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Abstract

Privacy-sensitive users require deploying large
language models (LLMs) within their own in-
frastructure (on-premises) to safeguard private
data and enable customization. However, vul-
nerabilities in local environments can lead to
unauthorized access and potential model theft.
To address this, prior research on small mod-
els has explored securing only the output layer
within hardware-secured devices to balance
model confidentiality and customization. Yet
this approach fails to protect LLMs effectively.
In this paper, we discover that (1) query-based
distillation attacks targeting the secured top
layer can produce a functionally equivalent
replica of the victim model; (2) securing the
same number of layers, bottom layers before
a transition layer provide stronger protection
against distillation attacks than top layers, with
comparable effects on customization perfor-
mance; and (3) the number of secured layers
creates a trade-off between protection and cus-
tomization flexibility. Based on these insights,
we propose SOLID, a novel deployment frame-
work that secures a few bottom layers in a se-
cure environment and introduces an efficient
metric to optimize the trade-off by determining
the ideal number of hidden layers. Extensive
experiments on five models (1.3B to 70B pa-
rameters) demonstrate that SOLID outperforms
baselines, achieving a better balance between
protection and downstream customization. Our
code can be found at: https://github.com/
OTTO-OTO/SOLID-OnPremiseDeployment.

1 Introduction

Vendors of Large Language Models (LLMs) have
introduced advanced models with remarkable ca-
pabilities to address diverse user needs (Minaee
et al., 2024; Zhao et al., 2023). To meet specific
customization demands, vendors typically adopt
two approaches. Closed-source vendors, such as
OpenAI, provide fine-tuning APIs that allow users
to upload data to customize proprietary models like
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Figure 1: Semi-open Deployment.

GPT-4. In contrast, vendors like Meta offer open-
weight models such as Llama3 (Dubey et al., 2024),
which users can adapt within their own infrastruc-
ture, ensuring greater flexibility and control.

However, both approaches present notable limi-
tations for privacy-sensitive users, such as health-
care organizations, who prioritize data security.
Strict regulations prohibit these users from upload-
ing sensitive data to third-party API services, neces-
sitating on-premises deployment of LLMs, where
data processing and model customization are con-
fined to local infrastructure (Nevo et al., 2024).
Although fine-tuning open-weight models in such
environments offers a viable path for customiza-
tion, full disclosure of model architectures and
weights increases the risk of exploitation by ma-
licious actors, who may circumvent safety mech-
anisms (Hendrycks et al., 2023). Consequently,
vendors may be hesitant to release SOTA models
as open-weight, since uncontrolled access could
lead to significant harm. Moreover, maintaining
high-quality open-weight models imposes consid-
erable computational and financial burdens (Wolfe
et al., 2024). These growing concerns highlight the
importance of secure on-premises deployment of
closed-source models, which preserves control and
ensures regulatory compliance.

Despite the advantages, deploying closed-source
LLMs locally introduces the risk of model theft.
Unauthorized users can extract model parameters
and architectures directly from CPUs and memory
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within local environments (Hu et al., 2020). To
mitigate this, existing approaches use Trusted Exe-
cution Environments (TEEs) to protect proprietary
models (Nayan et al., 2024; Narra et al., 2019). Yet,
fully enclosing large models within TEEs results in
prohibitive computational overhead, limiting their
practicality (Li et al., 2024a).

Prior research has explored to mitigate this
trade-off by securing only critical layers, such
as the output layer, while leaving the remain-
ing layers exposed for fine-tuning (Zhang et al.,
2024b; Mo et al., 2020). However, studies have
shown that even with only black-box access, adver-
saries may still be able to replicate the weights of
DNNs (Tramèr et al., 2016; Truong et al., 2021).
More recent works (Carlini et al., 2024; Finlayson
et al., 2024) further suggests that the final-layer
weights of large language models (LLMs) can be
recovered from output logits alone, raising con-
cerns about the robustness of such partial protec-
tion strategies. Consistent with previous findings,
our results show that this partial protection remains
vulnerable to distillation attacks (Zanella-Beguelin
et al., 2021). When extended to Llama2-70B,
we confirm that attackers can still extract nearly
complete model functionality across six domains,
as illustrated in Figure 1. These vulnerabilities
raise skepticism about whether model confiden-
tiality and customization can truly coexist in on-
premises deployment, highlighting the need for se-
curity paradigms beyond output-layer protection.

In this paper, we show that this dilemma can be
resolved. We begin by investigating the security-
customization trade-off introduced by the place-
ment of secured layers in LLMs. Specifically,
we theoretically identify a transition layer in deep
transformers, showing that securing bottom layers
before this transition significantly reduces distilla-
tion success, while securing top layers has a more
limited impact. Besides, we demonstrate that the
number of secured layers creates a trade-off: se-
curing more layers improves security but reduces
customization flexibility. To optimize this trade-
off, we introduce SOLID, a semi-open deployment
framework that selectively secures a subset of bot-
tom layers, using a distillation difficulty score to
identify the optimal set for protection. Our ex-
periments show that SOLID balances security and
customization, achieving security comparable to
fully secured models while maintaining strong cus-
tomization flexibility, approaching full parameter
fine-tuning. Our main contributions are as follows:
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Figure 2: Workflow of model distillation attack

• We extend query-based distillation attacks to
LLMs, demonstrating that existing on-premises
frameworks risk full functionality replication.

• We identify the security-customization trade-off
introduced by the placement of secured layers,
and theoretically prove that securing bottom lay-
ers before the transition layer offers stronger pro-
tection with similar customization effects.

• We discover that the number of secured layers
affects both security and customization. We
propose SOLID, which optimizes the security-
customization trade-off by using a fine-tuning-
free metric to secure minimal bottom decoder
layers, protecting the model from distillation at-
tacks while preserving customization flexibility.

• We evaluate SOLID against three baselines
across five models (1.3B to 70B parameters), as-
sessing security across three distillation strategies
on sixteen benchmarks and customization flex-
ibility across six tasks. Extensive experiments
show SOLID effectively balances security and
customization, despite some limitations

2 Preliminaries

2.1 Security Threat: Model Distillation

Adversary’s Objective. The adversary aims to
replicate the functionality of a semi-open victim
LLM, partially secured in a protected environment,
by training a substitute model. This replica facil-
itates white-box analysis to identify vulnerabili-
ties, enhancing black-box attacks on related model
families (Sitawarin et al., 2024). The agreement
between the victim and replica is assessed via ac-
curacy and fidelity on a designated test set.

Adversary’s Knowledge. It is assumed that the
adversary knows the architectures of both secured
and unsecured modules, as prior work (Gou et al.,
2021; Boix-Adsera, 2024) has shown that using
the same architecture as the secured module sig-
nificantly improves the effectiveness of distillation
attacks. However, the adversary knows only the
parameters of the unsecured module, while those
of the secured module remain unknown.
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Adversary’s Capability. The adversary is ca-
pable of querying the semi-open model, obtaining
both the semantic output produced by the complete
model and the representation vector generated by
the secured module. Utilizing this information, the
adversary constructs a distillation attack dataset
denoted as D. Since the adversary knows the archi-
tecture of the secured module, the adversary next
replaces the secured module with a randomly ini-
tialized module of the same architecture. Using
the constructed set D, the adversary employs three
distinct supervised distillation strategies to repli-
cate the functionality of the secured module: (1)
FT-all: Fine-tunes both the replacement and un-
secured modules using output of the entire model
as training labels. (2) FT-closed: Fine-tunes only
the replacement model using output of the entire
model, keeping the unsecured module fixed. (3)
SEM (Tamber et al., 2024): Fine-tunes the replace-
ment model using outputs from the secured module
without involving the unsecured component.

2.2 Problem Formulation

In this paper, we analyze the performance of a large
language model under a defined distribution PX×Y ,
describing the relationship between input matrix X
and label Y . We assume the victim LLM f(X;θ)
performs well on this distribution, and the attack
set D comprises samples drawn from PX×Y . To
evaluate agreement between the distilled LLM and
ground-truth labels, we use a scoring function s :
Y × Y → R+. Secured layers are indexed by I ⊆
[L] = {1, . . . , L}. Let θdist(I,D) represent the
parameter vector of the distilled replica of a victim
model, where layers indexed by I are secured, and
adversaries utilize the attack set D to replicate its
functionality. For each secured set I , we define the
"Distillation Ratio" R(I), which quantifies how
well the distilled model θdist(I,D) replicates the
behavior of f(X;θ), expressed as

R(I) =
E[s(f(X;θdist(I,D)), Y )]

E[s(f(X;θ), Y )]
. (1)

Here, E in the numerator reflects the expecta-
tion computed over random samples (X, Y ) drawn
from PX×Y , the random attack set D, and the ran-
dom initialization of parameters within the secured
layers during fine-tuning. Conversely, the term E
in the denominator solely considers the expecta-
tion over random samples. With this definition,
R([L]) represents the distillation ratio when the
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Figure 3: Security and adaptability comparison in
Llama2-70B. Lower scores indicate better security in
Fig. (a) and weaker adaptability in Fig. (b). Details can
be found in Appendix C.1

entire model is secured, reflecting the highest level
of security. This leads to the question:

What is the smallest secured set I such that

R(I) closely approximates R([L])?

This question aims to identify the minimal secured
set I such that securing the layers indexed by I
achieves a level of security comparable to securing
the entire model.

3 Methodology

In this section, we investigate the impact of secur-
ing specific layers on security and customization
against distillation attacks. We begin with an exper-
iment with two semi-open deployments of Llama2-
70B: one securing the bottom two decoder layers
(Bottom2-Secured) and the other securing the top
two decoder layers (Top2-Secured). As shown in
Figure 3, both deployments achieve similar cus-
tomization performance in six downstream tasks.
However, securing the bottom layers provides sig-
nificantly stronger security. Additionally, compar-
ing Bottom2-Secured to fully-secured deployment
reveals comparable security with improved cus-
tomizability. This suggests that securing a certain
number of bottom layers can effectively balance
strong security against distillation attacks and high
customization performance.

3.1 Security Transition in Deep Transformers
Model Overview. In this subsection, we consider
a deep transformer f with L layers, expressed as
f(X;θ) = φL ◦ · · · ◦ φ1(X). The input feature
matrix X ∈ Rn×d consists of n rows, each repre-
senting a d-dimensional token vector. Each layer
φi is a transformer that incorporates a normalized
residual self-attention mechanism, defined as:

φi(X;Ki, Qi) = X+ softmax

(
XQi(XKi)

⊤√
dQ ∥X∥2

)
X
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Here, Qi ∈ Rd×dQ and Ki ∈ Rd×dQ are projec-
tion matrices for the query and key components,
respectively. The terms

√
dQ and ∥X∥ serve as nor-

malization factors, ensuring stable computations
within the attention mechanism. We consider the
semi-open deployment of securing the αL-th layer
with α ∈ [0, 1] and αL ∈ N while keeping other
layers unsecured. After the distillation attack, we
assume the parameters of the distilled model in
the unsecured layers are identical to the victim
model, while those in the secured layer deviate.
Let K̂αL and Q̂αL denote the distilled weight ma-
trix of the proprietary layer, i.e., θdist({αL}) =
{(K1, Q1), ..., (K̂αL, Q̂αL), ..., (KL, QL)}. Let
φ̂αL denote the function of the distilled proprietary
layer, i.e., the αL−th layer, in the distilled model.
In this subsection, we consider the normalized out-
put of an infinitely deep model whose αL-th layer
is hidden and subjected to the attack. The output
of the distilled model is

f̂∞(X) = lim
L→∞

f(X;θdist({αL}))
∥f(X;θdist({αL}))∥F

,

where ∥ · ∥F denotes the Frobenius norm. We con-
sider an infinitely deep network as the ideal model,
reflecting the sufficient depth of most large-scale
models in practice. The following theorem estab-
lishes the existence of a critical value α∗ such that
if α < α∗, the output matrix of the distilled LLM
has rank one. Conversely, if α > α∗, the output
matrix has rank strictly greater than one.

Theorem 1. Assume that PX×Y is defined on a
countable domain X × Y with 0n×d /∈ X . As-
sume that parameter matrices {Ki, Qi}i≥1 in the
victim model f have uniform bounded norms, i.e.,
∥Ki∥ ≤ D and ∥Qi∥ ≤ D for some D > 0. There
exists an α∗ ∈ (0, 1) depending on D such that the
following two statements are true.

(1) If α < α∗ and {Ki, Qi}i≥1 are parameter
matrices of the victim model, with K̂αL and Q̂αL

as distilled parameters drawn from a continuous
distribution on Rn×d, the matrix f̂∞(X) almost
surely has rank one for all inputs X.

(2) If α > α∗, there exists a victim model with
parameter sequence {Ki, Qi}i≥1 such that for any
distilled parameters K̂αL and Q̂αL, the matrix
f̂∞(X) has rank greater than one for some X.

Remark 1: The proof is provided in Ap-
pendix A. This theorem demonstrates that if the dis-
tilled parameters of the bottom layers (i.e., α < α∗)
are obtained through a randomized algorithm, such

as stochastic gradient descent, with a continuous
distribution supported on Rn×d, the distillation
will certainly fail, as the feature matrix degener-
ate. In contrast, keeping the later layers secured
(i.e., α > α∗) does not maintain this property, indi-
cating that it is more effective to secure the bottom
layers before the transition layer, rather than the
later ones. Further remarks are in Appendix A.5.

3.2 SOLID: Semi-Open Local Infrastructure
Deployment Framework

Theorem 1 shows that securing bottom layers im-
proves security. Inspired by this insight, we pro-
pose a method to approximately find the small-
est bottom layer index set I that satisfies R(I) ≤
(1 + ε)R([L]) for any small ε > 0. To achieve this,
a straightforward implementation is to begin with
A simple approach is to start with Il = {1, . . . , l}
for each l beginning from 1, then evaluate the distil-
lation ratio R(Il) after the attack, and identify the
smallest l that meets the inequality. This extensive
fine-tuning process is time-consuming, prompting
the critical question: Can we create a fine-tuning-
free metric that predicts LLM performance under
model distillation attacks? Hence, our goal is to
establish a metric directly correlated with the dis-
tillation ratio.

In the distillation ratio R(I), each I has
the same denominator, so our focus is on a
metric related to the numerator, specifically
E[s(f(X;θFT(I,D)), Y )], which measures the av-
erage performance score of the distilled model.
This average performance score generally inversely
correlates with the average testing loss with the
expression L(θ) ≜ EX×Y [ℓ(f(X;θ), Y )], where
ℓ denotes the cross-entropy loss employed by LLM.
Hence, we aim at finding the smallest I such that

L(θdist(I,D)) ≥ (1− ε)L(θdist([L],D)).

However, calculating both sides of this inequality
requires knowing the distilled parameters from the
fine-tuning process. To bypass this, we aim for
an approximate solution. The distilled parameters
are generated through gradient descent, starting
from the initial parameters θ0(I), with the hidden
layers being randomly initialized. Using the Taylor
Expansion, we find

L(θdist(I,D)) = L(θ0(I,D))

+O(E∥θdist(I,D)− θ0(I)∥2).
Previous research (Choi et al., 2024; Bailly et al.,
2022) indicates that the difference ∥θdist(I,D) −
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θ0(I)∥2 is minimal in large networks compared to
the dataset size |D|. In models such as single-layer
ReLU networks (Anthony et al., 1999; Zou et al.,
2020), this difference scales as O

(
|D|√
N

)
(Jacot

et al., 2018; Wei et al., 2019), where N , the number
of model parameters, far exceeds the dataset size
in large language models (LLMs) (Dubey et al.,
2024; Liu et al., 2024). The first term, independent
of fine-tuning, dominates and effectively predicts
the distillation ratio. We refer to this term as the
Distillation Difficulty (DD(I)), defined as

DD(I) = E[L(θ0(I))].

