokenSAR-LINE;  0.52 0.47 0.51 0.41 0.48 0.54 0.48 0.45

Table 14: PRR scores with linear and polynomial detrending — Comet WMT?22.
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WMT14 WMT19

Cs-En  De-En  Ru-En Fr-En De-En Fi-En Lt-En  Ru-En

Llama 3.1 8B
MSP 0.25 0.35 0.41 0.33 0.31 0.04 0.15 0.37
MSP-LINE; 0.33 0.38 0.41 0.33 0.37 0.39 0.38 0.34
MSP-LINE; 0.36 0.43 0.47 0.35 0.37 0.42 0.37 0.39
MSP-LINE3 0.37 0.43 0.46 0.29 0.39 0.39 0.38 0.41
PPL 0.36 0.35 0.30 0.24 0.33 0.49 0.49 0.27
PPL-LINE; 0.42 0.43 0.47 0.35 0.37 0.49 0.48 0.42
PPL-LINE, 0.34 0.37 0.35 0.26 0.34 0.50 0.45 0.32
PPL-LINE;3 0.43 0.44 0.45 0.35 0.38 0.49 0.46 0.39
MTE 0.40 0.37 0.33 0.30 0.34 0.51 0.53 0.32
MTE-LINE; 0.48 0.47 0.53 0.42 0.44 0.49 0.52 0.51
MTE-LINE, 0.38 0.40 0.38 0.33 0.39 0.46 0.48 0.39
MTE-LINE; 0.46 0.48 0.48 041 043 0.46 0.49 0.45
MCSE 0.20 0.29 0.33 0.29 0.24 -0.04 0.06 0.31
MCSE-LINE; 0.26 0.27 0.28 0.24 0.29 0.27 0.28 0.28
MCSE-LINE, 0.30 0.33 0.31 0.24 0.28 0.28 0.26 0.29
MCSE-LINE; 0.32 0.33 0.34 0.24 0.30 0.24 0.27 0.33
MCNSE 0.36 0.34 0.32 0.27 0.33 0.38 0.43 0.32
MCNSE-LINE; 0.36 0.35 0.39 0.31 0.35 0.38 0.42 0.40

MCNSE-LINE, 0.31 0.39 0.27 0.23 0.31 0.38 0.41 0.31
MCNSE-LINE3 0.39 0.39 0.36 0.32 0.36 0.38 0.42 0.38

LSRL 0.34 0.35 0.29 0.27 0.30 0.30 0.32 0.30
LSRL-LINE; 0.33 0.31 0.38 0.24 0.25 0.33 0.34 0.33
LSRL-LINE; 0.35 0.35 0.20 0.21 0.27 0.35 0.35 0.25
LSRL-LINE3 0.35 0.27 0.32 0.27 0.28 0.34 0.35 0.32
TokenSAR 0.38 0.34 0.31 0.27 0.32 0.50 0.48 0.27

TokenSAR-LINE; 0.43 0.43 0.49 0.34 0.37 0.49 0.48 0.43
TokenSAR-LINE;  0.33 0.36 0.36 0.25 0.33 0.50 0.44 0.33
TokenSAR-LINE3  0.41 0.36 0.46 0.34 0.38 0.49 0.45 0.39

Table 15: PRR scores with linear and polynomial detrending — XComet XXL.
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WMT14 WMT19

Cs-En  De-En Ru-En Fr-En De-En Fi-En Lt-En Ru-En

Llama 3.1 8B
MSP 0.21 0.22 0.31 0.19 0.23 0.08 0.12 0.26
MSP-LINE; 0.40 0.42 0.44 0.31 0.40 0.41 0.38 0.35
MSP-LINE, 0.42 0.44 0.46 0.32 0.40 0.44 0.38 0.39
MSP-LINE; 0.43 0.44 0.46 0.29 0.41 0.41 0.38 0.39
PPL 0.43 0.45 0.41 0.32 0.39 0.48 0.43 0.31
PPL-LINE; 0.48 0.47 0.49 0.36 0.40 0.48 0.44 0.40
PPL-LINE, 0.40 0.46 0.41 0.29 0.40 0.49 0.42 0.35
PPL-LINE3 0.49 0.48 0.48 0.35 0.41 0.48 0.45 0.39
MTE 0.47 0.48 0.46 0.39 0.43 0.52 0.49 0.36
MTE-LINE; 0.54 0.51 0.54 0.43 0.47 0.51 0.49 0.45
MTE-LINE, 0.45 0.50 0.47 0.36 0.46 0.49 0.47 0.40
MTE-LINE3 0.53 0.52 0.54 0.42 0.47 0.49 0.50 0.45
MCSE 0.16 0.14 0.20 0.16 0.14 -0.00 0.07 0.21
MCSE-LINE; 0.29 0.29 0.30 0.25 0.32 0.29 0.29 0.27
MCSE-LINE; 0.33 0.31 0.33 0.25 0.31 0.30 0.28 0.28
MCSE-LINE3 0.36 0.30 0.36 0.25 0.32 0.28 0.29 0.31
MCNSE 0.42 0.38 0.40 0.32 0.38 0.39 0.44 0.32
MCNSE-LINE; 0.42 0.38 0.43 0.34 0.39 0.39 0.44 0.36

