
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing, pages 8304–8320
November 4-9, 2025 ©2025 Association for Computational Linguistics

Alignment with Fill-In-the-Middle for Enhancing Code Generation

Houxing Ren1 Zimu Lu1 Weikang Shi1 Haotian Hou2,5 Yunqiao Yang1

Ke Wang1 Aojun Zhou1 Junting Pan1,3 Mingjie Zhan2* Hongsheng Li1,3,4*

1CUHK MMLab 2SenseTime Research 3CPII under InnoHK
4Shanghai AI Laboratory 5Beihang University

renhouxing@gmail.com zhanmingjie@sensetime.com hsli@ee.cuhk.edu.hk

Abstract
The code generation capabilities of Large
Language Models (LLMs) have advanced ap-
plications like tool invocation and problem-
solving. However, improving performance in
code-related tasks remains challenging due to
limited training data that can be verified with
accurate test cases. While Direct Preference
Optimization (DPO) has shown promise, ex-
isting methods for generating test cases still
face limitations. In this paper, we propose a
novel approach that splits code snippets into
smaller, granular blocks, creating more diverse
DPO pairs from the same test cases. Ad-
ditionally, we introduce the Abstract Syntax
Tree (AST) splitting and curriculum training
method to enhance the DPO training. Our
approach demonstrates significant improve-
ments in code generation tasks, as validated
by experiments on benchmark datasets such
as HumanEval (+), MBPP (+), APPS, Live-
CodeBench, and BigCodeBench. Code and
data are available at https://github.com/
SenseLLM/StructureCoder.

1 Introduction

Large Language Models (LLMs) have signifi-
cantly enhanced applications like tool invocation
and mathematical problem-solving (OpenAI, 2023;
Touvron et al., 2023; Jiang et al., 2024; Yang et al.,
2024). To improve LLM performance, a com-
mon approach involves two stages: supervised fine-
tuning (SFT) and alignment. The alignment phase
is particularly effective, with Direct Preference Op-
timization (DPO) (Rafailov et al., 2023) gaining
popularity for its simplicity and effectiveness. DPO
has been successfully applied in fields like dia-
logue (Dubey et al., 2024), faithfulness (Bi et al.,
2024), and reasoning (Lai et al., 2024).

However, despite its success in several domains,
DPO has shown limited improvement in code gen-
eration tasks, and in some cases, its application

*Corresponding author.

may even be counterproductive (Xu et al., 2024).
This limitation may stem from the scarcity of train-
ing data containing test cases (Zhang et al., 2024a),
as seen in training sets like APPS (Hendrycks et al.,
2021), which include only 5,000 samples. To ad-
dress this, PLUM (Zhang et al., 2024a) and Cod-
eDPO (Zhang et al., 2024b) have proposed methods
for constructing test cases to expand the training
dataset for DPO. However, these approaches still
face criticism for their inability to fully guaran-
tee the accuracy of test samples, which limits the
achievable performance improvements.

To overcome these challenges, we propose a
novel approach that makes more efficient use of
the limited, high-quality data available. Inspired
by recent advancements in the mathematics do-
main (Lightman et al., 2024; Lu et al., 2024c,a;
Lai et al., 2024), we decompose code snippets into
smaller, more granular blocks. This allows for
the construction of more detailed and diverse DPO
pairs. By treating each block as a target for pre-
diction, the model can fine-tune on smaller code
segments, enabling more effective learning and po-
tentially improving performance in code genera-
tion tasks. Furthermore, this approach generates a
larger number of DPO pairs, making better use of
the available training set.

Building on these insights, we introduce a
novel method called StructureCoder, which fo-
cuses on maximizing the utility of limited train-
ing data. Specifically, we leverage the fill-in-the-
middle (FIM) approach (Bavarian et al., 2022), an
important capability of code LLMs for code com-
pletion, to generate fine-grained DPO pairs. By
using FIM, we can divide a code snippet into mul-
tiple blocks by Abstract Syntax Tree (AST), each
serving as a target, and then prompt the model to
generate the missing block. Test cases are used
to evaluate the correctness of the generated block,
thereby constructing accurate DPO pairs. Addition-
ally, we propose a curriculum training method that

8304

https://github.com/SenseLLM/StructureCoder
https://github.com/SenseLLM/StructureCoder

Dispreferred Code

01 def is_prime(n):
02 if n <= 1:
03 return False
04 if n <= 3:
05 return True
06 if n % 2 == 0 or n % 3 == 0:
07 return False
08 i = 5
09 while i * i <= n:
10 if n % i == 0 or n % (i + 2) == 0:
11 return False
12 i += 6
13 return True
14
15 def check_prime_area(x, y):
16 area = x * y - (x - y) * (x - y)
17 return "YES" if not is_prime(area) else "NO"

Preferred Code

01 def is_prime(n):
02 if n <= 1:
03 return False
04 if n <= 3:
05 return True
06 if n % 2 == 0 or n % 3 == 0:
07 return False
08 i = 5
09 while i * i <= n:
10 if n % i == 0 or n % (i + 2) == 0:
11 return False
12 i += 6
13 return True
14
15 def check_prime_area(x, y):
16 area = x * x - y * y
17 return "YES" if not is_prime(area) else "NO"

Figure 1: A preference pair case in the code generation field. The left is the correct response, and the right is the
incorrect response. The only difference between the two responses is in Line 16.

organizes the training set according to the depth
of the target block. This method progressively in-
creases training difficulty, leading to better perfor-
mance.

Our contributions can be summarized as follows:

• We propose the use of FIM to enhance DPO
for code LLMs, enabling the effective use of
limited training data with test cases.

• We introduce a method for generating accurate
FIM data through AST-based block segmenta-
tion, and a curriculum training strategy to or-
ganize the training set by target block depth,
leading to improved performance.

• We conduct extensive experiments on Hu-
manEval (+), MBPP (+), APPS, Live-
CodeBench, and BigCodeBench to demonstrate
the effectiveness of the proposed method in
code-related tasks.

2 Preliminaries

In this section, we introduce the fundamental com-
ponents of DPO and FIM, followed by an analysis
of the limitations of DPO in code generation tasks.

2.1 Direct Preference Optimization
DPO (Rafailov et al., 2023) offers a solution that
bypasses reward model training, instead directly
fine-tuning the LLM using preference pairs. The
DPO loss is defined as

LDPO(yw, yl, x) =

− log σ

(
β log

πθ(yw | x)
πref (yw | x) − β log

πθ(yl | x)
πref (yl | x)

)
,

where yw is the preferred response and yl is the
dispreferred response.

2.2 Fill-In-the-Middle (FIM)
When performing FIM (Bavarian et al., 2022) train-
ing, we swap the middle and the suffix segments.
Specifically, after splitting, it moves the suffix seg-
ment before the middle segment:

code→ (pre, mid, suf)→ (pre, suf, mid).

Then concatenate the three pieces using special
tokens as

<PRE> pre <SUF> suf <MID> mid <EOT>.

After that, we use the format to train a causal lan-
guage model and use the prefix and suffix segments
to predict the middle segment in the inference
stage.

2.3 Weakness of DPO
Prior work (Rafailov et al., 2024) demonstrates that
DPO can implicitly learn token-level reward func-
tions within the Markov Decision Process frame-
work of large language models. This enables DPO-
trained models to assign differentiated rewards to
individual tokens, effectively identifying those as-
sociated with factual inaccuracies while maintain-
ing consistent rewards elsewhere. However, accu-
rately capturing such fine-grained reward signals
requires substantial training data, as the quality and
scale of the dataset critically influence the learned
reward and the performance.

8305

This ability introduces two challenges for DPO
in the code field. On the one hand, there are limited
training sets containing test cases. On the other
hand, the preferred and dispreferred responses of-
ten share a similar structure, with only minimal dif-
ferences in detailed expression. This phenomenon
causes DPO to need a larger training data set to
learn token-level rewards. This is because when
constructing DPO training data, a model is used to
generate multiple responses, which are then evalu-
ated against test cases. This method often results
in correct responses and incorrect responses being
nearly identical, differing only in small details such
as a specific expression, an if-block, or a function.

To illustrate the consequences of this scenario,
we present an extreme example, as shown in Fig-
ure 1. In this case, we assume that only a single
segment differs between a correct response yw and
an incorrect response yl. These sequences are de-
fined as

yw = {pre,midw, suf},
yl = {pre,midl, suf}.

Here, the prefix is the same for both sequences, so
the loss for the prefix is zero. The DPO loss can
then be expressed as

L(yw, yl, x) = LDPO(midw|suf,midl|suf, x|pre),

where | denotes concatenation. Let xp = x|pre,
xw = x|pre|midw, and xl = x|pre|midl. The argu-
ment of the log sigmoid function in the loss can
then be separated into two components:

β log
πθ(midw | xp)
πref (midw | xp)

− β log
πθ(midl | xp)
πref (midl | xp)

,

β log
πθ(suf | xw)
πref (suf | xw)

− β log
πθ(suf | xl)
πref (suf | xl)

.

The first term corresponds to the loss for the middle
segment, which is the key component of the overall
loss. The second term, however, has a negative
impact, as it implies the model should not generate
the suffix based on xl. However, this is an issue be-
cause a prior error is unrelated to the rest segment.
For instance, as shown in Figure 1, even though
there’s an error in Line 16, the remaining function
should still be generated like this.

As demonstrated, it is inappropriate to calculate
the DPO loss on the suffix, as it leads to negative
rewards for correctly generated tokens. Unfortu-
nately, only a small fraction of the generated code

typically contains errors; the majority is correct.
This implies the need for a large dataset with test
cases to make up for the negative impact of the
DPO loss on the suffix.

3 Methodology

In Section 2, we analyze the impediments of DPO
with limited code training data. In this section,
we introduce a novel approach that effectively mit-
igates these weaknesses. Unlike previous meth-
ods (Zhang et al., 2024a,b), which focus on ex-
panding the training dataset, we emphasize opti-
mizing the utilization of the limited available data.
We begin by demonstrating how to leverage FIM
to avoid the detrimental part of DPO loss. Next,
we describe how to construct more accurate FIM
data. Finally, we provide an overview of the entire
training pipeline.

3.1 FIM Enhanced DPO
To alleviate the negative impact of the DPO loss
on the suffix part, we proposed to combine FIM
and DPO to enhance the code generation perfor-
mance. The FIM ability of code LLMs allows them
to generate the middle segment based on the prefix
and suffix segments, enabling us to control what is
included in the model response flexibly.