This score, which can be estimated using a sam-
ple average, represents the distilled model perfor-
mance of the model when specific layers I are
secured. A higher DD(I) suggests better security
performance, indicating a lower distillation ratio
R(I). Therefore, our SOLID operates in the fol-
lowing way. SOLID begins by sampling evalua-
tion data targeting general capabilities from the
underlying distribution, and then computes DD(Il)
for each set of secured layers Il = {1, ..., l} for
l = 1, ..., L. SOLID stops at the smallest l∗ that
satisfies DD(Il∗) ≥ (1− ε)DD([L]).

4 Experiments

In this section, we conduct experiments to answer
the following research questions:
• RQ1. Can query-based distillation attack distill

the functionality of the entire model under the
baseline deployment that secures the top layer?

• RQ2. How do secured layer location and amount
affect the security-customization trade-off?

• RQ3. Does SOLID offer a better balance be-
tween model theft risk and customization perfor-
mance compared to baseline deployments?

• RQ4. How does SOLID optimize this trade-off?
Is it effective for both large and small models?

4.1 Experimental Settings
We begin by introducing our experimental setups.
Details can be found in Appendix B.

Models. We consider five open-source, decoder-
only structured LLMs with various architec-
tures. Specifically, we select Llama2-70B-chat,
Llama2-7B-chat (Touvron et al., 2023), Mistral-
7B-v0.1 (Jiang et al., 2023), Phi-2 (Abdin et al.,
2024), and Phi-1.5 (Li et al., 2023). We designate
these pre-trained models as the base models for
adaptation and victims in model distillation attacks.

Attack Methods. We distill models produced
by different protection approaches using three at-
tack methods: FT-all, FT-closed and SEM. Fol-
lowing (He et al., 2021), a diverse attack set is
required for full distillation. Therefore, we merge
data evenly from two general datasets, MMLU
benchmark (Hendrycks et al., 2021) and Alpaca
52k (Wang et al., 2022), resulting in a 51k com-
bined set. Additionally, we build four larger gen-
eral datasets (100k–500k) to strengthen the attack.

Baselines. We compare SOLID with three base-
lines: SAP-DP, the fully-secured approach (Eiras
et al., 2024), and DarkneTZ (Mo et al., 2020). The
SAP (Shen et al., 2023) framework exposes the first
six decoder layers and secures the rest. SAP-DP
extends SAP by adding Laplace noise to model out-
puts to enhance protection (Lee et al., 2018). The
fully-secured approach represents the extreme, se-
curing all layers for maximal security, while Dark-
neTZ protects only the final decoder layer.

Implementation Details of SOLID. We apply
the SOLID algorithm to identify the smallest secure
set I such that R(I) ≤ (1+ε)R([L]). To calculate
distillation difficulty (DD), we use cross-entropy
loss and approximate the expectation over samples
distributed on the general domain and randomly
initialized secured parameters. This is done using
a 1,500-sample evaluation set randomly sampled
from the MMLU benchmark and Alpaca 52k, with
secured parameters initialized via Xavier initializa-
tion and averaged over three random seeds (20, 42,
1234). In our experiments, we find that ε = 0.05
yields optimal performance.

Evaluation Benchmarks We assess adaptabil-
ity on six downstream tasks: Code (Zheng et al.,
2024a), Math (Yue et al., 2023), Medical (Zhang
et al., 2023), Finance (Wang et al., 2023a),
Law (Guha et al., 2024), and Alignment (Meng
et al., 2024). To fully evaluate recovered function-
alities, we focus on six capabilities domains follow-
ing Llama2 report (Touvron et al., 2023). Specifi-
cally, we assess the recovered model across sixteen
benchmarks grouped into (1) Commonsense Rea-
soning (Rsn.); (2) Reading Comprehension (Read.);
(3) World Knowledge (Knl.); (4) Code; (5) Math;
and (6) General Ability (Gen.).

Metrics. We measure customization through
model’s improvements on benchmarks. For secu-
rity, we calculate the “Average Distillation Ratio”
(ADR) by averaging the distillation ratios across
benchmarks. A lower ADR indicates higher secu-
rity offered by the secure set.
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Benchmark Llama2-70B Llama2-7B Mistral-7B Phi-2

Rsn.

PIQA 62.6|59.8|63.0|99.3 64.7|64.7|64.6|99.1 63.0|61.2|60.2|92.2 68.3|65.6|65.7|99.1
Winogrande 68.5|67.7|68.3|98.3 76.8|74.8|76.6|100. 67.2|69.0|68.3|89.5 68.3|64.9|64.8|99.1
ARC-easy 31.9|32.8|31.3|98.5 36.3|35.5|34.9|97.6 32.3|34.7|32.0|86.6 43.2|35.3|33.9|99.5

ARC-challenge 38.5|38.1|44.2|99.2 47.8|46.6|50.9|100. 39.7|42.6|44.5|81.4 36.8|36.6|35.3|99.5
Hellaswag 31.4|31.4|32.4|98.1 33.9|34.0|35.0|96.6 32.2|32.0|31.3|84.6 37.4|37.3|34.3|96.5

Read.

LAMBADA 0.01|0.00|0.00|88.6 0.02|0.00|0.01|92.2 0.16|0.00|0.01|67.9 1.34|0.04|0.00|94.6
BoolQ 47.2|47.1|53.9|100. 59.5|56.0|65.0|99.6 48.3|46.8|56.7|97.3 56.7|50.3|55.8|100.

SQuADv2 1.50|1.68|0.34|55.3 0.68|0.88|0.82|59.5 1.69|0.36|0.93|50.7 3.65|0.39|0.90|62.9
OBQA 54.5|54.5|57.1|99.6 57.4|52.5|59.2|94.8 57.7|56.8|56.3|84.0 0.00|0.00|0.02|94.3

Knl.
NaturalQuestions 0.00|0.02|0.00|40.1 0.01|0.01|0.08|53.6 0.00|0.00|0.02|31.8 0.01|0.00|0.06|87.4

TriviaQA 0.00|0.02|0.00|72.3 0.00|0.00|0.03|73.8 0.00|0.00|0.01|38.7 0.01|0.00|0.01|68.9

Code MBPP&H.E. 0.00|0.00|0.00|58.6 0.00|0.00|0.00|90.9 0.00|0.00|0.00|40.2 0.00|0.00|0.00|91.1

Math GSM8K 0.02|0.00|0.06|79.6 0.00|0.00|0.00|78.6 0.00|0.00|0.00|31.1 0.00|0.00|0.00|86.2

Gen.
MMLU 36.8|38.3|36.5|96.7 52.9|50.0|53.3|110. 40.4|36.9|37.2|81.7 42.6|40.3|40.5|99.5

BBH 0.00|0.00|0.00|93.3 0.00|0.00|0.00|101. 0.00|0.00|0.00|63.3 0.01|0.00|0.00|94.8

Average Distillation Ratio(↓) 21.9|21.8|22.8|77.9 25.3|24.4|25.9|86.5 22.5|22.4|22.8|73.7 23.9|22.3|22.4|88.9
Secured Ratio(↓) 2.50|92.5|100.|1.25 3.16|81.3|100.|3.16 3.16|81.3|100.|3.16 6.25|81.3|100.|3.16

Table 1: Distillation ratios across six functionalities under FT-all (SOLID|SAP-DP|Fully-secured|DarkneTZ).
“H.E.” in the Code domain denotes the benchmark HumanEval. Green and red indicate the overall best- and
worst-performing methods, respectively. Additional results are provided in Appendix C.2.

4.2 Failure in Defense (RQ1)

We evaluate security of DarkneTZ using three dis-
tillation strategies. Based on the results shown in
Tables 1 and 2, we have following observations.

Obs1: DarkneTZ, which secures only the last
decoder layer, fails to protect the model against
all three attacks. As shown in Table 1, DarkneTZ
achieves ADRs generally exceeding 73%. Notably,
on Llama2-7B, it surpasses 100% distillation ra-
tio on the MMLU and BBH datasets, indicating
that the distilled model outperforms the original
on these tasks. Similarly, Table 2 highlights con-
sistent failure patterns against FT-closed and SEM
attacks, with DarkneTZ maintaining ADRs above
75%, demonstrating the ability of these strategies
to recover significant model functionality.

4.3 Security-Customization Trade-off (RQ2)

We conduct two experiments to analyze the im-
pact of secured layer placement and quantity on the
trade-off between security and customization. First,
we secure one layer in Llama2-7B and two in Phi-
2, varying their placement. Second, we incremen-
tally secure both models by adding protected layers,
starting from the smallest module (k_project) of
the first decoder layer. These models are evaluated
under the FT-all distillation attack and customized
for the math domain. The results, as shown in
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Figure 4: (a) shows the trade-off between security and
customization for Llama2-7B and Phi-2 with different
placements of same-sized secured sets. (b) shows the
trade-off as the secured set size increases from the first
decoder layer. Smaller ADR indicates higher security
and higher ACC reflects better customizability.

Figure 4, lead to the following observations.
Obs2: Secured layer placement significantly

impacts security, consistent with Theorem 1, but
has small effect on customization performance.
As shown in Figure 4(a), for Llama2-7B, security
transitions at the fourteenth layer, with ADR consis-
tently near 20% for earlier sets, indicating stronger
security than protecting later layers. Meanwhile,
customization accuracy remains stable across place-
ments, highlighting the advantage of securing pre-
transition layers. In contrast, Phi-2 transitions ear-
lier at the first layer set, where only the first set
balances security and customization, with later sets
reducing security. These results suggest that se-
curing layers before the transition layer optimizes
the security-customization trade-off. Results for
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Strat. Method Rsn. Read. Knl. C.&M. Gen. ADR

FT-c.

SOLID 47.1 21.6 0.00 0.03 18.7 22.6
SAP-DP 46.2 19.5 0.00 0.00 19.0 21.8
F-Secured 47.8 21.2 0.00 0.08 18.5 22.8
DarkneTZ 98.7 69.3 58.3 65.9 95.0 78.1

SEM

SOLID 48.2 21.9 0.00 0.00 18.5 22.4
SAP-DP 47.1 21.1 0.00 0.00 18.3 22.3
F-Secured 47.8 21.2 0.00 0.08 18.5 22.8
DarkneTZ 98.8 71.2 54.2 66.3 94.1 77.4

Table 2: Distillation ratios of Llama2-70B under FT-
closed and SEM attacks.

Mistral-7B and Phi-1.5 are in Appendix B.7.
Obs3: Increasing the number of secured lay-

ers enhances security but reduces customization.
As shown in Figure 4(b), the ADR of Llama2-7B
decreases from 85% to 22% after securing an en-
tire decoder layer, indicating improved security.
However, customization accuracy drops from 29%
to 21% as the number of secured layers increases
from one to five, reflecting reduced customization
flexibility. A similar trend is observed in Phi-2, sug-
gesting that while increasing the number of secured
layers enhances security (lower ADR), it negatively
impacts customization flexibility (lower ACC) in
both models. Further details are in Appendix B.8.

4.4 Effectiveness of SOLID (RQ3)

We compare the security of SOLID with base-
line deployments across three distillation strategies.
The results lead to the following observations.

Obs4: SOLID offers comparable security
against model distillation to the highest level of
protection (fully-secured), while securing signif-
icantly fewer parameters. As shown in Table 1,
SOLID achieves a similar security level (ADR)
to SAP-DP and the fully-secured approach across
four architectures and various domains, while se-
curing at most 6.25% of parameters, compared
to at least 80% for the others. For example, on
Llama2-70B, SOLID secures only 1.25% of param-
eters yet achieves an ADR of 21.9%, comparable
to SAP-DP (21.8%) and the fully-secured approach
(22.8%), which protect 92.5% and 100% of param-
eters, respectively. Furthermore, under FT-closed
and SEM attacks, SOLID also matches the security
level provided by SAP-DP and the fully-secured
approach. Table 2 shows that under FT-closed at-
tack, the ADR differences between SOLID, SAP-
DP, and the fully-secured approach remain below
2.1% across six domains. Similarly, under SEM at-
tack, the distillation ratios closely aligned with the

Scale Rsn. Read. Knl. C.&M. Gen. ADR ADR-Da.

51k 51.7 21.6 0.01 0.00 28.3 25.3 86.5
100k 51.3 21.5 0.13 0.00 29.6 25.3 89.1
200k 51.4 21.7 0.11 0.00 29.7 25.2 91.3
300k 51.6 21.7 0.11 0.00 30.5 25.5 94.5
500k 51.8 22.0 0.09 0.00 30.8 25.8 96.9

Table 3: SOLID vs. Dataset scales. ADR-Da. represents
the ADR by DarkneTZ. Details are in Appendix C.6.
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Figure 5: Customization performance comparison of
secured models on six downstream tasks.

other two approaches. These results confirm that
SOLID effectively protects against distillation at-
tacks while securing significantly fewer parameters.
More details are in Appendix C.4 and C.5.

Obs5: The security of SOLID cannot be easily
compromised by simply increasing the dataset
scale. As shown in Table 3, the distillation ratios
for SOLID increase marginally with larger datasets,
showing only a 0.5% ADR rise when scaling from
51k to 500k samples. In contrast, DarkneTZ ex-
hibits a significant increase in the ADR, from
86.5% to 96.9%, over the same dataset size range.
This highlights the robustness of SOLID’s security
against increasing attack dataset sizes. Details of
the attack datasets are provided in Appendix B.2.

Obs6: SOLID consistently outperforms base-
line deployments in customization while achiev-
ing security levels comparable to fully-secured
approaches. Its customization performance
closely matches full parameter fine-tuning. As
shown in Figure 5, SOLID improves scores in
the Law domain by 10% over SAP-DP and fully-
secured methods on Llama2-70B, and by 35% on
7B models. Similar trends are observed on Phi-
2, though the gain in Law narrows to 1%. Addi-
tionally, the performance of SOLID consistently
matches the performance of full parameter fine-
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Figure 6: ADRs vs. average customization score. Points
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Figure 7: (a) presents the Pearson coefficient between
distillation ratio (DR) and distillation difficulty (DD)
across four models and six domains. (b) depicts the link
between ADR and DD for Llama2-7B and OPT-350M.

tuning across four architectures, with differences
within 4%. This indicates that securing a small sub-
set of parameters preserves customization while
ensuring strong protection against distillation at-
tacks. Further results are in Appendix B.6 and C.3.

We summarize the security and customization
performance of each deployment in Figure 6.
SOLID achieves an optimal balance between distil-
lation prevention and customization, outperforming
other baselines. In the next subsection, we discuss
how the distillation difficulty metric optimizes the
security-customization trade-off.

4.5 Discussion on DD (RQ4)

We assess the efficacy of distillation difficulty (DD)
in estimating distilled model performance by cal-
culating the Pearson and Spearman correlation
coefficients between DD and ADR across differ-
ent domains. To address uncertainties regarding
the effectiveness of DD in shallow transformers,
we secure and attack 2-layer secured sets in OPT-
350M (Zhang et al., 2022), which has 350M pa-
rameters. Based on the results shown in Figure 7,
we have following observations.

Obs7: DD is effective in larger models, with a
clear negative correlation between DD and aver-
age distillation ratios. As shown in Figure 7 (a),
the Pearson coefficient for Llama2-7B consistently
remains below -0.80, reaching as low as -0.98. We
also observe similar phenomena in other models
with varying architectures and sizes, confirming

DD as a reliable predictor of distilles model perfor-
mance and the effectiveness of SOLID. Results of
Spearman coefficients are in Appendix B.9.

