
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing, pages 8092–8110
November 4-9, 2025 ©2025 Association for Computational Linguistics

RethinkMCTS: Refining Erroneous Thoughts in Monte Carlo Tree Search
for Code Generation

Qingyao Li1, Wei Xia2, Xinyi Dai2, Kounianhua Du1,
Weiwen Liu1, Yasheng Wang2, Ruiming Tang2, Yong Yu1, Weinan Zhang1*,

1Shanghai Jiao Tong University, 2Huawei Noah’s Ark Lab
{ly890306,wnzhang}@sjtu.edu.cn

Abstract

Tree search methods have demonstrated impres-
sive performance in code generation. Previous
methods combine tree search with reflection
that summarizes past mistakes to achieve it-
erative improvement. However, these meth-
ods face significant challenges. First, they
search directly within the code language space,
neglecting the underlying reasoning process
critical for effective code generation. Sec-
ond, reflection-based approaches merely ac-
cumulate historical errors in memory without
providing correct reasoning pathways, mak-
ing it difficult for subsequent search iterations
to identify optimal solutions, resulting in de-
creased search quality. In this work, we pro-
pose RETHINKMCTS, a framework that sys-
tematically explores and refines the reasoning
process for code generation. Specifically, we
employ MCTS to search for thoughts before
code generation and integrate MCTS with a
refinement mechanism called rethink, which
incorporates fine-grained code execution feed-
back to refine erroneous thoughts during the
search. It ensures the search path aligns with
better reasoning, improving overall search qual-
ity. Through extensive experiments, we demon-
strate that RETHINKMCTS outperforms previ-
ous search-based and feedback-enhanced code
generation baselines1.

1 Introduction

With the impressive capabilities of large language
models (LLMs), research has increasingly focused
on enhancing their code generation abilities (Luo
et al., 2023; Zheng et al., 2023; Gong et al.,
2024). Code generation is a reasoning task that
requires multiple attempts and iterative corrections
to achieve accurate results (Zhou et al., 2025; Bi
et al., 2024), hence search algorithms demonstrate

*Corresponding authors.
1Resources are available at

https://github.com/SIMONLQY/RethinkMCTS.

Reflection

Reflection-based RethinkMCTS

Add to Prompt

Code
Execution

Fe
ed

ba
ck

Code
Execution

Rethink

: Erroneous Node : Refined Node: Erroneous Path : Refined Path

Figure 1: Comparison between reflection-based meth-
ods and RETHINKMCTS. Reflection-based methods
would maintain the error in the path, while RETHINKM-
CTS would refine erroneous thoughts and continue
along a better path.

particular promise in this domain, achieving state-
of-the-art performance (DeLorenzo et al., 2024;
Zhang et al., 2023; Kulal et al., 2019; Zhou et al.,
2023). Unlike other reasoning tasks, code environ-
ments provide rich execution feedback that can be
leveraged to improve results. Previous approaches,
such as LATS (Zhou et al., 2023), have effectively
combined search with the reflection mechanism, en-
abling search trees to summarize past errors based
on feedback and store them in memory to enhance
subsequent search performance.

Despite demonstrating promising results, pre-
vious methods still face two key challenges: 1)
Insufficient reasoning exploration. Studies, such
as chain-of-thought (Wei et al., 2022) and tree of
thoughts (Yao et al., 2024), show that explicitly
modeling the reasoning process leads to better re-
sults. Tang et al. (2023) further highlighted that
LLMs are better equipped for semantic reason-
ing than symbolic reasoning. However, for code
generation, a high-reasoning-demand task (Cook
et al., 2018), current work has yet to explore the
thoughts (reasoning) behind the generated code.
2) Ineffective error correction. Reflection-based
approaches merely accumulate historical errors in
memory without providing correct reasoning path-
ways (Zhou et al., 2023; Shinn et al., 2024), mak-

8092

https://github.com/SIMONLQY/RethinkMCTS

ing it difficult for subsequent search iterations to
identify optimal solutions, resulting in diminished
search quality.

This paper presents a novel perspective on the
problem by introducing a direct thought revision
approach. Previous work (Wang et al., 2024b)
has established that correct reasoning processes
lead to correct code, and we leverage this insight
to achieve accurate code generation through con-
tinuous refinement of the underlying thought pro-
cesses. As illustrated in Figure 1, traditional reflec-
tion mechanisms merely append historical errors
without actively refining the reasoning trajectory,
requiring subsequent search algorithms to process
increasingly lengthy memory traces. Our approach
directly refines erroneous thoughts, enabling the
natural emergence of correct reasoning pathways.
This targeted refinement strategy significantly im-
proves efficiency by addressing the root causes of
errors rather than accumulating extensive error his-
tories.

In light of this, we develop RETHINKMCTS,
a thought-search framework for code generation
that simultaneously searches and refines reasoning
based on code execution feedback. Specifically,
RETHINKMCTS begins by employing the MCTS
algorithm to explore reasoning paths before gener-
ating code and then generates the code based on
these reasoning thoughts. After executing the code,
we perform a block-level analysis on the code and
construct the verbal feedback. Following this, we
introduce a refinement mechanism called rethink,
which makes the LLM refine erroneous thoughts
based on the feedback. As shown in Figure 1, this
enables the search algorithm to continue explor-
ing along corrected paths, ultimately enhancing
the search tree’s quality. To further guide action
evaluation in the MCTS search process, we pro-
pose a dual evaluation approach to ensure effective
code selection, particularly when public test cases
alone are insufficient. Extensive experiments not
only demonstrate the effectiveness of RETHINKM-
CTS, but also reveal the critical factors enabling
successful tree search in code generation. Our main
contributions can be summarized as follows:

• Reasoning-to-Code Search Framework for
Code Generation: Our framework employs
a multi-step thinking process combined with
code generation using Monte Carlo Tree Search
(MCTS) to explicitly explore various strategies
for code generation. A combination of verbal and

scalar feedback guides the MCTS tree generation.
To the best of our knowledge, we are the first to
search and refine the thought process behind code
to enhance LLMs on code generation.

• Refining Erroneous Thoughts in MCTS: We
introduce the rethink mechanism into MCTS
to refine erroneous thoughts using detailed ver-
bal feedback from code execution, allowing the
search to follow higher-quality traces. Differ-
ent from reflection-based methods that summa-
rize past errors without changing current erro-
neous reasoning, our approach directly refines
flawed thoughts, ensuring the search proceeds
along more optimal trajectories.

• Introducing Detailed Feedback and Dual
Evaluation for Refinement: Block-level anal-
ysis is introduced as the detailed feedback
of code execution, guiding the refinement of
faulty thought. Additionally, a dual evaluation
method—using both public test cases and LLM
self-evaluations—is used to ensure effective code
selection, particularly when public test cases
alone cannot fully assess the code’s correctness.

2 Related Work

LLMs for Code Generation Large language
models (LLMs) have been widely applied and de-
veloped in the field of code (Nam et al., 2024;
Huang et al., 2023a; Li et al., 2024; He et al., 2024).
Research on LLMs for code generation falls into
two paradigms: (1) Code-specialized fine-tuning
that enhances syntax understanding through tar-
geted training (Luo et al., 2023; Li et al., 2023;
Fried et al., 2022; Roziere et al., 2023). (2) LLM-as-
agent frameworks where models orchestrate code
generation (Ishibashi and Nishimura, 2024; Zhang
et al., 2024a; Jin et al., 2024). LDB proposed by
Zhong et al. (2024) takes the LLM as a debugger
and utilizes block-level decomposition to locate
bugs. PG-TD proposed by Zhang et al. (2023)
utilizes Monte Carlo Tree Search (Browne et al.,
2012) methods combined with the probabilistic out-
put of LLMs to achieve token-level search for code
generation. While effective, these approaches ne-
glect explicit modeling of the semantic reasoning
essential for complex coding tasks—a gap our work
addresses.

