
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing, pages 8010–8029
November 4-9, 2025 ©2025 Association for Computational Linguistics

ConCISE: Confidence-guided Compression in Step-by-step Efficient
Reasoning

Ziqing Qiao1*, Yongheng Deng1†, Jiali Zeng2, Dong Wang1, Lai Wei1, Guanbo Wang1,
Fandong Meng2†, Jie Zhou2, Ju Ren1, Yaoxue Zhang1

1Department of Computer Science and Technology, Tsinghua University
2Pattern Recognition Center, WeChat AI, Tencent Inc., China

qzq24@mails.tsinghua.edu.cn
dengyh1013@gmail.com fandongmeng@tencent.com

Abstract

Large Reasoning Models (LRMs) perform
strongly in complex reasoning tasks via Chain-
of-Thought (CoT) prompting, but often suf-
fer from verbose outputs, increasing compu-
tational overhead. Existing fine-tuning-based
compression methods either operate post-hoc
pruning, risking disruption to reasoning co-
herence, or rely on sampling-based selection,
which fails to remove redundant content thor-
oughly. To address these limitations, this work
begins by framing two key patterns of redun-
dant reflection in LRMs—Confidence Deficit,
wherein the model reflects on correct interme-
diate steps, and Termination Delay, where re-
flection continues after a verified, confident an-
swer—through a confidence-guided perspec-
tive. Based on this, we introduce CONCISE
(Confidence-guided Compression In Step-by-
step Efficient Reasoning), a framework de-
signed to generate concise reasoning chains,
integrating Confidence Injection to boost rea-
soning confidence, and Early Stopping to ter-
minate reasoning when confidence is sufficient.
Extensive experiments demonstrate that com-
pared to baseline methods, fine-tuning LRMs
on CONCISE-generated data yields a better
balance between compression and task perfor-
mance, reducing length by up to ~50% under
SimPO, while maintaining high task accuracy.

1 Introduction

In recent years, Large Language Models (LLMs)
have achieved remarkable progress in natural lan-
guage processing, particularly in complex reason-
ing tasks. Large Reasoning Models (LRMs), such
as OpenAI-o1 (Jaech et al., 2024) and DeepSeek-
R1 (Guo et al., 2025), which leverage the Chain-of-
Thought paradigm (Wei et al., 2022), have demon-
strated state-of-the-art performance on benchmarks

*Work was done when Ziqing Qiao was interning at Pattern
Recognition Center, WeChat AI, Tencent Inc.

†Corresponding authors

Step 3

Step 4

Step 1

Step 2

Step 5

Step 6

Step 3

Step 5

First Ref After Answer
Step 1

Step 2

Step 1

Step 5

Step 6

Step 8Step 4

Conf. Inject. & Early Stop.

Step 2

Step 3

Step 1

Shortest of N (N = 4)

Delete unimportant parts

① ② ③

④

Question
Sampling
-Based
Selection

Post-hoc
Pruning

ConCISE

Step 5 Step 11Step 6

Inference Reflection First Answer Summary

SummarySummarySummary

Summary

Step 4

Step 3

Step 6

Step 1

Step 2

Step 8

Step 9

Step 5

Reasoning

Step 11

Summary

Figure 1: Training dataset construction workflows:
CONCISE (our proposed method) vs. existing methods.

Figure 2: CONCISE achieves a better trade-off between
compression and task performance than baselines.

involving mathematical problem solving and log-
ical reasoning(Muennighoff et al., 2025; Qwen
Team, 2024). However, a prominent limitation of
LRMs is their tendency to generate excessively
verbose reasoning chains (Feng et al., 2025; Chen
et al., 2024), incuring considerable computational
overhead, and posing challenges for deployment in
resource-constrained settings (Team et al., 2025).

To mitigate LRM output verbosity, recent re-
search focuses on compressing their reasoning
chains (Qu et al., 2025; Sui et al., 2025). A promi-
nent strategy involves fine-tuning LRMs on con-
cise reasoning datasets, enabling them to generate

8010

shorter responses (Ma et al., 2025; Chen et al.,
2024; Munkhbat et al., 2025). The effectiveness
of this compression strategy hinges on the training
dataset design. As shown in Figure 1, common
sampling-based selection, which generates multi-
ple candidates and picks the shortest correct one, or
further removes post-answer redundant reflections
(Team et al., 2025; Chen et al., 2024), lacks control
during generation, potentially leaving unnecessary
steps and reducing compression effectiveness. An-
other approach, post-hoc pruning, identifies and
removes redundant or less important steps from
reasoning chains (Cui et al., 2025; Xia et al., 2025),
risks disrupting reasoning coherence and degrading
the performance of LRMs after fine-tuning.

To overcome existing limitations, we aim to
construct compact, coherent reasoning chains as
training datasets by precisely removing redundant
reflections, ensuring LRMs do not suffer perfor-
mance degradation after fine-tuning. To this end,
based on the understanding that reflections are
not solely determined by correctness (Yang et al.,
2025), we thus adopt a confidence-guided perspec-
tive to understand the generation of reflection steps
in LRM’s reasoning processes. This perspective
offers a clear interpretation of two key patterns of
redundancy: Confidence Deficit, where low internal
confidence causes models to undertrust and reflect
on correct intermediate steps; and Termination De-
lay, where reflection persists despite a repeatedly
verified answer. These patterns inflate reasoning
chains and provide actionable insights for how to
create concise reasoning chains.

Therefore, we propose CONCISE (Confidence-
guided Compression In Step-by-step Efficient rea-
soning), a framework that leverages a confidence-
guided perspective for constructing concise reason-
ing data by actively suppressing redundant reflec-
tion during generation. CONCISE features two
complementary components designed to mitigate
Confidence Deficit and Termination Delay, respec-
tively: Confidence Injection, which inserts tailored
phrases before potential reflection points to boost
the model’s internal confidence, consequently curb-
ing unnecessary reflection; and Early Stopping,
which employs a lightweight confidence detector
to monitor internal confidence after an answer is
reached, terminating reasoning upon achieving suf-
ficient confidence. The synergy of these mecha-
nisms enables CONCISE to produce more efficient
and compact reasoning chains.

We then fine-tune four mainstream LRMs us-

ing CONCISE-generated data via SFT (Wei et al.,
2021) and SimPO (Meng et al., 2024), evaluating
their performance across multiple reasoning bench-
marks. As shown in Figure 2, Experimental results
demonstrate that CONCISE consistently achieves
a superior trade-off between reasoning compres-
sion and task performance under both SFT and
SimPO settings compared to baselines. Notably,
CONCISE reduces average response length by ap-
proximately 50% under SimPO while maintaining
high accuracy. Our subsequent analysis reveals that
CONCISE’s unique training data design enables
LRMs, after fine-tuning, to learn to strategically
avoid generating redundant reflection steps with-
out harming essential critical reasoning content,
thereby achieving efficient reasoning compression
while task performance is well maintained.

2 Related Work

Recent research has increasingly focused on mit-
igating verbosity and redundancy in reasoning
chains generated by LRMs, which often produces
long outputs that increase computational costs, and
even degrade accuracy (Wu et al., 2025; Nayab
et al., 2024; Wang et al., 2025). To address this
problem, existing approaches can be broadly cate-
gorized into three classes: Input-based, Decoding-
based, and Model-based (Sui et al., 2025).
Input-based Methods aim to promote concise rea-
soning by modifying input texts (Lee et al., 2025).
Common techniques include imposing token limits
in prompts or instructing the model to reason briefly
(Han et al., 2024; Renze and Guven, 2024). How-
ever, these approaches often fail when the model
does not consistently follow these instructions. An-
other approach, task routing, dynamically selects
an appropriate model or reasoning strategy based
on input characteristics like question complexity
(Ong et al., 2024; Chuang et al., 2025; Aytes et al.,
2025). Its effectiveness, however, depends on the
accurate assessment of input characteristics, which
is not always reliable.
Decoding-based Methods intervene during decod-
ing to control the reasoning process. One com-
mon approach compresses steps into latent repre-
sentations rather than explicit text, which improves
brevity but sacrifices interpretability (Hao et al.,
2024; Shen et al., 2025b). Another strategy uses
dynamic decoding, evaluating each reasoning step
and deciding whether to modify or discard it during
generation (Sun et al., 2024; Zhang et al., 2025; Xu

8011

Problem: Solve the equation 3x - 2 = 7.

Okay, now I need to solve the equation 3x - 2 = 7.

First, eliminate the constant term by adding 2 to both
sides: 3x - 2 + 2 = 7 + 2, simplifying to 3x = 9

0.57

0.33

0.64

0.48

0.78

0.95

\

0.50

0.50

0.50

0.90
0.50

0.90
0.50

0.90

\

Conf.
Deficit

Original Reasoning Process (7 steps) ConCISE Reasoning Process (5 steps)

The solution is verified. Final Answer: x = 3.

Therefore, Dividing both sides by 3, we get x = 3.

Let’s verify by substituting. The left side becomes 3
× 3 - 2 = 7, which matches the right side.

Conf.
Injection

Append
Therefore,

= 0.33

= 0.67

= 0.50

Termination
Delay

Early
Stopping

= 0.78

= 0.90

= 0.50

The solution is verified. Final Answer: x = 3.

Let’s verify by substituting. The left side becomes 3
× 3 - 2 = 7, which matches the right side.