MCNSE-LINE; 0.38 0.39 0.35 0.28 0.38 0.39 0.43 0.31
MCNSE-LINE3 0.45 0.39 0.43 0.34 0.39 0.40 0.46 0.35

LSRL 0.39 0.35 0.37 0.30 0.36 0.32 0.42 0.31
LSRL-LINE; 0.38 0.35 0.38 0.29 0.35 0.33 0.40 0.33
LSRL-LINE, 0.40 0.36 0.28 0.27 0.35 0.35 0.42 0.28
LSRL-LINE3 0.40 0.34 0.38 0.31 0.35 0.34 0.42 0.32
TokenSAR 0.46 0.45 0.41 0.34 0.39 0.49 0.44 0.32

TokenSAR-LINE 0.49 0.47 0.48 0.36 0.41 0.49 0.44 0.40
TokenSAR-LINE>  0.40 0.45 0.41 0.29 0.40 0.50 0.42 0.35
TokenSAR-LINE3  0.48 0.45 0.48 0.35 0.41 0.49 0.46 0.39

Table 16: PRR scores with linear and polynomial detrending — MetricX XXL.
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D.2 Reducing number of quality labels

Obtaining quality labels can be expensive in certain setups. To address this issue, we estimate the quality
(metric)-vs—length regression (equation (3)) using a small, length-balanced subset of the training data,
rather than the full sample. The goal is to recover an effective quality trend with far fewer labels.

We first remove length outliers by keeping the 5th-95th percentiles and rescale lengths to [0, 1]. The
length axis is then partitioned into n adaptive bins via K-means (narrower in dense regions, wider in sparse
ones). From each bin we sample about S/n items without replacement, where S is the target labeled size;
bins with fewer items contribute all their points, and the shortfall is redistributed across the others. Finally,
we fit a metric—vs—length regression on this subset and apply it to remove the length trend at test time.

GSMSK  XSum

Llama 3.1 8B
MSP 0.32 0.33
MSP-LINE (500 sample) 0.33 0.36
MSP-LINE (Full sample) 0.33 0.36
PPL 0.30 0.37
PPL-LINE (500 sample) 0.38 0.37
PPL-LINE (Full sample) 0.38 0.37
MTE 0.34 0.36
MTE-LINE (500 sample) 0.39 0.35
MTE-LINE (Full sample) 0.40 0.35
MCSE 0.35 0.03
MCSE-LINE (500 sample) 0.35 0.04
MCSE-LINE (Full sample) 0.35 0.04
MCNSE 0.34 0.02
MCNSE-LINE (500 sample) 0.36 0.03
MCNSE-LINE (Full sample) 0.36 0.03
LSRL 0.36 0.09
LSRL-LINE (500 sample) 0.36 0.10
LSRL-LINE (Full sample) 0.36 0.10
TokenSAR 0.30 0.37
TokenSAR-LINE (500 sample) 0.38 0.36
TokenSAR-LINE (Full sample) 0.38 0.37
Gemma 2 9B
MSP 0.30 0.35
MSP-LINE (500 sample) 0.30 0.38
MSP-LINE (Full sample) 0.30 0.38
PPL 0.25 0.35
PPL-LINE (500 sample) 0.36 0.37
PPL-LINE (Full sample) 0.36 0.37
MTE 0.29 0.33
MTE-LINE (500 sample) 0.40 0.36
MTE-LINE (Full sample) 0.40 0.36
MCSE 0.39 0.00
MCSE-LINE (500 sample) 0.40 0.03
MCSE-LINE (Full sample) 0.40 0.03
MCNSE 0.36 0.02
MCNSE-LINE (500 sample) 0.37 0.03
MCNSE-LINE (Full sample) 0.37 0.03
LSRL 0.39 0.04
LSRL-LINE (500 sample) 0.39 0.09
LSRL-LINE (Full sample) 0.39 0.09
TokenSAR 0.24 0.32
TokenSAR-LINE (500 sample) 0.35 0.33
TokenSAR-LINE (Full sample) 0.36 0.33

Table 17: PRR scores on GSM8K and XSum using 500 samples for quality trend fitting.
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