Tree Search-enhanced LLMs Tree search meth-
ods can improve the reasoning performance of
LLMs by exploring various possible paths (Wang

8093

et al., 2024a; Meng et al., 2024; Yuan et al., 2024).
By designing different action spaces, LLMs can
explore at different levels (Zhang et al., 2023; Hu
et al., 2024; Hao et al., 2023). At the implemen-
tation level, LATS (Zhou et al., 2023) conducts
code-space search while maintaining error logs as
reflective memory for subsequent iterations. TS-
LLM (Feng et al., 2023) introduces a training-based
approach with learned value functions to direct de-
coding trajectories. While these methods success-
fully enhance the task-solving abilities of LLMs,
they may not fully harness the potential of tree
search in code generation tasks. This is largely be-
cause many of these approaches focus on token- or
code-level searches, overlooking the deeper reason-
ing process that is critical for tasks like code gener-
ation, which require intricate reasoning. Addition-
ally, the detailed execution feedback provided by
the code environment has great potential to guide
the search process, but these methods fall short of
effectively integrating this feedback into the search.
In this paper, we focus on leveraging detailed feed-
back from the code execution environment to guide
and refine the thought process, thereby improving
the overall quality of exploration.

3 Preliminaries

3.1 Problem Formulation

We focus on competition-level code generation, fol-
lowing the setup established by Zhang et al. (2023).
For a given LLM, the input consists of a problem
statement P and a set of public test cases Tpub, each
defined by an input-output pair. The goal is to de-
velop an inference framework that enables the code
generation model M to produce the correct code
C ∼ M(P, Tpub) solving the given problem. To
rigorously evaluate performance, we maintain hid-
den private test cases Tpriv that remain inaccessible
during code generation. The primary evaluation
metric is the model’s ability to pass these private
test cases.

3.2 Block-level Code Analysis

Executing buggy code in an executor can only pro-
vide standard error information. If the code runs
without crashing but produces incorrect outputs,
there is often little to no error feedback available.
However, since code is quite structured (Chevalier
et al., 2007), it is possible to extract detailed execu-
tion feedback through a more organized analysis.
We follow previous work by Zhong et al. (2024)

to get a block-level code analysis.
In static code analysis, the code could be divided

into basic blocks (Larus, 1999). A basic block is
defined as a linear sequence of code containing a
single entry point and a single exit point (Flow,
1994; Alfred et al., 2007). We first acquire the
control-flow graph (CFG) of the code, and then a
public test case is fed into this graph to produce an
execution trace of the test, [B1, B2, ..., Bn], where
each node within the CFG corresponds to a basic
block. We execute these blocks one by one and
track all variable state changes in the trace. These
blocks and variables are collected and then pro-
vided to the LLM to perform a block-level analysis,
assessing whether each block is correct or faulty.
We show an example of the analysis process in the
Appendix C.6.

4 RETHINKMCTS

Overview RETHINKMCTS is motivated by the
need to search and refine the thought process during
code generation using feedback from the coding
environment, ultimately guiding the LLM toward
correct solutions. To accomplish this, we leverage
an LLM to generate both thoughts and code, iter-
atively refining the reasoning based on execution
feedback. We employ Monte Carlo Tree Search
(MCTS) as our search algorithm to optimally bal-
ance exploration and exploitation. Crucially, we
introduce a novel rethink mechanism that utilizes
detailed code execution feedback to identify and re-
fine erroneous thoughts. This approach enables the
search to follow improved reasoning paths, thereby
enhancing overall search quality. The framework is
shown in Figure 2, and we provide the pseudo-code
in Algorithm 1 in the Appendix D. Our design has
the following key features:

• Tree Search for Thought Process: We employ
tree search to explore the thought process of writ-
ing code. After multiple reasoning steps, code is
generated based on the accumulated thoughts.

• Rethink Mechanism: We introduce a rethink
mechanism that leverages feedback from the
code execution to refine and improve the quality
of the reasoning process.

• Block-Level Analysis Feedback: We use block-
level analysis of the code as the fine-grained feed-
back from code execution.

• Dual Evaluation: In our evaluation phase, we
propose a dual evaluation approach, wherein both

8094

from typing import List
def has_close_elements(nums: List[float], t: float) ->
bool:
 """ Check if in given list of numbers, are any two
numbers closer to each other than given threshold.
"""

One strategy could be to traverse the array...

Use a nested loop to ...

n = len(nums)
for i in range(n):
 for j in range(i+1, n):
 if nums[i]-nums[j] < t:
 return True
return False Block-level Analysis

Rethink

Execution

Scalar & Verbal Feedback

Selection
Backpropagation
Rethink

Problem Description
Erroneous Thought

Code

Dual Evaluation

LLM EvaluationPublic Test Case

Verbal FeedbackScalar Reward

from typing import List
def has_close_elements(nums: List[float], t: float) ...

Use a nested loop to compare each pair...

Utilize a more efficient data structure...

Code

Code

Utilize a more efficient ...

if len(nums) < 2:
 return False
nums.sort()
for i in range(len(nums)-1):
 if abs(nums[i]-nums[i+1])
<t:
 return True
return False

Problem Description

Code Code

Correct Thought
Dual Evaluation

Figure 2: Overview of RETHINKMCTS. We use MCTS to explore different thoughts before generating code. We
obtain block-level analysis as verbal feedback through a code executor and use the verbal feedback from failed test
cases to refine the thoughts, thereby improving the overall quality of the search tree.

public test cases and LLM evaluation are used to
assess the generated code, ultimately helping to
identify high-quality solutions.

These key features are integrated into operations
in RETHINKMCTS, selection, expansion, evalu-
ation, verbal feedback, backpropagation, and re-
think.

Selection In MCTS, the selection step balances
exploration and exploitation by iteratively choos-
ing the actions that are most promising for further
expansion. This process continues until a leaf node
is reached. Each node is selected based on a score
derived from the number of visits N(s) and the
stored value of the state-action pair Q(s, a), where
the state s is the problem description and prior
thoughts, and action a represents the new thought
associated with the node. Every node’s retained
value Q(s, a) is the maximum reward obtained by
starting in s and taking action a. For scoring, we
employ P-UCB (Silver et al., 2017), an enhanced
version of the UCB algorithm, to compute the over-
all score for each node:

P-UCB(s, a) = Q(s, a)

+ β(s) · p(a | s) ·
√

log(N(s))

1 +N(s′)
, (1)

where s′ is the state reached by taking action a in s;
N(s) is the visited times of the node; p(a | s) is the
probability that thought a is the next thought given
the problem description and previous thoughts s,
which is proposed by the LLM agent. β is the
weight for exploration, which depends on the num-

ber of visit of s, defined as

β(s) = log

(
N(s) + cbase + 1

cbase

)
+ c, (2)

where cbase is a hyperparameter; c is the exploration
weight.

At each state or node, the selection process
chooses the action with the highest P-UCB value,
and repeats this process until a leaf node is reached.

Expansion After selecting a leaf node, the expan-
sion step generates its child nodes to explore differ-
ent possible actions. We define the search action
space as potential thoughts or strategies for writing
the code. To make use of the feedback obtained
from code execution, we handle the expansion in
two scenarios:

• If the current leaf node evaluation has failed pub-
lic test cases, the expansion step incorporates the
verbal feedback f from these failed test cases
into the prompt. The LLM then proposes mul-
tiple subsequent thoughts z and assigns each
thought a reasonableness score e, as represented
by p(a|s) in Eq. (1). The output is based on prior
thoughts and the current verbal feedback, i.e.,
[(z1, e1), . . . , (zk, ek)] ∼ p((z, e)(1···k)|s, f).

• If the current leaf node evaluation passes all pub-
lic test cases, the expansion step directs the LLM
to propose subsequent thoughts without addi-
tional feedback, i.e., [(z1, e1), . . . , (zk, ek)] ∼
p((z, e)(1···k)|s).

After multiple rounds of expansion, the new node’s
state would be the accumulated thought steps from
the path to the root. We show an example of the
accumulated thought steps in the Appendix C.5.

8095

Evaluation The evaluation phase in MCTS es-
timates the probability that a given node will suc-
cessfully complete the task. While some previous
works refer to this as “simulation” (Zhou et al.,
2023; Hao et al., 2023)—typically involving pro-
gression from intermediate to terminal states—we
evaluate nodes by generating complete code based
on the current thoughts and assessing this code’s
quality.