Wait, we can also verify this graphically: the lines
y = 3x - 2 and y = 7 intersect at x = 3.

Dividing both sides by 3, we get x = 3.

Alternatively, move all terms to one side: 3x - 2 -
7 = 0 simplifies to 3x - 9 = 0, which leads to 3x = 9.

Problem: Solve the equation 3x - 2 = 7.

Okay, now I need to solve the equation 3x - 2 = 7.

First, eliminate the constant term by adding 2 to both
sides: 3x - 2 + 2 = 7 + 2, simplifying to 3x = 9

�� �. �
�� = �. ퟕ�

Figure 3: Illustration of CONCISE’s confidence-guided approach: identifying patterns (Confidence Deficit, Termi-
nation Delay) and applying mechanisms (Confidence Injection, Early Stopping) to suppress redundant reflections,
shown in contrast to the original reasoning process. Ci denotes step confidence and Ti its threshold.

et al., 2025). While effective at reducing verbosity,
these methods introduce additional computational
overhead and may disrupt the reasoning coherence.
Model-based Methods train models to generate
concise reasoning directly. One approach employs
reinforcement learning with reward functions that
penalize verbosity (Shen et al., 2025a; Aggarwal
and Welleck, 2025; Luo et al., 2025; Arora and
Zanette, 2025; Yu et al., 2025), but can be sensitive
to reward formulation and impose significant costs.
Another common approach is to fine-tune LRMs on
datasets with concise reasoning chains(Ma et al.,
2025; Cui et al., 2025; Xia et al., 2025). These
datasets are often created by selecting the shortest
correct chain or removing redundant parts post-hoc.
Such methods may inadvertently retain redundant
reflection steps or remove useful context, degrading
compression efficiency or model performance.

Motivated by the limitations of existing methods,
we propose CONCISE, a model-based method that
precisely identifies and actively suppresses redun-
dant reflection steps throughout the reasoning pro-
cess. This approach enables the model to generate
efficient reasoning chains while preserving reason-
ing coherence. Leveraging CONCISE, we con-
struct a high-quality training dataset and fine-tune
the model to adopt this concise reasoning ability
without compromising model performance.

3 Method

3.1 Confidence-guided Formulation

Reflections in LRMS are not solely triggered by
correctness; in many cases, reflection steps are in-

voked even on correct steps that have been verified
(Yang et al., 2025). This suggests that reflection
behavior is also linked to the model’s internal con-
fidence about current reasoning rather than correct-
ness alone. To explain this, we adopt a confidence-
guided perspective to formalize when and why
LRMS engage in reflection.

Let Si = {s1, s2, . . . , si} denote the partial rea-
soning chain up to step i, where each si is a textual
reasoning unit. We associate each step si with
a confidence score ci ∈ [0, 1], representing the
model’s internal confidence of that step. The gener-
ation policy of the LRM, denoted by πθ, maps the
current reasoning context Si to the next step si+1.

To model the decision between proceeding and
reflecting, we introduce a dynamic threshold ti ∈
[0, 1], which may vary with the model or the
context. At each step, the model generates a
ReflectionStep as si+1 if its current internal con-
fidence ci falls below the threshold ti (i.e., ci < ti).
From this perspective, we further analyze the re-
flection behavior of LRMS and formally articulate
two key patterns responsible for reflection-related
redundancy existing in the reasoning process: Con-
fidence Deficit and Termination Delay.

3.2 Two Key Patterns of Redundancy

Confidence Deficit. One major source of redun-
dancy in LRMs stems from their tendency to under-
trust their correct intermediate steps. LRMs often
display unexpected reflection despite exhibiting
fine-grained reasoning capabilities and achieving
high stepwise accuracy, triggering reflection even
on simple and unambiguous reasoning steps. This

8012

self-undermining behavior leads to redundant re-
flection with minimal semantic gain. We refer to
this phenomenon as Confidence Deficit. Formally,
Confidence Deficit can be defined as the occurrence
of a step si satisfying:

∃i, ci < ti despite si being correct.

Termination Delay. LRMs exhibit another im-
portant redundant reasoning pattern we term Ter-
mination Delay: After producing a confident final
answer, the model is expected to conclude with
minimal additional reasoning. However, it often
continues to generate unnecessary reflection steps
even after repeatedly verifying the same conclusion.
This behavior can be attributed to a sharp increase
in the confidence threshold ti after reaching the
answer at step i′, making it increasingly difficult
for the model’s internal confidence ci to exceed ti.
As a result, even when ci becomes relatively high,
it may still fall short of the heightened ti, lead-
ing to verbose post-answer reasoning. Formally,
Termination Delay can be characterized as:

∃i > i′, ∀j < i′, ti ≫ tj and ci < ti

3.3 The CONCISE Framework
To mitigate the above patterns—Confidence Deficit
and Termination Delay—we propose CONCISE, a
framework that dynamically steers the reasoning
generation process to reduce redundant reflections
and produce concise reasoning chains. CONCISE
integrates two mechanisms: Confidence Injection,
which actively inserts confidence phrases to sup-
press unnecessary reflection steps, and Early Stop-
ping, which halts generation once sufficient post-
answer confidence is detected. These two mecha-
nisms operate together to generate concise reason-
ing chains without compromising inference quality.
The overall process is illustrated in Figure 3.

3.3.1 Confidence Injection
To alleviate Confidence Deficit, we design a simple
yet effective mechanism called Confidence Injec-
tion. The key idea is to boost the model’s internal
confidence during reasoning by inserting designed
phrases, referred to as confidence phrases, to pre-
vent unnecessary reflection steps. Considering that
indiscriminate injection could disrupt reasoning,
we selectively insert confidence phrases at critical
points where the model’s confidence is relatively
low, that is, when ci < ti, a condition that signifies
an impending reflection step.

(a) Reflection probability of next step
after phrase injection.

(b) Confidence calcu-
lated by our detector.

Figure 4: Effectiveness and necessity of Confidence In-
jection and Termination Delay(details in Appendix B.1).

Specifically, at each step si, the model first gen-
erates si+1 = πθ(Si). If si+1 is a reflection step,
we retroactively modify the input Si by append-
ing a confidence phrase pi sampled from a curated
pool P , and regenerate si+1. Formally, the updated
generation process is defined as:

si+1 = πθ(Si) if ci ≥ ti else πθ(Si, pi)

We manually constructed the initial version of P .
To evaluate and further refine the initial pool, we
conducted experiments measuring the effectiveness
of different phrases. We inserted each candidate
phrase before the reflection steps and recorded the
probability that the model still generated a reflec-
tion step. This probability indicates whether the
updated confidence c∗i (after phrase insertion) ex-
ceeds the dynamic threshold ti. As shown in Fig-
ure 4a, different phrases exhibit varying reflection
rates. Notably, even the best-performing phrases
still yield a reflection rate around 20%, suggesting
that confidence injection reduces redundant reflec-
tions while still retaining necessary verifications.
We then selected 20 phrases with the lowest reflec-
tion rates to form the final confidence phrase pool.
The composition of the phrase pool and detection
of reflection steps are provided in Appendix A.1.

3.3.2 Early Stopping
Although Confidence Injection effectively boosts
the model’s confidence during reasoning, it does
not fully mitigate Termination Delay, which is
caused by the high threshold ti after the model
reaches an answer, leading the model to continue
unnecessary reflections even when its confidence is
already high. To address this, we design an Early
Stopping mechanism based on direct estimation of
the model’s internal confidence.

Specifically, we construct a lightweight confi-
dence detector to provide a quantitative proxy for

8013

the model’s internal confidence about the answer.
We introduce a probing prompt after the current
reasoning context and analyze the probability distri-
bution of generated continuations. Based on the sta-
tistical analysis shown in Appendix A.2, we collect
a set of confidence-indicative phrasesW+, which
reflect affirmations of high certainty. The detected
confidence score ĉi at step i is calculated as:

ĉi =
∑

w∈W+

p(w | Si,Probing prompt),

where p(·|·) denotes the continuation probabili-
ties determined by πθ. We then calculate the aver-
age ĉi after the First Answer Step (FAS) is gener-
ated, including the subsequent five reflection steps
(Ref1-5). As shown in Figure 4b, the model ex-
hibits relatively low confidence at the FAS, but
increases sharply after the first reflection, and con-
tinues to rise through subsequent reflections. No-
tably, when the reasoning chain stops, the average
confidence is 0.95, motivating the introduction of
a manually controlled lower threshold te. We ulti-
mately set te = 0.5 through experiments.

Additionally, the application of the threshold is
carefully controlled to prevent premature termina-
tion: once the detected confidence ĉi exceeds te,
the model is first prompted to output a final answer
(e.g., by appending Final Answer:). The reason-
ing process halts only if this answer is subsequently
verified as correct; otherwise, generation continues.
More details regarding the selection of te and Early
Stopping are provided in Appendix A.2.