Obs8: DD is ineffective in smaller OPT model,
with notable inconsistencies with ADRs. As
shown in Figure 7 (b), DD exhibits weak negative
correlation with ADR in OPT-350M (coefficients >
-0.33), showing its unsuitability for predicting distil-
lation performance. Additionally, optimal security
is achieved by protecting the middle layers rather
than the initial or output layers, making SOLID
unable to identify the smallest secured set. Further
details are provided in Appendix C.9.

5 Related Works

On-premises deployment. Using LLM services
for customization poses significant privacy risks, as
user data may be exposed during transmission, stor-
age, and processing (Li et al., 2024c). To mitigate
this, privacy-sensitive sectors require on-premises
deployment of LLMs, which retains both data and
models within their local infrastructure (Schillaci,
2024; Nevo et al., 2024). However, this shifts secu-
rity risks to vendors, who lose control over model
use and face increased threats of theft, especially
from hardware- and communication-based attacks
on GPUs (Nayan et al., 2024; Rakin et al., 2022).
To secure models locally, hardware-based protec-
tions such as TrustZone have been proposed (Pinto
and Santos, 2019; Zhang et al., 2024a; Li et al.,
2024a), but they are resource-intensive with lim-
ited flexibility (Mo et al., 2020). A more adapt-
able approach is layer-wise security, which pro-
tects only selected layers (Lin et al., 2024; Chen
et al., 2024; Zhang et al., 2024b). While prior work
suggests securing shallow (Elgamal and Nahrstedt,
2020), intermediate (Shen et al., 2022), or output
layers (Huang et al., 2024), most studies focus on
smaller models. Our results show that securing
a few, well-chosen bottom layers of LLMs can
enhance security while preserving fine-tuning flex-
ibility for on-premises deployment.

Model Distillation Attacks. Model distilla-
tion attacks allow adversaries to replicate model
functionality using only black-box access, a pro-
cess also known as functional extraction (Nevo
et al., 2024; Xu et al., 2024a; Ezzeddine et al.,
2024). While distillation attacks have been ex-
tensively studied in smaller models, such as
CNNs (Orekondy et al., 2018), BERT (Sanh et al.,
2020; Zanella-Beguelin et al., 2021), and ReLU-
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based models (Canales-Martínez et al., 2024;
Jagielski et al., 2020), their effectiveness against
LLMs remains an open question. Our work extends
these attacks to Llama2-70B and demonstrates that
securing only the output layer remains insufficient
to prevent near-complete functionality replication.

6 Conclusion

In this paper, we explore minimal secured sets to
protect LLMs from query-based distillation attacks
while preserving customization flexibility in on-
premises deployments. We find that (1) distilla-
tion attacks targeting the secured top layer can suc-
cessfully replicate the victim model, and (2) both
the placement and number of secured layers in-
troduce a security-customization trade-off. Based
on these insights, we propose SOLID, a theoreti-
cally inspired deployment that optimizes this trade-
off. Through extensive experiments, we show that
SOLID balances security and customization effec-
tively, outperforming baseline deployments, though
it also has certain limitations.

Limitations

While our method effectively defends against dis-
tillation attacks and preserves model customiza-
tion, it does not address other adversarial attacks
in the black-box setting, such as membership in-
ference attacks (MIA), as demonstrated in the Ap-
pendix B.10. To the best of our knowledge, this is
the first work to explore a semi-open deployment
framework for LLMs. However, the current algo-
rithm still performs identification at the layer level
and does not delve into the impact of different sub-
modules within decoder layers on model security.
Furthermore, our proposed metric exhibits reduced
effectiveness when applied to smaller models, as
discussed in Section 4.5. In future work, we aim
to address these limitations by enhancing both the
algorithm and the evaluation metric to improve the
overall effectiveness of SOLID.
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A Proof of Theorem 1

In this section, we prove Theorem 1. We first revisit
the our model, present several important lemmas
and finally present the proof. Additional explana-
tory remarks are included in Appendix A.5.

A.1 Model Overview

The distilled model f(X;θ) is structured as a se-
quence of L transformer layers,

f(X) = φL ◦φL−1 ◦ ...◦φαL+1 ◦ φ̂αL ◦αL−1 ◦...◦φ1(X),
(2)

where X ∈ Rn×d represents the input, interpreted
as an assembly of n tokens, each possessing d hid-
den dimensions. Each transformer layer, indexed
by 1 ≤ i ≤ L, is represented by φi, which maps
Rn×d to Rn×d and can be defined as follows,

φi (X;Ki, Qi) =

[
In + softmax

(
XQi(XKi)

⊤
√

dQ∥X∥2

)]
X,

(3)

where Qi ∈ Rd×dQ , Ki ∈ Rd×dQ represent pro-
jection parameter matrices. Here, the αL-th layer
is the distilled layer and the others are the pub-
lic layers. For simplicity, we use the function
φ̂αL to denote mapping of the distilled layer, i.e.,
φ̂αL(X) = φαL(X; K̂αL, Q̂αL).

A.2 Bounds on Different Orthogonal
Components

Lemma 1. For any 1 ≤ l ≤ L, 1 ≤ p ≤ d, any
X ∈ Rn×d, we have

max
v:∥v∥2=1,v⊥In

∣∣∣v⊤φl (X;Kl, Ql) [p]
∣∣∣

≤ (1 + βD) max
v:∥v∥2=1,v⊥In

∣∣∣v⊤X[p]
∣∣∣

(4)

where In is a column vector with dimensions n× 1
and each element is 1, X[p] is the p-th column of
the input X, φl (X;Kl, Ql) [p] is the p-th column
of the l-th self-attention output, the coefficient βD
satisfies 0 < βD < 1 and it is related to the upper
bound of the L2-norm of matrices Kl, Ql.

Proof. Let u =
{
ul,1 =

In√
n
,ul,2, . . . ,ul,n

}
de-

note the eigenvectors of softmax

(
XQl(XKl)

⊤√
dQ∥X∥2

)
.

Assume σl,1, σl,2, . . . , σl,n denote the eigenvalues

of softmax

(
XQi(XKi)

⊤√
dQ∥X∥2

)
and −1 < σl,n < βD

for any l, n. Thus we have

v⊤φl (X;Kl, Ql) [p] (5a)

= v⊤
[
In + softmax

(
XQl(XKl)

⊤
√

dQ∥X∥2

)]
X[p] (5b)

= v⊤
[
In + softmax

(
XQl(XKl)

⊤
√

dQ∥X∥2

)]
n∑

k=1

αpkul,k

(5c)

= v⊤
n∑

k=1

αpk(1 + σl,k)ul,k (5d)

≤ max
v:∥v∥2=1,v⊥In

∣∣∣∣∣
n∑

k=2

αpk(1 + σl,k)v
⊤ul,k

∣∣∣∣∣ (5e)

=

∥∥∥∥∥
n∑

k=2

αpk(1 + σl,k)ul,k

∥∥∥∥∥
2

(5f)

=

[
n∑

k=2

α2
pk(1 + σl,k)

2

]1/2
(5g)

≤ (1 + βD) max
v:∥v∥2=1,v⊥In

∣∣∣v⊤X[p]
∣∣∣ , (5h)

where

βD = max
∥Kl∥2≤D,
∥Ql∥2≤D

max
v:∥v∥2=1,

v⊥In

∥∥∥∥∥softmax

(
XQl(XKl)

⊤
√

dQ∥X∥2

)
v

∥∥∥∥∥
2

< 1

The equation (5d) is due to ul,k are the eigen-

vectors of softmax

(
XQl(XKl)

⊤√
dQ∥X∥2

)
. The inequality

(5f) is because when v =
∑n

k=2 αpk(1+σl,k)ul,k

∥∑n
k=2 αpk(1+σl,k)ul,k∥2

,

we have the maximum value.

Lemma 2. For any Kl, Ql ∈ Rd×s and any X ∈
Rn×d, the following equation always holds:

∣∣∣I⊤nφi (X;Ki, Qi) [p]
∣∣∣ = 2

∣∣∣I⊤nX[p]
∣∣∣ , (6)

where X[p] is the p-th column of the input X,
φi (X;Ki, Qi) [p] is the p-th column of the l-th
self-attention output.

Proof. Assume that a set of orthogonal basis for Rn

is {u1,u2, . . . ,un}, where u1 = In√
n

. Then we
can rewrite X[p] as X[p] =

∑n
j=1 αpjuj , where

αpj(1 ≤ p ≤ d) are the corresponding coefficients
for the p-th column of X under the orthogonal ba-
sis. Next, we calculate

∣∣I⊤n f(X)[p]
∣∣ and

∣∣I⊤nX[p]
∣∣,

respectively. Note that I⊤nuj = 0 for all j ̸= 1.
Therefore, we can obtain that,

I⊤nX[p] =
√
nαp1. (7)
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Then we can get
∣∣∣I⊤nX[p]

∣∣∣ = |√nαp1|. (8)

Let σi1, σi2, . . . , σin denote the eigenvalues

of softmax

(
XQi(XKi)

⊤√
dQ∥X∥2

)
. Applying the Per-

ron–Frobenius theorem for Markov matrices (Lem-
mens and Nussbaum, 2012), we deduce that for the

matrix softmax

(
XQl(XKi)

⊤√
dQ∥X∥2

)
, there exists only

one eigenvalue equal to 1, while all other eigen-
values in absolute value are strictly less than 1.
Without loss of generality, we assume σi1 = 1,
implying |σij | < 1 for j ̸= 1. Recalling the defi-
nition of φi (X;Ki, Qi) and considering the linear
operation, we can rewrite it as follows:

φi (X;Ki, Qi) [p] =
n∑

j=1

αpj (1 + σij)uj . (9)

Then we calculate the term
∣∣I⊤nφi (X;Ki, Qi) [p]

∣∣
as follows,

∣∣∣I⊤nφi (X;Ki, Qi) [p]
∣∣∣ =

∣∣∣∣∣I
⊤
n (

n∑

j=1

αpj (1 + σij)uj

∣∣∣∣∣
(10a)

=
∣∣√n (αp1(1 + σi1))

∣∣ (10b)

= 2|√nαp1|, (10c)

where (10a) is induced by substituting the equa-
tion (9) into

∣∣I⊤nφi (X;Ki, Qi) [p]
∣∣, (10b) is due to

I⊤nuj = 0 for all j ̸= 1, (10c) follows the fact that
σi1 = 1 .

A.3 Proof of Theorem 1

We first prove the following result. For simplicity
of notations, we use f(X) [p] to denote the p-th
(1 ≤ p ≤ d) column of the the distilled model
f(X), where the parameters in the αL-th layer is
replaced with the matrices K̂αL and Q̂αL. We use
the function φ̂αL(X) = φαL(X; K̂αL, Q̂αL) to de-
note the mapping of the (αL)-th layer. Then we
are going to show that there exists α⋆ = log2

2
1+βD

and 0 < βD < 1 makes the following equations
hold.

(1) Assume α < α⋆. For any X, ∥Ki∥2 ≤
D, ∥Qi∥2 ≤ D, there exists a zero measure set
K(X) and Q(X) such that

lim
L→∞

∥∥∥∥
f(X) [p]

∥f(X) [p]∥2
− In√

n

∥∥∥∥
2

= 0. (11)

(2) For any α > α⋆, there exists a sequence of ma-
trix {Ki, Qi}i≥1 such that for any distilled matrix
KαL and QαL, we have ∥Ki∥2 ≤ D, ∥Qi∥2 ≤ D,
we have,

lim
L→∞

∥∥∥∥
f(X) [p]

∥f(X) [p]∥2
− In√

n

∥∥∥∥
2

=
√
2. (12)

Proof. Based on Lemma (1), we obtain that

max
v:∥v∥2=1, v⊥In

∣∣∣v⊤f (X) [p]
∣∣∣

≤ (1 + β)L max
v:∥v∥2=1, v⊥In

∣∣∣v⊤X[p]
∣∣∣ .

(13)

Based on Lemma (2), we know that
∣∣∣I⊤n f(X)[p]

∣∣∣

= 2(1−α)L−1
∣∣∣I⊤n φ̂αL ◦ φαL−1 ◦ · · · ◦ φ1(X)[p]

∣∣∣ .
(14)

We firstly prove the equation (11). When
∣∣∣I⊤n f(X)[p]

∣∣∣ ̸= 0, (15)

then we have
∥∥∥∥

f(X) [p]

∥f(X) [p]∥2
− In√

n

∥∥∥∥
2

(16a)

=


2− 2I⊤n f(X)[p]

√
n

√
(I⊤n f(X)[p])2

n
+ (v⊤f(X)[p])2)




1/2

(16b)

=
√
2


1− 1√

1 + n(v⊤f(X)[p])2

(I⊤n f(X)[p])2




1/2

(16c)

≤
√
2


1−

1√
1 + n(1+β)2L|v⊤X[p]|2

22[(1−α)L−1]|I⊤n φ̂αL◦···◦φ1(X)[p]|2




1/2

(16d)

≤ 2
√
2n

(
1 + β

21−α

)L
∣∣v⊤X[p]

∣∣
|I⊤n φ̂αL ◦ φαL−1 ◦ · · · ◦ φ1(X)[p]| ,

(16e)

where the inequality (16d) is based on the in-
equality (13) and (14). The inequality (16e)
is based on Lemma (3). Therefore, if α <
log2

2
1+βD

and
∣∣I⊤n f(X)[p]

∣∣ ̸= 0, then we have

limL→∞
(
1+βD

21−α

)L
= 0. Now we can con-

sider when
∣∣I⊤n f(X)[p]

∣∣ = 0. In fact, it is
easy to show that this can only happens when
K̂αL and Q̂αL belong to certain sets making∣∣I⊤n f(X)[p]

∣∣ = 0, which corresponds to zero mea-
sure set K(X) and Q(X) depending on the input
X. Since the input space is countable, therefore,
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the union ∪X∈XK(X) and ∪X∈XQ(X) are also
zero-measure sets.

To prove equation (12), let K⋆, Q⋆ with
∥K⋆∥2 ≤ D, ∥Q⋆∥2 ≤ D satisfy the following
condition,

max
v:∥v∥2=1,v⊥In

∥∥∥∥∥softmax

(
XQl(XKl)

⊤
√

dQ∥X∥2

)
v

∥∥∥∥∥
2

= βD.

(17)
Let v⋆ be the solver of the above optimization prob-
lem (17) and consider the Kl = K⋆, Ql = Q⋆ and
X⋆ = [v⋆,v⋆, · · · ,v⋆]. Clearly, v⋆ ⊥ In. Assume
there exists u : ∥u⋆∥2 = 1 satisfying u⋆ ⊥ In,
u⋆ ⊥ v⋆, therefore we can rewrite f(X⋆) [p] as
follows,

f(X⋆) [p] =
I⊤n√
n
f(X⋆)

In√
n

+ v⋆⊤f(X⋆)v⋆ + u⋆⊤f(X⋆)u⋆.