In code generation, a natural evaluation is to
use the pass rate of public test cases (Zhang et al.,
2023) as the reward. However, the limitation of
this method is that public test cases cover only a
part of the test set. When multiple code outputs
pass all the public test cases, some may still fail to
fully solve the problem, making it difficult to differ-
entiate between them. To overcome this challenge,
we propose a dual evaluation approach. Once all
public test cases are passed, we further instruct
the LLM to provide a self-assessed comprehensive
score, vllm, to evaluate the code’s correctness in
solving the whole problem.

reward =

{
vtest, if 0 ≤ vtest < 1

a× vtest + b× vllm, if vtest = 1
,

(3)
where vtest is the pass rate on public test cases; vllm

is the LLM’s self-evaluation score. a and b controls
the weight of two parts.

The reward in this context is a scalar value, used
to calculate the Q-value at each node and to deter-
mine the score during the selection phase. However,
in code generation, the compiler and executor can
return detailed error messages, and various code
analysis tools can provide more granular insights
into the code. These details about the code are
crucial for making modifications but can not be
captured in a scalar reward. Therefore, alongside
the scalar reward, we also integrate verbal feed-
back.

Verbal Feedback When the generated code fails
to pass a public test case, human programmers typ-
ically diagnose the issue by examining details such
as variable values during execution. In the context
of solving code generation tasks with search algo-
rithms, relying solely on scalar feedback based on
the pass rate of public test cases lacks detailed infor-
mation. Therefore, we incorporate verbal feedback
in the MCTS process. Specifically, as described in
Sec. 3.2, we perform block-level analysis when the
code fails a public test case and store the resulting

information as verbal feedback in the current node.
This feedback is then utilized in both the expansion
and rethink phases.

Backpropagation In MCTS, backpropagation
refers to the process of updating the Q-values of
all nodes along the path from the current node to
the root node using the rewards obtained from the
evaluation. Beyond using scalar feedback to update
the values of parent nodes, verbal feedback is also
stored in the current leaf node for use in subsequent
expansion and rethink phases.

Rethink When the code fails to pass a public
test case, we can obtain block-level analysis as de-
tailed verbal feedback on the execution. How can
we leverage such fine-grained feedback to produce
correct code? We propose to use this feedback to
make the LLM “rethink”, meaning to regenerate
the current erroneous thought based on the feed-
back to avoid generating the incorrect code. As
shown in Figure 2, the leaf node is re-generated
by znew ∼ p(z|s, f, zold). It is important to empha-
size that we do not regenerate the parent nodes in
the trace for two key reasons: 1) The parent nodes
have already accumulated rewards over multiple
rounds of evaluation from all their child nodes, and
regenerating them would invalidate the previously
gathered rewards. 2) The parent node has already
gone through its own rethink process. This means
that either the parent node did not encounter failing
public test cases during its evaluation or has already
been refined through the rethink process.

The advantage of introducing rethink is twofold.
From the code generation perspective, rethink re-
fines the reasoning process behind writing code,
thus would ultimately lead to better code. From
the MCTS perspective, it refines the current action
or current node. Since the MCTS tree is built in-
crementally, improving the quality of the current
action allows the LLM to explore more optimal
paths in the vast search space, thereby enhancing
the overall search quality of the tree. Through the
rethink mechanism, we seamlessly integrate the
process of refining the reasoning of code genera-
tion with the MCTS search process.

5 Experiment Settings

Datasets We evaluate RETHINKMCTS and base-
line methods on two widely used benchmark
datasets: APPS (Hendrycks et al., 2021) and Hu-
manEval (Chen et al., 2021). The APPS dataset is

8096

Pass Rate (%) Pass@1 (%)

APPS Intro. APPS Inter. APPS Comp. Average APPS Intro. APPS Inter. APPS Comp. HumanEval Average

GPT-3.5-turbo Base(1) 50.43 40.57 23.67 38.22 29 19 9 70.12 37.07
Base(16) 66.77 62.65 25.5 51.64 45 34 9 81.71 47.84
PG-TD 60.89 50.80 26.50 46.06 40 25 8 76.22 42.67
ToT 62.56 57.97 28.00 49.51 38 25 10 76.22 42.67
LATS 54.06 45.86 21.83 40.58 36 20 7 79.88 41.81
RAP 43.22 43.32 22.83 36.46 21 14 8 71.95 34.69
LDB 56.68 46.78 21.00 41.49 35 22 8 81.09 42.67
Reflexion 53.20 45.58 17.50 38.76 35 21 7 71.95 39.00
RETHINKMCTS 67.09 68.65 29.50 55.08 45 38 13 89.02 52.15

GPT-4o-mini Base(1) 56.56 52.40 35.00 47.98 35 29 16 87.20 48.06
Base(16) 67.79 66.25 38.5 57.51 47 41 21 93.29 56.46
PG-TD 66.97 67.15 39.83 57.98 47 43 23 91.46 56.68
ToT 71.03 67.84 37.17 58.08 52 46 23 92.68 58.84
LATS 69.46 67.65 35.83 57.65 50 45 19 93.29 57.54
RAP 64.24 57.25 37.67 53.05 39 32 20 87.20 50.43
LDB 60.64 60.78 40.33 53.91 40 38 23 90.85 53.87
Reflexion 60.65 56.87 38.00 51.84 40 31 18 90.85 51.29
RETHINKMCTS 76.60 74.35 42.50 64.48 59 49 28 94.51 62.93

Table 1: Performances of RETHINKMCTS and baselines on APPS and HumanEval. RETHINKMCTS achieves the
best performance across all the datasets with the maximum number of rollouts for tree search algorithms being 16.

a huge dataset contains three levels of difficulties:
introductory, interview, and competition. Within
each difficulty, the problems are randomly dis-
tributed. Therefore, we elected the first 100 prob-
lems per difficulty to maintain randomness while
ensuring balanced coverage, which mirrors sam-
pling methods used by Zhang et al. (2023). We use
pass rate and pass@1 as the evaluation metrics for
code correctness following (Zhang et al., 2023).
Pass rate is the average percentage of private test
cases successfully passed by the generated code
across all problems, and pass@1 measures the per-
centage of problems where the generated programs
pass all private test cases (Austin et al., 2021; Chen
et al., 2021; Dong et al., 2023).

Baselines To illustrate the effectiveness of RE-
THINKMCTS, we compare two kinds of code
generation methods. The first kind is feedback-
enhanced, which uses the code execution feedback
to refine codes iteratively: LDB (Zhong et al.,
2024), Reflexion (Shinn et al., 2024). The sec-
ond kind is tree search-enhanced methods: PG-
TD (Zhang et al., 2023), ToT (Yao et al., 2024),
LATS (Zhou et al., 2023) and RAP (Hao et al.,
2023). More details can be found in Appendix A.

Implementation We pick GPT-3.5-turbo and
GPT-4o-mini as the backbone models to compare
different algorithms. For search-enhanced meth-
ods, including RETHINKMCTS, we set the maxi-
mum number of children of any node to be 3. For
MCTS-based methods, we set the hyperparameters
in Eq. (2) cbase to be 10 and c to be 4 following
previous work by Zhang et al. (2023). And we
set the a and b in Eq. (3) to be (0.8, 0.2) and we

compare performances under different settings in
Sec. 6. We set the maximum number of rollouts
or simulation times to be 16. For LDB, we set the
maximum number of debug times to be 10, as in
the original paper (Zhong et al., 2024).

6 Results And Analysis

Overall Performance We present the overall
performance in Table 1, where we can see that
RETHINKMCTS outperforms all baseline models
across both datasets. Additionally, by comparing
them with the original base model, both feedback-
enhanced and tree search-enhanced methods show
significant performance improvements, demonstrat-
ing the effectiveness of exploring different strate-
gies and using detailed feedback from code execu-
tion. Generally, RETHINKMCTS enhances perfor-
mance more significantly on GPT-3.5-turbo than on
GPT-4o-mini. This may be because weaker code
models benefit more from error correction in the
thought process.