3.4 Building Efficient Reasoning Chains
CONCISE integrates Confidence Injection and
Early Stopping to dynamically control the reason-
ing generation process. Given an input question,
the LRM generates the reasoning chain step-by-
step. At each step si: if it is identified as a reflection
step, Confidence Injection is applied by append-
ing a confidence prompt and regenerating si with
boosted internal confidence. si is then added to
the current chain Si. Subsequently, a lightweight
confidence detector estimates the detected confi-
dence score ĉi. If ĉi > te, the LRM is prompted to
provide a final answer a. Crucially, the generation
process terminates early at this stage if, and only
if, this answer a matches the ground truth gt and
ĉi > te, otherwise reasoning continues to the next
step. After the loop concludes, should a correct
final answer a have been verified, a concluding

Algorithm 1: Workflow of CONCISE.
Preparation: LRM generation policy: πθ,

Confidence Phrase Pool: P , Early
Stopping Threshold te, Prompt Template T

Input: Question q, Ground Truth gt
Initialize: Reasoning chain S0 ← T (q)
for each reasoning step i = 1, 2, . . . do

si ← πθ(Si−1)
if si is a reflection step then

Sample a confidence phrase pi ∈ P
si ← πθ(Si−1, pi)

Si ← Si−1 + si
Compute detected confidence ĉi
if ĉi > te then

a← πθ(Si, ’Final Answer:’)
if isequal(a, gt) then

break

if isequal(a, gt) then
Summary: S ← Si + πθ(Si,

′ </think>′)
Output: CONCISE reasoning chain S

else
Si and q are discarded

summary (e.g., prompted by </think>) is gener-
ated and appended to the accumulated steps Si to
form the complete CONCISE reasoning chain S,
otherwise, if a wrong answer was finally achieved,
the partial chain and the original question are dis-
carded. Algorithm 1 summarizes this coordinated
reasoning process in CONCISE.

3.5 Training Objective and Fine-tuning
To align LRM generation with the behavior encour-
aged by CONCISE, we first construct a fine-tuning
dataset by applying the CONCISE pipeline to a
set of questions. This yields concise reasoning
chains in which redundant reflections are actively
suppressed. We then fine-tune the LRM on this
dataset using two standard learning paradigms: Su-
pervised Fine-Tuning (SFT) and Simple Preference
Optimization (SimPO). Both approaches optimize
a shared objective that governs the desired genera-
tion behavior:
{
πθ(Si)→ πθ(Si + pi), if ci < ti

πθ(Si)→ Terminate, if i ≥ i′ and ĉi > te

Specifically, when the model’s confidence ci at
a given step falls below the threshold ti, it learns
to approximate the distribution conditioned on an

8014

Model Math-500 GSM8K AIME24 GPQA Average

Acc.↑ Tok.↓ CR↓ Acc.↑ Tok.↓ CR↓ Acc.↑ Tok.↓ CR↓ Acc.↑ Tok.↓ CR↓ Acc.↑ CR↓
DeepSeek-7BOrigin 90.8 3854 100% 93.1 1442 100% 54.2 13574 100% 51.0 8142 100% 72.3 100%

OverThinkSFT 92.2 2538 66% 93.0 1002 70% 52.5 11225 83% 51.1 7639 94% 72.2 78%
SpiritSFT 91.0 2935 76% 91.4 1107 77% 51.7 11529 85% 50.3 7084 87% 71.1 81%
ConCISESFT 92.0 2244 58% 92.9 832 58% 52.1 9751 72% 50.0 5892 72% 71.8 65%

OverThinkSimPO 91.4 2405 62% 92.9 879 61% 50.0 9603 71% 49.9 6305 77% 71.0 68%
SpiritSimPO 87.2 1765 46% 90.8 688 48% 38.3 6926 51% 50.2 5832 72% 66.6 54%
ConCISESimPO 91.0 1946 51% 92.1 715 50% 48.3 7745 57% 48.0 4859 60% 70.0 54%

DeepSeek-1.5BOrigin 82.2 4784 100% 85.4 2219 100% 29.2 17465 100% 34.5 9492 100% 57.8 100%

OverThinkSFT 84.0 3296 69% 85.2 1200 54% 30.0 12893 74% 34.8 8600 91% 58.5 72%
SpiritSFT 83.8 3857 81% 84.8 1476 67% 28.8 13685 78% 32.3 8555 90% 57.4 79%
ConCISESFT 83.6 2701 57% 84.9 923 42% 30.0 11359 65% 35.0 7253 76% 58.4 60%

OverThinkSimPO 83.6 2738 57% 84.8 1003 45% 31.3 11465 66% 34.7 8250 87% 58.6 64%
SpiritSimPO 82.6 2455 51% 82.6 804 36% 26.7 9946 57% 33.1 6910 73% 56.2 54%
ConCISESimPO 83.6 2429 51% 84.3 803 36% 30.4 8810 50% 35.4 7056 74% 58.4 53%

Skywork-7BOrigin 93.6 4178 100% 93.2 2111 100% 62.9 12464 100% 51.1 8374 100% 75.2 100%

OverThinkSFT 92.8 3410 82% 93.1 1561 74% 59.2 11047 89% 50.7 8128 97% 73.9 85%
SpiritSFT 93.4 3279 79% 93.1 1452 69% 58.8 11815 95% 52.0 7565 90% 74.2 83%
ConCISESFT 93.2 2740 66% 92.7 1247 59% 59.2 9871 79% 51.8 6543 78% 74.2 71%

OverThinkSimPO 93.8 2758 66% 93.4 1114 53% 56.3 9422 76% 51.5 6773 81% 73.7 69%
SpiritSimPO 92.0 2329 56% 92.3 801 38% 52.5 8055 65% 51.0 6663 80% 72.0 59%
ConCISESimPO 93.0 2207 53% 93.3 882 42% 55.9 7598 61% 51.7 5668 68% 74.0 56%

Qwen3-8BOrigin 93.4 5142 100% 95.6 2211 100% 73.3 15094 100% 60.6 7309 100% 80.7 100%

OverThinkSFT 93.2 4963 97% 95.5 2133 96% 72.5 14123 94% 60.3 7204 99% 80.4 96%
SpiritSFT 93.2 4184 81% 95.2 1675 76% 73.3 13854 92% 60.0 6784 93% 80.4 85%
ConCISESFT 93.0 4712 92% 95.6 1907 86% 72.1 14168 94% 60.4 6952 95% 80.6 92%

OverThinkSimPO 93.6 2488 48% 95.2 929 42% 69.2 9468 63% 57.1 3524 48% 78.9 50%
SpiritSimPO 93.2 2920 57% 95.3 997 45% 67.9 10441 69% 56.8 3473 48% 78.3 55%
ConCISESimPO 93.0 2271 44% 95.5 841 38% 71.6 10098 67% 57.6 3751 51% 79.4 50%

Table 1: Comparison of OverThink, SPIRIT, and ConCISE methods, fine-tuned with SFT or SimPO on four LRMs.
Metrics include Accuracy (Acc.), Token Count (Tok.), and Compression Ratio (CR) over four benchmarks. Light
gray rows denote original LRM performance. Best and second-best results are in bold and underlined respectively.
Note that the “Average” column is computed as an unweighted mean across benchmarks, and this convention applies
to all subsequent tables as well.

injected confidence phrase pi, which helps improve
internal certainty and suppress unnecessary reflec-
tions. After the first answer is generated, if the
detected confidence score ĉi exceeds the early stop-
ping threshold te, the model is explicitly trained
to terminate reasoning at that point. Through fine-
tuning, the model could learn to regulate its gener-
ation trajectory based on confidence, strengthening
certainty during reasoning and halting once suffi-
cient confidence is reached.

4 Experiments

4.1 Settings

Models and Datasets. We evaluate ConCISE
on four LRMs: DeepSeek-R1-Distill-Qwen-7B
& 1.5B(Guo et al., 2025), Skywork-OR1-7B-
Preview(He et al., 2025), and Qwen3-8B(Team,
2025). As for the training dataset, we select 2,000
questions from the MATH training set(Hendrycks
et al., 2021), ensuring that each question yields a
correct answer under greedy decoding and main-

taining diversity in difficulty and response lengths.
Importantly, for each model, we generate its own
fine-tuning data using the CONCISE pipeline,
rather than relying on external models, which en-
sures consistency between the training data and the
reasoning style of the target model.

Evaluation. We evaluate model performance
across four benchmarks: GSM8K(Cobbe et al.,
2021), Math-500(Hendrycks et al., 2021), AIME24,
and GPQA_diamond(Rein et al., 2024). All eval-
uations use the same decoding configuration with
temperature = 0.6 and top_p = 0.95(Guo et al.,
2025). The maximum length is set to 16k for
GSM8k, Math-500, GPQA_diamond, and 32k for
AIME24. For AIME24 and GPQA_diamond, due
to their higher difficulty and smaller sizes, we sam-
ple 8 times and report the mean values. As for
metrics, we adopt three primary metrics to assess
both reasoning accuracy and compression effective-
ness comprehensively. Acc. denotes the accuracy
of the final answer. Tok. refers to the average

8015

(a) Average Acc, StepNum, and StepLen. (b) Analysis of Reflection steps. (c) Metrics of training datasets.

Figure 5: Further analysis of reasoning chains and training datasets on DeepSeek-R1-Distill-Qwen-7B.

response length, measured in tokens. CR (Compres-
sion Rate) is defined as the ratio of the average
response length to that of the original model, with
lower values indicating better compression.

Baselines. We compare our method against exist-
ing approaches that aim to remove redundant rea-
soning and construct efficient reasoning datasets,
with further comparisons after fine-tuning under
SFT and SimPO scenarios. OverThink (Chen
et al., 2024) samples eight responses from the LRM
with a relatively high temperature and selects the
shortest correct one. Only the first reflection step
after the answer is retained. Spirit (Cui et al., 2025)
iteratively removes steps with minimal impact on
perplexity (PPL), deleting 30% of the least critical
steps. Adjacent contexts are merged to maintain
coherence. Appendix B.2 shows more implementa-
tion and training details.