(18)

For any 1 ≤ l ≤ L, based on Lemma (1), we
know that

∣∣∣v∗⊤f (X⋆) [p]
∣∣∣ = (1 + βD)L

∣∣∣v∗⊤X⋆[p]
∣∣∣ . (19)

Since
∣∣∣I⊤n f (X⋆) [p]

∣∣∣ = 2L
∣∣∣I⊤nX⋆[p]

∣∣∣ = |I⊤n v⋆| = 0 (20)

and
∣∣∣v∗⊤f (X⋆) [p]

∣∣∣ = (1 + βD)L
∣∣∣v∗⊤X⋆[p]

∣∣∣ ̸= 0. (21)

Then we have
∥∥∥∥

f(X⋆) [p]

∥f(X⋆) [p]∥2
− In√

n

∥∥∥∥
2

(22a)

=

[
2− 2I⊤n f(X⋆)[p]√

n ∥f(X⋆) [p]∥2

]1/2
(22b)

=



2− 2I⊤n√

n
· f(X⋆)[p]√√√√

1
n

(
I⊤n f(X⋆)[p]

)2
+
(
v⋆⊤f(X⋆)[p]

)2

+
(
u⋆⊤f(X⋆)[p]

)2




1/2

(22c)

≥


2− 2I⊤n√

n

f(X⋆)[p]√
1
n
(I⊤n f(X⋆)[p])2 + (v⋆⊤f(X⋆)[p])2




1/2

(22d)

=


2− 2

I⊤n f(X⋆)[p]
√

n|v⋆⊤f(X⋆)[p]|√
1 +

|I⊤n f(X⋆)[p]|2
n|v⋆⊤f(X⋆)[p])|2




1/2

(22e)

=


2− 2

2(1−α)L−1|I⊤n φ̂αL◦φαL−1◦···◦φ1(X
⋆)[p]|

√
n(1+βD)L|v⋆⊤X⋆[p]|√

1 + 22[(1−α)L−1]

n(1+βD)2L
|I⊤n φ̂αL◦φαL−1◦···◦φ1(X⋆)[p]|2

|v⋆⊤X⋆[p]|2




1/2

,

(22f)

where equation (22c) is based on (18), equa-
tion (22f) is based on (21) and (14). When

α > log2
2

1+βD
, we have limL→∞

(
21−α

1+βD

)L
= 0.

Thus we have limL→∞
∥∥∥ f(X⋆)[p]
∥f(X⋆[p]∥2

− In√
n

∥∥∥
2
=

√
2.

This indicates that the p-th column of the output
matrix f(X⋆) is not parallel to In for any p. This
further indicates that the output matrix does not
have the identical vector in each row.

A.4 Technical Lemma

Lemma 3. For any x ∈ (0, 1), it always holds[
1− 1√

1+x2

]1/2
≤ x.

Proof. To establish the inequality[
1− 1√

1+x2

]1/2
≤ x, we begin by proving,

1− 1√
1 + x2

≤ x2. (23)

To demonstrate (23), we equivalently show

1− x2 ≤ 1√
1 + x2

. (24)

Subsequently, it suffices to verify

(1− x2)(
√

1 + x2) ≤ 1. (25)

This is equivalent to proving

(1− x2)2(1 + x2) ≤ 1. (26)

Thus, our focus shifts to demonstrating

(1− x2)(1− x4) ≤ 1. (27)

Clearly, (27) holds true for any x ∈ (0, 1).

A.5 Remarks

Remark 2: The existence of f̂∞(X) is a non-trivial
result. While the mapping φi admits a fixed point
at X = 0n×d, the convergence of the iterative
process governed by φi cannot be guaranteed us-
ing the contraction mapping theorem, as φi does
not satisfy the contraction property for any pair
(Qi,Ki). This complexity becomes particularly
evident in the special case where n = 1 and X
is a column vector. Here, the output of φi satis-
fies the relation ⟨1d, φi(X;Ki, Qi)⟩ = 2⟨1d,X⟩,
implying that the iteration diverges unless X is or-
thogonal to 1d. However, the divergence is not
arbitrary; rather, the theorem reveals that it occurs
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in a fixed, well-defined direction. This insight en-
sures the existence of a normalized output, which
remains stable and meaningful despite the lack of
strict convergence.

Remark 3: The existence of α∗ ∈ (0, 1) is also
a non-trivial statement, as α∗ could potentially be
zero, which would imply the absence of a critical
layer such that securing layers prior to it guarantees
the failure of the recovered model’s functionality.
The primary challenge lies in demonstrating that
perturbations to the earlier layers result in rank-one
outputs, a property that does not universally hold
for arbitrary perturbations. To address this, we es-
tablish an alternative result: given an input matrix
X, rank-one outputs can be guaranteed if the per-
turbation matrices Ki and Qi are chosen to avoid
specific zero-measure sets, denoted as K(X) and
Q(X), respectively. Assuming a countable domain
X × Y , which is typical for structured inputs such
as sentences or images, it follows that the perturba-
tion matrices to be avoided belong to the countable
union of these sets, defined as K =

⋃
X∈X K(X)

and Q =
⋃

X∈X Q(X). Since this union remains
a zero-measure set, avoiding these specific sets en-
sures that the conditions of the theorem are satisfied
for any input matrix X.

B Experiment Details

To more intuitively compare the security dif-
ferences between the SOLID method and a
fully-secured approach, we define ∆ADR(I) =
ADR(I)−ADR([L]) to assess the resilience of the
secured set I relative to the fully-secured approach.
A smaller value of ∆ADR indicates resilience sim-
ilar to that of the fully-secured model.

B.1 Model Details.
The foundation models we use in our experiments
are selected from open-source repositories, and
Table 4 shows the basic information of the mod-
els and their sources. Specifically, we employ
Llama2-70B-chat1 (Touvron et al., 2023), Llama2-
7B-chat2 (Touvron et al., 2023), and Mistral-7B-
v0.13 (Jiang et al., 2023). For smaller models, we
select Phi-24 (Abdin et al., 2024) and Phi-1.55 (Li
et al., 2023). We also consider OPT model6 (Zhang
et al., 2022), which has only 350 million parame-
ters and 24 decoder layers.

Model Size Decoder Layers

Llama2-70B-chat 70B 80
Llama2-7B-chat 7B 32
Mistral-7B-v0.1 7B 32
Phi-2 2.7B 32
Phi-1.5 1.3B 24
OPT 350M 24

Table 4: Model Info

B.2 Distillation Attacks.
Attack implementation details. In performing
FT-all and FT-secure model distillation attacks, we
adhere to the training hyper-parameters outlined in
the Llama2 report (Touvron et al., 2023), employ-
ing the AdamW optimizer with a cosine learning
rate scheduler. The initial learning rate is set to
2× 10−5, with a weight decay of 0.1, a batch size
of 128, and bfloat16 precision for input sequences
of 512 tokens. The LLaMA2-70B model is trained
for 3 epochs with a random seed of 42, while other
models are trained for 5 epochs across three seeds:
42, 1234, and 20. Despite limiting training to 3

1https://huggingface.co/meta-llama/Llama-2-70b-chat-hf
2https://huggingface.co/meta-llama/Llama-2-7b-chat-hf
3https://huggingface.co/mistralai/Mistral-7B-v0.1
4https://huggingface.co/microsoft/phi-2
5https://huggingface.co/microsoft/phi-1_5
6https://huggingface.co/facebook/opt-350m
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epochs for the 70B model, the training loss stabi-
lized effectively. Our implementation builds upon
the llama-recipes repository provided by META.

For SEM attacks, distinct configurations were
employed for SOLID and SAP-DP. In the case of
SOLID, hidden representations from the secure-
source components were collected and paired with
the input data to train a substitute model. In con-
trast, for SAP-DP, representations from the sixth
decoder layer and the model’s final logits were
utilized to construct the training dataset. In ac-
cordance with (Tamber et al., 2024), we applied a
learning rate of 1.5e-4, a weight decay of 0.01, and
a linear learning rate scheduler with 500 warmup
steps. Both training and validation batch sizes were
set to 32, with MSE as the loss function. SOLID
was trained for 30 epochs due to its smaller model
size, whereas SAP-DP was trained for 5 epochs.

All distillation experiments were conducted on
Nvidia 4090 24G, 6000 Ada 48G, and A100 80G
GPUs, utilizing PyTorch 2.2.0 and CUDA 11.8 on
Ubuntu 20.04.6 LTS.

Base 51k Distillation Dataset. We ensure
dataset coverage and reliability by using a 1:1 ratio
of the MMLU 7 (Hendrycks et al., 2021) auxil-
iary training set and Alpaca dataset 8 (Taori et al.,
2023), extracting 25.5k samples from each. From
the MMLU auxiliary training data, we sample 50%,
and from Alpaca, we use a step size of 2 to en-
hance diversity. The datasets are then formatted
for model training, applying Alpaca and MMLU
prompts from Table 5.

Extra Distillation Datasets. To enhance dataset
diversity, the 100K, 200K, 300K, and 500K
datasets integrate additional specialized sources.
As detailed in Table 6, these sources include
Baize (Xu et al., 2023) (158K English multi-turn
conversations via ChatGPT’s self-chat), MathIn-
struct (Yue et al., 2023) (260K curated math in-
struction instances focusing on hybrid reasoning),
and OpenOrca (Mukherjee et al., 2023) (augmented
FLAN collection with 1M GPT-4 completions and
3.2M GPT-3.5 completions). These enrichments
are intended to support complex computational and
theoretical tasks, offering broader topic coverage.

Validation Datasets. Table 7 outlines the com-
position of the validation datasets. For Validation
Dataset 1, we extracted 50% from each of the 57
MMLU validation sub-datasets, totaling 1.5K in-

7https://github.com/hendrycks/test
8https://github.com/tatsu-

lab/stanford_alpaca/blob/main/alpaca_data.json

stances, paired with Alpaca data selected using a
step size of 751. This dataset is used with the 51K
and 100K training sets. For larger training sets
(200K, 300K, and 500K), Validation Dataset 2 was
created by adding 400 instances from three Baize
subsets, expanding the validation set to 4.0K.

B.3 Baselines.
In this section, we provide further details on the
baselines used in our comparisons: SAP-DP and
fully-secured. These schemes represent different
strategies, each with distinct trade-offs in terms of
customizability and security against model distilla-
tion attacks.

SAP. The Split-and-Privatize (SAP) frame-
work (Shen et al., 2023) offers an approach to bal-
ance between protecting model privacy and data pri-
vacy while maintaining competitive performance.
Specifically, the SAP framework keeps the bottom
six encoder layers open, allowing user access and
fine-tuning while securing the deeper layers on the
vendor.

SAP-DP. To further strengthen protection while
maintaining competitive performance, we extend
SAP by incorporating differential privacy tech-
niques by adding Laplace noise to perturb the logits
during the fine-tuning process (Lee et al., 2018).
The Laplace Distribution with mean µ and scale b
is the distribution with probability density function:

Laplace(x|µ, b) = 1

2b
exp

(
−|x− µ|

b

)

Specifically, in SAP-DP, the noise n is sampled:
n ∼ Laplace(0, 0.5) and added to the output log-
its of the model to balance privacy protection and
model performance.

Fully-secured. Following (Eiras et al., 2024),
we use the fully-secured approach as a baseline.
This assumes the adversary has no access to in-
ternal model parameters, treating the model as a
black-box, where only output data can be collected.
We slightly broaden this setup by assuming the ad-
versary knows the model’s architecture but no other
details. Thus, distilling the fully-secured model in-
volves using the collected data to retrain a model
with the same architecture to restore its general
functionality.

DarkneTZ. Based on the work of (Mo et al.,
2020), we use DarkneTZ as a baseline to test
whether protecting only the output layers is suf-
ficient to defend against distillation attacks. In this
setup, we assume the adversary has no access to the
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Dataset Prompt Type Description

Alpaca
with input

Below is an instruction that describes a task, paired with an input that provides
further context. Write a response that appropriately completes the request.

w/o input Below is an instruction that describes a task. Write a response that appropri-
ately completes the request.

MMLU

Question Answering Below is a question with no choices. Write the correct answer that appropri-
ately solves the question.

Multiple Choice The following is a multiple choice question, paired with choices. Answer the
question in the format: “Choice:content”.

Table 5: Prompts for Alpaca and MMLU auxiliary training data

Raw Data Set 51k 100k 200k 300k 500k

Alpaca 25.5 50 40 50 50
MMLU auxiliary training set 25.5 50 40 100 100
Baize-MedQuAD 0 0 40 50 50
Baize-Quora 0 0 40 50 50
Baize-Stackoverflow 0 0 40 50 50
MathInstruct 0 0 4 6 20
OpenOrca 0 0 0 0 180

Table 6: Composition of variously sized datasets

model parameters of the output layers, specifically
the last decoder layer. Similar to the SAP frame-
work, this approach allows the adversary to access
and fine-tune all layers except the final decoder
layer.

B.4 Implementation Details of SOLID.
Evaluation Datasets. We created a 1.5K Evalu-
ation Set to assess model security under various
secure-sourcing strategies. This set includes 50%
of entries from each of the 57 MMLU validation
sub-datasets (Hendrycks et al., 2021), distinct from
Validation Set outlined in Table 7. Additionally, we
selected an equal number of Alpaca dataset (Taori
et al., 2023), using a step size of 751, ensuring no
overlap with the Validation Set.

Hyper-parameter Sensitivity. As shown in
Figure 8, we evaluate SOLID’s sensitivity to tol-
erance magnitude ε, adjusting it from 0.05 to 1
in 0.05 increments while calculating the ∆ADR
for six distilled models. The results indicate that
SOLID is minimally sensitive to changes in ε, with
∆ADR values stabilizing as ε increases. This
stability arises from the need for a smaller se-
cured layer at higher ε, allowing the condition
R(I) ≤ (1+ ε)R([L]) to be met with fewer layers.
Additionally, the increase in ∆ADR is smaller for
larger models, suggesting that privatizing more pa-
rameters beyond a certain point offers diminishing

returns in security.

0.05 0.55

Magnitude (ε)

−0.8

−0.4

0.0

0.4

0.8

1.2

1.6

∆
A

D
R
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)

Sensitivity to Tolerance

Llama2-7B

Mistral-7B

Phi2-2.7B

Phi1.5-1.3B

Figure 8: Sensitivity on ε.

B.5 Evaluation Benchmarks

Most of our evaluations are conducted using the
lm-evaluation suite (Gao et al., 2023), the bigcode-
evaluation-harness platform (Ben Allal et al., 2022),
and MT-Bench (Zheng et al., 2023). For specific
domains, such as finance and law, we utilize the
official benchmark testing codes provided by their
respective communities, as detailed below.

Evaluation on Customizabilities. We assess
the customizability of models across six domains,
as detailed in Table 8. Each domain includes spe-
cific benchmarks and metrics designed to evalu-
ate different aspects of the model’s performance
in relation to customizability. In particular, for
evaluating medical capabilities, we select two sub-
categories from the MMLU benchmark that are
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Raw Data Set Validation Set Evaluation Set

Alpaca 765 765
MMLU auxiliary training set 751 751
Baize-MedQuAD 0 850
Baize-Quora 0 850
Baize-Stackoverflow 0 850

Total Length 1516 4066

Table 7: Composition of validation datasets of different sizes

related to the medical domain: mmlu_anatomy
and mmlu_professional_medicine. For assessing
legal reasoning, we select 10 multiple-choice and
judgment-based subcategories from Legalbench.
The performance of the model in these legal tasks
is measured using perplexity, following the prompt
structure provided by Legalbench. Specifically, the
selected subcategories include:
• cuad_audit_rights
• canada_tax_court_outcomes
• definition_classification
• cuad_affiliate_license-licensee
• learned_hands_business
• contract_nli_survival_of_obligations
• contract_nli_explicit_identification
• contract_nli_confidentiality_of_agreement
• hearsay
• contract_qa

Evaluation on Security. We follow the Llama-2
report (Touvron et al., 2023) to evaluate the dis-
tilled model, including 16 benchmarks, which are
categorized into 6 groups. Table 9 summarizes the
functionality benchmarks used in our experiments,
along with their test methods and performance met-
rics. Our model ranks choices in multiple-choice
tasks and generates answers for open-ended gener-
ation tasks.