Ablation Study We conduct ablation studies to
remove each of our model’s components, including
self-evaluation (w/o selfEval), block-level analy-
sis (partial verbal feedback, w/o blockInfo), whole
verbal feedback (w/o VF), rethink mechanism (w/o
rethink). The results using GPT-3.5-turbo as the
backbone model are shown in Figure 3, and the re-
sults on GPT-4o-mini are presented in Appendix B.
The results demonstrate that each component con-
tributes to overall performance, with verbal feed-
back showing the most significant impact. This
aligns with our design, as the rethink mechanism
depends primarily on execution feedback—without
this feedback, the model lacks the necessary infor-

8097

full model w/o selfEval VF w/o blockInfo w/o VF w/o rethink80
83
86
89
92

Hu
m

an
Ev

al 89.1

85.9 86.6 85.4
87.2

full model w/o selfEval VF w/o blockInfo w/o VF w/o rethink30

34

38

42

46

AP
PS

 In
tro

. 45
43 44

39
41

Figure 3: Ablation study of block-level analysis (block-
Info), rethink mechanism, verbal feedback (VF), and
self-evaluation with GPT-3.5-turbo as the backbone.

HumanEval APPS Intro. APPS Inter. APPS Comp.0

20

40

60

80

Pa
ss

@
1

token-level
line-level
code-level
thought-level
RethinkMCTS

Figure 4: Performance comparison between different
search granularity. For advanced models like GPT-3.5-
turbo, it’s better to explore at the thought level.

mation to refine its reasoning effectively.
Additionally, we can see that for the HumanEval

dataset, block-level analysis significantly impacts
performance (89.1 −→ 86.6), while its effect on
APPS is minimal. We attribute this to HumanEval
having fewer public test cases than APPS (2.8 vs.
27.52 on average), making detailed test case analy-
sis essential for the rethink mechanism to correct
errors in HumanEval. This explains why dual eval-
uation is critical for HumanEval - the limited test
cases necessitate LLM-based code reevaluation. Fi-
nally, the rethink mechanism we proposed signif-
icantly enhances the results. This improvement
stems from that rethink enabling the use of fine-
grained block-level analysis in verbal feedback, ef-
fectively correcting logical errors in the reasoning
process.

Search Granularity Study RETHINKMCTS
conducts a thought-level search for code. Here, we
compare the action spaces for MCTS, specifically
examining 4 levels of search granularity: token,
line, code, and thought. The experimental results
with GPT-3.5-turbo as backbone are presented in
Figure 4, and the results on GPT-4o-mini are pre-
sented in Appendix B.

As shown in the figure, the thought-level search
is more effective in finding viable code. This
demonstrates that for advanced LLMs like GPT-
3.5-turbo, exploring the reasoning process is benefi-

cial (Zhang et al., 2024b; Huang and Chang, 2022).
Additionally, we observe that token-level searching
performs better than line and code-level searching.
This is due to the fact that with a limited number of
search iterations, token-level searches allow fewer
constraints on the early tokens, thus uncovering
more possibilities compared to line and code-level
searches. Finally, although thought-level search
yields the best results among different granularity,
its effectiveness is further enhanced in RETHINKM-
CTS by introducing detailed feedback and rethink
mechanism, making the search over thoughts in the
code generation process even more effective.

Rethink vs. Reflection In this section, we com-
pare rethink and reflection approaches. Our com-
parison methodology maintains all other compo-
nents of RETHINKMCTS unchanged, with the only
difference being the replacement of rethink with re-
flection. The experimental results are presented
in Table 2. As demonstrated, rethink not only
improves search effectiveness compared to reflec-
tion but also significantly reduces token consump-
tion. This efficiency stems from rethink’s ability
to directly modify incorrect thought steps, whereas
reflection continuously accumulates error history,
leading to excessive token consumption. Further-
more, since erroneous steps remain in the search
tree with reflection, subsequent searches may con-
tinue down incorrect paths, resulting in inferior
search performance.

Dataset
Reflection Rethink Reflection Rethink

(Pass@1) (Avg. Token Cost)

APPS-Intro. 54 59(↑ 9.2%) 177353 143048(↓ 19.3%)
APPS-Inter. 45 49(↑ 8.9%) 163494 126648(↓ 22.5%)

APPS-Comp. 24 28(↑ 16.6%) 189215 182193(↓ 3.7%)
HumanEval 93.29 94.51(↑ 1.3%) 57027 36678(↓ 35.7%)

Table 2: Comparison between rethink and reflection-
based MCTS approaches. We experiment on RE-
THINKMCTS with other parts remain the same and
only replace rethink with reflection.

Test Time Scaling with Rethink The goal of re-
think is to improve the search quality within the
same number of rollouts. To validate the effec-
tiveness of rethink, we compare the performance
between increasing the number of rethink opera-
tions and increasing the number of rollouts without
applying rethink, while keeping the total number
of rollouts consistent. The results are shown in
Figure 5.

The figure shows that increasing the number of
rethink operations and increasing the number of

8098

(a, b)
Pass Rate (%) Pass@1 (%)

APPS Intro. APPS Inter. APPS Comp. APPS Intro. APPS Inter. APPS Comp. HumanEval

(0.8, 0.2) 76.6 74.3 42.5 59 49 28 94.5
(1.0, 0.2) 76.9 76.4 43.5 60 53 27 92.7
(1.0, 1.0) 78.8 75.2 40.5 60 54 24 91.5

Table 3: Performance comparison under different reward weights. The (1.0, 0.2) and (1.0, 1.0) configurations make
the nodes that achieve a pass rate of 1.0 on public test cases receive a score higher than 1.0, whereas the (0.8, 0.2)
configuration keeps all node evaluations between 0∼1.

16 25 43 58
rollout number

83.17

86.13

89.10

92.06

95.02

Hu
m

an
ev

al

RethinkMCTS
w/o rethink
ToT
PG-TD

16 25 43 58
rollout number

27.40

34.96

42.52

50.08

57.64

AP
PS

 In
tro

RethinkMCTS
w/o rethink
ToT
PG-TD

Figure 5: Performance comparison between rethink
more times and more rollouts without rethink. rethink
is more effective than increasing rollouts.

rollouts both enhance performance. This is ex-
pected as more extensive exploration raises the
probability of finding the correct code. However,
increasing the number of rethink operations yields
greater performance gains. This can be attributed
to two key reasons. From a tree search perspec-
tive, without the rethink mechanism, erroneous ac-
tions or nodes would persist in the trace, causing
the following nodes to follow incorrect reasoning
paths, which makes it challenging to ensure the
quality of the entire reasoning trace. From the code
generation perspective, the rethink mechanism re-
fines flawed thoughts and get a better thought chain,
which would finally lead to better codes.

Method APPS Intro. HumanEval

W/O RETHINK 10.04 48.30
RETHINKMCTS 15.60 53.29

Table 4: The success rate comparison of the searched
codes between with and without the rethink mechanism.

Furthermore, we compare the pass rate on public
test cases of all the generated codes for the en-
tire tree, with and without the rethink operation,
since only public test cases are available during
the search. The results are presented in Table 4.
We can see that the rethink operation increases the
proportion of effective code found in the tree. This
highlights how refining erroneous thoughts enables
the tree to focus more on correct paths, leading to
better outcomes.

Study on Reward Weights We analyzed the im-
pact of reward weights in Eq. (3) of Sec. 4, with
results shown in Table 3. It is evident that (a, b)
significantly influences RETHINKMCTS’s perfor-
mance, underscoring the importance of LLM self-
evaluation. Since self-evaluation rewards apply
only when code achieves a perfect pass rate on
public test cases, each configuration yields distinct
implications.

Under the (0.8, 0.2) configuration, the code is
given a baseline score of 0.8, and the LLM’s evalu-
ation score is used to distinguish between different
codes. This allows for situations where the total
score of code that passes all public test cases could
be lower than that of code with a pass rate below
1, but only when the LLM’s self-evaluation score
is particularly low. Conversely, configurations (1.0,
0.2) and (1.0, 1.0) ensure that code passing all
public tests always receives a score exceeding 1.0.
While this approach guarantees that final output
maintains perfect public test performance, it pre-
maturely discards promising reasoning paths with
imperfect test results. This limitation explains the
poorer performance observed on both datasets un-
der these configurations.

7 Conclusion

We propose RETHINKMCTS, the first framework
that searches and refines thoughts for code gener-
ation. Unlike previous tree search methods, RE-
THINKMCTS explores the reasoning process and
incorporates an iterative rethink mechanism to im-
prove search quality. Compared to traditional
reflection, rethink achieves superior results with
lower token cost by guiding search along correct
paths. Experiments on APPS and HumanEval
datasets demonstrate that RETHINKMCTS outper-
forms existing approaches, generating high-quality
code through search-and-refinement reasoning. Be-
yond code generation, RETHINKMCTS offers a
general approach for enhancing task performance
through structured reasoning, with potential appli-

8099

cations in other LLM domains such as mathemati-
cal problem-solving and tool usage scenarios.