4.2 Reults and Analysis

This section evaluates different compression meth-
ods across various reasoning benchmarks. Our
results show that CONCISE strikes a superior bal-
ance between compression and task performance
compared to baseline methods, enabling mod-
els to effectively eliminate redundant reasoning
steps. Additionally, models fine-tuned with CON-
CISE on mathematical datasets generalize well to
GPQA_diamond, showcasing its robustness.

CONCISE achieves superior balance between
compression and task performance As shown
in Table 1, CONCISE consistently demonstrates
strong compression ability across all four LRMs
and under both SFT and SimPO settings, while
maintaining model performance. Particularly un-
der SimPO settings, CONCISE achieves a com-

pression rate of ~50% with minimal impact on
the original model’s performance, achieving excel-
lent compression results on the challenging task
AIME24 as well as the out-of-domain task GPQA.

In contrast, OverThink achieves competitive task
performance but exhibits weaker compression un-
der both SFT and SimPO settings. Regarding Spirit,
despite attaining a compression rate comparable to
that of CONCISE under SimPO settings, its task
performance suffered a notable degradation, espe-
cially on challenging tasks like AIME24. Overall,
compared to baseline methods, CONCISE offers
a better balance between compression and perfor-
mance, demonstrating excellent in-domain and out-
of-domain generalization and robustness.

How does CONCISE achieve a better compres-
sion & performance balance? To better un-
derstand how CONCISE achieves an improved
balance between compression and performance,
we particularly analyze the structure of reason-
ing chains generated on various benchmarks of
DeepSeek-R1-Distill-Qwen-7B. As shown in Fig-
ure 5a, we evaluate the average number of steps
(StepNum) and the average token count per step
(StepLen). CONCISE generates the fewest reason-
ing steps, while its StepLen remains comparable
to that of the original model.

More detailed analysis focuses on reflection
steps within reasoning chains on MATH-500, re-
vealing distinct compression strategies among the
methods. As shown in Figure 5b, we find that prun-
ing reflection steps is key to compression, and
preserving non-reflection steps is paramount
for model performance. CONCISE uniquely
achieves this critical balance. Specifically, Spirit-
SFT retains the most reflection steps (RefNum),
followed by OverThink, while CONCISE re-

8016

tains the fewest. Regarding non-reflection steps
(Non-RefNum), OverThink and CONCISE exhibit
similar counts. Spirit shows slightly fewer non-
reflection steps under SimPO, albeit at the cost of a
performance drop. This suggests that current com-
pression techniques primarily achieve compression
by pruning reflection steps, as none of the evalu-
ated methods can effectively reduce non-reflection
steps without impairing model performance.

Further dissecting the reflection steps, Over-
Think and Spirit have the most reflection steps
before FAS(Pre-FAS RefNum) due to ineffective
early-stage reasoning control. In contrast, Spirit-
SFT has most reflection steps after FAS(Post-FAS
RefNum), indicating its inability to prune redundant
post-answer reflections. These distinct strategies in
reflection management contribute to performance
disparities: OverThink’s limited pre-answer prun-
ing curtails its compression potential, while Spirit’s
difficulty in accurately identifying redundant steps
often degrades performance by removing essen-
tial content. CONCISE, however, achieves a bet-
ter compression-performance balance by precisely
eliminating redundant reflection steps throughout
the entire reasoning chain without compromising
the essential reasoning process. We present more
details about the above analysis in Appendix B

How does the training dataset affect compres-
sion? Since all methods operate under identical
training configurations, variations in final com-
pression performance are fundamentally rooted
in the characteristics of their respective train-
ing datasets. To this end, we analyze training
datasets constructed by CONCISE, OverThink,
Spirit, Greedy-Search (derived from Spirit’s re-
jected samples), and Longest-of-N (derived from
rejected samples of CONCISE and OverThink).

As shown in Figure 5c, surface-level met-
rics such as response tokens (Tok.), step count
(StepNum), and average step length (StepLen)
show no strong direct correlation with the final
compression rate. For instance, while the train-
ing datasets of CONCISE and OverThink yield
nearly identical values for these metrics, CONCISE
demonstrates significantly better compression af-
ter fine-tuning under both SFT and SimPO. Con-
versely, Metrics related to reflection offer more
insightful distinctions among the methods. For
instance, OverThink has the highest values for
Pre-FAS RefNum, while Spirit shows the highest
Post-FAS RefNum. CONCISE, in contrast, con-

Benchmark Method Acc. Tok. StepNum StepLen CR

Math-500
Origin 90.8 3854 113.7 33.9 100%
ConCISE 92.0 2244.3 63.0 35.6 58%
Conf. Inj. 91.8 2620 79.5 33.0 68%
Early Stop 92.4 2654 68.4 38.8 69%

GSM8K

Origin 93.1 1442 41.4 34.8 100%
ConCISE 92.9 832 22.5 37.1 58%
Conf. Inj. 92.6 934 23.2 40.2 65%
Early Stop 92.7 1003 22.3 45.0 70%

AIME24

Origin 54.2 13574 463.0 29.3 100%
ConCISE 52.1 9751 333.0 29.3 72%
Conf. Inj. 51.3 10166 372.2 27.3 75%
Early Stop 54.2 12205 389.7 31.3 90%

Table 2: Ablation study of Confidence Injection and
Early Stopping on DeepSeek-R1-Distill-Qwen-7B.

sistently maintains lower figures for both these
metrics, underscoring its more effective control
over the model’s reflective tendencies. Echoing
the analysis from the previous subsection, these ob-
served characteristics within the training datasets
directly mirror the fine-tuned model’s capacity for
reflection management. This provides strong ev-
idence that the model effectively learns features
about reflection from the training data during the
fine-tuning process. Thus, it becomes clear how
CONCISE uses its unique training data design to
achieve significant compression by identifying and
cutting down on unnecessary reflection steps.

4.3 Ablation Study

We conduct an ablation study to evaluate the two
core components of CONCISE: Confidence Injec-
tion and Early Stopping. For each, we construct a
training dataset and fine-tune DeepSeek-7B using
the same configurations as in the main experiments.
All experiments are performed under SFT settings
and evaluated across three mathematical reasoning
tasks: Math-500, GSM8K, and AIME24.

The results, summarized in Table 2, show that
both mechanisms achieve similar reasoning accu-
racy to full CONCISE but exhibit weaker compres-
sion performance. Specifically, Confidence Injec-
tion suppresses unnecessary reflections by boost-
ing the model’s confidence, but has a limited im-
pact on terminating reasoning after the final an-
swer. Early Stopping, on the other hand, halts
excessive post-answer reasoning but does not ad-
dress earlier stages. Only by combining both can
we achieve comprehensive redundancy elimination
without compromising reasoning quality.

8017

Figure 6: Average performance of training-free methods
and CONCISE variants on DeepSeek-R1-Distill-Qwen-
7B and 1.5B across GSM8K, Math-500, and AIME24.

4.4 Analysis of Training-free Methods

To further demonstrate the advantages of the CON-
CISE framework, we compare it against represen-
tative training-free methods. Specifically, we in-
clude TALE (Han et al., 2024), which constrains
reasoning length by injecting explicit token bud-
gets into prompts, and DEER (Yang et al., 2025),
which dynamically decides when to terminate rea-
soning by monitoring the generation probability
of the answer. For DEER, we reproduce two vari-
ants with λ = 0.95 and λ = 0.98. We also im-
plement a training-free version of our method, de-
noted ConCISE-Decoding, which directly applies
Algorithm 1during inference to decide when to
terminate reasoning, without relying on ground-
truth verification. We evaluate these methods on
GSM8K, Math-500, and AIME24, and report the
averaged results in Figure 6, with detailed statistics
provided in Table 6.

We find that training-free methods can achieve
partial compression, but their compression levels
are unstable and often come with substantial ac-
curacy degradation. For instance, DEER achieves
relatively stable compression but introduces a 5–8%
accuracy drop. Meanwhile, TALE attains a high
compression ratio on GSM8K with DeepSeek-7B,
but performs poorly on other datasets and mod-
els. In contrast, CONCISE-SIMPO consistently
achieves a superior overall trade-off, and even the
training-free variant CONCISE-DECODING out-
performs other training-free approaches. These re-
sults highlight that CONCISE enables more precise
elimination of redundant reflection steps, thereby
yielding higher-quality reasoning chains.

5 Conclusion

In this work, we first modeled the generation of
reflection steps in LRMs from a confidence-guided
perspective, helping to understand two key patterns

responsible for redundant reflection within the rea-
soning process of LRMs: Confidence Deficit and
Termination Delay. Based on this, we propose
CONCISE, which employs Confidence Injection
and Early Stopping mechanisms to respectively ad-
dress the above two patterns to suppress redundant
reflection steps and produce efficient, concise rea-
soning chains. Extensive experiments demonstrate
that LRMs fine-tuned on CONCISE-generated data
significantly compress their responses while main-
taining strong task performance.

Limitations

While CONCISE demonstrates strong performance
in compressing reasoning chains, it is subject to
certain limitations that merit further exploration:

Room for Further Compression. While CON-
CISE effectively addresses redundant reflection
steps, analysis indicates that significant poten-
tial remains for further compression of both non-
reflection steps and the average length of each step.
Future work could explore integrating techniques
with CONCISE to achieve a higher degree of com-
pression while maintaining model performance.