As shown in Figure 2, given a code training
case, which includes a code problem q, a refer-
ence solution c to solve the problem, and sev-
eral test cases t to test any generation, we first
select consequent snippets from the golden code
n times to construct the target snippets M =
{m1,m2, . . . ,mn}. This process also generate the
corresponding prefixes P = {p1, p2, . . . , pn} and
suffixes S = {s1, s2, . . . , sn}. Then we construct
the FIM prompt with the target snippets, prefixes,
and suffixes:

<PRE> Convert(q) pi <SUF> si <MID>, (1)

where “Convert” denotes a function converting the
text prompts into comments in the code. Then,
we task the code LLM to generate m gener-
ations for each prefix and suffix pair: G =

{g(1)1 , . . . , g
(m)
1 , . . . , g

(1)
n , . . . , g

(m)
n , } based on the

prompt. Finally, we concatenate the generation
with the corresponding prefix and suffix, e.g., p1 |
g
(1)
1 | s1, and use the test cases t to verify the

generation.
For each target snippet, we select a correct re-

sponse for each incorrect response, based on the

8306

<PRE>
Please . . .
def is_prime(n):
 if n <= 1:
 return False
 if n <= 3:
 return True

assert check_prime_area (5, 5) == "YES"

assert check_prime_area (3, 2) == "NO"User: [Query]
Assistant:
[Prefix] [Generation 2] [Suffix]

Preferred Code

Dispreferred Code if n % 2 == 0:
return False

if n % 2 == 0 or n % 3 == 0:
return False

if n % 3 == 0:
return False

User: [Query]
Assistant:
[Prefix] [Generation 1] [Suffix]

<PRE> [Query] [Prefix]
<SUF> [Suffix]
<MID> [Generation 2] <EOT>

Preferred Code

Dispreferred Code

<PRE> [Query] [Prefix]
<SUF> [Suffix]
<MID> [Generation 3] <EOT>

Chat Format FIM Format

Middle Completions

Test Case

FIM PromptFIM Prompt

<PRE> [Query] [Prefix] <SUF> [Suffix] <MID>

ModelModel ModelShare Share

[Prefix]
[Generation 1]
[Suffix]

Completed Code 1

Generation 1

[Prefix]
[Generation 2]
[Suffix]

Completed Code 2

Generation 2

[Prefix]
[Generation 3]
[Suffix]

Completed Code 3

Generation 3

Test Case

<SUF>
i = 5

 while i * i <= n:
 if n % i == 0 or n % (i + 2) == 0:
 return False
 i += 6
 return True

def check_prime_area(x, y):
 area = x * x - y * y

return "YES" if not is_prime(area) else "NO”

<MID>

Figure 2: An overview of our FIM-style preference modeling process. A concrete example (right) illustrates the
task of completing an is_prime function, with correctness judged via downstream function tests.

minimum edit distance, to construct the preference
pair. Then we apply two prompt formats to fine-
tune the model. One is the FIM format:

<PRE> Convert(q) pi <SUF> si <MID> g
(j)
i .

(2)
Here, only g

(j)
i is regarded as the response and

included in the DPO loss. Another format is the
Chat format:

User: q. Assistant: pi g
(j)
i si. (3)

Also, only g
(j)
i is calculated in the DPO loss. This

format is designed to preserve the model’s chat ca-
pabilities. During training, we randomly choose
one of two formats for each sample by drawing
from a Bernoulli distribution with probability α,
which determines the proportion of samples using
each format. This strategy enables the model to
be fine-tuned on shorter code snippets, thereby im-
proving learning efficiency.

3.2 AST Enhanced FIM

As discussed in Section 2, errors in the middle
segment are independent of those in the suffix seg-
ment. Therefore, it is essential to select appropriate
consequent code snippets from the golden label.

def is_prime(n):
 if n <= 1:
 return False
 if n <= 3:
 return True

if n % 2 == 0 or n % 3 == 0:
return False

 i = 5
 while i * i <= n:
 if n % i == 0 or n % (i + 2) == 0:
 return False
 i += 6
 return True

def check_prime_area(x, y):
 area = x * x - y * y

return "YES" if not is_prime(area) else "NO"

If

If

If

If While

Func

Func

Figure 3: Illustration of our AST-based segmentation
strategy. This segmentation ensures each middle seg-
ment is syntactically and semantically coherent, en-
abling more effective FIM-based fine-tuning.

The ideal snippets should have the following char-
acteristics to ensure effective model learning and
improved performance:

• The selected code snippets should be distinct
blocks to maintain clear boundaries between
different functional units, ensuring that each
segment functions independently without rely-
ing on adjacent ones.

• The selected code snippets should encompass a
variety of code structures to enable the model
to learn a broad range of coding patterns.

8307

Inspired by previous work (Gong et al., 2024),
we parse a code into an Abstract Syntax Tree (AST).
As illustrated in Figure 3, we first parse the golden
label into an AST, then select several blocks as the
target code snippets. In this approach, we consider
only four node types in the AST: i.e., if block, for
block, while block, and function block.

By analyzing the AST, we can extract syntacti-
cally complete and functionally independent code
blocks, which reduces the risk of including partial
or entangled code, ensures that the middle seg-
ments are self-contained and coherent, and exposes
the model to a broader range of distinct structural
patterns. For instance, as shown in Figure 3, the
first three if blocks handle distinct conditions and
thus operate independently, focusing solely on their
respective logic and ignoring others. Additionally,
the four selected node types represent the core
building blocks of Python code, capturing a di-
verse range of structures commonly encountered in
Python programming.

3.3 Training and Discussion
To effectively leverage all the blocks selected
from AST, we propose a curriculum learning strat-
egy (Bengio et al., 2009) that orders the training
data based on the length of code snippets. The
goal is to enable the model to first focus on master-
ing token-level rewards for shorter, simpler code
snippets before gradually progressing to longer,
more complex ones, and finally the whole codes.
This strategy leverages the inherent structure of
code, where shorter snippets tend to contain sim-
pler constructs and fewer dependencies, making
them easier to learn at the token level.

Specifically, we first sort the training samples by
the number of lines in the corresponding code snip-
pets. During the initial training stages, the model
is fine-tuned on shorter code snippets, which typ-
ically have fewer tokens and simpler logic. This
allows the model to learn the fundamental code
patterns without being overwhelmed by the com-
plexity of longer code blocks. As the training pro-
cedure, we progressively introduce longer snippets,
which feature more intricate logic, dependencies,
and structures.

In summary, the training begins by selecting tar-
get code snippets by AST segmentation from the
golden code, using FIM to generate middle seg-
ments based on the prefix and suffix. Then the
training data is ordered by code snippet length, with
the model first learning from shorter, simpler code

and progressively moving to longer, more complex
snippets, ensuring a structured and efficient learn-
ing process. Finally, we fine-tune the code LLMs
with the sorted training data and randomly select
the prompt format (FIM format or chat format) by
drawing from a Bernoulli distribution with proba-
bility α in each training step.

4 Experiments

In this section, we construct extensive experiments
to demonstrate the effectiveness of the proposed
method and analyze the proposed method.

4.1 Experimental Setup

Training Dataset. Our training dataset is the
APPS training set (Hendrycks et al., 2021), which
is collected from different open-access coding web-
sites such as Codeforces, Kattis, and more. The
training set includes 5,000 samples and each sam-
ple contains a query, several golden labels, and
several test cases.

Test Dataset. We evaluate our method on Hu-
manEval (Chen et al., 2021) and MBPP (Austin
et al., 2021), two of the most widely used bench-
marks for code generation. Considering the insuffi-
ciency of test cases in these benchmarks, Liu et al.
(2023) proposed HumanEval+ and MBPP+, which
contain 80×/35× more tests. We also evaluate our
method on APPS (Hendrycks et al., 2021) and Live-
CodeBench (Jain et al., 2024), two datasets with
more difficult code problems. In addition, we eval-
uate our method on BigCodeBench (Zhuo et al.,
2024), which challenged LLMs to invoke multiple
function calls as tools.

Implementation Details. We test our methods
on Qwen2.5-Coder-Instruct 1.5B/3B/7B (Hui et al.,
2024). We first use Black1 to format all golden
labels in the training set, and then use AST2 to
parse the formatted code and extract all desired
blocks, i.e., if block, for block, while block, func-
tion block. Then we use the code LLMs to generate
5 responses based on the FIM prompt, with top_p
= 0.95 and temperature = 0.7. After that, we use
the test cases to evaluate the generated responses
and select one preferred response and one dispre-
ferred response (if there is no correct generation or
no incorrect generation, we will discard this case).
For training, we fine-tune all models for 3 epochs.

1https://github.com/psf/black
2https://docs.python.org/3/library/ast.html

8308

https://github.com/psf/black
https://docs.python.org/3/library/ast.html

Method
HumanEval MBPP

APPS LiveCodeBench
BigCodeBench

Base Plus Base Plus Full Hard

Closed-Source Models

Claude-3.5-Sonnet 92.1 86.0 91.0 74.6 - 37.1 45.3 23.6
GPT-4o 92.1 86.0 86.8 72.5 - 33.0 50.1 25.0
o1-mini 97.6 90.2 93.9 78.3 - 54.1 46.3 23.0
o1-preview 95.1 88.4 93.4 77.8 - 42.5 49.3 27.7

Open-Source Models

DS-Coder-1.3B 65.9 60.4 65.3 54.8 5.7 4.1 22.8 3.4
Qwen2.5-Coder-1.5B 70.7 66.5 69.2 59.4 7.7 6.7 25.2 4.1

w/ DPO 74.4 69.5 73.5 63.8 9.3 7.8 28.6 6.8
w/ KTO 74.4 70.1 74.1 62.4 9.4 9.4 28.0 7.4
w/ Focused-DPO 72.6 68.3 72.8 62.7 9.2 9.1 29.2 7.4
w/ StructureCoder 75.6‡ 71.3‡ 75.7∗†‡ 64.8∗†‡ 9.9∗†‡ 10.8∗‡ 29.2∗† 8.1∗‡

Qwen2.5-Coder-3B 84.1 80.5 73.6 62.4 10.9 10.4 35.8 14.2
w/ DPO 84.8 80.5 75.4 64.0 12.7 10.8 37.4 12.8
w/ KTO 81.1 77.4 73.3 63.0 12.4 10.8 36.6 11.5
w/ Focused-DPO 86.0 81.1 75.7 64.3 13.9 10.8 37.9 14.5
w/ StructureCoder 86.0∗† 82.3∗† 75.7∗† 64.6∗†‡ 13.9∗† 13.4∗†‡ 38.4∗†‡ 16.9∗†‡

CodeLlama-7B 40.9 33.5 54.0 44.4 4.3 7.1 21.9 3.4
DS-Coder-6.7B 74.4 71.3 74.9 65.6 8.5 10.4 35.5 10.1
Qwen2.5-Coder-7B 88.4 84.1 83.5 71.7 16.2 16.8 41.0 18.2

w/ DPO 88.4 84.1 83.1 71.4 19.8 17.5 41.8 19.1
w/ KTO 89.0 84.1 85.4 72.5 19.0 16.9 41.0 18.2
w/ Focused-DPO 89.0 84.8 85.4 72.5 20.0 17.9 41.1 18.2
w/ StructureCoder 90.9∗†‡ 87.2∗†‡ 85.7∗ 74.3∗† 20.1∗† 18.3∗†‡ 41.8† 19.6∗†‡

Table 1: Pass@1 accuracy on HumanEval (+), MBPP (+), APPS, LiveCodeBench (July 2024 - January 2025),
and BigCodeBench. The best results of each base are in bold, and results unavailable are left blank. The results
re-evaluated on our end are marked with an underline. ∗, †, and ‡ denote that our method significantly outperforms
DPO, KTO, and Focused-DPO at the level of 0.05, respectively. Note that all results of the LiveCodeBench have
been re-evaluated due to the dataset update. We also report the re-evaluated results of the BigCodeBench of
Qwen2.5-Coder-1.5B-Inst because the reproduced results differed significantly from the original paper.