Acknowledgement

The Shanghai Jiao Tong University team is par-
tially supported by National Key R&D Pro-
gram of China (2022ZD0114804), Shanghai Mu-
nicipal Science and Technology Major Project
(2021SHZDZX0102) and National Natural Science
Foundation of China (62322603, 62177033).

Limitations

Limited Exploration of Fine-Tuning based
on Collected Data RETHINKMCTS framework
generates high-quality data that includes thought
steps, execution feedback, and code. This data
could potentially be used to fine-tune an LLM to
enhance its code generation capabilities. However,
since our work focuses primarily on the inference
framework, we leave the fine-tuning exploration
for future work.

Generalization to Other Reasoning Tasks Our
primary contribution lies in developing a search
framework that integrates code execution feedback
for refinement. While this approach is effective for
code generation tasks, it may not generalize well
to other reasoning domains, such as mathematical
reasoning, where similarly detailed feedback mech-
anisms might not be available. Nevertheless, our
method could potentially be applicable to reasoning
tasks that involve detailed feedback mechanisms
comparable to those in code generation.

Potential Limitations in the Refinement Step
Our current framework enhances the original
MCTS approach by introducing a refinement step
that utilizes detailed feedback from code execu-
tion. However, we do not introduce a sophisticated
procedure for determining which specific thought
step should be refined. Instead, we directly select
the most recent step that caused the error, since in
MCTS, the tree develops incrementally, ensuring
each step eventually has the opportunity to be re-
fined if it produces incorrect code. Although this
approach proves effective, integrating a dedicated
verifier to identify which thought step requires re-
finement could potentially yield better results.

Ethics Statement

In this work, we employ LLMs as both thought
and code generators. All the dataset we use are

publicly available and are for research purposes
only. The LLMs utilized in our study include the
closed-source model GPT-4o-mini and GPT-3.5-
Turbo. Ethical considerations related to these mod-
els, including their training data and deployment,
are addressed by their respective creators. The
LLMs in our work are instructed solely to output
code task-related thought steps, evaluation scores
and code, and do not generate other free-form text.
However, we acknowledge that LLMs, including
those used in our study, may occasionally produce
improper or harmful content. Such outputs are un-
intended and do not reflect the views or intentions
of the authors.

References
V Aho Alfred, S Lam Monica, and D Ullman Jeffrey.

2007. Compilers principles, techniques & tools.
pearson Education.

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten
Bosma, Henryk Michalewski, David Dohan, Ellen
Jiang, Carrie Cai, Michael Terry, Quoc Le, and 1
others. 2021. Program synthesis with large language
models. arXiv preprint arXiv:2108.07732.

Zhangqian Bi, Yao Wan, Zheng Wang, Hongyu Zhang,
Batu Guan, Fangxin Lu, Zili Zhang, Yulei Sui, Hai
Jin, and Xuanhua Shi. 2024. Iterative refinement
of project-level code context for precise code gen-
eration with compiler feedback. arXiv preprint
arXiv:2403.16792.

Cameron B Browne, Edward Powley, Daniel White-
house, Simon M Lucas, Peter I Cowling, Philipp
Rohlfshagen, Stephen Tavener, Diego Perez, Spyri-
don Samothrakis, and Simon Colton. 2012. A survey
of monte carlo tree search methods. IEEE Transac-
tions on Computational Intelligence and AI in games,
4(1):1–43.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan,
Henrique Ponde de Oliveira Pinto, Jared Kaplan,
Harri Edwards, Yuri Burda, Nicholas Joseph, Greg
Brockman, and 1 others. 2021. Evaluating large
language models trained on code. arXiv preprint
arXiv:2107.03374.

Fanny Chevalier, David Auber, and Alexandru Telea.
2007. Structural analysis and visualization of c++
code evolution using syntax trees. In Ninth interna-
tional workshop on Principles of software evolution:
in conjunction with the 6th ESEC/FSE joint meeting,
pages 90–97.

Michelle Cook, Megan Fowler, Jason O Hallstrom,
Joseph E Hollingsworth, Tim Schwab, Yu-Shan Sun,
and Murali Sitaraman. 2018. Where exactly are the
difficulties in reasoning logically about code? experi-
mentation with an online system. In Proceedings of

8100

the 23rd Annual ACM Conference on Innovation and
Technology in Computer Science Education, pages
39–44.

Matthew DeLorenzo, Animesh Basak Chowdhury, Va-
sudev Gohil, Shailja Thakur, Ramesh Karri, Sid-
dharth Garg, and Jeyavijayan Rajendran. 2024.
Make every move count: Llm-based high-quality
rtl code generation using mcts. arXiv preprint
arXiv:2402.03289.

Yihong Dong, Jiazheng Ding, Xue Jiang, Ge Li, Zhuo
Li, and Zhi Jin. 2023. Codescore: Evaluating
code generation by learning code execution. arXiv
preprint arXiv:2301.09043.

Xidong Feng, Ziyu Wan, Muning Wen, Ying Wen,
Weinan Zhang, and Jun Wang. 2023. Alphazero-like
tree-search can guide large language model decoding
and training. arXiv preprint arXiv:2309.17179.

Data Flow. 1994. Control Flow Analysis. Ph.D. the-
sis, QUEENSLAND UNIVERSITY OF TECHNOL-
OGY.

Daniel Fried, Armen Aghajanyan, Jessy Lin, Sida Wang,
Eric Wallace, Freda Shi, Ruiqi Zhong, Wen-tau Yih,
Luke Zettlemoyer, and Mike Lewis. 2022. Incoder:
A generative model for code infilling and synthesis.
arXiv preprint arXiv:2204.05999.

Linyuan Gong, Mostafa Elhoushi, and Alvin Che-
ung. 2024. Ast-t5: Structure-aware pretraining for
code generation and understanding. arXiv preprint
arXiv:2401.03003.

Shibo Hao, Yi Gu, Haodi Ma, Joshua Jiahua Hong,
Zhen Wang, Daisy Zhe Wang, and Zhiting Hu. 2023.
Reasoning with language model is planning with
world model. arXiv preprint arXiv:2305.14992.

Zhenyu He, Jun Zhang, Shengjie Luo, Jingjing Xu,
Zhi Zhang, and Di He. 2024. Let the code llm
edit itself when you edit the code. arXiv preprint
arXiv:2407.03157.

Dan Hendrycks, Steven Basart, Saurav Kadavath, Man-
tas Mazeika, Akul Arora, Ethan Guo, Collin Burns,
Samir Puranik, Horace He, Dawn Song, and 1 others.
2021. Measuring coding challenge competence with
apps. arXiv preprint arXiv:2105.09938.

Zhiyuan Hu, Chumin Liu, Xidong Feng, Yilun Zhao,
See-Kiong Ng, Anh Tuan Luu, Junxian He, Pang Wei
Koh, and Bryan Hooi. 2024. Uncertainty of thoughts:
Uncertainty-aware planning enhances information
seeking in large language models. arXiv preprint
arXiv:2402.03271.

Dong Huang, Qingwen Bu, Jie Zhang, Xiaofei Xie, Jun-
jie Chen, and Heming Cui. 2023a. Bias assessment
and mitigation in llm-based code generation. arXiv
preprint arXiv:2309.14345.

Dong Huang, Qingwen Bu, Jie M Zhang, Michael Luck,
and Heming Cui. 2023b. Agentcoder: Multi-agent-
based code generation with iterative testing and opti-
misation. arXiv preprint arXiv:2312.13010.

Jie Huang and Kevin Chen-Chuan Chang. 2022. To-
wards reasoning in large language models: A survey.
arXiv preprint arXiv:2212.10403.

Yoichi Ishibashi and Yoshimasa Nishimura. 2024. Self-
organized agents: A llm multi-agent framework to-
ward ultra large-scale code generation and optimiza-
tion. arXiv preprint arXiv:2404.02183.