B.6 Model Customization

Datasets. To fine-tune the models for domain-
specific tasks, we utilized several datasets tai-
lored to different sectors, including Code (Zheng
et al., 2024a), Math (Yue et al., 2023), Medi-
cal (Zhang et al., 2023), Finance (Wang et al.,
2023a), Law (Guha et al., 2024), and Align-
ment (Meng et al., 2024). Table 10 lists the cus-
tomization training datasets used in the experi-
ments. For the code domain, we combine the
datasets from CodeFeedback and CodeAlpaca. For
law and finance, we merge all training datasets

from Legalbench and FinGPT respectively. These
datasets are then prepared for model training using
the Alpaca prompts outlined in Table 5. Addition-
ally, we randomly select 3,000 samples to serve as
the validation dataset.

Customization Training Hyperparameters. In
model customization, we use different hyperparam-
eters depending on the model size. For LLaMA2-
70B, we apply QLoRA with the settings outlined in
Table 11, while for 7B models, we use LoRA. For
smaller models like Phi2 and Phi-1.5, we fine-tune
all model parameters. For LLaMA2-70B, we fine-
tune it as a quantized 4-bit model over 1 epoch,
starting with a learning rate of 1.5 × 10−6. For
the 7B models, we train for 3 epochs, with a seed
value of 42. The training setup includes a weight
decay of 0.1, a batch size of 128, a warmup ratio
of 0.03, and input sequences of 512 tokens, fol-
lowing standard experimental practices (Hu et al.,
2021). For Phi2 and Phi-1.5, we use the training
hyperparameters from the LLaMA2 report. We
employ the AdamW optimizer with a cosine learn-
ing rate scheduler, starting with a learning rate of
2 × 10−5, a weight decay of 0.1, a batch size of
128, and use bfloat16 precision for 512-token input
sequences. Specifically, for alignment, we follow
SimPO (Meng et al., 2024) and set the preference
parameters β = 2 and γ = 1. The learning rate is
1× 10−6 for LLaMA2-70B and 5× 10−7 for the
7B and smaller models. All experiments are con-
ducted using the LLaMA-Factory on Nvidia 4090
24G, 6000 Ada 48G, and A100 80G GPUs, with
PyTorch 2.2.0 and CUDA 11.8 on Ubuntu 20.04.6
LTS.

B.7 Security and Customization Transitions

For the LLaMA2-7B model, the smallest secure-
source layer set identified by SOLID consists of a
single decoder layer, whereas for Phi-2, it includes
two decoder layers. Consequently, for LLaMA2-
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Domain Benchmark Metric n-shot Reference

Code HumanEval Pass@1 0 (Chen et al., 2021)
MBPP Pass@1 1 (Austin et al., 2021)

Math GSM8K Exact Match 8 (Cobbe et al., 2021)

Medical MMLU_Medical Accuracy 5 (Hendrycks et al., 2021)

Finance FPB F1 0 (Wang et al., 2023b)

Law LegalBench Accuracy 0 (Guha et al., 2023)

Alignment MT-Bench Score (GPT-4) (Zheng et al., 2023)

Table 8: Details of the Six Customizability Benchmarks

Domain Benchmark Metric n-shot Reference

Commonsense Reasoning

PIQA Accuracy 0 (Bisk et al., 2020)
Hellaswag Accuracy 0 (Zellers et al., 2019)
Winogrande Accuracy 0 (Sakaguchi et al., 2019)
ARC_easy Accuracy 0 (Clark et al., 2018)
ARC_challenge Accuracy 0 (Clark et al., 2018)

Reading Comprehension

OpenBookQ Accuracy 0 (Mihaylov et al., 2018)
LAMBADA Accuracy 0 (Paperno et al., 2016)
BoolQ Accuracy 0 (Clark et al., 2019)
SQuADv2 HasAns_EM 2 (Rajpurkar et al., 2018)
SQuADv2 HasAns_F1 2 (Rajpurkar et al., 2018)

World Knowledge NaturalQuestions Exact Match 5 (Kwiatkowski et al., 2019)
TriviaQA Exact Match 5 (Joshi et al., 2017)

Code HumanEval Pass@1 0 (Chen et al., 2021)
MBPP Pass@1 1 (Austin et al., 2021)

Math GSM8K Exact Match 8 (Cobbe et al., 2021)

General Ability MMLU Accuracy 5 (Hendrycks et al., 2021)
BBH Accuracy 3 (Suzgun et al., 2022)

Table 9: Details of the Sixteen Functionality Benchmarks

7B, we opted to secure-source each even-indexed
layer, while for Phi-2, we chose to secure-source
non-overlapping pairs of layers (e.g., layers 0-1,
2-3). For each selected layer set, we first secure-
source them, then subjected the semi-open model
to FT-all attacks, and subsequently calculated the
∆ADR of the layer set to assess its security.

When verifying the customization transition, due
to computational constraints, we validated only ev-
ery other layer set for both models (e.g., secure-
source layers 0, 0-4, 0-8 . . . ). Specifically, we ap-
plied LoRA-based customization on LLaMA2-7B
in the math domain, while for Phi-2, we utilized the
full finetuning approach. The experimental hyper-
parameters remain consistent with those outlined
in the Appendix B.6.

We further computed the ∆ADR for each secure-
source set within Mistral-7B-v0.1 and Phi-1.5. In
these models, the smallest secure-source set identi-

fied by SOLID consists of one decoder layer and
two decoder layers, respectively. Following the
same experimental configuration as LLaMA2-7B
and Phi-2, we secured each even-indexed layer for
Mistral-7B, and non-overlapping pairs of layers for
Phi-1.5. The complete results demonstrating the
transition layers within the Mistral-7B and Phi-1.5
model that secure two non-overlapping consecu-
tive layers are depicted in Figure 9. Once again,
we observed a distinct presence of transition lay-
ers. Specifically, in Mistral-7B, the transition layer
appears at the 24th layer, while in Phi-1.5, it is lo-
cated within the first layer set. Further results for
can be found in Appendix C.7.

B.8 Security Across Secure Sizes

To examine the influence of Secure layer size on
model security, we conduct experiments on Secure-
sourcing different amounts and proportions of pa-
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Domain Dataset Name Size Reference

Code CodeFeedback 156k (Zheng et al., 2024b)
CodeAlpaca 20k (Chaudhary, 2023)

Math MathInstruction 262K (Yue et al., 2023)

Medical MedMCQA 183k (Zhang et al., 2023)

Law Legalbench 90k (Guha et al., 2023)

Finance FinGPT 204k (Wang et al., 2023b)

Alignment Ultrafeedback 62k (Cui et al., 2024)

Table 10: Customization Training Datasets Composition

Model Method Rank r Lora α Dropout Learning Rate Epochs Warmup R.

Llama2-70B QLoRA 96 16 0.05 1.50E-04 1 0.03
Llama2-7B LoRA 32 64 0.05 2.00E-05 3 0.03
Mistral-7B LoRA 32 64 0.05 1.00E-06 3 0.03

Table 11: The Hyperparameters for Customization Training.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Secured Set Index (k)

0

10

20

30

40

∆
A

D
R

(%
)

(a) Transition in Mistral-7B

Mistral-7B

0 1 2 3 4 5 6 7 8 9 10 11

Secured Set Index (k)

0

20

40

60

80

∆
A

D
R

(%
)

(b) Transition in Phi1.5

Phi1.5-1.3B

Figure 9: Security changes in Miatral-7B and Phi-1.5.

rameters in the model’s decoder layer. We give
instructions on the detailed setting of secured mod-
els in Table 12. The module names are all derived
from the overall implementation functions of each
model in the Transformers open-source repositories
in Table 4. We utilize abbreviated module names
to denote specific settings.

We further computed ∆ADR by close-sourcing
varying quantities and proportions of parameters
under FT-all attacks on three additional models.
As shown in Figure 10 and Figure 11(a), we ob-
served the same pattern as with Llama2-7B, where
security emerges once a sufficient number of pa-
rameters are secured. For example, on Mistral-7B,
security occurs after secure-sourcing 100 million
parameters, which is less than a single decoder
layer. Secure-sourcing fewer parameters leads to
a notable drop in security, with ∆ADR rising to
around 40%. Beyond this threshold, security sta-
bilizes near 0% ∆ADR. This pattern holds across
all models, highlighting a critical threshold for ef-
fective secure-source. Furthermore, different ar-
chitectures require varying secure-sourcing quan-

tities to achieve security, even with similar model
sizes. For instance, Mistral-7B reaches security by
secure-sourcing 100 million parameters, Llama2-
7B requires 200 million, and Phi-1.5 needs a higher
rate of 7%, compared to 3% for Llama2-7B.
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Figure 10: ∆ ADR for different secure parameter quan-
tities and proportions.

We explore how secured parameter ratio impacts
the model security in Llama2-7B, as shown in Fig-
ure 11(b). For instance, technical skills such as
Math show earlier transitions, with security emerg-
ing at 1% parameters secured, whereas domains
such as Commonsense Reasoning require hiding
3%. In summary, secure-sourcing a small por-
tion of parameters can provide sufficient security
against model distillation, meanwhile, technical ca-
pabilities tend to be more challenging to distill than
other domains.

B.9 Effectiveness of distillation difficulty
The complete Pearson and Spearman results are
presented in Table 13, revealing a negative cor-
relation between RS and the average distillation
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Llama-7B Mistral-7B Phi2-2.7B Phi1.5-1.3B

0.25% Wk Wq,Wk Wk Wk
0.50% Wq,Wk Wo,MLPup Wq,Wk Wq,Wk

1% Wq,Wk,Wv,Wo Wq,Wk,Wv,Wo Wq,Wk,Wv,Wd Wq,Wk, ,Wv
3% 0 0 0 0
7% 0-1 0-1 0-1 0-1
15% 0-4 0-4 0-3 0-3
30% 0-9 0-9 0-9 0-6
50% 0-15 0-15 0-15,Wem 0-11,Wem

Proportion

100% Fully-secured Fully-secured Fully-secured Fully-secured

20M Wk Wq,Wk Wq,Wk,Wv Wq,Wk,Wv,Wd
50M Wq,Wk,Wv Wq,Wk,Wv,Wo MLP 0
100M Wq,Wk,Wv,MLP Wq,Wk,Wv,Wo,MLP 0, Wq,Wk,Wv 0-1
160M Wq,Wk,Wv,Wo,MLP Wq,Wk,Wv,Wo,MLP 0-1 0-2
200M 0 0 0-1, Wq,Wk,Wv,Wd,MLPf1 0-3
300M 0, Wq,Wv,Wo,MLPup 0, Wq,Wv,Wo,MLPup 0-3 0-5

Quantity

600M 0-2 0-2 0-7 0-11

Table 12: Secured Sizes Setting. “*” indicates an entire decoder layer.
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Figure 11: ∆ADR and ∆DR changes in Llama2-7B
with varying secured parameter ratios.

ratio. For example, in Llama2-7B, both Pearson
and Spearman coefficients fall below -0.77. Sim-
ilar trends are seen in models with varying archi-
tectures and sizes, confirming that RD is a reli-
able predictor of distilled model performance and
demonstrating the effectiveness of SOLID. Addi-
tionally, Figure 12 shows scatter plots depicting
the relationship between ∆ADR and Distillation
Difficulty(↑)s across four models, along with the
corresponding Pearson and Spearman correlation
coefficients. The Distillation Difficulty(↑)s were
obtained from Section 4.3. As illustrated in Fig-
ure 12, we observe a clear trend: an increase in
∆ADR corresponds to a decrease in model scores
across all models analyzed. This inverse relation-
ship is consistently supported by strong negative
values for both Pearson and Spearman correlation
coefficients, with the most significant negative cor-
relation seen in Phi2-2.7B, indicating a substantial
drop in model scores as ∆ADR increases.

B.10 Adversarial Attack

In this section, we provide a detailed comparison of
SOLID and SAP-DP in their effectiveness against
three types of black-box adversarial attacks on the
Llama2-7B model. The attacks considered include
Membership Inference Attacks (MIA), Attribute

Inference Attacks (AIA), and Prompt Injection At-
tacks (PIA).

Membership Inference Attack (MIA): This
attack aims to determine whether a specific data
point was included in the training dataset of the
model. Attackers utilize model outputs to infer
membership status, potentially exposing sensitive
information about the training data (Fu et al., 2023;
Chen and Pattabiraman, 2024). We conducted our
experiment following SPV_MIA 9, which provides
a robust framework for assessing model vulnera-
bilities. We focus on the AUC scores for SPV-
MIA against semi-open models across Ag News
datasets (Zhang et al., 2016).

Attribute Inference Attack (AIA): In this sce-
nario, the adversary attempts to infer specific at-
tributes of training data based on the model’s out-
puts. This can lead to privacy breaches, particu-
larly when sensitive attributes are involved (Staab
et al., 2023; Li et al., 2024b). We conducted our
experiments following the methodology outlined
in (Staab et al., 2023) 10 and evaluated the top-3
accuracy on the PersonalReddit (PR) Dataset.

Prompt Injection Attack (PIA): This attack
manipulates input prompts to coerce the model
into producing desired outputs that may compro-
mise the integrity or security of the system (Zhao
et al., 2024; Xu et al., 2024b). In our experiment,
we follow AutoDAN 11, which can automatically
generate stealthy jailbreak prompts by the care-
fully designed hierarchical genetic algorithm.We
evaluate the effectiveness of these prompts us-
ing the keyword-based attack success rate (ASR),
which measures the presence of predefined key-
words in responses generated LLMs. For gold stan-

9https://github.com/wjfu99/MIA-LLMs
10https://github.com/eth-sri/llmprivacy
11https://github.com/SheltonLiu-N/AutoDAN
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Model Rsn. Read. Knl. Code & Math Gen. Avg.

Llama2-7B -0.83 | -0.97 -0.77 | -0.96 -0.83 | -0.95 -0.85 | -0.90 -0.82 | -0.93 -0.80 | -0.98

Mistral-7B -0.83 | -0.89 -0.82 | -0.91 -0.82 | -0.94 -0.78 | -0.95 -0.76 | -0.87 -0.87 | -0.92

Phi-2 -0.93 | -0.96 -0.84 | -0.96 -0.84 | -0.87 -0.84 | -0.80 -0.84 | -0.84 -0.87 | -0.95

Phi-1.5 -0.86 | -0.97 -0.78 | -0.94 -0.83 | -0.94 -0.90 | -0.80 -0.84 | -0.89 -0.80 | -0.94

Table 13: Correlation coefficients (Spearman | Pearson) between distillation ratio and distillation difficult.
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Figure 12: Correlation Analysis of ∆ADR and Distillation Difficulty Across Different Models.

dard, LED 12, significantly enhances the security
of LLMs against prompt injection attacks (PIA),
reducing the ASR to 0.

Limited Defense against Adversarial Attack.
We compare SOLID and SAP-DP in defending
against three black-box adversarial attacks on
Llama2-7B. Specifically, we apply the member-
ship inference (Fu et al., 2023) (MIA), attribute
inference (Staab et al., 2023) (AIA), and prompt
injection (Liu et al., 2023) (PIA) attacks to the semi-
open models produced by SAP-DP and SOLID. As
shown in Table 14, we observe that SAP-DP out-
performs SOLID across all three attacks, but still
performs worse than the gold standard. This is
because SOLID does not introduce additional out-
put perturbation and thus provide limited defense
against black-box adversarial attacks. Details can
be found in Appendix B.10.