We employ an RMSProp optimizer (Graves, 2013)
with a learning rate of 1e-6, a 0.05 warm-up ra-
tio, and a cosine scheduler. We set the batch size
as 128 and the max sequence length as 2048. We
set the hyperparameter α = 0.5. To efficiently
train the computationally intensive models, we si-
multaneously employ VLLM (Kwon et al., 2023),
DeepSpeed (Rajbhandari et al., 2020) and Flash
Attention (Dao, 2023). On 8 NVIDIA A800 80GB
GPUs, the experiments on 1.5B, 3B, and 7B models
take 8 hours, 10 hours, and 16 hours, respectively.

4.2 Evaluation

Baseline. We employ DPO (Rafailov et al.,
2023), KTO (Ethayarajh et al., 2024), and Focused-

DPO (Zhang et al., 2025) as our baseline. For the
DPO and KTO, we use the chat format to generate
5 responses for each problem. For Focused-DPO,
we follow the paper to generate 10 responses and
select the 5000 samples with the longest common
prefix and suffix. The other pipeline and hyperpa-
rameters are the same as the implementation details
of StructureCoder.

Results. Table 1 shows the pass@1 accuracy of
different models on HumanEval, MBPP, APPS,
LiveCodeBench, and BigCodeBench. Based on the
results, we have the following findings:

(1) The proposed StructureCoder consistently
outperforms standard DPO and KTO across all

8309

Method
HumanEval MBPP

APPS LiveCodeBench
BigCodeBench

Base Plus Base Plus Full Hard

StructureCoder 75.6 71.3 75.7 64.8 9.9 10.8 29.2 8.1

w/ DPO 74.4 69.5 73.5 63.8 9.3 7.8 28.6 6.8
w/ DPO (Data Equal) 66.5 59.8 71.4 59.0 2.0 4.1 25.9 6.1

w/o AST 75.0 69.5 74.1 62.4 9.9 9.7 28.8 3.4
w/o Curriculum 78.7 73.2 73.8 64.3 9.8 9.0 28.3 7.4
w/ α = 0 75.0 70.7 74.1 62.4 9.6 8.6 28.7 8.1
w/ α = 1 78.7 72.0 74.1 64.0 9.6 9.7 29.1 8.1

w/ suf loss 77.4 70.7 75.4 64.6 9.8 8.2 29.0 7.4
w/ pre & suf loss 76.2 70.7 74.9 64.6 9.7 8.1 29.1 7.4
w/o suf 73.2 69.5 75.1 62.4 9.8 9.7 29.1 8.1

Table 2: Ablation results based on Qwen2.5-Coder-1.5B-Instruct. The score is Pass@1 accuracy.

models on a variety of code-related tasks. Specifi-
cally, for Qwen2.5-Coder-1.5B-Instruct, Structure-
Coder surpasses DPO by an average of 1.5 points
across all test sets. Similarly, for Qwen2.5-Coder-
3B-Instruct and Qwen2.5-Coder-7B-Instruct, Struc-
tureCoder outperforms DPO by an average of 1.6
points across all test sets. The similar increase in
different sizes demonstrates the effectiveness of the
proposed method.

(2) The proposed StructureCoder shows a more
significant improvement over DPO on most test
sets compared to the APPS test set. For Qwen2.5-
Coder-1.5B-Instruct, StructureCoder exceeds DPO
by an average of 1.5 points on all test sets except
for the APPS test set, where the improvement is
only 0.6 points. This suggests that the proposed
method enables the model to learn more diverse
code patterns and achieve better generalization.

(3) The proposed StructureCoder demonstrates
comparable performance to Focused-DPO on
Qwen2.5-Coder-7B-Instruct, but achieves a sig-
nificant improvement on Qwen2.5-Coder-1.5B-
Instruct. This is because generations from the
weaker model tend to have shorter comment pre-
fixes and suffixes, which diminishes the effective-
ness of Focused-DPO. In contrast, our method does
not rely on aligning specific features of the gener-
ations, leading to consistent improvements across
all three models.

4.3 Detailed Analysis

4.3.1 Ablation Study
Here, we check how each component contributes
to the final performance. We prepare two group

variants of our method based on Qwen2.5-Coder-
1.5B-Instruct: (1) The first group is related to DPO.
w/ DPO denotes constructing training data w/o
FIM. w/ DPO (Data Equal) denotes training with
more epochs to ensure the total training samples are
the same as StructureCoder. (2) The second group
is related to the proposed components. w/ AST
denotes selecting target code snippets randomly.
w/ Curriculum denotes training with random order.
w/ α = 0 denotes training only with the standard
format. w/ α = 1 denotes training only with the
FIM format.

Table 2 presents the pass@1 accuracy for various
model variants. Based on the results, we have the
following findings:

(1) As shown, all variants perform worse than
StructureCoder across most test sets, except for
HumanEval. These results suggest that all compo-
nents (i.e., AST enhanced FIM, curriculum learn-
ing, and mixing FIM training format and Chat for-
mat) are critical for enhancing performance.

(2) Furthermore, w/ DPO (Data Equal) per-
forms worse than w/ DPO, indicating that DPO
benefits more from diverse, large-scale training
data than from simply increasing the number of
epochs. Increasing epochs can lead to overfitting.
In contrast, StructureCoder effectively generates
more diverse training data through FIM, resulting
in improved performance.

(3) Lastly, w/ Curriculum and w/ α = 1 outper-
form StructureCoder on HumanEval. A potential
explanation for this is that the HumanEval test
cases differ significantly from those in the APPS,
making fine-tuning with longer code during the

8310

final stage detrimental to HumanEval performance.

4.3.2 Effect of Loss on Prefix and Suffix
As we analyzed in Section 2, the DPO loss on the
prefix segment does not impact the optimization,
but the DPO loss on the suffix segment harms the
optimization. Here, we conduct experiments to
check the effect of loss on the prefix segment and
the suffix segment. Specifically, we prepare three
variants based on Qwen2.5-Coder-1.5B-Instruct.
w/ suf loss computes the loss on both the middle
and the suffix segments. w/ pre & suf loss com-
putes the loss on all segments. w/o suf remove
suffix in the whole pipeline, a.k.a.,, we only use
the query and the prefix to prompt the model to
generate various generations, effectively setting the
suffix to be empty.

Table 2 presents the pass@1 accuracy for the
variants. As shown in the table, w/ suf loss sig-
nificantly performs worse than StructureCoder on
LiveCodeBench, which is the most difficult test set.
This indicates that the DPO loss on the suffix seg-
ment hurts the optimization. However, w/ suf loss
and w/ pre & suf loss perform similarly. This indi-
cates that the DPO loss on the prefix segment does
not impact the optimization. This phenomenon is
less noticeable on other datasets because they are
simpler. The difficulty of LiveCodeBench high-
lights the impact of the DPO loss on the suffix
segment, while simpler datasets don’t show the
same effect. Finally, w/o suf performs worse than
StructureCoder in most settings. This is because
concatenating the middle and suffix spans results
in overly long input sequences, which may hinder
the model’s ability to focus on critical code blocks.
This observation aligns with our theoretical insights
discussed in Section 2.3.

5 Related Work

5.1 Large Language Models for Code

Previous works have introduced LLMs for the
code domain. OpenAI introduced Codex (Chen
et al., 2021), and Google introduced PaLM-
Coder (Chowdhery et al., 2023). There are also
several open-source LLMs for the code domain,
such as CodeGen (Nijkamp et al., 2023), In-
coder (Fried et al., 2023), SantaCoder (Allal et al.,
2023), StarCoder (Li et al., 2023), StarCoder-
2 (Lozhkov et al., 2024), CodeGeeX (Zheng et al.,
2023), Code Llama (Rozière et al., 2023), and
DeepSeek-Coder (Guo et al., 2024). Recently,

Deepseek-Coder-V2 (DeepSeek-AI et al., 2024)
and Qwen2.5-Coder (Hui et al., 2024) have been
proposed, which achieve performance close to that
of closed-source models.

Instruction tuning is demonstrated to be an ef-
fective method to improve the ability of LLMs
in specific domains. Code Alpaca (Chaudhary,
2023) applied Self-Instruct (Wei et al., 2022) to
fine-tune LLMs with ChatGPT-generated instruc-
tions. WizardCoder (Luo et al., 2023) proposed
Code Evol-Instruct, which evolves Code Alpaca
data using the ChatGPT to generate more com-
plex and diverse datasets. MagiCoder (Wei et al.,
2023), WaveCoder (Yu et al., 2023), and InverseC-
oder (Wu et al., 2024) proposed some methods
to make full use of source code. OpenCodeInter-
preter (Zheng et al., 2024), AutoCoder (Lei et al.,
2024) and ReflectionCoder (Ren et al., 2024b) pro-
posed to utilize a compiler to enhance code LLMs.

5.2 Alignment for Code

Reinforcement learning-based alignment meth-
ods have been shown to improve LLM perfor-
mance. DPO (Rafailov et al., 2023), though widely
adopted, provides limited gains in code genera-
tion tasks (Xu et al., 2024). PLUM (Zhang et al.,
2024a) uses GPT-4 to generate test cases for code
validation and ranking. CodeDPO (Zhang et al.,
2024b) applies a PageRank-inspired algorithm for
iterative preference scoring. StepCoder (Dou et al.,
2024) employs PPO (Schulman et al., 2017) to
optimize general code generation, and CodeOp-
timise (Gee et al., 2024) focuses on improving
runtime efficiency. Concurrent with our work,
Focused-DPO (Zhang et al., 2025) also identified
the issue of common prefixes and suffixes. How-
ever, their approach heavily depends on model gen-
erations that contain these patterns, whereas our
method eliminates such dependency.