Haolin Jin, Linghan Huang, Haipeng Cai, Jun Yan,
Bo Li, and Huaming Chen. 2024. From llms to
llm-based agents for software engineering: A sur-
vey of current, challenges and future. arXiv preprint
arXiv:2408.02479.

Sumith Kulal, Panupong Pasupat, Kartik Chandra, Mina
Lee, Oded Padon, Alex Aiken, and Percy S Liang.
2019. Spoc: Search-based pseudocode to code. Ad-
vances in Neural Information Processing Systems,
32.

James R Larus. 1999. Whole program paths. ACM
SIGPLAN Notices, 34(5):259–269.

Raymond Li, Loubna Ben Allal, Yangtian Zi, Niklas
Muennighoff, Denis Kocetkov, Chenghao Mou, Marc
Marone, Christopher Akiki, Jia Li, Jenny Chim, and
1 others. 2023. Starcoder: may the source be with
you! arXiv preprint arXiv:2305.06161.

Yichen Li, Yun Peng, Yintong Huo, and Michael R Lyu.
2024. Enhancing llm-based coding tools through
native integration of ide-derived static context. In
Proceedings of the 1st International Workshop on
Large Language Models for Code, pages 70–74.

Ziyang Luo, Can Xu, Pu Zhao, Qingfeng Sun, Xi-
ubo Geng, Wenxiang Hu, Chongyang Tao, Jing Ma,
Qingwei Lin, and Daxin Jiang. 2023. Wizardcoder:
Empowering code large language models with evol-
instruct. arXiv preprint arXiv:2306.08568.

Silin Meng, Yiwei Wang, Cheng-Fu Yang, Nanyun
Peng, and Kai-Wei Chang. 2024. Llm-a*: Large lan-
guage model enhanced incremental heuristic search
on path planning. arXiv preprint arXiv:2407.02511.

Daye Nam, Andrew Macvean, Vincent Hellendoorn,
Bogdan Vasilescu, and Brad Myers. 2024. Using an
llm to help with code understanding. In Proceedings
of the IEEE/ACM 46th International Conference on
Software Engineering, pages 1–13.

Baptiste Roziere, Jonas Gehring, Fabian Gloeckle, Sten
Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi Adi,
Jingyu Liu, Tal Remez, Jérémy Rapin, and 1 oth-
ers. 2023. Code llama: Open foundation models for
code. arXiv preprint arXiv:2308.12950.

8101

Noah Shinn, Federico Cassano, Ashwin Gopinath,
Karthik Narasimhan, and Shunyu Yao. 2024. Re-
flexion: Language agents with verbal reinforcement
learning. Advances in Neural Information Process-
ing Systems, 36.

David Silver, Thomas Hubert, Julian Schrittwieser, Ioan-
nis Antonoglou, Matthew Lai, Arthur Guez, Marc
Lanctot, Laurent Sifre, Dharshan Kumaran, Thore
Graepel, and 1 others. 2017. Mastering chess and
shogi by self-play with a general reinforcement learn-
ing algorithm. arXiv preprint arXiv:1712.01815.

Xiaojuan Tang, Zilong Zheng, Jiaqi Li, Fanxu Meng,
Song-Chun Zhu, Yitao Liang, and Muhan Zhang.
2023. Large language models are in-context seman-
tic reasoners rather than symbolic reasoners. arXiv
preprint arXiv:2305.14825.

Ante Wang, Linfeng Song, Ye Tian, Baolin Peng, Dian
Yu, Haitao Mi, Jinsong Su, and Dong Yu. 2024a.
Litesearch: Efficacious tree search for llm. arXiv
preprint arXiv:2407.00320.

Evan Wang, Federico Cassano, Catherine Wu, Yun-
feng Bai, Will Song, Vaskar Nath, Ziwen Han, Sean
Hendryx, Summer Yue, and Hugh Zhang. 2024b.
Planning in natural language improves llm search for
code generation. arXiv preprint arXiv:2409.03733.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou,
and 1 others. 2022. Chain-of-thought prompting elic-
its reasoning in large language models. Advances
in neural information processing systems, 35:24824–
24837.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran,
Tom Griffiths, Yuan Cao, and Karthik Narasimhan.
2024. Tree of thoughts: Deliberate problem solving
with large language models. Advances in Neural
Information Processing Systems, 36.

Lifan Yuan, Ganqu Cui, Hanbin Wang, Ning Ding,
Xingyao Wang, Jia Deng, Boji Shan, Huimin Chen,
Ruobing Xie, Yankai Lin, and 1 others. 2024. Ad-
vancing llm reasoning generalists with preference
trees. arXiv preprint arXiv:2404.02078.

Kechi Zhang, Jia Li, Ge Li, Xianjie Shi, and Zhi
Jin. 2024a. Codeagent: Enhancing code gener-
ation with tool-integrated agent systems for real-
world repo-level coding challenges. arXiv preprint
arXiv:2401.07339.

Shun Zhang, Zhenfang Chen, Yikang Shen, Mingyu
Ding, Joshua B Tenenbaum, and Chuang Gan. 2023.
Planning with large language models for code gener-
ation. arXiv preprint arXiv:2303.05510.

Yadong Zhang, Shaoguang Mao, Tao Ge, Xun Wang,
Adrian de Wynter, Yan Xia, Wenshan Wu, Ting Song,
Man Lan, and Furu Wei. 2024b. Llm as a master-
mind: A survey of strategic reasoning with large
language models. arXiv preprint arXiv:2404.01230.

Lin Zheng, Jianbo Yuan, Zhi Zhang, Hongxia Yang, and
Lingpeng Kong. 2023. Self-infilling code generation.
In Forty-first International Conference on Machine
Learning.

Li Zhong, Zilong Wang, and Jingbo Shang. 2024.
Ldb: A large language model debugger via verify-
ing runtime execution step-by-step. arXiv preprint
arXiv:2402.16906.

Andy Zhou, Kai Yan, Michal Shlapentokh-Rothman,
Haohan Wang, and Yu-Xiong Wang. 2023. Lan-
guage agent tree search unifies reasoning acting
and planning in language models. arXiv preprint
arXiv:2310.04406.

Changzhi Zhou, Xinyu Zhang, Dandan Song, Xiancai
Chen, Wanli Gu, Huipeng Ma, Yuhang Tian, Mengdi
Zhang, and Linmei Hu. 2025. Refinecoder: Iterative
improving of large language models via adaptive cri-
tique refinement for code generation. arXiv preprint
arXiv:2502.09183.

Appendix

A Details of Baselines

Here, we present more details of the implementa-
tion of the baselines:

(1) Code Generation Algorithms:

• LDB (Zhong et al., 2024): A debugging frame-
work that divides the initial code into blocks, an-
alyzes each block, and resolves issues by moni-
toring changes in block-level variable values. It
iteratively optimizes the code by following this
process.

• Reflexion (Shinn et al., 2024):Iteratively refine
the initial code by utilizing historical error data
and incorporating insights gained from previous
errors.

(2) Tree Search-enhanced Methods:

• PG-TD (Zhang et al., 2023): A token-level
MCTS search method that uses the code’s pass
rate as a scalar reward.

• ToT (Yao et al., 2024): We apply the Tree-of-
Thoughts (ToT) approach to code generation
in a manner similar to its application in cre-
ative writing. The search process is structured
into two distinct phases: thought generation and
code generation, with the tree being explored
using a breadth-first search (BFS) strategy.

• LATS (Zhou et al., 2023): A framework that
integrates MCTS with reflection, summarizing
past errors and storing them as memory within
nodes to assist with future iterations.

8102

• RAP (Hao et al., 2023): Leveraging an LLM as
the world model to simulate and evaluate search
results.

B Additional results

This section presents some additional experiment
results.

Ablation Study Here, we present the results of
the ablation study using GPT-4o-mini as the back-
bone model, as shown in Figure 6. It is clear that
the rethink operation and verbal feedback remain
the most significant contributors to our model’s
performance. Notably, the rethink mechanism ex-
hibits even stronger effects with GPT-4o-mini than
with GPT-3.5-turbo, likely due to the model’s en-
hanced ability to effectively utilize feedback and
make refinement.