Confidence Estimation During Reasoning. Al-
though CONCISE introduces a lightweight confi-
dence detector for the post-answer phase, it still
lacks a direct mechanism to model confidence be-
fore the first answer. Instead, it relies on the oc-
currence of reflection steps as an indirect proxy.
Future work could explore training a lightweight
model to detect the model’s internal confidence,
thereby enabling more fine-grained control.

Integration with RLVR methods. This work fo-
cuses on constructing concise reasoning traces and
validating them under SFT and SimPO, which we
consider sufficient to support our core contribution.
At the same time, we recognize that RLVR meth-
ods such as GRPO(Shao et al., 2024) are powerful
and widely used in post-training. Exploring how
confidence-guided signals can be incorporated into
RLVR setups is a valuable future direction.

Acknowledgement

This research was supported in part by the National
Natural Science Foundation of China under Grant
No. 62402267, 62432004, the China Postdoctoral
Science Foundation under Grant No. BX20240177,
2025M771499, and a grant from the Guoqiang In-
stitute, Tsinghua University.

8018

References
Pranjal Aggarwal and Sean Welleck. 2025. L1:

Controlling how long a reasoning model thinks
with reinforcement learning. arXiv preprint
arXiv:2503.04697.

Daman Arora and Andrea Zanette. 2025. Training lan-
guage models to reason efficiently. arXiv preprint
arXiv:2502.04463.

Simon A Aytes, Jinheon Baek, and Sung Ju Hwang.
2025. Sketch-of-thought: Efficient llm reasoning
with adaptive cognitive-inspired sketching. arXiv
preprint arXiv:2503.05179.

Xingyu Chen, Jiahao Xu, Tian Liang, Zhiwei He,
Jianhui Pang, Dian Yu, Linfeng Song, Qiuzhi Liu,
Mengfei Zhou, Zhuosheng Zhang, and 1 others.
2024. Do not think that much for 2+ 3=? on
the overthinking of o1-like llms. arXiv preprint
arXiv:2412.21187.

Yu-Neng Chuang, Leisheng Yu, Guanchu Wang, Lizhe
Zhang, Zirui Liu, Xuanting Cai, Yang Sui, Vladimir
Braverman, and Xia Hu. 2025. Confident or seek
stronger: Exploring uncertainty-based on-device llm
routing from benchmarking to generalization. arXiv
preprint arXiv:2502.04428.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian,
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro
Nakano, and 1 others. 2021. Training verifiers
to solve math word problems. arXiv preprint
arXiv:2110.14168.

Yingqian Cui, Pengfei He, Jingying Zeng, Hui Liu,
Xianfeng Tang, Zhenwei Dai, Yan Han, Chen Luo,
Jing Huang, Zhen Li, and 1 others. 2025. Stepwise
perplexity-guided refinement for efficient chain-of-
thought reasoning in large language models. arXiv
preprint arXiv:2502.13260.

Sicheng Feng, Gongfan Fang, Xinyin Ma, and Xinchao
Wang. 2025. Efficient reasoning models: A survey.
arXiv preprint arXiv:2504.10903.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao
Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu, Shi-
rong Ma, Peiyi Wang, Xiao Bi, and 1 others. 2025.
Deepseek-r1: Incentivizing reasoning capability in
llms via reinforcement learning. arXiv preprint
arXiv:2501.12948.

Tingxu Han, Zhenting Wang, Chunrong Fang, Shiyu
Zhao, Shiqing Ma, and Zhenyu Chen. 2024.
Token-budget-aware llm reasoning. arXiv preprint
arXiv:2412.18547.

Shibo Hao, Sainbayar Sukhbaatar, DiJia Su, Xian Li,
Zhiting Hu, Jason Weston, and Yuandong Tian. 2024.
Training large language models to reason in a contin-
uous latent space. arXiv preprint arXiv:2412.06769.

Jujie He, Jiacai Liu, Chris Yuhao Liu, Rui Yan, Chaojie
Wang, Peng Cheng, Xiaoyu Zhang, Fuxiang Zhang,
Jiacheng Xu, Wei Shen, Siyuan Li, Liang Zeng, Tian-
wen Wei, Cheng Cheng, Bo An, Yang Liu, and
Yahui Zhou. 2025. Skywork open reasoner series.
https://capricious-hydrogen-41c.notion.si
te/Skywork-Open-Reaonser-Series-1d0bc9ae8
23a80459b46c149e4f51680. Notion Blog.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul
Arora, Steven Basart, Eric Tang, Dawn Song, and
Jacob Steinhardt. 2021. Measuring mathematical
problem solving with the math dataset. NeurIPS.

Aaron Jaech, Adam Kalai, Adam Lerer, Adam Richard-
son, Ahmed El-Kishky, Aiden Low, Alec Helyar,
Aleksander Madry, Alex Beutel, Alex Carney, and 1
others. 2024. Openai o1 system card. arXiv preprint
arXiv:2412.16720.

Ayeong Lee, Ethan Che, and Tianyi Peng. 2025.
How well do llms compress their own chain-of-
thought? a token complexity approach. arXiv
preprint arXiv:2503.01141.

Haotian Luo, Li Shen, Haiying He, Yibo Wang, Shi-
wei Liu, Wei Li, Naiqiang Tan, Xiaochun Cao,
and Dacheng Tao. 2025. O1-pruner: Length-
harmonizing fine-tuning for o1-like reasoning prun-
ing. arXiv preprint arXiv:2501.12570.

Xinyin Ma, Guangnian Wan, Runpeng Yu, Gongfan
Fang, and Xinchao Wang. 2025. Cot-valve: Length-
compressible chain-of-thought tuning. arXiv preprint
arXiv:2502.09601.

Yu Meng, Mengzhou Xia, and Danqi Chen. 2024.
Simpo: Simple preference optimization with a
reference-free reward. Advances in Neural Infor-
mation Processing Systems, 37:124198–124235.

Niklas Muennighoff, Zitong Yang, Weijia Shi, Xi-
ang Lisa Li, Li Fei-Fei, Hannaneh Hajishirzi, Luke
Zettlemoyer, Percy Liang, Emmanuel Candès, and
Tatsunori Hashimoto. 2025. s1: Simple test-time
scaling. arXiv preprint arXiv:2501.19393.

Tergel Munkhbat, Namgyu Ho, Seo Hyun Kim, Yongjin
Yang, Yujin Kim, and Se-Young Yun. 2025. Self-
training elicits concise reasoning in large language
models. arXiv preprint arXiv:2502.20122.

Sania Nayab, Giulio Rossolini, Marco Simoni, Andrea
Saracino, Giorgio Buttazzo, Nicolamaria Manes, and
Fabrizio Giacomelli. 2024. Concise thoughts: Impact
of output length on llm reasoning and cost. arXiv
preprint arXiv:2407.19825.

Isaac Ong, Amjad Almahairi, Vincent Wu, Wei-Lin Chi-
ang, Tianhao Wu, Joseph E Gonzalez, M Waleed
Kadous, and Ion Stoica. 2024. Routellm: Learning
to route llms from preference data. In The Thirteenth
International Conference on Learning Representa-
tions.

8019

https://capricious-hydrogen-41c.notion.site/Skywork-Open-Reaonser-Series-1d0bc9ae823a80459b46c149e4f51680
https://capricious-hydrogen-41c.notion.site/Skywork-Open-Reaonser-Series-1d0bc9ae823a80459b46c149e4f51680
https://capricious-hydrogen-41c.notion.site/Skywork-Open-Reaonser-Series-1d0bc9ae823a80459b46c149e4f51680

Xiaoye Qu, Yafu Li, Zhaochen Su, Weigao Sun, Jianhao
Yan, Dongrui Liu, Ganqu Cui, Daizong Liu, Shuxian
Liang, Junxian He, and 1 others. 2025. A survey of
efficient reasoning for large reasoning models: Lan-
guage, multimodality, and beyond. arXiv preprint
arXiv:2503.21614.

Qwen Team. 2024. QwQ: Reflect Deeply on the Bound-
aries of the Unknown. Accessed: 2025-04-05.

Rafael Rafailov, Archit Sharma, Eric Mitchell, Christo-
pher D Manning, Stefano Ermon, and Chelsea Finn.
2023. Direct preference optimization: Your lan-
guage model is secretly a reward model. Advances in
Neural Information Processing Systems, 36:53728–
53741.

David Rein, Betty Li Hou, Asa Cooper Stickland, Jack-
son Petty, Richard Yuanzhe Pang, Julien Dirani, Ju-
lian Michael, and Samuel R Bowman. 2024. Gpqa:
A graduate-level google-proof q&a benchmark. In
First Conference on Language Modeling.

Matthew Renze and Erhan Guven. 2024. The benefits
of a concise chain of thought on problem-solving in
large language models. In 2024 2nd International
Conference on Foundation and Large Language Mod-
els (FLLM), pages 476–483. IEEE.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu,
Junxiao Song, Xiao Bi, Haowei Zhang, Mingchuan
Zhang, YK Li, Yang Wu, and 1 others. 2024.
Deepseekmath: Pushing the limits of mathematical
reasoning in open language models. arXiv preprint
arXiv:2402.03300.