Unlike previous DPO-based approaches to code
generation, our approach focuses on maximizing
the utility of limited data to construct more effec-
tive preference pairs. While existing methods of-
ten rely on larger datasets or complex augmenta-
tion strategies, we take a data-efficient approach
by making the most of even small-scale datasets.
By introducing FIM (Bavarian et al., 2022), we
can efficiently extract high-quality preference pairs,
significantly improving the alignment of code gen-
eration models while utilizing a limited amount of
labeled data.

8311

6 Conclusion

In this paper, we introduced a novel approach to
enhance code generation performance for LLMs
using the fill-in-the-middle (FIM). By generating
fine-grained DPO pairs from limited test cases and
employing a curriculum training method, we max-
imized the utility of available data, leading to im-
proved model performance. Our experiments on
benchmarks like HumanEval (+), MBPP (+), APPS,
LiveCodeBench, and BigCodeBench demonstrated
the effectiveness of our approach in code-related
tasks. Future work could explore further refine-
ments, such as alternative segmentation strategies
or additional data sources.

Limitations

One key limitation of our approach is that it re-
quires the model to possess strong Fill-In-the-
Middle (FIM) capabilities, which are essential
for effectively generating fine-grained DPO pairs.
However, most current models, after supervised
fine-tuning, may struggle to maintain high FIM
performance. As a result, the effectiveness of our
method is closely tied to the underlying model’s
proficiency in FIM, a capability that is not yet uni-
versally available in existing LLMs. This reliance
on FIM limits the applicability of our approach to
models that have been specifically optimized for
this task. Another limitation is that our method
is currently focused solely on the code generation
domain. While we believe that similar phenomena
may exist in other domains, our approach has not
yet been tested outside the code generation field.
Further research would be required to explore the
transferability to other closed-question tasks.

Ethics Statement

The model utilized in this paper, Qwen2.5-
Coder (Li et al., 2023), is licensed for academic re-
search purposes3. Furthermore, the data employed
in this study, APPS (Hendrycks et al., 2021), is also
licensed for academic research purposes4.

Acknowledgment

This project is funded in part by National Key R&D
Program of China Project 2022ZD0161100, by the
Centre for Perceptual and Interactive Intelligence
(CPII) Ltd under the Innovation and Technology

3https://github.com/QwenLM/Qwen2.5-Coder
4https://github.com/hendrycks/apps

Commission (ITC)’s InnoHK, and in part by NSFC-
RGC Project N_CUHK498/24.

References
Loubna Ben Allal, Raymond Li, Denis Kocetkov,

Chenghao Mou, Christopher Akiki, Carlos Muñoz
Ferrandis, Niklas Muennighoff, Mayank Mishra,
Alex Gu, Manan Dey, Logesh Kumar Umapathi,
Carolyn Jane Anderson, Yangtian Zi, Joel Lamy-
Poirier, Hailey Schoelkopf, Sergey Troshin, Dmitry
Abulkhanov, Manuel Romero, Michael Lappert,
Francesco De Toni, Bernardo García del Río, Qian
Liu, Shamik Bose, Urvashi Bhattacharyya, Terry Yue
Zhuo, Ian Yu, Paulo Villegas, Marco Zocca, Sourab
Mangrulkar, David Lansky, Huu Nguyen, Danish
Contractor, Luis Villa, Jia Li, Dzmitry Bahdanau,
Yacine Jernite, Sean Hughes, Daniel Fried, Arjun
Guha, Harm de Vries, and Leandro von Werra. 2023.
Santacoder: don’t reach for the stars! CoRR,
abs/2301.03988.

Jacob Austin, Augustus Odena, Maxwell I. Nye,
Maarten Bosma, Henryk Michalewski, David Dohan,
Ellen Jiang, Carrie J. Cai, Michael Terry, Quoc V. Le,
and Charles Sutton. 2021. Program synthesis with
large language models. CoRR, abs/2108.07732.

Mohammad Bavarian, Heewoo Jun, Nikolas Tezak,
John Schulman, Christine McLeavey, Jerry Tworek,
and Mark Chen. 2022. Efficient training of language
models to fill in the middle. CoRR, abs/2207.14255.

Yoshua Bengio, Jérôme Louradour, Ronan Collobert,
and Jason Weston. 2009. Curriculum learning. In
Proceedings of the 26th Annual International Con-
ference on Machine Learning, ICML 2009, Montreal,
Quebec, Canada, June 14-18, 2009, volume 382 of
ACM International Conference Proceeding Series,
pages 41–48. ACM.

Baolong Bi, Shaohan Huang, Yiwei Wang, Tianchi
Yang, Zihan Zhang, Haizhen Huang, Lingrui Mei,
Junfeng Fang, Zehao Li, Furu Wei, Weiwei Deng,
Feng Sun, Qi Zhang, and Shenghua Liu. 2024.
Context-dpo: Aligning language models for context-
faithfulness. CoRR, abs/2412.15280.

Sahil Chaudhary. 2023. Code alpaca: An instruction-
following llama model for code generation. https:
//github.com/sahil280114/codealpaca.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan,
Henrique Pondé de Oliveira Pinto, Jared Kaplan,
Harrison Edwards, Yuri Burda, Nicholas Joseph,
Greg Brockman, Alex Ray, Raul Puri, Gretchen
Krueger, Michael Petrov, Heidy Khlaaf, Girish Sas-
try, Pamela Mishkin, Brooke Chan, Scott Gray,
Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz
Kaiser, Mohammad Bavarian, Clemens Winter,
Philippe Tillet, Felipe Petroski Such, Dave Cum-
mings, Matthias Plappert, Fotios Chantzis, Eliza-
beth Barnes, Ariel Herbert-Voss, William Hebgen
Guss, Alex Nichol, Alex Paino, Nikolas Tezak, Jie

8312

https://github.com/QwenLM/Qwen2.5-Coder
https://github.com/hendrycks/apps
https://doi.org/10.48550/ARXIV.2301.03988
http://arxiv.org/abs/2108.07732
http://arxiv.org/abs/2108.07732
https://doi.org/10.48550/ARXIV.2207.14255
https://doi.org/10.48550/ARXIV.2207.14255
https://doi.org/10.1145/1553374.1553380
https://doi.org/10.48550/ARXIV.2412.15280
https://doi.org/10.48550/ARXIV.2412.15280
https://github.com/sahil280114/codealpaca
https://github.com/sahil280114/codealpaca

Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain,
William Saunders, Christopher Hesse, Andrew N.
Carr, Jan Leike, Joshua Achiam, Vedant Misra, Evan
Morikawa, Alec Radford, Matthew Knight, Miles
Brundage, Mira Murati, Katie Mayer, Peter Welinder,
Bob McGrew, Dario Amodei, Sam McCandlish, Ilya
Sutskever, and Wojciech Zaremba. 2021. Evaluat-
ing large language models trained on code. CoRR,
abs/2107.03374.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin,
Maarten Bosma, Gaurav Mishra, Adam Roberts,
Paul Barham, Hyung Won Chung, Charles Sutton,
Sebastian Gehrmann, Parker Schuh, Kensen Shi,
Sasha Tsvyashchenko, Joshua Maynez, Abhishek
Rao, Parker Barnes, Yi Tay, Noam Shazeer, Vin-
odkumar Prabhakaran, Emily Reif, Nan Du, Ben
Hutchinson, Reiner Pope, James Bradbury, Jacob
Austin, Michael Isard, Guy Gur-Ari, Pengcheng Yin,
Toju Duke, Anselm Levskaya, Sanjay Ghemawat,
Sunipa Dev, Henryk Michalewski, Xavier Garcia,
Vedant Misra, Kevin Robinson, Liam Fedus, Denny
Zhou, Daphne Ippolito, David Luan, Hyeontaek Lim,
Barret Zoph, Alexander Spiridonov, Ryan Sepassi,
David Dohan, Shivani Agrawal, Mark Omernick, An-
drew M. Dai, Thanumalayan Sankaranarayana Pil-
lai, Marie Pellat, Aitor Lewkowycz, Erica Moreira,
Rewon Child, Oleksandr Polozov, Katherine Lee,
Zongwei Zhou, Xuezhi Wang, Brennan Saeta, Mark
Diaz, Orhan Firat, Michele Catasta, Jason Wei, Kathy
Meier-Hellstern, Douglas Eck, Jeff Dean, Slav Petrov,
and Noah Fiedel. 2023. Palm: Scaling language mod-
eling with pathways. J. Mach. Learn. Res., 24:240:1–
240:113.

Tri Dao. 2023. Flashattention-2: Faster attention with
better parallelism and work partitioning. CoRR,
abs/2307.08691.

DeepSeek-AI, Daya Guo, Dejian Yang, Haowei Zhang,
Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, Xiaokang Zhang,
Xingkai Yu, Yu Wu, Z. F. Wu, Zhibin Gou, Zhihong
Shao, Zhuoshu Li, Ziyi Gao, Aixin Liu, Bing Xue,
Bingxuan Wang, Bochao Wu, Bei Feng, Chengda Lu,
Chenggang Zhao, Chengqi Deng, Chenyu Zhang,
Chong Ruan, Damai Dai, Deli Chen, Dongjie Ji,
Erhang Li, Fangyun Lin, Fucong Dai, Fuli Luo,
Guangbo Hao, Guanting Chen, Guowei Li, H. Zhang,
Han Bao, Hanwei Xu, Haocheng Wang, Honghui
Ding, Huajian Xin, Huazuo Gao, Hui Qu, Hui Li,
Jianzhong Guo, Jiashi Li, Jiawei Wang, Jingchang
Chen, Jingyang Yuan, Junjie Qiu, Junlong Li, J. L.
Cai, Jiaqi Ni, Jian Liang, Jin Chen, Kai Dong, Kai Hu,
Kaige Gao, Kang Guan, Kexin Huang, Kuai Yu, Lean
Wang, Lecong Zhang, Liang Zhao, Litong Wang,
Liyue Zhang, Lei Xu, Leyi Xia, Mingchuan Zhang,
Minghua Zhang, Minghui Tang, Meng Li, Miaojun
Wang, Mingming Li, Ning Tian, Panpan Huang, Peng
Zhang, Qiancheng Wang, Qinyu Chen, Qiushi Du,
Ruiqi Ge, Ruisong Zhang, Ruizhe Pan, Runji Wang,
R. J. Chen, R. L. Jin, Ruyi Chen, Shanghao Lu,
Shangyan Zhou, Shanhuang Chen, Shengfeng Ye,
Shiyu Wang, Shuiping Yu, Shunfeng Zhou, Shuting

Pan, and S. S. Li. 2025. Deepseek-r1: Incentiviz-
ing reasoning capability in llms via reinforcement
learning. CoRR, abs/2501.12948.