Approach MIA↓ AIA↓ PIA↓

Gold Std. 58.0 43.9 0.00

SCARA 72.3 85.0 26.5

SAP-DP 72.2 83.9 24.9

Table 14: Performance of SCARA defending adversarial
attacks. ↓ indicates the smaller the better.

12https://github.com/ledllm/ledllm

C Detailed Results

C.1 Comparison in two semi-open
Llama2-70B

In this experiment, we examine two semi-open
Llama2-70B models, where either the first two
decoder layers are secure-source (referred to as
Bottom2-Secured) or the last two decoder layers
are secure-source (referred to as Top2-Secured).
The objective is to compare their performance in
terms of customization and their security under the
distillation attack. The results are summarized in
Table 15 and Table 16.

C.2 Evaluation Results under FT-all attack

In this section, we provide a comprehensive anal-
ysis of the evaluation results, comparing SOLID
with two baseline methods: SAP-DP and a fully-
secured approach. This comparison is conducted
across 16 benchmarks under the FT-all attack sce-
nario. The detailed results for Llama2-70B are
presented in Table 17, while the results for Llama2-
7B and Mistral-7B are shown in Table 18. Addi-
tionally, the outcomes for Phi-2 and Phi-1.5 are
provided in Tables 19.

C.3 Customization Performance of Models

In this section, we present detailed evaluation
results of the model customization performance
across six downstream tasks used in our experi-
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Math Code Medical Law Finance Alignment

Fully Secured 53.15 24.90 53.68 79.63 37.54 7.19
Bottom2-Secured 62.40 43.99 62.73 93.85 87.51 7.46

Top2-Secured 62.53 42.36 62.72 93.91 87.90 7.46

Table 15: Customization Performance of Llama2-70B under Different Secured Layers

Benchmarks Fully Secured Semi-Open-1 Semi-Open-2

Rsn.

PIQA 50.82 50.49 79.05
winogrande 51.07 51.22 72.93

arc_easy 25.17 25.63 76.30
arc_challenge 23.55 20.48 50.17

Hellaswag 26.65 25.77 79.49

Read.

lambada 0.00 0.01 57.25
BoolQ 43.30 37.92 84.95

SQuADv2_EM 0.00 0.00 1.54
SQuADv2_f1 0.23 1.01 35.59

OBQA 25.60 24.40 44.00

Knl. NQ 0.00 0.00 15.18
TriviaQA 0.00 0.00 52.67

Code mbpp 0.00 0.00 16.00
HumanEval 0.00 0.00 13.41

Math GSM8K 0.03 0.01 27.75

Gen. MMLU 23.01 23.22 63.61
BBH 0.00 0.00 49.45

Average Distillation Ratio(↓) 22.55 21.73 74.94

Table 16: Customization Performance of Llama2-70B under Different Secured Layers

ments. The detailed results for Llama2-70B are
presented in Table 20, while the results for Llama2-
7B and Mistral-7B are shown in Table 21 and Ta-
ble 22. Additionally, the outcomes for Phi-2 and
Phi-1.5 are provided in Tables 23 and Table 24.

C.4 Comparison in deployment baselines on
llama2-70B

We compare the distillation security of SOLID with
SAP-DP and Fully-secured as baselines under FT-
secure and SEM attack strategies. The evaluation
results on sixteen benchmarks are shown in Ta-
ble 25.

C.5 Comparison in Distillation Attack
Strategies

In this section, we present detailed evaluation
results of the model distillation performance of
SOLID under FT-secure and SEM attack strategies

across six functionalities used in our experiments.
The detailed results under the FT-secure distilla-
tion strategy are presented in Table 26. The results
under SEM attack strategies are shown in Table 27.

C.6 Comparison in Distillation datasets scales

To investigate the impact of attack dataset scales
on the efficiency of SOLID, we conduct model
distillation attack on the Llama2-7B model using
four different attack datasets of varying sizes: 100k,
200k, 300k, and 500k. The evaluation performance
under different attack set scales are in Table 28

C.7 Transition Layer Results.

Security Performance. We close same-sized layer
sets with different start points, and attack them us-
ing FT-all. Specifically, the sets consist of one layer
for Llama2-7B (Table 29, Table 30), and two layers
for Phi-2 (Table 33, Table 34). We further com-
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Pre-train SOLID SAP-DP Fully-secured

Rsn.

PIQA 80.69 50.49 48.26 50.82
Winogrande 74.74 51.22 50.59 51.07
ARC-easy 80.35 25.63 26.35 25.17

ARC-challenge 53.24 20.48 20.31 23.55
Hellaswag 82.15 25.77 25.76 26.65

Read.

LAMBADA 75.07 0.01 0.00 0.00
BoolQ 86.70 37.92 37.83 43.30

SQuADv2_EM 51.23 0.00 0.00 0.00
SQuADv2_f1 67.43 1.01 1.13 0.23

OBQA 44.80 24.40 24.40 25.60

Knl. NaturalQuestions 32.38 0.00 0.00 0.00
TriviaQA 73.47 0.00 0.02 0.00

Code MBPP 24.80 0.00 0.00 0.00
HumanEval 25.00 0.00 0.00 0.00

Math GSM8K 53.15 0.01 0.00 0.03

Gen. MMLU 63.09 23.22 24.19 23.01
BBH 61.40 0.00 0.00 0.00

Average Distillation Ratio(↓) - 21.73 21.64 22.55

Table 17: Evaluation results of Llama2-70B under FT-all attack

puted the ∆ADR for each secure-source set within
Mistral-7B-v0.1 and Phi-1.5 in Appendix B.7. The
results for the Mistral-7B-v0.1 model are presented
in Table 31 and Table 32. Additionally, the per-
formance outcomes for the Phi-1.5 model can be
found in Table 35.

In all the above tables, “Pretrain” represents the
model’s original performance without any layers
secured. These columns indicate the index of layers
in the model that have been secured. “*” indicates
fully-secured. All evaluation scores are averages
from three different seed tests, corresponding to
the values 20, 42, and 1234, following the details
of the Sixteen Functionality Benchmarks in Ap-
pendix B.5.

Customizability Performance. We close vary-
ing numbers of layers from the start and fine-tune
the open set, and then we observe the customiz-
ability transition in models. Table 36 shows the
detailed evaluation results of Llama2-7B and Phi-2
on GSM8k benchmark.

C.8 Evaluation Results under Different
Secure size

In this section, we present a comprehensive eval-
uation of the model’s performance across sixteen

benchmarks utilized in our experiments. The evalu-
ation results for LLaMA2-7B, categorized by vary-
ing quantities and proportions of secure-source pa-
rameters, are displayed in Table 37 and Table 38,
respectively. For the Mistral-7B model, the results
are summarized in Table 39 and Table 40. Fur-
thermore, the evaluation outcomes for the Phi-2
model can be found in Tables 41 and Table 42. The
performance results for Phi-1.5 are also included
in Tables 43 and Table 44 for comparison. For
further details regarding the secure-source settings
employed in our experiments, please refer to Ap-
pendix C.8.

C.9 Limitation on OPT-350M
To investigate the limitations of SOLID, we cal-
culate the Distillation ratio of each secure-source
set within the smaller model, OPT-350M (Zhang
et al., 2022) with only 350M parameters. We set
the secure-source set size to 2 and subsequently
calculate ∆ADRs for each secure-source set. The
detailed results are shown in Figure 45.
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Llama2-7B Mistral-7B
SOLID SAP-DP Fully-secured SOLID SAP-DP Fully-secured

Rsn.

PIQA 49.56 49.56 49.47 51.63 50.22 49.35
Winogrande 50.99 49.66 50.83 49.78 51.07 50.59
ARC-easy 27.04 26.43 25.98 26.12 28.03 25.83

ARC-challenge 21.07 20.56 22.47 19.94 21.42 22.35
Hellaswag 25.56 25.69 26.39 26.10 25.97 25.39

Read.

LAMBADA 0.01 0.00 0.01 0.12 0.00 0.01
BoolQ 44.30 41.70 48.34 39.05 37.83 45.80

SQuADv2_EM 0.00 0.00 0.00 0.00 0.00 0.00
SQuADv2_f1 0.49 0.63 0.59 1.21 0.26 0.66

OBQA 25.13 23.00 25.93 25.60 25.20 25.00

Knl. NaturalQuestions 0.01 0.01 0.04 0.00 0.00 0.02
TriviaQA 0.00 0.00 0.02 0.00 0.00 0.01

Code MBPP 0.00 0.00 0.00 0.00 0.00 0.00
HumanEval 0.00 0.00 0.00 0.00 0.00 0.00

Math GSM8K 0.00 0.00 0.00 0.00 0.00 0.00

Gen. MMLU 24.26 22.92 24.45 25.24 23.05 23.26
BBH 0.00 0.00 0.00 0.00 0.00 0.00

Average Distillation Ratio(↓) 25.03 24.16 25.62 22.41 22.28 22.68

Table 18: Evaluation results of 7B models under FT-all attack

Phi-2 Phi-1.5
SOLID SAP-DP Fully-secured SOLID SAP-DP Fully-secured

Rsn.

PIQA 54.17 52.01 52.07 53.43 52.61 50.44
Winogrande 51.56 48.93 48.91 51.09 49.25 49.12
ARC_easy 34.57 28.20 27.03 30.81 28.79 27.50

ARC_challenge 19.45 19.37 18.66 20.56 19.80 21.22
Hellaswag 27.61 25.32 25.26 26.27 25.66 25.05

Read.

LAMBADA 0.75 0.02 0.00 0.59 0.00 0.00

BoolQ 45.29 40.21 44.60 46.98 41.80 46.28
SQuADv2_EM 0.02 0.00 0.00 0.00 0.00 0.00
SQuADv2_f1 2.61 0.28 0.64 0.78 0.65 1.60

OBQA 24.80 26.60 25.80 26.60 28.60 26.87

Knl. NaturalQuestions 0.00 0.00 0.02 0.04 0.00 0.00
TriviaQA 0.01 0.00 0.01 0.01 0.00 0.00

Code MBPP 0.00 0.00 0.00 0.00 0.00 0.00
HumanEval 0.00 0.00 0.00 0.00 0.00 0.00

Math GSM8K 0.00 0.00 0.00 0.00 0.00 0.00

Gen. MMLU 24.16 22.87 22.95 24.07 22.95 22.95
BBH 0.01 0.00 0.00 0.00 0.00 0.00

Table 19: Evaluation results of small models under FT-all attack

Math Code Medical Law Finance Alignment

Fully-Secure 53.15 24.90 53.68 79.63 55.63 7.19
SAP-DP 61.10 36.87 54.55 83.40 65.78 7.41
SOLID 62.40 43.99 62.73 93.85 87.51 7.46

Fully-Open 64.06 44.58 63.40 94.17 88.22 7.42

Table 20: Detailed results of Llama2-70B secure by SOLID on six downstream tasks.
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Math Code Medical Law Finance Alignment

Fully-Secure 20.24 13.75 36.91 51.80 38.71 6.51
SAP-DP 20.24 13.75 36.91 51.80 38.71 6.52
SOLID 28.96 21.37 46.52 90.84 81.95 6.63

Fully-Open 29.34 21.265 47.60 90.49 84.09 6.63

Table 21: Detailed results of Llama2-7B secure by SOLID on six downstream tasks.

Math Code Medical Law Finance Alignment

Fully-Secure 38.21 33.83 61.50 50.47 37.39 3.20
SAP-DP 41.47 34.44 63.08 50.37 38.10 2.47
SOLID 46.10 43.16 66.78 84.94 86.19 3.87

Fully-Open 45.26 46.08 66.47 88.13 84.91 3.78

Table 22: Detailed results of Mistral-7B secure by SOLID on six downstream tasks.

Math Code Medical Law Finance Alignment

Fully-Secure 57.77 47.59 43.13 56.46 54.07 5.22
SAP-DP 58.52 46.65 43.40 56.81 54.37 5.11
SOLID 59.59 47.79 45.85 57.11 56.26 5.26

Fully-Open 59.60 48.40 45.93 57.19 56.68 5.27

Table 23: Detailed results of Phi-2 secure by SOLID on six downstream tasks.

Math Code Medical Law Finance Alignment

Fully-Secure 30.33 35.09 30.78 52.18 34.60 3.24
SAP-DP 30.25 35.45 32.66 51.99 34.27 3.68
SOLID 33.66 37.10 33.14 52.26 39.60 3.87

Fully-Open 34.49 37.45 33.23 52.34 39.90 3.68

Table 24: Detailed results of Phi-1.5 secure by SOLID on six downstream tasks.
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FT-secure SEM
SOLID SAP-DP SOLID SAP-DP

Rsn.

PIQA 49.78 49.40 48.62 49.00
Winogrande 51.30 49.01 50.99 51.13
ARC-easy 26.43 25.59 25.33 24.55

ARC-challenge 21.41 21.42 22.01 20.93
Hellaswag 26.07 26.10 25.90 25.22

Read.

LAMBADA 0.00 0.00 0.00 0.00
BoolQ 45.09 37.83 44.95 39.80

SQuADv2_EM 0.00 0.00 0.00 0.00
SQuADv2_f1 0.98 1.01 0.59 1.00

OBQA 24.40 23.80 25.03 22.96

Knl. NaturalQuestions 0.00 0.00 0.00 0.00
TriviaQA 0.00 0.00 0.00 0.00

Code MBPP 0.00 0.00 0.00 0.00
HumanEval 0.00 0.00 0.00 0.00

Math GSM8K 0.00 0.00 0.00 0.00

Gen. MMLU 23.18 23.66 22.98 22.83
BBH 0.00 0.00 0.00 0.00

Average Distillation Ratio(↓) 22.60 21.80 22.40 22.30

Table 25: Evaluation results of Llama2-70B under FT-secure and SEM attack

Llama2-7B Mistral-7B Phi-2 Phi-1.5

Rsn.

PIQA 49.95 49.55 54.57 52.45
Winogrande 49.88 49.68 52.33 52.41
ARC-easy 27.65 25.88 33.33 31.06

ARC-challenge 20.81 22.69 19.03 18.77
Hellaswag 26.04 25.01 27.62 26.88

Read.

LAMBADA 0.00 0.00 0.77 0.71
BoolQ 38.13 46.01 44.34 57.49

SQuADv2_EM 0.00 0.00 0.00 0.00
SQuADv2_f1 0.22 0.36 3.07 2.27

OBQA 25.70 25.12 24.40 25.20

Knl. NaturalQuestions 0.00 0.00 0.00 0.00
TriviaQA 0.00 0.00 0.01 0.00

Code MBPP 0.00 0.00 0.00 0.00
HumanEval 0.00 0.00 0.00 0.00

Math GSM8K 0.00 0.00 0.00 0.00

Gen. MMLU 24.23 23.56 23.03 24.10
BBH 0.00 0.00 0.00 0.00

Average Distillation Ratio(↓) 24.80 22.50 23.56 26.97

Table 26: Distillation Performance of SOLID under FT-Secure attacks.
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Llama2-7B Mistral-7B Phi-2 Phi-1.5

Rsn.

PIQA 51.52 48.53 49.46 50.82
Winogrande 50.28 51.02 48.70 50.59
ARC-easy 24.83 25.83 25.93 24.62

ARC-challenge 24.99 22.35 20.65 21.08
Hellaswag 25.58 25.39 25.84 25.39

Read.