Yi Shen, Jian Zhang, Jieyun Huang, Shuming Shi, Wen-
jing Zhang, Jiangze Yan, Ning Wang, Kai Wang, and
Shiguo Lian. 2025a. Dast: Difficulty-adaptive slow-
thinking for large reasoning models. arXiv preprint
arXiv:2503.04472.

Zhenyi Shen, Hanqi Yan, Linhai Zhang, Zhanghao Hu,
Yali Du, and Yulan He. 2025b. Codi: Compress-
ing chain-of-thought into continuous space via self-
distillation. arXiv preprint arXiv:2502.21074.

Yang Sui, Yu-Neng Chuang, Guanchu Wang, Jiamu
Zhang, Tianyi Zhang, Jiayi Yuan, Hongyi Liu, An-
drew Wen, Hanjie Chen, Xia Hu, and 1 others.
2025. Stop overthinking: A survey on efficient rea-
soning for large language models. arXiv preprint
arXiv:2503.16419.

Hanshi Sun, Momin Haider, Ruiqi Zhang, Huitao
Yang, Jiahao Qiu, Ming Yin, Mengdi Wang, Peter
Bartlett, and Andrea Zanette. 2024. Fast best-of-n
decoding via speculative rejection. arXiv preprint
arXiv:2410.20290.

Kimi Team, Angang Du, Bofei Gao, Bowei Xing,
Changjiu Jiang, Cheng Chen, Cheng Li, Chenjun
Xiao, Chenzhuang Du, Chonghua Liao, and 1 others.
2025. Kimi k1. 5: Scaling reinforcement learning
with llms. arXiv preprint arXiv:2501.12599.

Qwen Team. 2025. Qwen3.

Yue Wang, Qiuzhi Liu, Jiahao Xu, Tian Liang, Xingyu
Chen, Zhiwei He, Linfeng Song, Dian Yu, Juntao Li,
Zhuosheng Zhang, and 1 others. 2025. Thoughts are
all over the place: On the underthinking of o1-like
llms. arXiv preprint arXiv:2501.18585.

Jason Wei, Maarten Bosma, Vincent Y Zhao, Kelvin
Guu, Adams Wei Yu, Brian Lester, Nan Du, An-
drew M Dai, and Quoc V Le. 2021. Finetuned lan-
guage models are zero-shot learners. arXiv preprint
arXiv:2109.01652.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou,
and 1 others. 2022. Chain-of-thought prompting elic-
its reasoning in large language models. Advances
in neural information processing systems, 35:24824–
24837.

Yuyang Wu, Yifei Wang, Tianqi Du, Stefanie Jegelka,
and Yisen Wang. 2025. When more is less: Un-
derstanding chain-of-thought length in llms. arXiv
preprint arXiv:2502.07266.

Heming Xia, Yongqi Li, Chak Tou Leong, Wenjie
Wang, and Wenjie Li. 2025. Tokenskip: Control-
lable chain-of-thought compression in llms. arXiv
preprint arXiv:2502.12067.

Silei Xu, Wenhao Xie, Lingxiao Zhao, and Pengcheng
He. 2025. Chain of draft: Thinking faster by writing
less. arXiv preprint arXiv:2502.18600.

An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui,
Bo Zheng, Bowen Yu, Chengyuan Li, Dayiheng Liu,
Fei Huang, Haoran Wei, Huan Lin, Jian Yang, Jian-
hong Tu, Jianwei Zhang, Jianxin Yang, Jiaxi Yang,
Jingren Zhou, Junyang Lin, Kai Dang, and 22 oth-
ers. 2024. Qwen2.5 technical report. arXiv preprint
arXiv:2412.15115.

Chenxu Yang, Qingyi Si, Yongjie Duan, Zheliang Zhu,
Chenyu Zhu, Zheng Lin, Li Cao, and Weiping Wang.
2025. Dynamic early exit in reasoning models. arXiv
preprint arXiv:2504.15895.

Qiying Yu, Zheng Zhang, Ruofei Zhu, Yufeng Yuan,
Xiaochen Zuo, Yu Yue, Tiantian Fan, Gaohong Liu,
Lingjun Liu, Xin Liu, and 1 others. 2025. Dapo:
An open-source llm reinforcement learning system
at scale. arXiv preprint arXiv:2503.14476.

Jintian Zhang, Yuqi Zhu, Mengshu Sun, Yujie Luo,
Shuofei Qiao, Lun Du, Da Zheng, Huajun Chen,
and Ningyu Zhang. 2025. Lightthinker: Think-
ing step-by-step compression. arXiv preprint
arXiv:2502.15589.

Yaowei Zheng, Richong Zhang, Junhao Zhang, Yanhan
Ye, Zheyan Luo, Zhangchi Feng, and Yongqiang Ma.
2024. Llamafactory: Unified efficient fine-tuning
of 100+ language models. In Proceedings of the

8020

https://qwenlm.github.io/blog/qwq-32b-preview/
https://qwenlm.github.io/blog/qwq-32b-preview/
https://qwenlm.github.io/blog/qwen3/
http://arxiv.org/abs/2403.13372
http://arxiv.org/abs/2403.13372

62nd Annual Meeting of the Association for Compu-
tational Linguistics (Volume 3: System Demonstra-
tions), Bangkok, Thailand. Association for Computa-
tional Linguistics.

8021

A Details about ConCISE

A.1 Confidence Injection

The selection of appropriate confidence phrases is
critical for the Confidence Injection component of
ConCISE. We curated a pool of 20 distinct phrases,
presented in Table 3, by observing the model’s
native reasoning expressions, employing manual
design, and performing experimental refinement
(partly illustrated in Figure 4a). The purpose of
these phrases is to inject confidence into the model,
thereby preventing redundant reflection steps dur-
ing reasoning. To mitigate potential overfitting to
any specific phrase, one phrase is randomly se-
lected from the pool for injection at runtime.

Additionally, another crucial mechanism within
the Confidence Injection process is identifying
whether the current step constitutes a reflection
step. The accurate and swift identification of such
steps is paramount for the success of Confidence
Injection. Consequently, informed by our observa-
tions of reflection steps during LRM reasoning pro-
cesses, we employed a rule-based detection method.
This method, which is detailed in Appendix A.3.1,
achieves reasonably accurate detection while hav-
ing a negligible impact on the model’s inference
speed.

A.2 Early Stopping

Probing prompt and confidence-indicated to-
kens. The effectiveness of the Early Stopping
mechanism relies heavily on the accuracy of its
confidence detector. To identify an appropriate
probing prompt, we first analyzed the reasoning
chains generated by four Large Reasoning Mod-
els (LRMs) using Greedy decoding on the training
question set. This analysis revealed that the model
frequently expresses confidence during the later
part of the reasoning chain, and as shown in Ta-
ble 4, self-reported confidence expressions starting
with “I’m” (such as “I’m confident”) are very com-
mon.

Based on this observation, particularly consider-
ing the prevalence of confidence statements led by
“I’m”, we considered "So, I’m" as a potential prob-
ing prompt. Concurrently, we also experimented
with alternative probing prompts, such as "So, I
feel" and "I can be". However, we observed
that these alternative prompts often resulted in high
confidence scores before the model had reached the
final answer (i.e., prior to Final Answer Serializa-
tion, FAS), leading to unnecessary computational

Table 3: The Pool of 20 Confidence Phrases used for
Confidence Injection.

Index Confidence Phrase

1 Therefore
2 The reasoning holds
3 Previous steps are correct
4 All steps are valid
5 With this established
6 That sounds reasonable
7 Let’s go ahead
8 Alright, let’s carry on
9 Let’s proceed
10 Let’s progress
11 So, putting it all together
12 The logic stands firm
13 The reasoning process is valid
14 Good, let’s keep going
15 Everything seems reasonable so far
16 This part checks out
17 I think that’s solid. So
18 The reasoning holds, let’s keep going
19 Everything checks out, let’s move on
20 All steps are solid, let’s move forward

overhead.
Therefore, considering these factors—namely,

the prevalence of “I’m”-led confidence statements
in the model’s natural expressions and the short-
comings of the alternative prompts—we ulti-
mately selected "So, I’m" as the fixed probing
prompt. Subsequently, we identified the primary
confidence-indicative tokens that follow the "So,
I’m" prompt, which are: "confident", "pretty
confident", "sure", and "pretty sure".

The confidence score, ĉi, for a given state Si is
then calculated by summing the probabilities of
generating these tokens or sequences immediately
following the probing prompt "So, I’m":

ĉi =P ("confident" | Si, "So, I’m")

+ P ("sure" | Si, "So, I’m")

+ P ("pretty" | Si, "So, I’m")×(
P ("confident" | Si, "So, I’m pretty")

+ P ("sure" | Si, "So, I’m pretty")
)

Here, notation like P (token | Si, sequence) rep-
resents the conditional probability of generating the
next token given the preceding state Si and the spe-
cific text sequence provided as context. As demon-
strated in Figure 4b and supported by our exper-

8022

Table 4: Frequency of Common Confidence Expressions Observed in 2000 training Reasoning Chains Across
Different Large Reasoning Model Series(DeepSeek, Qwen and Skywork)

Expression DeepSeek-7B DeepSeek-1.5B Qwen3-8B Skywork-OR17B

I’m confident 423 335 127 560
I feel confident 170 172 58 144
I can be confident that 157 156 475 130
I can confidently say 70 176 91 98
This gives me (more)confidence that 68 81 23 86
I’m pretty confident 43 69 2 60
I’m pretty sure 37 28 2 17
Therefore, confident that 1 0 26 5

Total (sum of listed expressions) 969 1017 804 1100

imental results, the confidence detector designed
using this probing prompt and set of confidence-
indicative tokens proves effective for the early stop-
ping mechanism in ConCISE.