Search Granularity Study We present the re-
sults of the search granularity study using GPT-4o-
mini as the backbone model, shown in Figure 7. It
is evident that the differences across granularities
are smaller on the HumanEval dataset, likely due
to its relatively low overall difficulty. However, on
the APPS dataset, the advantage of thought-level
search becomes much more pronounced, especially
at the highest “competition” difficulty level. This
suggests that for more complex problems, explor-
ing the thought process and reasoning is beneficial.

Token Consumption Our approach ensures the
comparison fair by keeping the number of roll-
outs, i.e., the number of codes generated during
the search, the same. This is following the pre-
vious work about tree search in code generation
PG-TD (Zhang et al., 2023) and LATS (Zhou et al.,
2023).

However, one limitation is that our method
would cost more tokens since we have introduce
block-level analysis and rethink mechanism. Here
we present the detailed token usage on GPT-4o-
mini in Table 5.

Our increase in token usage is primarily due to
the introduction of block-level analysis, which in-
cludes the values of variables before and after each
block. These values are obtained through code ex-
ecution, resulting in longer textual inputs to the
LLM. However, the feedback makes our model
deliver significantly better results. It is essential
to the success of the "rethink" mechanism, and it
represents an important characteristic in the coding

full model w/o selfEval VF w/o blockInfo w/o VF w/o rethink90.0
91.2
92.4
93.6
94.8

Hu
m

an
Ev

al

94.5

92.7 92.7
91.5

92.7

full model w/o selfEval VF w/o blockInfo w/o VF w/o rethink50.0

52.4

54.8

57.2

59.6

AP
PS

 In
tro

. 59
57 57

53 52

Figure 6: Ablation study of block-level analysis (block-
Info), rethink mechanism, the verbal feedback (VF) and
self-evaluation with GPT-4o-mini as the backbone.

HumanEval APPS Intro. APPS Inter. APPS Comp.0

20

40

60

80

Pa
ss

@
1

token-level
line-level
code-level
thought-level
RethinkMCTS

Figure 7: Performance comparison between different
search granularity. For advanced model like GPT-4o-
mini, it’s better to explore at the thought level.

environment (there would be no such detailed feed-
back for the math reasoning problem). Therefore,
incorporating such feedback is crucial. Like Ope-
nAI’s o1 model (which solves one problem with
thousands of tokens in the hidden CoT and minutes
to take), our primary aim is not to optimize token
count or computation time. Instead, the emphasis
is on enabling LLMs to generate higher-quality rea-
soning processes and achieve superior reasoning
outcomes.

Self-evaluation vs. Self-generating Unit Tests
Given the limited coverage of public test cases,
we propose a dual evaluation approach. In this
section, we compare it with an alternative approach
of self-generating unit tests. In the latter approach,
when the code passes the public test cases, we have
the LLM generate additional test cases and get a
new pass rate on these tests. The combined results
serve as a comprehensive evaluation of the code.
Experimental results are shown in Table 6.

As the table demonstrates, while self-generating
unit tests improve the pass rate on test cases, they
do not improve the pass@1 metric. This is because
self-evaluation directly assesses the code after it
passes the public test cases, scoring it based on
how well it meets the problem’s requirements. As
a result, it provides a more accurate indication of
the code’s ability to address the entire problem. In

8103

APPS Intro. (%) HumanEval

#Input token #Output token Cost($) #Input token #Output token Cost($)

ToT 24799 7156 0.008 11687 7131 0.006
LATS 104634 17472 0.026 12690 7403 0.006
PG-TD 27827 5378 0.007 5959 3759 0.003
LDB 61112 1734 0.010 13161 480 0.002
RETHINKMCTS 123207 17863 0.029 28479 8198 0.009

Table 5: The token consumption comparison. The results represent the average number of tokens consumed per
question.

contrast, self-generating unit tests focus on creat-
ing additional tests, which emphasize the test suite
rather than the code itself. There are two poten-
tial reasons for this: 1) Self-generating unit tests
primarily identify patterns in the existing tests and
generate a set of tests that better match the test suite.
This can enhance the pass rate by filtering for code
that matches these patterns, but it doesn’t necessar-
ily identify the mismatch between the code and the
problem requirement. 2) The generated tests may
not always be correct (Huang et al., 2023b), which
can mislead the code’s modification process and the
subsequent search direction, potentially steering it
away from valid solutions.

Multiple Runs To further illustrate our method’s
advantage, we run our method and strong base-
lines for 3 times with different random seeds. The
average performance and the standard derivation
are presented in Table 7. Noticeably, our model,
RETHINKMCTS, consistently demonstrates a sta-
ble performance advantage across multiple exper-
iments. Additionally, we have noticed that since
we set the temperature to 0, the standard deviation
between different runs is very small. Therefore,
we included the result of only one run in the main
body of the text.

C Prompts

In this section, we present the prompts used when
an LLM to perform various operations.

C.1 Expansion Prompt

First, we discuss the prompts for the Expansion
step in the MCTS process. There are two sets of
prompts: one set is used to generate new thoughts
based on the problem description and previous
thoughts when there is no feedback presented in
Table 8;

The other set is used when the generated code
contains errors and verbal feedback is provided.

In this case, the LLM uses the verbal feedback
to generate thoughts that avoid such errors. We
present the prompt in Table 9.

C.2 Code Generation Prompt
We present the prompt we use to instruct the LLM
to generate code following previous thoughts in
Table 10.

C.3 Evaluation Prompt
Besides the normal evaluation on the public
test cases, we also develop an LLM-based self-
evaluation when the public test cases are all passed.
Here we present the prompts in Table 11.

C.4 Rethink Prompt
When the generated code following some thoughts
doesn’t pass some public test cases, we would use
the block-level analysis to form the verbal feed-
back and use it to refine the previous thought, a.k.a,
rethink. Here we present the prompt for this opera-
tion in Table 12.

C.5 An Example of Accumulated Thoughts
Here we present an example of the thought steps
accumulated in one trace of MCTS tree in Table 13.

C.6 An Example of Verbal Feedback
The verbal feedback we constructed contains the
detailed block-level analysis of the code. Here we
present an example of it.

D Algorithm

We present the detailed procedure of RETHINKM-
CTS in pseudocode in Algorithm 1.

8104

Pass Rate (%) Pass@1 (%)

APPS Intro. APPS Inter. APPS Comp. APPS Intro. APPS Inter. APPS Comp. HumanEval

Direct Evaluation 76.60 74.34 42.50 59 49 28 94.51
Self-generated Tests 77.32 75.80 47.23 59 44 28 93.29

Table 6: The performance comparison between using Direct Self-evaluation and Self-generating test evaluation.

Pass Rate (%) Pass@1 (%)

APPS Intro. APPS Inter. APPS Comp. APPS Intro. APPS Inter. APPS Comp. HumanEval

ToT 72.22±1.19 67.10±1.06 40.33±2.58 53.67±1.70 45.00±0.82 22.67±2.05 92.48±0.29
LATS 70.17±0.52 68.66±0.79 36.83±3.61 50.33±0.47 45.67±0.94 18.33±3.30 93.70±0.57
PG-TD 68.85±2.29 68.29±1.48 40.33±2.00 49.00±4.32 44.33±1.25 23.00±1.63 92.28±0.76
RETHINKMCTS 75.36±1.08 74.10±0.98 43.33±1.18 57.33±1.25 50.00±0.82 27.00±0.82 94.31±0.29

Table 7: Comparing RETHINKMCTS with competitive baselines in multiple runs. The mean and standard deviation
of the results are presented.

Prompt for Rethink

{problem statement}
{thoughts}

Above is a problem to be solved by Python program.

* I need you to analyze and provide new thoughts that can lead to the correct solution
↪→ code.

* If there are previous thoughts provided, please follow them and offer more detailed and
↪→ further insights, as a detailed thinking or enhancement for previous ones.

* I need you to output \{width\} possible thoughts. Remember each only contain one
↪→ possible distinct reasoning but all following previous thoughts if there are.

* Please wrap your response into a JSON object that contains keys `Thought-i` with i as
↪→ the number of your thought, and key `Reasonableness` with the Reasonableness of
↪→ each thought, which should between 0~1 and the sum should be 1.