LAMBADA 0.00 0.01 0.00 0.01
BoolQ 53.30 45.80 38.41 61.07

SQuADv2_EM 0.00 0.00 0.00 0.00
SQuADv2_f1 0.77 0.66 0.00 1.35

OBQA 25.00 25.00 27.80 30.40

Knl. NaturalQuestions 0.00 0.02 0.00 0.00
TriviaQA 0.00 0.01 0.01 0.00

Code MBPP 0.00 0.00 0.00 0.00
HumanEval 0.00 0.00 0.00 0.00

Math GSM8K 0.00 0.00 0.00 0.00

Gen. MMLU 25.39 23.26 22.95 23.11
BBH 0.00 0.00 0.00 0.00

Average Distillation Ratio(↓) 25.00 22.00 22.10 24.70

Table 27: Distillation Performance of SOLID under SEM attacks.

51K 100K 200K 300K 500K

Rsn.

PIQA 49.56 49.89 49.18 49.18 49.59
Winogrande 50.99 47.99 49.49 50.20 50.20
ARC-easy 27.04 27.06 27.06 27.02 27.01

ARC-challenge 21.07 21.33 20.90 21.16 21.48
Hellaswag 25.56 26.49 26.46 26.50 26.19

Read.

LAMBADA 0.01 0.01 0.00 0.00 0.01
BoolQ 44.30 44.41 44.10 44.07 44.96

SQuADv2_EM 0.00 0.00 0.00 0.02 0.00
SQuADv2_f1 1.05 0.32 0.51 0.52 0.71

OBQA 25.13 25.00 23.80 25.20 25.60

Knl. NaturalQuestions 0.01 0.08 0.08 0.06 0.06
TriviaQA 0.00 0.02 0.01 0.03 0.01

Code MBPP 0.00 0.00 0.00 0.00 0.00
HumanEval 0.00 0.00 0.00 0.00 0.00

Math GSM8K 0.00 0.00 0.00 0.00 0.00

Gen. MMLU 24.26 25.34 25.43 26.14 26.41
BBH 0.00 0.00 0.00 0.00 0.00

Average Distillation Ratio(↓) 25.07 25.03 24.89 25.26 25.48

Table 28: Evaluation Results of SOLID on Llama2-7B under Various Attack Set Scales.
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Pretrain 0 1 2 3 4 5 6 7

Rsn.

PIQA 76.66 49.56 51.43 49.53 50.45 49.84 50.27 50.96 51.09
Hellaswag 75.45 25.56 25.75 25.88 26.16 25.91 27.20 29.39 28.89

Winogrande 66.38 50.99 50.86 50.15 49.75 49.96 50.91 51.64 51.36
ARC_easy 74.41 27.04 27.23 26.10 26.30 25.51 26.44 28.24 27.96

ARC_challenge 44.11 21.07 20.31 20.19 21.30 22.04 21.56 20.62 22.92

Read.

OpenBookQA 68.49 0.01 0.11 0.02 0.02 0.01 0.00 0.05 0.04
LAMBADA 80.67 44.30 41.22 38.36 41.43 38.08 38.14 38.40 41.55

BoolQ 59.48 0.00 0.04 0.00 0.00 0.00 0.00 0.01 0.03
SQuADv2_em 71.88 1.05 1.31 0.63 1.07 0.45 0.44 1.13 1.10
SQuADv2_f1 43.80 25.13 24.60 23.60 24.93 25.67 24.47 25.07 26.00

Knl. NaturalQuestions 22.47 0.01 0.00 0.01 0.03 0.02 0.01 0.13 0.08
TriviaQA 57.23 0.00 0.01 0.00 0.02 0.01 0.01 0.07 0.10

Code HumanEval 10.90 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
MBPP 16.60 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Math GSM8K 20.24 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Gen. MMLU 45.83 24.26 25.37 23.98 24.26 24.75 24.01 25.23 27.45
BBH 39.86 0.00 0.00 0.00 0.00 0.00 0.00 0.50 0.38

Avg. Performance Score(↓) 51.44 15.82 15.78 15.20 15.63 15.43 15.50 15.97 16.41
Average Distillation Ratio(↓) - 30.76 30.67 29.55 30.39 29.99 30.13 31.04 31.90

Distillation Difficulty(↑) - 11.11 11.27 10.87 10.31 10.83 10.33 10.90 11.11

Table 29: Evaluation Results of Llama2-7B under Different Secure Layers (Part1)

16 18 20 22 24 26 28 30 *

Rsn.

PIQA 51.47 52.99 58.22 65.83 69.60 73.45 75.46 75.99 49.47
Hellaswag 31.38 36.55 45.61 56.60 62.70 67.88 71.37 72.94 26.39

Winogrande 53.09 55.98 58.96 64.12 64.80 65.25 65.46 66.53 50.83
ARC_easy 30.58 35.35 43.85 55.92 62.56 68.36 70.85 72.60 25.98

ARC_challenge 24.26 26.85 30.97 35.38 38.17 41.41 43.00 44.17 22.47

Read.

OpenBookQA 0.28 1.58 6.79 30.88 44.58 56.23 62.33 63.11 0.01
LAMBADA 57.55 70.53 71.36 78.85 79.69 80.29 79.39 80.40 48.34

BoolQ 0.08 0.90 2.34 7.07 6.04 6.87 3.54 9.46 0.00
SQuADv2_em 2.21 13.48 21.47 35.72 36.96 39.32 37.08 42.08 0.59
SQuADv2_f1 27.33 28.20 30.47 32.13 34.93 39.27 39.93 41.53 25.93

Knl. NaturalQuestions 0.13 0.41 1.60 2.94 4.29 2.69 7.28 11.87 0.04
TriviaQA 0.25 1.79 4.93 11.02 15.73 17.95 33.19 42.26 0.02

Code HumanEval 0.00 0.00 0.00 0.00 0.00 3.25 8.34 10.98 0.00
MBPP 0.00 0.00 0.00 0.07 0.47 2.27 8.80 13.27 0.00

Math GSM8K 0.00 0.00 0.00 0.13 0.81 8.42 6.90 15.77 0.00

Gen. MMLU 43.17 48.20 49.38 49.58 49.72 50.03 50.75 50.61 24.45
BBH 0.76 11.44 19.79 28.87 31.16 35.98 38.24 40.54 0.00

Avg. Performance Score(↓) 18.97 22.60 26.22 32.65 35.42 38.76 41.29 44.36 16.15
Average Distillation Ratio(↓) 36.89 43.94 50.98 63.48 68.87 75.35 80.27 86.24 31.39

Distillation Difficulty(↑) 10.42 9.49 8.86 7.12 6.14 4.72 3.40 3.06 11.19

Table 30: Evaluation Results of Llama2-7B under Different Secured Layers (Part2). “*” indicates the fully secured
model.
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Pretrain 0 1 2 3 4 5 6 7

Rsn.

PIQA 81.99 51.63 53.20 53.63 53.47 51.56 52.61 50.71 55.15
Hellaswag 81.04 26.10 26.36 26.36 26.66 27.10 25.51 26.18 28.16

Winogrande 74.03 49.78 49.78 51.01 50.38 49.91 50.14 49.70 51.17
ARC_easy 80.77 33.03 31.96 30.71 29.66 30.25 30.35 26.44 32.38

ARC_challenge 50.26 19.94 21.27 20.45 19.60 20.05 21.36 21.25 20.73

Read.

OpenBookQA 44.40 25.60 25.20 25.20 25.47 25.87 26.33 25.07 27.20
LAMBADA 73.29 0.12 0.44 1.91 2.08 0.80 0.30 0.17 1.95

BoolQ 83.67 39.05 53.12 45.95 38.61 47.35 38.06 46.44 47.66
SQuADv2_em 64.04 0.00 0.00 0.01 0.01 0.01 0.00 0.00 0.01
SQuADv2_f1 71.37 1.21 0.84 1.05 1.03 1.27 0.43 0.07 0.86

Knl. NaturalQuestions 28.98 0.00 0.01 0.00 0.04 0.01 0.00 0.02 0.07
TriviaQA 70.79 0.00 0.00 0.02 0.01 0.01 0.01 0.00 0.16

Code HumanEval 29.88 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
MBPP 38.40 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Math GSM8K 38.21 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Gen. MMLU 62.50 25.24 24.68 25.11 23.43 23.65 24.26 24.26 24.99
BBH 56.40 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01

Avg. Performance Score(↓) 60.59 15.98 16.87 16.55 15.91 16.34 15.84 15.90 17.09
Average Distillation Ratio(↓) - 26.38 27.85 27.32 26.25 26.97 26.15 26.24 28.20
Average Distillation Ratio(↓) - 11.50 11.31 11.48 10.71 10.77 11.44 11.02 10.71

Table 31: Evaluation Results of Mistral-7B under Different Secured Layers (Part1)

16 18 20 22 24 26 28 30 *

Rsn.

PIQA 54.50 52.32 52.72 57.13 62.82 64.67 67.23 75.61 49.35
Hellaswag 29.31 29.02 29.99 33.46 46.21 52.12 52.46 67.73 25.39

Winogrande 51.20 54.17 51.07 55.75 58.59 62.41 63.09 66.33 50.59
ARC_easy 32.84 29.35 30.80 38.04 47.24 51.99 54.74 69.95 25.83

ARC_challenge 21.19 23.04 23.78 26.34 30.86 33.22 35.04 40.53 22.35

Read.

OpenBookQA 26.00 27.87 26.87 29.67 28.73 32.67 33.40 36.40 25.00
LAMBADA 2.61 0.18 1.28 4.17 21.89 29.93 24.49 48.32 0.01

BoolQ 53.98 53.60 58.79 55.76 64.10 74.72 68.48 81.30 45.80
SQuADv2_em 0.01 0.00 0.47 0.13 2.39 3.59 1.87 1.82 0.00
SQuADv2_f1 0.96 0.18 1.27 2.60 14.88 22.61 21.12 34.16 0.66

Knl. NaturalQuestions 0.01 0.10 0.19 0.58 1.84 3.15 3.53 8.87 0.02
TriviaQA 0.03 0.01 0.61 0.62 5.14 7.51 10.32 25.44 0.01

Code HumanEval 0.00 0.00 0.00 0.61 2.24 4.88 2.44 9.75 0.00
MBPP 0.00 0.00 0.00 2.00 4.33 8.33 0.93 13.07 0.00

Math GSM8K 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.25 0.00

Gen. MMLU 24.30 25.84 29.54 24.55 34.77 40.77 40.84 50.44 23.26
BBH 0.00 0.00 0.02 0.30 7.55 18.76 21.05 30.07 0.00

Avg. Performance Score(↓) 17.47 17.39 18.08 19.51 25.51 30.08 29.47 38.83 15.78
Average Distillation Ratio(↓) 28.83 28.71 29.84 32.20 42.09 49.64 48.64 64.08 26.05
Average Distillation Ratio(↓) 11.34 11.11 10.45 10.59 10.23 10.34 9.59 8.53 11.20

Table 32: Evaluation Results of Mistral-7B under Different Secured Layers (Part2)
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Pretrain 0 2 4 6 8 10 12 14

Rsn.

PIQA 79.27 54.17 72.85 73.76 75.03 76.75 78.00 78.91 77.84
Hellaswag 73.73 27.61 56.49 57.73 60.47 62.84 66.39 66.91 66.95

Winogrande 75.45 51.56 59.17 59.98 59.88 64.32 68.11 68.95 70.38
ARC_easy 79.92 34.57 72.94 73.40 73.97 76.51 78.33 78.66 78.63

ARC_challenge 52.90 19.45 41.75 39.82 44.11 45.65 47.92 49.74 48.78

Read.

OpenBookQA 51.20 25.80 35.73 37.47 40.13 42.00 44.00 45.67 44.80
LAMBADA 56.28 3.25 28.55 30.42 34.64 40.05 45.41 45.52 46.66

BoolQ 83.36 47.29 65.20 62.64 66.39 71.39 73.42 72.95 75.83
SQuADv2_em 61.30 0.02 10.49 17.63 21.94 33.94 19.54 19.15 29.14
SQuADv2_f1 71.38 2.61 37.22 40.35 45.53 59.16 48.21 50.09 54.87

Knl. NaturalQuestions 9.58 0.00 3.60 4.97 6.13 7.55 7.95 8.10 9.25
TriviaQA 39.29 0.01 13.57 16.29 24.74 28.60 31.58 33.71 32.79

Code HumanEval 48.78 0.00 1.42 6.50 10.98 16.66 22.76 19.51 23.17
MBPP 46.80 0.00 5.07 6.87 9.47 19.60 25.67 23.47 25.73

Math GSM8K 57.77 0.00 7.25 8.64 4.42 9.63 14.18 11.35 17.31

Gen. MMLU 56.73 26.16 34.29 37.01 39.90 43.11 45.63 48.17 49.82
BBH 59.53 0.01 15.27 18.37 16.38 14.58 4.93 4.35 11.37

Avg. Performance Score(↓) 59.02 17.21 32.99 34.81 37.30 41.90 42.47 42.66 44.90
Average Distillation Ratio(↓) - 29.15 55.90 58.99 63.21 71.00 71.97 72.28 76.09

Distillation Difficulty(↑) - 10.07 7.07 4.95 4.09 3.63 3.31 3.31 3.11

Table 33: Evaluation Results of Phi-2 under Different Secured Layers (Part 1)

16 18 20 22 24 26 28 30 *

Rsn. PIQA 77.44 77.80 77.69 76.77 76.89 77.55 78.16 78.58 52.07
Hellaswag 67.20 66.90 67.13 68.00 68.86 70.01 71.44 71.18 25.26

Winogrande 70.82 71.40 73.11 74.46 75.79 75.72 75.93 74.77 48.91
ARC_easy 78.30 77.27 77.33 76.82 78.09 77.76 79.53 79.56 27.03

ARC_challenge 49.71 48.29 48.52 48.04 49.80 50.68 53.16 52.67 18.66

Read. OpenBookQA 46.53 46.47 45.87 45.27 46.33 45.53 46.53 48.27 20.80
LAMBADA 45.67 46.88 47.95 50.17 50.54 52.77 53.01 53.23 0.00

BoolQ 80.56 80.72 82.22 83.31 83.98 83.54 82.54 83.41 39.60
SQuADv2_em 7.88 1.30 1.69 1.31 0.15 0.23 3.54 10.03 0.56
SQuADv2_f1 40.84 34.51 34.25 35.94 35.64 36.68 39.57 44.87 0.90

Knl. NaturalQuestions 8.90 6.09 6.40 6.79 6.86 6.85 7.20 8.37 0.02
TriviaQA 31.48 27.03 25.08 24.54 22.89 22.99 24.24 26.93 0.01

Code HumanEval 22.56 21.34 25.41 32.52 38.01 46.14 46.54 43.90 0.00
MBPP 26.73 25.33 24.80 31.73 36.67 41.80 43.13 43.20 0.00

Math GSM8K 16.68 16.02 14.66 12.31 17.24 30.12 45.41 49.79 0.00

Gen. MMLU 52.69 53.45 55.68 56.61 56.93 56.59 56.86 56.47 22.95
BBH 3.42 17.36 8.33 18.24 30.09 48.12 52.28 56.36 0.00

Avg. Performance Score(↓) 42.79 42.25 42.12 43.70 45.57 48.42 50.53 51.86 15.10
Average Distillation Ratio(↓) 72.51 71.58 71.38 74.04 77.22 82.04 85.63 87.87 25.59

Distillation Difficulty(↑) 3.07 3.29 3.03 3.01 2.70 2.32 1.98 2.13 11.32

Table 34: Evaluation Results of Phi-2 under Different Secured Layers (Part2). “*” indicates the fully secured model.
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Pretrain 0-1 2-3 4-5 6-7 8-9 10-11 12-13 14-15 16-17 18-19 20-21 22-23 *

Rsn.