DeepSeek-AI, Qihao Zhu, Daya Guo, Zhihong Shao,
Dejian Yang, Peiyi Wang, Runxin Xu, Y. Wu, Yukun
Li, Huazuo Gao, Shirong Ma, Wangding Zeng, Xiao
Bi, Zihui Gu, Hanwei Xu, Damai Dai, Kai Dong,
Liyue Zhang, Yishi Piao, Zhibin Gou, Zhenda Xie,
Zhewen Hao, Bingxuan Wang, Junxiao Song, Deli
Chen, Xin Xie, Kang Guan, Yuxiang You, Aixin
Liu, Qiushi Du, Wenjun Gao, Xuan Lu, Qinyu Chen,
Yaohui Wang, Chengqi Deng, Jiashi Li, Chenggang
Zhao, Chong Ruan, Fuli Luo, and Wenfeng Liang.
2024. Deepseek-coder-v2: Breaking the barrier of
closed-source models in code intelligence. CoRR,
abs/2406.11931.

Shihan Dou, Yan Liu, Haoxiang Jia, Limao Xiong, Enyu
Zhou, Wei Shen, Junjie Shan, Caishuang Huang,
Xiao Wang, Xiaoran Fan, Zhiheng Xi, Yuhao Zhou,
Tao Ji, Rui Zheng, Qi Zhang, Xuanjing Huang, and
Tao Gui. 2024. Stepcoder: Improve code generation
with reinforcement learning from compiler feedback.
CoRR, abs/2402.01391.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey,
Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman,
Akhil Mathur, Alan Schelten, Amy Yang, Angela
Fan, Anirudh Goyal, Anthony Hartshorn, Aobo Yang,
Archi Mitra, Archie Sravankumar, Artem Korenev,
Arthur Hinsvark, Arun Rao, Aston Zhang, Aurélien
Rodriguez, Austen Gregerson, Ava Spataru, Bap-
tiste Rozière, Bethany Biron, Binh Tang, Bobbie
Chern, Charlotte Caucheteux, Chaya Nayak, Chloe
Bi, Chris Marra, Chris McConnell, Christian Keller,
Christophe Touret, Chunyang Wu, Corinne Wong,
Cristian Canton Ferrer, Cyrus Nikolaidis, Damien Al-
lonsius, Daniel Song, Danielle Pintz, Danny Livshits,
David Esiobu, Dhruv Choudhary, Dhruv Mahajan,
Diego Garcia-Olano, Diego Perino, Dieuwke Hupkes,
Egor Lakomkin, Ehab AlBadawy, Elina Lobanova,
Emily Dinan, Eric Michael Smith, Filip Radenovic,
Frank Zhang, Gabriel Synnaeve, Gabrielle Lee, Geor-
gia Lewis Anderson, Graeme Nail, Grégoire Mialon,
Guan Pang, Guillem Cucurell, Hailey Nguyen, Han-
nah Korevaar, Hu Xu, Hugo Touvron, Iliyan Zarov,
Imanol Arrieta Ibarra, Isabel M. Kloumann, Ishan
Misra, Ivan Evtimov, Jade Copet, Jaewon Lee, Jan
Geffert, Jana Vranes, Jason Park, Jay Mahadeokar,
Jeet Shah, Jelmer van der Linde, Jennifer Billock,
Jenny Hong, Jenya Lee, Jeremy Fu, Jianfeng Chi,
Jianyu Huang, Jiawen Liu, Jie Wang, Jiecao Yu,
Joanna Bitton, Joe Spisak, Jongsoo Park, Joseph
Rocca, Joshua Johnstun, Joshua Saxe, Junteng Jia,
Kalyan Vasuden Alwala, Kartikeya Upasani, Kate
Plawiak, Ke Li, Kenneth Heafield, Kevin Stone, and
et al. 2024. The llama 3 herd of models. CoRR,
abs/2407.21783.

Kawin Ethayarajh, Winnie Xu, Niklas Muennighoff,
Dan Jurafsky, and Douwe Kiela. 2024. KTO: model
alignment as prospect theoretic optimization. CoRR,
abs/2402.01306.

8313

http://arxiv.org/abs/2107.03374
http://arxiv.org/abs/2107.03374
http://jmlr.org/papers/v24/22-1144.html
http://jmlr.org/papers/v24/22-1144.html
https://doi.org/10.48550/ARXIV.2307.08691
https://doi.org/10.48550/ARXIV.2307.08691
https://doi.org/10.48550/ARXIV.2501.12948
https://doi.org/10.48550/ARXIV.2501.12948
https://doi.org/10.48550/ARXIV.2501.12948
https://doi.org/10.48550/ARXIV.2406.11931
https://doi.org/10.48550/ARXIV.2406.11931
https://doi.org/10.48550/ARXIV.2402.01391
https://doi.org/10.48550/ARXIV.2402.01391
https://doi.org/10.48550/ARXIV.2407.21783
https://doi.org/10.48550/ARXIV.2402.01306
https://doi.org/10.48550/ARXIV.2402.01306

Daniel Fried, Armen Aghajanyan, Jessy Lin, Sida Wang,
Eric Wallace, Freda Shi, Ruiqi Zhong, Scott Yih,
Luke Zettlemoyer, and Mike Lewis. 2023. Incoder:
A generative model for code infilling and synthesis.
In The Eleventh International Conference on Learn-
ing Representations, ICLR 2023, Kigali, Rwanda,
May 1-5, 2023. OpenReview.net.

Leonidas Gee, Milan Gritta, Gerasimos Lampouras,
and Ignacio Iacobacci. 2024. Code-optimise: Self-
generated preference data for correctness and effi-
ciency. CoRR, abs/2406.12502.

Linyuan Gong, Mostafa Elhoushi, and Alvin Che-
ung. 2024. AST-T5: structure-aware pretraining
for code generation and understanding. CoRR,
abs/2401.03003.

Alex Graves. 2013. Generating sequences with recur-
rent neural networks. CoRR, abs/1308.0850.

Daya Guo, Qihao Zhu, Dejian Yang, Zhenda Xie, Kai
Dong, Wentao Zhang, Guanting Chen, Xiao Bi,
Y. Wu, Y. K. Li, Fuli Luo, Yingfei Xiong, and Wen-
feng Liang. 2024. Deepseek-coder: When the large
language model meets programming - the rise of code
intelligence. CoRR, abs/2401.14196.

Dan Hendrycks, Steven Basart, Saurav Kadavath, Man-
tas Mazeika, Akul Arora, Ethan Guo, Collin Burns,
Samir Puranik, Horace He, Dawn Song, and Jacob
Steinhardt. 2021. Measuring coding challenge com-
petence with APPS. In Proceedings of the Neural
Information Processing Systems Track on Datasets
and Benchmarks 1, NeurIPS Datasets and Bench-
marks 2021, December 2021, virtual.

Binyuan Hui, Jian Yang, Zeyu Cui, Jiaxi Yang, Day-
iheng Liu, Lei Zhang, Tianyu Liu, Jiajun Zhang,
Bowen Yu, Kai Dang, An Yang, Rui Men, Fei Huang,
Xingzhang Ren, Xuancheng Ren, Jingren Zhou, and
Junyang Lin. 2024. Qwen2.5-coder technical report.
CoRR, abs/2409.12186.

Naman Jain, King Han, Alex Gu, Wen-Ding Li, Fanjia
Yan, Tianjun Zhang, Sida Wang, Armando Solar-
Lezama, Koushik Sen, and Ion Stoica. 2024. Live-
codebench: Holistic and contamination free eval-
uation of large language models for code. CoRR,
abs/2403.07974.

Albert Q. Jiang, Alexandre Sablayrolles, Antoine
Roux, Arthur Mensch, Blanche Savary, Chris Bam-
ford, Devendra Singh Chaplot, Diego de Las Casas,
Emma Bou Hanna, Florian Bressand, Gianna
Lengyel, Guillaume Bour, Guillaume Lample,
Lélio Renard Lavaud, Lucile Saulnier, Marie-
Anne Lachaux, Pierre Stock, Sandeep Subramanian,
Sophia Yang, Szymon Antoniak, Teven Le Scao,
Théophile Gervet, Thibaut Lavril, Thomas Wang,
Timothée Lacroix, and William El Sayed. 2024. Mix-
tral of experts. CoRR, abs/2401.04088.

Dongzhi Jiang, Ziyu Guo, Renrui Zhang, Zhuofan Zong,
Hao Li, Le Zhuo, Shilin Yan, Pheng-Ann Heng, and

Hongsheng Li. 2025. T2i-r1: Reinforcing image gen-
eration with collaborative semantic-level and token-
level cot. arXiv preprint arXiv:2505.00703.

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying
Sheng, Lianmin Zheng, Cody Hao Yu, Joseph Gonza-
lez, Hao Zhang, and Ion Stoica. 2023. Efficient mem-
ory management for large language model serving
with pagedattention. In Proceedings of the 29th Sym-
posium on Operating Systems Principles, SOSP 2023,
Koblenz, Germany, October 23-26, 2023, pages 611–
626. ACM.

Xin Lai, Zhuotao Tian, Yukang Chen, Senqiao Yang, Xi-
angru Peng, and Jiaya Jia. 2024. Step-dpo: Step-wise
preference optimization for long-chain reasoning of
llms. CoRR, abs/2406.18629.

Bin Lei, Yuchen Li, and Qiuwu Chen. 2024. Autocoder:
Enhancing code large language model with aiev-
instruct. CoRR, abs/2405.14906.

Raymond Li, Loubna Ben Allal, Yangtian Zi, Niklas
Muennighoff, Denis Kocetkov, Chenghao Mou,
Marc Marone, Christopher Akiki, Jia Li, Jenny
Chim, Qian Liu, Evgenii Zheltonozhskii, Terry Yue
Zhuo, Thomas Wang, Olivier Dehaene, Mishig
Davaadorj, Joel Lamy-Poirier, João Monteiro, Oleh
Shliazhko, Nicolas Gontier, Nicholas Meade, Armel
Zebaze, Ming-Ho Yee, Logesh Kumar Umapathi,
Jian Zhu, Benjamin Lipkin, Muhtasham Oblokulov,
Zhiruo Wang, Rudra Murthy V, Jason Stillerman,
Siva Sankalp Patel, Dmitry Abulkhanov, Marco
Zocca, Manan Dey, Zhihan Zhang, Nour Moustafa-
Fahmy, Urvashi Bhattacharyya, Wenhao Yu, Swayam
Singh, Sasha Luccioni, Paulo Villegas, Maxim Ku-
nakov, Fedor Zhdanov, Manuel Romero, Tony Lee,
Nadav Timor, Jennifer Ding, Claire Schlesinger, Hai-
ley Schoelkopf, Jan Ebert, Tri Dao, Mayank Mishra,
Alex Gu, Jennifer Robinson, Carolyn Jane Ander-
son, Brendan Dolan-Gavitt, Danish Contractor, Siva
Reddy, Daniel Fried, Dzmitry Bahdanau, Yacine Jer-
nite, Carlos Muñoz Ferrandis, Sean Hughes, Thomas
Wolf, Arjun Guha, Leandro von Werra, and Harm
de Vries. 2023. Starcoder: may the source be with
you! CoRR, abs/2305.06161.