* The JSON should be a **list of dicts**, the dicts are split with comma ','.
Example Answers:
[
{"Thought-1":" We could use the print function to finish the task in one line: print(2 +

↪→ 3)", "Reasonableness": 0.7},
{"Thought-2":" We should calculate the problem by setting a=2+3, and then print(a)",

↪→ "Reasonableness": 0.29},
{"Thought-3":" The problem can't be solved by Python.", "Reasonableness": 0.01}
]

Table 8: Prompt for generating thoughts in search methods.

8105

Prompt for Rethink

{problem statement}

{thoughts}
```python
generated code
```
{verbal feedback}
Above is a problem to be solved by Python program.

* I need you to analyze and provide new thoughts that can lead to the correct solution
↪→ code.

* The goal is that the thoughts could lead to the code that not only avoids the current
↪→ error but also solve the problem in a way that handles other potential test cases
↪→ that we haven't encountered yet.

* I need you to output \{width\} possible thoughts. Remember each only contain one
↪→ possible distinct reasoning but all following previous thoughts if there are.

* Please wrap your response into a JSON object that contains keys `Thought-i` with i as
↪→ the number of your thought, and key `Reasonableness` with the Reasonableness of
↪→ each thought, which should between 0~1 and the sum should be 1.

* The JSON should be a **list of dicts**, the dicts are split with comma ','.
Example Answers:
[
{"Thought-1":" We could use the print function to finish the task in one line: print(2 +

↪→ 3)", "Reasonableness": 0.7},
{"Thought-2":" We should calculate the problem by setting a=2+3, and then print(a)",

↪→ "Reasonableness": 0.29},
{"Thought-3":" The problem can't be solved by Python.", "Reasonableness": 0.01}
]

Table 9: Prompt for generating thoughts in search methods.

Prompt for Rethink

Complete the Python program to solve the problem. Remember to contain the complete
↪→ program including all the imports and function header in your response.

Also some thoughts are included that you can refer to and build upon when writing the
↪→ code.

Answer with the code ONLY. No other explanation or words attached!

{problem statement}

{thoughts}

Table 10: Prompt for generating the code following the thoughts in search methods.

8106

Prompt for Rethink

{problem statement}

{thoughts}
```python
generated code
```

Above is a Python code problem with the thoughts and code to solve the problem. The code
↪→ could pass all the example test cases, however, it may or may not be completely
↪→ correct.

Please evaluate and return the correctness score in range [-1, 1].

Evaluate the correctness of the code and give only ONE evaluation score.

The code's correctness is whether it can pass all the possible unseen test cases of the
↪→ problem, not just the given ones.

Example Answers:
{"evaluation": -0.5, "explanation": The code is far from correct for solving the problem.}
{"evaluation": 0.1, "explanation": The code is not the correct solution but can pass some

↪→ simple test cases.}
{"evaluation": 0.85, "explanation": The code can pass most test cases while may fail on

↪→ some corner cases.}
{"evaluation": 1.0, "explanation": The generated code is the correct solution that can

↪→ pass all the possible test cases and strange corner cases too.}

Table 11: Prompt for evaluating the thoughts and code.

Prompt for Rethink

{problem statement}
{thoughts}
```python
generated code
```
{verbal feedback}

Based on your previous thoughts and the new experience, please provide a new Thought to
↪→ replace the previous thought. This new thought should avoid the mistake.

Remember that you only need to provide the thought (one or two sentences) to solve the
↪→ problem, not the code.

Table 12: Prompt for Rethink

8107

An Example of Accumulated Thoughts

1-Thought:To maximize the number of edges covered by paths between three distinct
↪→ vertices in a tree, we can ... yield a higher number of unique edges.

2-Thought:To enhance the previous thought about leveraging the diameter of the tree, we
↪→ can implement a breadth-first search (BFS) twice: ... maximizes unique edges
↪→ covered when chosen as the third vertex.

3-Thought:To maximize the number of edges covered by paths between three distinct
↪→ vertices in a tree, we can implement a two-pass BFS ... to maximize edge coverage.

4-Thought:To further enhance the previous thoughts on maximizing edge coverage among
↪→ three vertices in a tree, ..., thus ensuring we maximize the unique edges covered
↪→ by the paths connecting the three vertices.

Table 13: An example of accumulated thought steps. The thoughts are from GPT-4o-mini when solving APPS
problem 4000 (1st problem of introductory difficulty):

8108

An Example of Verbal Feedback

(Problem and Code)
import math
def largest_divisor(n: int) -> int:

""" For a given number n, find the largest number that divides n evenly, smaller than
↪→ n
>>> largest_divisor(15)
5
"""
for i in range(int(math.sqrt(n)), 0, -1):

if n % i == 0 and i < n:
return i

return 1 # In case n is 1, return 1 as the largest divisor
(Execution Feedback)
The code above fails the given unit test:
assert largest_divisor(15) == 5
Current Execution Output:
3.
(Block-level Analysis)
Here is the code execution trace block by block with the intermediate variable values.

↪→ Please explain the execution FOR EACH BLOCK and answer whether this block is
↪→ correct or not. If not, give an explanation on what is wrong. Please wrap your
↪→ response into a JSON object that contains keys `block` with the name of each
↪→ block, key `correct` with value False or True, and key `explanation` with an
↪→ explanation on the bug.

Example Answers:
{"block": "BLOCK-1", "correct": "True", "explanation": "The block initializes variable

↪→ `a` and `b`."}
{"block": "BLOCK-2", "correct": "False", "explanation": "The block is incorrect because

↪→ the code does not add the two integers together, but instead subtracts the second
↪→ integer from the first. To fix this issue, we should change the operator from `-`
↪→ to `+` in the return statement. This will ensure that the function returns the
↪→ correct output for the given input."}

[BLOCK-0]
n=15
for i in range(int(math.sqrt(n)), 0, -1):
n=15 i=3

[BLOCK-1]
n=15 i=3
if n % i == 0 and i < n:
n=15 i=3

[BLOCK-2]
n=15 i=3
return i
n=15 i=3 _ret=3

LLM-analysis
```json
[

{"block": "BLOCK-0", "correct": "True", "explanation": "The block initializes the
↪→ loop with the correct starting point, which is the integer part of the square root
↪→ of n."},
{"block": "BLOCK-1", "correct": "False", "explanation": "The block checks if 3 is a
↪→ divisor of 15, which is correct, but we are not immediately returning the largest
↪→ divisor. The loop continues, and the next iteration will check smaller values of
↪→ i."},
{"block": "BLOCK-2", "correct": "False", "explanation": "The block incorrectly
↪→ returns 3 instead of the larger valid divisor. Since the loop searches from the
↪→ square root downwards, it should continue checking until it finds the next valid
↪→ divisor, which is 5. The return statement needs to occur outside of this loop and
↪→ only when the largest divisor is found."}

]
```

Table 14: An example of verbal feedback.

8109

Algorithm 1 The RETHINKMCTS algorithm.
Require: root: the problem description; c: P-UCB exploration parameter; k: the maximum number of children of any node;

a, b: the reward weights of the pass rate and the LLM evaluation.
1: program_dict = DICTIONARY()
2: verbal feedback f = EMPTY
3: for i← 1, 2, . . . ,max_rollouts do
4: node← root
5: # Selection
6: while |node.children| > 0 do
7: node← P_UCB_SELECT(node.children, c)
8: end while
9: # Expansion

10: next_thoughts← TOP_K(node, k)
11: for next_thought ∈ next_thoughts do
12: next_state← CONCAT(node, next_thought)
13: Create a node new_node for next_state
14: Add new_node to the children of node
15: end for
16: # Evaluation
17: C ← GENERATE(node)
18: vtest, f ← GET_PASS_RATE(p)
19: vllm, f ← GET_LLM_EVAL(p)
20: program_dict[C] = r = a ∗ vtest + b ∗ vllm

21: if vtest = 1 then
22: program_dict[C] = r = a ∗ vtest + b ∗ vllm

23: else
24: program_dict[C] = r = vtest

25: end if
26: # Backpropagation
27: Update and the values of node and its ancestors in the tree with r
28: # Rethink
29: if vtest ̸= 1 then
30: node.thought = RETHINK(node, f)
31: next_thoughts = RETHINK_NEXT(node, k, f)
32: C = RE-GENERATE(node)
33: r = RE-EVALUATION(C)
34: program_dict[C] = r
35: end if
36: end for
37: return program in program_dict with the highest reward

8110