Early stopping threshold. The selection of the
early stopping threshold, t, was guided by the prin-
ciple of tailoring the reflection process to the appar-
ent quality of the reasoning chain. Our objective
was to configure the threshold such that:

• Simple problems with rigorous reasoning
steps require no post-answer reflection.

• Problems of moderate difficulty benefit from
exactly one round of reflection.

• Difficult problems or those with less rigorous
reasoning undergo two or more rounds of re-
flection.

To find a threshold value that aligns with
this principle, we empirically evaluated te ∈
{0.4, 0.5, 0.6, 0.7} on the DeepSeek-R1-Distill-
Qwen-7B model. For each value, we mea-
sured the probability distribution of the exceed-
ing points(when ĉi > te) across different stages:
exceeding after the initial answer generation (0 re-
flections), after the first reflection, after the second
reflection, etc. The results of this analysis are illus-
trated in Figure 7.

Observing the distributions in Figure 7, we found
that these te settings generally cause the model to
achieve a confidence score ĉi > te at the position
of the first reflection, which aligns with our three
guiding principles. Furthermore, the confidence
monitored by our designed lightweight detector
rarely indicates high confidence before the FAS

Figure 7: Distribution of exceeding points(when ĉi >
te) probability of Pre-FAS, FAS, Ref1, 2, ..., 5 for dif-
ferent threshold values (te).

Benchmark Te Acc. Tok. StepNum StepLen CR

Math-500

0.4 91.4 2390.6 68.4 34.9 62.0%
0.5 92.0 2244.3 63.0 35.6 58.2%
0.6 91.8 2324.3 66.1 35.2 60.3%
0.7 92.0 2345.1 67.5 34.8 60.8%

GSM8K

0.4 92.4 828.9 19.9 41.6 57.5%
0.5 92.9 831.9 22.5 37.1 57.7%
0.6 93.0 831.7 20.4 40.7 57.7%
0.7 92.7 849.3 21.7 39.2 58.9%

AIME24

0.4 45.8 11548.7 402.1 28.7 85.1%
0.5 52.1 9750.8 333.0 29.3 71.8%
0.6 52.1 9802.5 340.5 28.8 72.2%
0.7 51.7 9719.9 339.8 28.6 71.6%

Table 5: Effect of different early stopping thresholds
(0.4, 0.5, 0.6, 0.7) on the SFT performance of DeepSeek-
R1-Distill-Qwen-7B across mathematical benchmarks.

8023

(Final Answer Serialization) step. This is advanta-
geous as it effectively reduces the computational
overhead associated with prematurely judging the
correctness of an answer, making it highly compat-
ible with the ConCISE methodology.

Therefore, we further conducted experiments
for te ∈ {0.4, 0.5, 0.6, 0.7} under the SFT set-
ting of DeepSeek-R1-Distill-Qwen-7B, and Table 5
presents these experimental results. We found that
under the settings of te = 0.5, 0.6, and 0.7, the
model ultimately exhibited similar performance in
both compression rate (CR) and accuracy (Acc),
demonstrating robustness to the choice of te. Con-
sequently, we selected te = 0.5 for subsequent
extensive experiments. However, when te = 0.4,
there was a significant decline in performance. This
is because when te is set to 0.4, more data exists at
the FAS step, preventing the model from adequately
checking its reasoning process; this excessive con-
fidence leads to a performance drop.

A.3 Reflection step detection

The detection of reflection steps, as mentioned
throughout this paper, plays a crucial role in both
the algorithmic flow and experimental evaluation
of ConCISE. Specifically, we employ two distinct
methods for identifying these steps, selecting the
most suitable one depending on the specific ap-
plication context. These methods and their corre-
sponding usage scenarios are detailed below.

A.3.1 Rule-based detection.
Reflection steps generated by the model of-
ten exhibit distinct linguistic characteristics, fre-
quently containing specific keywords (e.g., "wait",
"alternatively") that signal potential reasoning
shifts or reconsiderations. Consequently, a straight-
forward and effective strategy for identifying the
start of such steps is rule-based detection. This
method checks for the presence of predefined "re-
flection keywords" within the generated text of a
given step, Si.

Formally, let K be the predefined set of reflec-
tion keywords. A step si is identified as the start of
a reflection, denoted as IsReflectionStart(si), if its
text contains any keyword k from the set K:

IsReflectionStart(si) ≡
∨

k∈K
(k ⊆ si)

where k ⊆ si indicates that the keyword k appears
as a substring of step si.The set K of reflection

keywords used for rule-based detection consists of
the following:

• "wait", "alternatively", "check",
"reconsider", "reflect", "rethink",
"reconsidering", "reviewing",
"reassess", "pause", "second thought",
"reevaluate", "verify", "think again".

While effective for identifying the onset of a re-
flection sequence, this method typically cannot rec-
ognize subsequent steps within the same reflection
process, as these later reflection steps often lack
the initial triggering keywords. Despite this limita-
tion, we utilize this rule-based approach within the
Confidence Injection. Since Confidence Injection
operates during the model’s generation process,
identifying and potentially preventing only the first
redundant reflection step is often sufficient to avoid
generating the entire reflection. This method is
particularly advantageous here due to its efficiency
(introducing no computational overhead) and ease
of implementation.

Similarly, this rule-based detection is used for
the Figure 4a analysis to determine if an interven-
tion (like inserting a confidence phrase) triggers the
start of a new reflection, as only detecting the initial
step with this lightweight method is necessary.

A.3.2 LLM-as-a-Judge
When the task requires identifying all reflection
steps within an entire reflection behavior—a ca-
pability beyond the rule-based method—a more
comprehensive approach is needed. For example,
implementing the OverThink baseline necessitates
isolating and retaining the complete first reflection
sequence that occurs after the FAS(First Answer
Step). To address this, we employ an LLM-as-a-
Judge methodology.

Specifically, we utilize the Qwen-Max model
as the judge. We provide it with both the original
problem/question and the model’s complete reason-
ing chain as input. The prompt supplied to Qwen-
Max includes precise definitions of the FAS and
the characteristics defining a ’reflection behavior’.
The model is instructed to return a structured out-
put that annotates the input chain, identifying the
index of the FAS and providing the indices for all
detected reflection steps, grouped according to the
reflection behavior they belong to. We then parse
this structured output to finalize the detection and
grouping of reflection steps. Illustrative examples
of the prompt structure, input format, and expected

8024

(a) Difficulty diversity of question set. (b) Length diversity of question set.

Figure 8: Diversity of the question set, showing distributions for difficulty and length.

response can be found in Figure 10, Figure 11, and
Figure 12

Our observations indicate that Qwen-Max per-
forms reliably in identifying FAS and grouping
reflection steps when the reasoning chains are of
moderate length. However, we noted a decline
in performance for chains exceeding 5000 tokens.
This degradation is likely attributable to the known
limitations of current LLMs in processing very long
contexts effectively. Consequently, for the imple-
mentation of the OverThink baseline comparison,
reasoning chains longer than 3000 tokens were
manually annotated to ensure accuracy.

Furthermore, the LLM-as-a-Judge approach is
the basis for calculating several reflection-based
metrics presented in our results, such as RefNum,
Non-RefNum, pre-FAS RefNum, and post-FAS
RefNum (shown in Figure 5b and Figure 5c).

B Details about Experiments

B.1 Datasets

Question Set While the construction methodol-
ogy for the question set is detailed in Section 4,
here we focus on illustrating its diversity in terms of
difficulty and length.Figures 8a and 8b demonstrate
the diversity of the Question set. Difficulty distri-
bution is derived from metric Level in the MATH
dataset, while length distribution reflects reasoning
chain lengths from DeepSeek-R1-Distill-Qwen-7B
under greedy decoding. Furthermore, it is impor-
tant to note a subsequent refinement process for
these selected questions when constructing the final
training set. Although the initial 2000 data entries
were chosen based on the premise that the model

could correctly answer them using greedy search,
the generation processes for our CONCISE and
OverThink methods do not strictly adhere to greedy
decoding, and CONCISE will discard wrong rea-
soning chains. Therefore, for training purposes, we
ultimately utilize the common subset of correctly
reasoned chains derived from the outputs of three
methods: CONCISE, OverThink, and Spirit. This
intersection results in a refined training dataset of
approximately 1900 samples.

Validation Dataset For the experiments pre-
sented in Figure 4, we curated the Verification
Dataset. This was necessary because the required
analyses (including First Answer Step (FAS) and
reflection detection, as shown in Figure 4b) rely
on annotations from the LLM-as-a-Judge method
(§A.3.2), whose reliability decreases on long rea-
soning chains. To ensure dependable results, the
Verification Dataset comprises another 1000 rea-
soning chains selected from the MATH training set,
filtered based on two criteria: yielding a correct
answer under greedy decoding and having a rea-
soning chain length under 5000. This curated set
facilitates reliable LLM-based annotation for the
validation experiments.