Hunter Lightman, Vineet Kosaraju, Yuri Burda, Harri-
son Edwards, Bowen Baker, Teddy Lee, Jan Leike,
John Schulman, Ilya Sutskever, and Karl Cobbe.
2024. Let’s verify step by step. In The Twelfth In-
ternational Conference on Learning Representations,
ICLR 2024, Vienna, Austria, May 7-11, 2024. Open-
Review.net.

Jiawei Liu, Chunqiu Steven Xia, Yuyao Wang, and Ling-
ming Zhang. 2023. Is your code generated by chatgpt
really correct? rigorous evaluation of large language
models for code generation. In Advances in Neural
Information Processing Systems 36: Annual Confer-
ence on Neural Information Processing Systems 2023,
NeurIPS 2023, New Orleans, LA, USA, December 10
- 16, 2023.

Anton Lozhkov, Raymond Li, Loubna Ben Allal, Fed-
erico Cassano, Joel Lamy-Poirier, Nouamane Tazi,

8314

https://openreview.net/pdf?id=hQwb-lbM6EL
https://openreview.net/pdf?id=hQwb-lbM6EL
https://doi.org/10.48550/ARXIV.2406.12502
https://doi.org/10.48550/ARXIV.2406.12502
https://doi.org/10.48550/ARXIV.2406.12502
https://doi.org/10.48550/ARXIV.2401.03003
https://doi.org/10.48550/ARXIV.2401.03003
http://arxiv.org/abs/1308.0850
http://arxiv.org/abs/1308.0850
https://doi.org/10.48550/ARXIV.2401.14196
https://doi.org/10.48550/ARXIV.2401.14196
https://doi.org/10.48550/ARXIV.2401.14196
https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/hash/c24cd76e1ce41366a4bbe8a49b02a028-Abstract-round2.html
https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/hash/c24cd76e1ce41366a4bbe8a49b02a028-Abstract-round2.html
https://doi.org/10.48550/ARXIV.2409.12186
https://doi.org/10.48550/ARXIV.2403.07974
https://doi.org/10.48550/ARXIV.2403.07974
https://doi.org/10.48550/ARXIV.2403.07974
https://doi.org/10.48550/ARXIV.2401.04088
https://doi.org/10.48550/ARXIV.2401.04088
https://doi.org/10.1145/3600006.3613165
https://doi.org/10.1145/3600006.3613165
https://doi.org/10.1145/3600006.3613165
https://doi.org/10.48550/ARXIV.2406.18629
https://doi.org/10.48550/ARXIV.2406.18629
https://doi.org/10.48550/ARXIV.2406.18629
https://doi.org/10.48550/ARXIV.2405.14906
https://doi.org/10.48550/ARXIV.2405.14906
https://doi.org/10.48550/ARXIV.2405.14906
https://doi.org/10.48550/ARXIV.2305.06161
https://doi.org/10.48550/ARXIV.2305.06161
https://openreview.net/forum?id=v8L0pN6EOi
http://papers.nips.cc/paper_files/paper/2023/hash/43e9d647ccd3e4b7b5baab53f0368686-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/43e9d647ccd3e4b7b5baab53f0368686-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/43e9d647ccd3e4b7b5baab53f0368686-Abstract-Conference.html

Ao Tang, Dmytro Pykhtar, Jiawei Liu, Yuxiang Wei,
Tianyang Liu, Max Tian, Denis Kocetkov, Arthur
Zucker, Younes Belkada, Zijian Wang, Qian Liu,
Dmitry Abulkhanov, Indraneil Paul, Zhuang Li, Wen-
Ding Li, Megan Risdal, Jia Li, Jian Zhu, Terry Yue
Zhuo, Evgenii Zheltonozhskii, Nii Osae Osae Dade,
Wenhao Yu, Lucas Krauß, Naman Jain, Yixuan Su,
Xuanli He, Manan Dey, Edoardo Abati, Yekun Chai,
Niklas Muennighoff, Xiangru Tang, Muhtasham
Oblokulov, Christopher Akiki, Marc Marone, Cheng-
hao Mou, Mayank Mishra, Alex Gu, Binyuan Hui,
Tri Dao, Armel Zebaze, Olivier Dehaene, Nicolas
Patry, Canwen Xu, Julian McAuley, Han Hu, Torsten
Scholak, Sebastien Paquet, Jennifer Robinson, Car-
olyn Jane Anderson, Nicolas Chapados, Mostofa Pat-
wary, Nima Tajbakhsh, Yacine Jernite, Carlos Muñoz
Ferrandis, Lingming Zhang, Sean Hughes, Thomas
Wolf, Arjun Guha, Leandro von Werra, and Harm
de Vries. 2024. Starcoder 2 and the stack v2: The
next generation. CoRR, abs/2402.19173.

Zimu Lu, Yunqiao Yang, Houxing Ren, Haotian Hou,
Han Xiao, Ke Wang, Weikang Shi, Aojun Zhou,
Mingjie Zhan, and Hongsheng Li. 2025. Webgen-
bench: Evaluating llms on generating interactive and
functional websites from scratch.

Zimu Lu, Aojun Zhou, Houxing Ren, Ke Wang,
Weikang Shi, Junting Pan, Mingjie Zhan, and Hong-
sheng Li. 2024a. Mathgenie: Generating synthetic
data with question back-translation for enhancing
mathematical reasoning of llms.

Zimu Lu, Aojun Zhou, Ke Wang, Houxing Ren,
Weikang Shi, Junting Pan, Mingjie Zhan, and Hong-
sheng Li. 2024b. Mathcoder2: Better math reasoning
from continued pretraining on model-translated math-
ematical code.

Zimu Lu, Aojun Zhou, Ke Wang, Houxing Ren,
Weikang Shi, Junting Pan, Mingjie Zhan, and Hong-
sheng Li. 2024c. Step-controlled DPO: leveraging
stepwise error for enhanced mathematical reasoning.
CoRR, abs/2407.00782.

Ziyang Luo, Can Xu, Pu Zhao, Qingfeng Sun, Xi-
ubo Geng, Wenxiang Hu, Chongyang Tao, Jing Ma,
Qingwei Lin, and Daxin Jiang. 2023. Wizardcoder:
Empowering code large language models with evol-
instruct. CoRR, abs/2306.08568.

Bingqi Ma, Zhuofan Zong, Guanglu Song, Hongsheng
Li, and Yu Liu. 2024. Exploring the role of large
language models in prompt encoding for diffusion
models. arXiv preprint arXiv:2406.11831.

Erik Nijkamp, Bo Pang, Hiroaki Hayashi, Lifu Tu, Huan
Wang, Yingbo Zhou, Silvio Savarese, and Caiming
Xiong. 2023. Codegen: An open large language
model for code with multi-turn program synthesis. In
The Eleventh International Conference on Learning
Representations, ICLR 2023, Kigali, Rwanda, May
1-5, 2023. OpenReview.net.

OpenAI. 2023. GPT-4 technical report. CoRR,
abs/2303.08774.

Rafael Rafailov, Joey Hejna, Ryan Park, and Chelsea
Finn. 2024. From r to q*: Your language model is
secretly a q-function. CoRR, abs/2404.12358.

Rafael Rafailov, Archit Sharma, Eric Mitchell, Christo-
pher D. Manning, Stefano Ermon, and Chelsea Finn.
2023. Direct preference optimization: Your language
model is secretly a reward model. In Advances in
Neural Information Processing Systems 36: Annual
Conference on Neural Information Processing Sys-
tems 2023, NeurIPS 2023, New Orleans, LA, USA,
December 10 - 16, 2023.

Samyam Rajbhandari, Jeff Rasley, Olatunji Ruwase,
and Yuxiong He. 2020. Zero: memory optimizations
toward training trillion parameter models. In Pro-
ceedings of the International Conference for High
Performance Computing, Networking, Storage and
Analysis, SC 2020, Virtual Event / Atlanta, Georgia,
USA, November 9-19, 2020, page 20. IEEE/ACM.

Houxing Ren, Linjun Shou, Jian Pei, Ning Wu, Ming
Gong, and Daxin Jiang. 2022a. Lexicon-enhanced
self-supervised training for multilingual dense re-
trieval. In Findings of the Association for Computa-
tional Linguistics: EMNLP 2022, Abu Dhabi, United
Arab Emirates, December 7-11, 2022, pages 444–
459. Association for Computational Linguistics.

Houxing Ren, Linjun Shou, Ning Wu, Ming Gong, and
Daxin Jiang. 2022b. Empowering dual-encoder with
query generator for cross-lingual dense retrieval. In
Proceedings of the 2022 Conference on Empirical
Methods in Natural Language Processing, EMNLP
2022, Abu Dhabi, United Arab Emirates, December
7-11, 2022, pages 3107–3121. Association for Com-
putational Linguistics.

Houxing Ren, Mingjie Zhan, Zhongyuan Wu, and Hong-
sheng Li. 2024a. Empowering character-level text
infilling by eliminating sub-tokens. In Proceedings
of the 62nd Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
ACL 2024, Bangkok, Thailand, August 11-16, 2024,
pages 3253–3267. Association for Computational
Linguistics.

Houxing Ren, Mingjie Zhan, Zhongyuan Wu, Aojun
Zhou, Junting Pan, and Hongsheng Li. 2024b. Re-
flectioncoder: Learning from reflection sequence
for enhanced one-off code generation. CoRR,
abs/2405.17057.

Baptiste Rozière, Jonas Gehring, Fabian Gloeckle, Sten
Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi Adi,
Jingyu Liu, Tal Remez, Jérémy Rapin, Artyom
Kozhevnikov, Ivan Evtimov, Joanna Bitton, Man-
ish Bhatt, Cristian Canton-Ferrer, Aaron Grattafiori,
Wenhan Xiong, Alexandre Défossez, Jade Copet,
Faisal Azhar, Hugo Touvron, Louis Martin, Nico-
las Usunier, Thomas Scialom, and Gabriel Synnaeve.
2023. Code llama: Open foundation models for code.
CoRR, abs/2308.12950.

8315

https://doi.org/10.48550/ARXIV.2402.19173
https://doi.org/10.48550/ARXIV.2402.19173
http://arxiv.org/abs/2505.03733
http://arxiv.org/abs/2505.03733
http://arxiv.org/abs/2505.03733
http://arxiv.org/abs/2402.16352
http://arxiv.org/abs/2402.16352
http://arxiv.org/abs/2402.16352
http://arxiv.org/abs/2410.08196
http://arxiv.org/abs/2410.08196
http://arxiv.org/abs/2410.08196
https://doi.org/10.48550/ARXIV.2407.00782
https://doi.org/10.48550/ARXIV.2407.00782
https://doi.org/10.48550/ARXIV.2306.08568
https://doi.org/10.48550/ARXIV.2306.08568
https://doi.org/10.48550/ARXIV.2306.08568
https://openreview.net/pdf?id=iaYcJKpY2B_
https://openreview.net/pdf?id=iaYcJKpY2B_
https://doi.org/10.48550/ARXIV.2303.08774
https://doi.org/10.48550/ARXIV.2404.12358
https://doi.org/10.48550/ARXIV.2404.12358
http://papers.nips.cc/paper_files/paper/2023/hash/a85b405ed65c6477a4fe8302b5e06ce7-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/a85b405ed65c6477a4fe8302b5e06ce7-Abstract-Conference.html
https://doi.org/10.1109/SC41405.2020.00024
https://doi.org/10.1109/SC41405.2020.00024
https://doi.org/10.18653/V1/2022.FINDINGS-EMNLP.31
https://doi.org/10.18653/V1/2022.FINDINGS-EMNLP.31
https://doi.org/10.18653/V1/2022.FINDINGS-EMNLP.31
https://doi.org/10.18653/V1/2022.EMNLP-MAIN.203
https://doi.org/10.18653/V1/2022.EMNLP-MAIN.203
https://doi.org/10.18653/V1/2024.ACL-LONG.179
https://doi.org/10.18653/V1/2024.ACL-LONG.179
https://doi.org/10.48550/ARXIV.2405.17057
https://doi.org/10.48550/ARXIV.2405.17057
https://doi.org/10.48550/ARXIV.2405.17057
https://doi.org/10.48550/ARXIV.2308.12950

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec
Radford, and Oleg Klimov. 2017. Proximal policy
optimization algorithms. CoRR, abs/1707.06347.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, Dan Bikel, Lukas Blecher, Cristian Canton-
Ferrer, Moya Chen, Guillem Cucurull, David Esiobu,
Jude Fernandes, Jeremy Fu, Wenyin Fu, Brian Fuller,
Cynthia Gao, Vedanuj Goswami, Naman Goyal, An-
thony Hartshorn, Saghar Hosseini, Rui Hou, Hakan
Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa,
Isabel Kloumann, Artem Korenev, Punit Singh Koura,
Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee, Di-
ana Liskovich, Yinghai Lu, Yuning Mao, Xavier Mar-
tinet, Todor Mihaylov, Pushkar Mishra, Igor Moly-
bog, Yixin Nie, Andrew Poulton, Jeremy Reizen-
stein, Rashi Rungta, Kalyan Saladi, Alan Schelten,
Ruan Silva, Eric Michael Smith, Ranjan Subrama-
nian, Xiaoqing Ellen Tan, Binh Tang, Ross Tay-
lor, Adina Williams, Jian Xiang Kuan, Puxin Xu,
Zheng Yan, Iliyan Zarov, Yuchen Zhang, Angela Fan,
Melanie Kambadur, Sharan Narang, Aurélien Ro-
driguez, Robert Stojnic, Sergey Edunov, and Thomas
Scialom. 2023. Llama 2: Open foundation and fine-
tuned chat models. CoRR, abs/2307.09288.

Ke Wang, Junting Pan, Weikang Shi, Zimu Lu, Mingjie
Zhan, and Hongsheng Li. 2024. Measuring mul-
timodal mathematical reasoning with math-vision
dataset.

Ke Wang, Junting Pan, Linda Wei, Aojun Zhou,
Weikang Shi, Zimu Lu, Han Xiao, Yunqiao Yang,
Houxing Ren, Mingjie Zhan, and Hongsheng Li.
2025. Mathcoder-vl: Bridging vision and code for
enhanced multimodal mathematical reasoning.

Ke Wang, Houxing Ren, Aojun Zhou, Zimu Lu, Sichun
Luo, Weikang Shi, Renrui Zhang, Linqi Song,
Mingjie Zhan, and Hongsheng Li. 2023. Mathcoder:
Seamless code integration in llms for enhanced math-
ematical reasoning.

Jason Wei, Maarten Bosma, Vincent Y. Zhao, Kelvin
Guu, Adams Wei Yu, Brian Lester, Nan Du, An-
drew M. Dai, and Quoc V. Le. 2022. Finetuned
language models are zero-shot learners. In The Tenth
International Conference on Learning Representa-
tions, ICLR 2022, Virtual Event, April 25-29, 2022.
OpenReview.net.

Yuxiang Wei, Zhe Wang, Jiawei Liu, Yifeng Ding, and
Lingming Zhang. 2023. Magicoder: Source code is
all you need. CoRR, abs/2312.02120.

Yutong Wu, Di Huang, Wenxuan Shi, Wei Wang,
Lingzhe Gao, Shihao Liu, Ziyuan Nan, Kaizhao
Yuan, Rui Zhang, Xishan Zhang, Zidong Du, Qi Guo,
Yewen Pu, Dawei Yin, Xing Hu, and Yunji Chen.
2024. Inversecoder: Unleashing the power of
instruction-tuned code llms with inverse-instruct.
CoRR, abs/2407.05700.

Shusheng Xu, Wei Fu, Jiaxuan Gao, Wenjie Ye, Weilin
Liu, Zhiyu Mei, Guangju Wang, Chao Yu, and Yi Wu.
2024. Is DPO superior to PPO for LLM alignment?
A comprehensive study. In Forty-first International
Conference on Machine Learning, ICML 2024, Vi-
enna, Austria, July 21-27, 2024. OpenReview.net.

An Yang, Baosong Yang, Beichen Zhang, Binyuan
Hui, Bo Zheng, Bowen Yu, Chengyuan Li, Dayi-
heng Liu, Fei Huang, Haoran Wei, Huan Lin, Jian
Yang, Jianhong Tu, Jianwei Zhang, Jianxin Yang,
Jiaxi Yang, Jingren Zhou, Junyang Lin, Kai Dang,
Keming Lu, Keqin Bao, Kexin Yang, Le Yu, Mei
Li, Mingfeng Xue, Pei Zhang, Qin Zhu, Rui Men,
Runji Lin, Tianhao Li, Tingyu Xia, Xingzhang Ren,
Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang,
Yu Wan, Yuqiong Liu, Zeyu Cui, Zhenru Zhang, and
Zihan Qiu. 2024. Qwen2.5 technical report. CoRR,
abs/2412.15115.

Zhaojian Yu, Xin Zhang, Ning Shang, Yangyu Huang,
Can Xu, Yishujie Zhao, Wenxiang Hu, and Qiufeng
Yin. 2023. Wavecoder: Widespread and versatile
enhanced instruction tuning with refined data genera-
tion. CoRR, abs/2312.14187.

Dylan Zhang, Shizhe Diao, Xueyan Zou, and Hao Peng.
2024a. Plum: Improving code lms with execution-
guided on-policy preference learning driven by syn-
thetic test cases. CoRR, abs/2406.06887.

Kechi Zhang, Ge Li, Yihong Dong, Jingjing Xu, Jun
Zhang, Jing Su, Yongfei Liu, and Zhi Jin. 2024b.
Codedpo: Aligning code models with self generated
and verified source code. CoRR, abs/2410.05605.

Kechi Zhang, Ge Li, Jia Li, Yihong Dong, Jia Li, and
Zhi Jin. 2025. Focused-dpo: Enhancing code gen-
eration through focused preference optimization on
error-prone points. CoRR, abs/2502.11475.

Qinkai Zheng, Xiao Xia, Xu Zou, Yuxiao Dong, Shan
Wang, Yufei Xue, Lei Shen, Zihan Wang, Andi Wang,
Yang Li, Teng Su, Zhilin Yang, and Jie Tang. 2023.
Codegeex: A pre-trained model for code generation
with multilingual benchmarking on humaneval-x. In
Proceedings of the 29th ACM SIGKDD Conference
on Knowledge Discovery and Data Mining, KDD
2023, Long Beach, CA, USA, August 6-10, 2023,
pages 5673–5684. ACM.

Tianyu Zheng, Ge Zhang, Tianhao Shen, Xueling Liu,
Bill Yuchen Lin, Jie Fu, Wenhu Chen, and Xiang
Yue. 2024. Opencodeinterpreter: Integrating code
generation with execution and refinement. CoRR,
abs/2402.14658.

Terry Yue Zhuo, Minh Chien Vu, Jenny Chim, Han Hu,
Wenhao Yu, Ratnadira Widyasari, Imam Nur Bani
Yusuf, Haolan Zhan, Junda He, Indraneil Paul, Simon
Brunner, Chen Gong, Thong Hoang, Armel Randy
Zebaze, Xiaoheng Hong, Wen-Ding Li, Jean Kad-
dour, Ming Xu, Zhihan Zhang, Prateek Yadav, Na-
man Jain, Alex Gu, Zhoujun Cheng, Jiawei Liu,
Qian Liu, Zijian Wang, David Lo, Binyuan Hui,

8316

http://arxiv.org/abs/1707.06347
http://arxiv.org/abs/1707.06347
https://doi.org/10.48550/ARXIV.2307.09288
https://doi.org/10.48550/ARXIV.2307.09288
http://arxiv.org/abs/2402.14804
http://arxiv.org/abs/2402.14804
http://arxiv.org/abs/2402.14804
http://arxiv.org/abs/2505.10557
http://arxiv.org/abs/2505.10557
http://arxiv.org/abs/2310.03731
http://arxiv.org/abs/2310.03731
http://arxiv.org/abs/2310.03731
https://openreview.net/forum?id=gEZrGCozdqR
https://openreview.net/forum?id=gEZrGCozdqR
https://doi.org/10.48550/ARXIV.2312.02120
https://doi.org/10.48550/ARXIV.2312.02120
https://doi.org/10.48550/ARXIV.2407.05700
https://doi.org/10.48550/ARXIV.2407.05700
https://openreview.net/forum?id=6XH8R7YrSk
https://openreview.net/forum?id=6XH8R7YrSk
https://doi.org/10.48550/ARXIV.2412.15115
https://doi.org/10.48550/ARXIV.2312.14187
https://doi.org/10.48550/ARXIV.2312.14187
https://doi.org/10.48550/ARXIV.2312.14187
http://arxiv.org/abs/2406.06887
http://arxiv.org/abs/2406.06887
http://arxiv.org/abs/2406.06887
https://doi.org/10.48550/ARXIV.2410.05605
https://doi.org/10.48550/ARXIV.2410.05605
https://doi.org/10.48550/ARXIV.2502.11475
https://doi.org/10.48550/ARXIV.2502.11475
https://doi.org/10.48550/ARXIV.2502.11475
https://doi.org/10.1145/3580305.3599790
https://doi.org/10.1145/3580305.3599790
https://doi.org/10.48550/ARXIV.2402.14658
https://doi.org/10.48550/ARXIV.2402.14658

Niklas Muennighoff, Daniel Fried, Xiaoning Du,
Harm de Vries, and Leandro von Werra. 2024. Big-
codebench: Benchmarking code generation with di-
verse function calls and complex instructions. CoRR,
abs/2406.15877.