Evaluation Dataset The analysis presented in
Figure 5b and Figure 9b required LLM-as-a-Judge
annotations. To ensure reliable results despite this
method’s limitations with long contexts, we filtered
the MATH500 dataset. We selected only those
problems where reasoning chains generated by all
twelve specified finetuning configurations (com-
binations of ConCISE/OverThink/Spirit methods,
1.5B/7B sizes, and SFT/SimPO techniques) were

8025

Model Method GSM8K Math-500 AIME24 Average

Acc. CR Acc. CR Acc. CR Acc. CR

DeepSeek-7B

Origin 93.1 100% 90.8 100% 54.2 100% 79.4 100%
DEER(0.98) 90.3 59% 87.0 51% 47.1 69% 74.8 60%
DEER(0.95) 87.9 56% 85.2 49% 43.4 64% 72.2 56%
TALE 89.0 47% 90.0 95% 52.9 98% 77.3 80%
ConCISE-Decoding 92.7 62% 89.2 55% 49.6 67% 77.2 61%
ConCISE-SimPO 92.1 50% 91.0 51% 48.3 57% 77.1 53%

DeepSeek-1.5B

Origin 85.4 100% 82.2 100% 29.2 100% 65.6 100%
DEER(0.98) 79.7 41% 77.6 54% 24.6 70% 60.6 55%
DEER(0.95) 74.7 43% 76.4 49% 21.3 64% 57.5 52%
TALE 84.9 90% 81.6 98% 29.6 98% 65.4 95%
ConCISE-Decoding 83.9 53% 79.0 52% 26.3 52% 63.1 52%
ConCISE-SimPO 84.3 36% 83.6 51% 30.4 50% 66.1 46%

Table 6: Detailed results of training-free baselines and CONCISE variants on DeepSeek-R1-Distill-Qwen-7B and
1.5B across GSM8K, Math-500, and AIME24. Acc: accuracy (%), CR: compression ratio relative to original (lower
CR indicates shorter outputs).

(a) Average Acc, StepNum, and StepLen. (b) Analysis of Reflection steps. (c) Metrics of training datasets.

Figure 9: Further analysis of reasoning chain and training dataset characteristics on DeepSeek-R1-Distill-Qwen-
1.5B.

shorter than 5000 tokens. This yielded a common
subset of 340 problems, on which our subsequent
comparative analysis of the different methods was
exclusively performed.

B.2 Training Details

Models. DeepSeek-R1-Distill-Qwen-7B and
DeepSeek-R1-Distill-Qwen-1.5B are reasoning
models derived by DeepSeek from the Qwen2.5
series models (Yang et al., 2024)through distilla-
tion training, using training and generation data
from the DeepSeek-R1 model. Skywork-OR1-7B-
Preview was further developed via reinforcement
learning, exhibiting strong capabilities on test sets
such as mathematics. Meanwhile, Qwen3-8B is a
recently released hybrid reasoning model noted for
its powerful reasoning abilities. All four of these
are open-source models. While they possess strong

Chain-of-Thought (CoT) reasoning capabilities,
they also present clear issues with reasoning
redundancy. Consequently, we employ these four
models for subsequent training and evaluation.
Furthermore, we ensure that these models, along
with all datasets involved in the training and
evaluation processes, are utilized following their
original licenses and intended purposes.

Training. We construct training datasets based
on the question set using CONCISE, OverThink,
and Spirit. For the generation process of Con-
CISE, we set Temperature=0.6, Top_p=0.95. For
OverThink, we sample 8 reasoning chains under
Tempature=1.0(which is relatively high due to the
recommended temperature for solving math prob-
lems of the LRMs is usually 0.6-0.8), Top_p=0.95.
For Spirit, compression is applied to reasoning

8026

chains generated via greedy search. During train-
ing, we adopt two strategies: SFT and SimPO. SFT
directly uses the question and its corresponding
compressed reasoning trace for supervised fine-
tuning. For SimPO, reject samples are also re-
quired (Rafailov et al., 2023). Following the orig-
inal OverThink setup, we use the longest correct
reasoning chain among the eight samples as the
reject samples. To ensure a fair comparison, CON-
CISE adopts the same strategy. For Spirit, the
full reasoning chain before compression serves as
reject samples, because this is precisely the compar-
ative effect Spirit aims to demonstrate: important
steps are retained while preference relationships
are learned only for non-important steps. We use
LlamaFactory for both SFT and SimPO fine-tuning
(Zheng et al., 2024). All models are trained with
lr = 1e− 6; SFT runs for 2 epochs and SimPO for
1 epoch. The effective batch size for all training is
32 (using per_device_train_batch_size=1 and
gradient_accumulation_steps=8 on 4 A800
GPUs), and max_length is set to 10240.

B.3 Analysis on DeepSeek-1.5B
Regarding the analysis conducted on DeepSeek-R1-
Distill-Qwen-7B in the Experimental Section 4.1,
we also performed a similar analysis for DeepSeek-
R1-Distill-Qwen-1.5B. Figure 9 shows the spe-
cific results. The trends exhibited by the data, as
well as the relationships among the three meth-
ods, are largely consistent with those presented for
DeepSeek-R1-Distill-Qwen-7B. Consequently, the
final conclusions are also consistent.

8027

Prompt

You are an AI assistant trained to analyze reasoning steps in a response. Your task has two parts:
1. Examine each reasoning step to determine if it’s part of a reflection process.
2. Identify the earliest step where the final answer (as later shown in boxed{}) is first derived,
regardless of whether it is formally written or boxed at that moment.

[Definition of Reflection]:
1. A reflection process is a sequence of one or more reasoning steps that recheck or doubt a
previously made conclusion, such as double-checking calculations, using alternative methods.
2. Typical signals include (but are not limited to): ‘Wait’, ‘Alternatively’, ‘Just to double check’,
’But hold on’, etc. These signals usually mean the start of a new reflection process.
3. However, even without such phrases, if the content of a step reflects a verification or reevaluation,
it should be marked as a part of a reflection process.

[Output Format]:
1. Reflection Step: List all reflection processes as groups of steps.

- If Step3 and Step4 form a reflection, write as (Step3, Step4)
- If Step5, Step6, Step7 form a new reflection process together, list as a separate group: [(Step3,

Step4), (Step5, Step6, Step7)]
- Avoid putting a lot of steps into one single reflection process.

2. First Answer Step: Write the earliest step where the final answer is first derived(e.g., Step2).

[Example]:
Question: 2 + 3 = ?
Response: Step1: I start with 2 + 3. Step2: That gives me 5. Step3: Wait, is that right? Let me
make sure... Step4: But hold on, let me double-check. Maybe I should... Step5: Wait, no, I think...
Step6: Therefore, the result is 5 Step7: Alternatively, if I use... Step8: So, the answer is 5 Step9:
Final Answer: the answer is boxed5.
Output:
Reflection Step: [(Step3), (Step4), (Step5, Step6), (Step7, Step8)]
First Correct Step: Step2
Explanations for Reflection Step:

- There is ’wait’, a reflection keyword, in Step3, so Step3 is the start of a reflection process.
- There is ’But hold on’ in step4, so step4 means the start of a new reflection process.
- Then, there is ’wait’ in step5, so step5 means the start of a new reflection process.
- There is ’therefore’ in step6, so (step5,step6) is in the same refleciton process.
- There is ’alternatively’ in step7, so step7 is the start of a new reflection process.
- There is ’so’ in step8, so (step7,step8) is in the same reflection process.

[Task]:
Now analyze the following question and response:
f"Question: {question}"
f"Response: {response}"
Please output the reflection steps and the first correct step in the format without extra explanation.

Figure 10: Prompt of using the LLM-as-a-Judge method for reflection step detection.

8028

Input

Question:

• What day of the week will it be 40 days from Tuesday?

Response:

• Step1: Alright, so I need to figure out what day of the week it will be 40 days from Tuesday.
Hmm, okay. Let me think about how to approach this.

• Step2: First, I remember that each week has 7 days. So, if something happens every 7 days,
it’s on the same day of the week next time. That might be useful here. Maybe I can figure out
how many weeks are in 40 days and then see how many extra days that is.

• Step3: Let me do the division: 40 divided by 7. I think that’s 5 weeks and 5 days.

• Step4: Wait, let me check. 7 times 5 is 35, right? So, 40 minus 35 is 5. So, 40 days is equal
to 5 weeks and 5 days. That makes sense.

• Step5: So, if today is a Tuesday, then 35 days later is also a Tuesday. Because 35 is exactly 5
weeks, which is 5 times 7. So, after 35 days, it’s still Tuesday. Now, I need to find out what
day it is 5 days after Tuesday.

• Step6: Let me count: Tuesday plus one day is Wednesday, plus two days is Thursday, plus
three days is Friday, plus four days is Saturday, and plus five days is Sunday. So, 5 days after
Tuesday is Sunday .

• Step7: Therefore, 40 days from Tuesday is Sunday. Let me double-check that to make sure
I didn’t make a mistake. If today is Tuesday and 7 days later is also Tuesday, then adding
another 7 days each time cycles through the week. So, 35 days later, as we calculated, it is
Tuesday again. Then, 5 days beyond that would be Sunday. Yeah, that seems right.

• Step8: Final Answer: The day of the week 40 days from Tuesday is Sunday .

Figure 11: An example input of using the LLM-as-a-Judge method for reflection step detection.

Output

Output:

• Reflection Step: [(Step4), (Step7)]

• First Answer Step: Step6

Figure 12: An example output of using the LLM-as-a-Judge method for reflection step detection.

8029