Zhuofan Zong, Dongzhi Jiang, Bingqi Ma, Guanglu
Song, Hao Shao, Dazhong Shen, Yu Liu, and Hong-
sheng Li. 2024a. Easyref: Omni-generalized group
image reference for diffusion models via multimodal
llm. arXiv preprint arXiv:2412.09618.

Zhuofan Zong, Bingqi Ma, Dazhong Shen, Guanglu
Song, Hao Shao, Dongzhi Jiang, Hongsheng Li, and
Yu Liu. 2024b. Mova: Adapting mixture of vi-
sion experts to multimodal context. arXiv preprint
arXiv:2404.13046.

Appendix

A Dataset Construction

To evaluate the structural diversity of training data
constructed for our method, we performed a statis-
tical analysis of code blocks extracted via Abstract
Syntax Tree (AST) parsing. Specifically, we re-
tained four categories of syntactic nodes as middle
targets for the FIM task: if, for, while, and def
(function definitions). The figure below presents
the distribution of these node types in the final
training dataset.

As shown in Figure 4, among all segments used
in FIM training, if blocks constitute the largest pro-
portion (41.54%), followed by for loops (32.09%),
def (function) blocks (18.63%), and while loops
(7.74%). This distribution indicates that the se-
lected code snippets exhibit substantial structural
variety, with conditional (if) and iterative (for
and while) constructs dominating the sample pool.
Such a mix helps the model learn frequent control
flow patterns more effectively in FIM tasks. Al-
though while and def blocks appear less frequently,
they still contribute essential control and functional
semantics, ensuring the structural completeness of
the training examples.

To construct the training dataset, we follow
a systematic pipeline that parses source code
into abstract syntax trees, generates fill-in-the-
middle (FIM) prompts, evaluates model comple-
tions against test cases, and derives preference pairs
from completions. The detailed procedure is out-
lined in Algorithm 1.

def 18.63%

for 32.09%

if 41.54%

while 7.74%

Figure 4: Distribution of extracted code blocks based on
AST node types. This reflects the syntactic diversity in
the training corpus and validates the representativeness
of selected blocks.

B Insights of StructureCoder

B.1 Benefits of FIM
Fill-in-the-Middle (FIM) (Bavarian et al., 2022) has
been shown to preserve the model’s ability to gener-
ate code effectively (Li et al., 2023; Rozière et al.,
2023; Ren et al., 2024a), while offering several
distinct advantages that enhance overall model per-
formance and robustness. By requiring generation
conditioned on both preceding and succeeding con-
text, FIM strengthens contextual understanding and
promotes deeper semantic reasoning. Rather than
replacing standard code generation, FIM acts as
a powerful complement—particularly well-suited
for practical scenarios such as code refactoring,
patching, and bug fixing. Its bidirectional formu-
lation improves generalization and equips models
to handle complex code dependencies more effec-
tively. Our empirical results further demonstrate
that FIM-based training leads to notable gains in
code generation quality, underscoring its value as
a targeted and practical enhancement to existing
methodologies.

B.2 Comparison with Step-DPO
While our proposed method shares some similari-
ties with Step-DPO regarding loss construction and
data generation, it offers distinct improvements in
the following aspects:

(1) Step-DPO relies on labeling intermediate
reasoning steps either through human annotation,
which is prohibitively expensive, or through au-
tomated labeling methods such as GPT-4, which
introduces potential biases as highlighted by recent
studies (DeepSeek-AI et al., 2025). In contrast, our
proposed method utilizes FIM to automatically gen-
erate and assess intermediate reasoning fragments
based on objective evaluation criteria from test sam-

8317

https://doi.org/10.48550/ARXIV.2406.15877
https://doi.org/10.48550/ARXIV.2406.15877
https://doi.org/10.48550/ARXIV.2406.15877

ples. By eliminating the reliance on costly human
annotation and avoiding the biases associated with
automated labeling tools, our method offers an un-
biased alternative for training and evaluating rea-
soning capabilities in large language models.

(2) Annotating individual steps in Step-DPO can
be inherently ambiguous, especially for long Chain-
of-Thought (CoT). An incorrect intermediate step
can sometimes contribute meaningfully to reaching
a correct final answer — for example, models like
o1 often make a mistake in early reasoning steps,
such as miscalculating a quantity or misunderstand-
ing part of the problem, but then later detect the
inconsistency in their own logic and correct for it
in the final answer. In such cases, although the in-
termediate step is technically incorrect, it still plays
a functional role in producing the right outcome.
This makes it difficult to label individual steps as
preferred or dispreferred definitively. Our approach
overcomes this issue by fixing the suffix of the code,
requiring the generated intermediate code (the mid-
dle segment) to bridge the given prefix and suffix
coherently. This design fundamentally eliminates
ambiguity in annotation, clearly delineating pre-
ferred and dispreferred middle segments.

C Additional Experiment

C.1 FIM Evaluaion

To thoroughly assess the Fill-In-the-Middle (FIM)
capabilities of our proposed method, we conducted
a series of targeted evaluations using the APPS
benchmark. Specifically, we curated a set of 22,044
samples by randomly masking contiguous code
spans from the reference solutions. The models
were then tasked with accurately reconstructing
these masked segments solely based on the sur-
rounding context, thereby simulating realistic code
completion scenarios.

As summarized in Table 3, the application of our
method consistently improves FIM performance
across all evaluated model scales. Notably, our
approach achieves the highest Pass@1 accuracy
in each model category, surpassing several strong
baselines. These findings underscore the robustness
and generalizability of our method in enhancing
middle-span code generation, demonstrating its po-
tential as a principled strategy for strengthening
contextual reasoning in large language models for
programming tasks.

Model FIM Pass@1

Qwen-2.5-Coder-1.5B-Inst 27.1
w/ DPO 27.5
w/ KTO 27.4
w/ Focused-DPO 27.4
w/ StructureCoder 28.6

Qwen-2.5-Coder-3B-Inst 31.1
w/ DPO 31.5
w/ KTO 31.6
w/ Focused-DPO 31.7
w/ StructureCoder 32.9

Qwen-2.5-Coder-7B-Inst 35.7
w/ DPO 35.6
w/ KTO 35.9
w/ Focused-DPO 36.1
w/ StructureCoder 36.7

Table 3: Pass@1 accuracy on the FIM task.

C.2 Case Study
Here, we use a case from Qwen2.5-Coder-
1.5B-Instruct, Qwen2.5-Coder-3B-Instruct and
Qwen2.5-Coder-7B-Instruct to show the effective-
ness of the proposed method. Specifically, we com-
pute the DPO reward (r(s, a) = β log πθ(s|a) −
β log πref (s|a)) for each token in both correct and
incorrect responses. The DPO is used as a baseline
for comparison.

As shown in Figure 5, the error is introduced in
Line 2, and the proposed method, StructureCoder,
successfully identifies the token corresponding to
the erroneous statement (x ∗ x and x ∗ y). For
Qwen2.5-Coder-3B-Instruct, as shown in Figure 6,
the proposed StructureCoder successfully assigns
high reward to the token corresponding to the erro-
neous statement (len(bits)−1 and len(bits)). For
Qwen2.5-Coder-7B-Instruct, as shown in Figure 7,
the proposed StructureCoder effectively highlights
he erroneous statement (n + i and n − i). These
demonstrate the ability of our method to localize
specific errors and focus attention on the relevant
details. On the other hand, the DPO fails to de-
tect these errors, highlighting its limitation in han-
dling errors with high precision, especially when
the training data is sparse. While the DPO might
perform well with abundant training examples, its
performance drops in the presence of limited data,
making it less effective for tasks requiring fine-
grained error detection in these conditions.

8318

(a) Credit assignment Qwen2.5-Coder-1.5B-Instruct w/ DPO.

(b) Credit assignment Qwen2.5-Coder-1.5B-Instruct w/ StructureCoder.

Figure 5: Credit assignment with different methods. Due to the limited space, we omit the previous function, only
keeping the key function. The left is the correct response and the right is the incorrect response (error is introduced
in Line 2). Each token is colored corresponding to the DPO implicit reward (darker is higher).

(a) Credit assignment Qwen2.5-Coder-3B-Instruct w/ DPO.

(b) Credit assignment Qwen2.5-Coder-3B-Instruct w/ StructureCoder.

Figure 6: Credit assignment with different methods on Qwen2.5-Coder-3B-Instruct. The left is the correct response
and the right is the incorrect response (error is introduced from the last token of Line 4). Each token is colored
corresponding to the DPO implicit reward (darker is higher).

(a) Credit assignment Qwen2.5-Coder-7B-Instruct w/ DPO.

(b) Credit assignment Qwen2.5-Coder-7B-Instruct w/ StructureCoder.

Figure 7: Credit assignment with different methods on Qwen2.5-Coder-7B-Instruct. The left is the correct response
and the right is the incorrect response (error is introduced in Line 6). Each token is colored corresponding to the
DPO implicit reward (darker is higher).

8319

Algorithm 1: Training Data Construction Pipeline
Input: D = {(q, c, t)}, where q is a question, c is the corresponding code, and t are test cases
Output: Final training set ready for fine-tuning
foreach (q, c, t) ∈ D do

Parse c into an Abstract Syntax Tree (AST);
Extract target code blocks M = {m1,m2, . . . ,mn};
foreach mi ∈M do

Extract prefix pi and suffix si;
Construct FIM prompt: <PRE> Convert(q) pi <SUF> si <MID>;

Generate m completions Gi = {g(1)i , . . . , g
(m)
i };

foreach g
(j)
i ∈ Gi do

full_code← pi + g
(j)
i + si;

Execute full_code on test cases t;
if passes then

Add g
(j)
i to correct candidates;

else
Add g

(j)
i to incorrect candidates;

end
end

end
foreach incorrect completion g− do

Find closest correct g+ by edit distance;
Form preference pair (g+, g−);

end
end
foreach preference pair (g+, g−) do

Sample prompt format using Bernoulli distribution (α);
if format = FIM then

Positive← <PRE> Convert(q) pi <SUF> si <MID> g+;
Negative← <PRE> Convert(q) pi <SUF> si <MID> g−;

else
Positive← User: q; Assistant: pi + g+ + si;
Negative← User: q; Assistant: pi + g− + si;

end
Add sample to training set;

end
Sort training samples by length of g+ (short→ long);
return Final training set;

8320