PIQA 75.68 53.43 69.52 71.53 73.50 74.76 75.08 74.94 74.64 73.90 74.63 74.54 74.81 50.44
Hellaswag 62.56 26.27 46.66 50.71 52.98 54.51 55.11 56.01 56.78 57.90 58.76 59.35 58.58 25.05

Winogrande 72.69 51.09 54.91 59.22 61.75 64.85 67.95 68.88 68.98 71.25 71.19 72.87 70.66 49.12
ARC_easy 76.14 30.81 61.70 65.70 70.10 71.38 70.01 71.72 71.93 72.34 73.39 74.16 73.74 27.50

ARC_challenge 44.62 20.56 32.85 34.10 38.08 40.05 40.30 39.48 40.87 41.52 42.84 42.58 45.42 21.22

Read.

OpenBookQA 48.00 26.60 33.93 35.73 40.40 41.13 40.67 41.73 41.67 40.27 41.33 43.27 45.47 26.87
LAMBADA 44.10 0.59 17.96 26.45 29.37 33.83 33.85 36.46 37.06 37.96 39.98 41.10 40.49 0.00

BoolQ 75.05 46.98 59.12 52.42 57.41 65.68 68.52 63.47 65.12 66.52 73.91 75.17 77.0 46.28
SQuADv2_em 48.01 0.00 5.82 10.94 18.34 13.96 14.70 23.22 16.98 26.05 22.04 20.16 26.86 0.00
SQuADv2_f1 60.84 0.78 24.49 26.04 34.86 32.17 32.36 43.14 38.23 48.03 45.75 45.56 49.62 1.60

Knl. NaturalQuestions 5.46 0.04 1.68 2.73 3.41 3.06 3.21 4.25 4.03 4.06 4.54 4.17 4.45 0.01
TriviaQA 16.94 0.01 5.70 7.77 10.85 11.03 9.11 12.11 11.84 11.86 12.02 12.11 13.19 0.01

Code HumanEval 35.98 0.00 3.05 10.57 12.20 16.26 13.82 17.48 18.70 23.17 29.68 31.91 31.71 0.00
MBPP 35.40 0.00 2.80 7.80 10.93 17.40 16.53 16.13 16.67 22.27 27.33 28.27 28.53 0.00

Math GSM8K 30.33 0.00 0.05 0.73 0.15 0.23 0.75 0.50 2.17 4.98 9.73 17.77 23.45 0.00

Gen. MMLU 42.44 24.07 26.56 28.77 32.51 32.87 36.09 39.42 39.72 43.23 42.51 42.82 43.66 23.95
BBH 28.80 0.00 2.07 3.97 8.38 7.37 2.81 7.79 4.12 10.63 6.94 10.34 11.45 0.00

Avg. Performance Score(↓) 47.24 16.54 26.40 29.13 32.66 34.15 34.17 36.28 35.85 38.59 39.80 40.95 42.30 15.94
Average Distillation Ratio(↓) - 35.02 55.90 61.66 69.14 72.29 72.34 76.80 75.90 81.68 84.25 86.69 89.56 33.75
Average Distillation Ratio(↓) - 10.08 7.18 4.70 3.50 2.93 2.83 2.53 2.36 2.27 2.16 2.06 2.46 9.33

Table 35: Evaluation Results of Phi-1.5 under Different Secured Layers

Llama2-7B Phi-2
Secure Layers GSM8K(↑) Secure Layers GSM8K(↑)

Fully-open 29.34 Fully-open 59.60
0 28.96 0-1 59.59

0-4 21.76 0-5 58.60
0-8 21.46 0-9 58.45
0-12 20.85 0-13 55.19
0-16 20.11 0-17 56.25
0-20 21.46 0-21 54.59
0-24 21.44 0-25 55.34
0-28 18.73 0-29 54.59

Fully-Secure 20.32 Fully-Secure 57.77

Table 36: Customization Performance under Different Secure Sets
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0.25% 0.5% 1% 3% 7% 15% 30% 50% 100%

Rsn.

PIQA 77.78 77.69 67.73 49.42 49.55 50.05 49.98 49.31 49.47
Hellaswag 71.40 71.54 52.39 25.74 26.03 26.25 25.67 25.48 26.39

Winogrande 64.64 65.64 54.12 50.38 50.43 49.65 49.59 49.62 50.83
ARC_easy 74.69 75.04 53.82 26.03 26.76 26.46 26.64 26.66 25.98

ARC_challenge 43.66 43.29 26.99 20.16 21.39 19.74 21.44 21.73 22.47

Read.

OpenBookQA 63.15 63.62 33.20 0.01 0.00 0.02 0.01 0.01 0.01
LAMBADA 80.66 80.78 62.10 38.22 39.33 43.45 39.39 41.83 48.34

BoolQ 11.39 12.14 5.47 0.00 0.00 0.00 0.00 0.00 0.00
SQuADv2_em 40.24 40.74 32.65 0.78 0.20 0.24 2.09 2.13 0.59
SQuADv2_f1 40.73 40.67 30.47 22.93 23.40 25.53 24.07 23.07 25.93

Knl. NaturalQuestions 7.83 7.89 5.61 0.00 0.01 0.02 0.01 0.00 0.04
TriviaQA 44.29 45.95 18.78 0.00 0.01 0.00 0.00 0.00 0.02

Code HumanEval 11.39 12.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
MBPP 15.20 15.33 1.00 0.00 0.00 0.00 0.00 0.00 0.00

Math GSM8K 13.22 13.29 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Gen. MMLU 45.04 45.03 30.90 24.06 24.04 25.01 23.19 23.11 24.45
BBH 37.45 37.51 17.36 0.00 0.00 0.00 0.00 0.00 0.00

Avg. Performance Score(↓) 43.69 44.01 28.98 15.16 15.36 15.67 15.42 15.47 16.15
Average Distillation Ratio(↓) 84.94 85.56 56.33 29.48 29.86 30.47 29.97 30.07 31.39

Distillation Difficulty(↑) 1.96 1.93 8.66 10.87 11.75 11.48 11.65 11.57 11.19

Table 37: Evaluation Results of Llama2-7B under Different Secure-source Proportion

20M 50M 100M 160M 200M 300M 600M

Rsn.

PIQA 77.78 73.49 67.55 67.12 49.42 50.36 49.97
Hellaswag 71.40 63.47 51.67 51.27 25.74 25.70 25.78

Winogrande 64.64 57.54 53.07 52.04 50.38 49.28 50.49
ARC_easy 74.69 66.50 51.97 52.11 26.03 26.43 26.29

ARC_challenge 43.66 36.04 26.51 25.99 20.16 20.79 21.70

Read.

OpenBookQA 63.15 45.34 30.22 28.75 0.01 0.05 0.01
LAMBADA 80.66 69.47 62.28 62.59 38.22 39.03 40.80

BoolQ 11.39 2.21 4.18 7.24 0.00 0.00 0.01
SQuADv2_em 40.24 33.98 28.98 31.05 0.78 0.74 0.37
SQuADv2_f1 40.73 33.93 29.13 30.00 22.93 23.80 23.53

Knl. NaturalQuestions 7.83 2.98 5.33 5.73 0.00 0.00 0.02
TriviaQA 44.29 15.28 13.71 17.25 0.00 0.00 0.01

Code HumanEval 11.39 0.41 0.00 0.00 0.00 0.00 0.00
MBPP 15.20 6.87 1.00 0.80 0.00 0.00 0.00

Math GSM8K 9.00 0.10 0.00 0.00 0.00 0.00 0.00

Gen. MMLU 45.04 36.15 28.95 29.04 24.06 23.70 23.45
BBH 37.45 28.53 14.99 16.99 0.00 0.00 0.00

Avg. Performance Score(↓) 43.44 33.66 27.62 28.12 15.16 15.29 15.44
Average Distillation Ratio(↓) 84.46 65.44 53.69 54.66 29.48 29.72 30.01

Distillation Difficulty(↑) 1.96 5.48 8.95 9.25 10.87 10.93 10.81

Table 38: Evaluation Results of Llama2-7B under Different Secure-source Quantity
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0.25% 1% 0.5% 3% 7% 15% 30% 50% 100%

Rsn.

PIQA 77.79 74.36 52.16 53.34 52.07 52.19 50.04 50.60 49.35
Hellaswag 71.31 65.50 26.50 26.16 25.92 25.91 25.87 25.61 25.39

Winogrande 67.09 60.32 49.22 51.65 50.01 51.36 51.36 49.65 50.59
ARC_easy 74.52 69.51 29.95 30.82 29.73 30.44 28.20 27.45 25.83

ARC_challenge 42.32 38.40 20.76 20.71 21.10 20.25 22.61 22.47 22.35

Read.

OpenBookQA 42.13 34.60 25.13 25.33 26.47 26.07 25.20 25.87 25.00
LAMBADA 55.99 44.36 0.73 1.66 0.96 0.31 0.03 0.02 0.01

BoolQ 78.35 74.06 43.18 42.01 42.09 40.02 38.53 39.91 45.80
SQuADv2_em 13.91 6.97 0.00 0.01 0.00 0.00 0.00 0.00 0.00
SQuADv2_f1 41.13 33.88 1.60 0.93 1.27 0.71 0.99 0.86 0.66

Knl. NaturalQuestions 8.46 5.82 0.03 0.00 0.02 0.03 0.00 0.00 0.02
TriviaQA 34.04 17.03 0.01 0.01 0.02 0.01 0.00 0.00 0.01

Code HumanEval 11.99 6.51 0.00 0.00 0.00 0.00 0.00 0.00 0.00
MBPP 16.93 12.80 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Math GSM8K 6.32 0.45 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Gen. MMLU 44.17 37.98 23.98 24.34 25.10 23.91 23.68 24.12 23.26
BBH 35.44 27.27 0.02 0.00 0.00 0.00 0.00 0.00 0.00

Avg. Performance Score(↓) 42.46 35.87 16.08 16.29 16.16 15.95 15.68 15.68 15.78
Average Distillation Ratio(↓) 70.08 59.20 26.53 26.89 26.67 26.33 25.87 25.88 26.05

Distillation Difficulty(↑) 2.22 5.48 10.92 11.29 11.35 11.19 11.17 11.20 11.20

Table 39: Evaluation Results of Mistral-7B under Different Secured Proportion

20M 50M 100M 160M 200M 300M 600M

Rsn.

PIQA 77.79 73.74 51.36 52.86 53.34 50.98 51.62
Hellaswag 71.31 65.51 26.49 27.98 26.16 26.27 26.04

Winogrande 67.09 64.51 50.06 49.51 51.65 50.17 50.85
ARC_easy 74.52 68.29 27.84 30.95 30.82 27.36 28.30

ARC_challenge 42.32 37.97 20.85 21.67 20.71 21.28 20.17

Read.

OpenBookQA 42.13 37.27 25.60 25.87 25.33 26.60 27.00
LAMBADA 55.99 47.63 1.16 4.74 1.66 0.43 0.53

BoolQ 78.35 75.00 40.17 47.05 42.01 42.05 39.03
SQuADv2_em 13.91 8.65 0.01 0.04 0.01 0.01 0.00
SQuADv2_f1 41.13 35.50 1.01 0.49 0.93 0.28 0.39

Knl. NaturalQuestions 8.46 7.82 0.02 0.05 0.00 0.01 0.02
TriviaQA 34.04 22.89 0.02 0.19 0.01 0.01 0.01

Code HumanEval 11.99 7.93 0.00 0.00 0.00 0.00 0.00
MBPP 16.93 11.87 0.00 0.00 0.00 0.00 0.00

Math GSM8K 6.32 2.48 0.00 0.00 0.00 0.00 0.00

Gen. MMLU 44.17 41.28 24.22 24.44 24.34 23.78 23.33
BBH 35.44 33.43 0.00 0.40 0.00 0.00 0.00

Avg. Performance Score(↓) 42.46 37.75 15.81 16.84 16.29 15.84 15.72
Average Distillation Ratio(↓) 70.08 62.31 26.10 27.79 26.89 26.14 25.95

Distillation Difficulty(↑) 2.22 3.44 11.14 10.85 11.10 11.23 11.22

Table 40: Evaluation Results of Mistral-7B under Different Secured Quantity
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0.25% 0.5% 1% 3% 7% 15% 30% 50% 100%

Rsn.

PIQA 70.40 70.71 74.64 54.43 54.17 54.75 54.37 52.39 52.07
Hellaswag 53.13 52.99 62.84 27.88 27.61 27.77 28.01 26.30 25.26

Winogrande 66.17 66.43 69.93 51.49 51.56 51.46 51.44 49.12 48.91
ARC_easy 64.62 65.33 72.55 33.39 34.57 32.00 32.18 29.97 27.03

ARC_challenge 43.26 43.86 40.67 20.82 19.45 20.00 20.56 19.88 18.66

Read.

OpenBookQA 41.80 42.67 38.87 26.87 25.80 26.33 26.53 26.07 20.80
LAMBADA 32.51 32.25 40.24 10.58 3.25 3.87 6.06 0.66 0.00

BoolQ 65.77 65.27 76.84 48.13 47.29 45.62 46.15 40.50 39.60
SQuADv2_em 0.36 9.09 3.31 0.02 0.02 0.01 0.01 0.00 0.56
SQuADv2_f1 24.81 30.83 30.47 0.45 2.61 0.57 2.52 1.67 0.90

Knl. NaturalQuestions 5.70 5.06 1.14 0.03 0.00 0.01 0.07 0.03 0.02
TriviaQA 20.27 21.50 8.78 2.02 0.01 0.02 0.01 0.01 0.01

Code HumanEval 22.16 26.83 17.68 0.00 0.00 0.00 0.00 0.00 0.00
MBPP 25.07 26.40 9.73 0.00 0.00 0.00 0.00 0.00 0.00

Math GSM8K 29.26 31.36 2.00 0.00 0.00 0.00 0.00 0.00 0.00

Gen. MMLU 41.76 42.17 43.86 30.31 26.16 25.79 24.85 24.03 22.95
BBH 18.98 21.55 9.59 3.06 0.01 0.79 0.24 0.00 0.00

Avg. Performance Score(↓) 36.83 38.49 35.48 18.20 17.21 17.00 17.24 15.92 15.10
Average Distillation Ratio(↓) 62.40 65.22 60.12 30.95 29.15 28.81 29.21 26.97 25.59

Distillation Difficulty(↑) 6.70 6.65 2.00 9.14 10.07 10.13 10.14 9.82 11.32

Table 41: Evaluation Results of Phi-2 under Different Secured Proportion

20M 50M 100M 160M 200M 300M 600M

Rsn.

PIQA 73.70 70.00 53.90 54.17 53.01 54.75 54.28
Hellaswag 59.75 55.64 28.26 27.61 26.90 27.77 28.61

Winogrande 66.61 67.17 51.96 51.56 52.28 51.46 50.88
ARC_easy 70.96 67.02 35.17 34.57 31.84 32.00 31.62

ARC_challenge 48.30 42.52 21.84 19.45 20.39 20.00 20.56

Read.

OpenBookQA 45.33 41.27 26.13 25.80 25.60 26.33 26.53
LAMBADA 35.64 25.34 1.93 3.25 2.17 3.87 5.78

BoolQ 75.37 66.25 51.66 47.29 40.81 45.62 47.69
SQuADv2_em 10.62 0.10 0.14 0.02 0.02 0.01 0.00
SQuADv2_f1 38.28 22.83 1.33 2.61 1.36 0.57 1.13

Knl. NaturalQuestions 5.44 4.51 0.06 0.00 0.02 0.01 0.05
TriviaQA 12.34 12.77 0.05 0.01 0.01 0.02 0.01

Code HumanEval 20.94 10.98 0.00 0.00 0.00 0.00 0.00
MBPP 12.60 13.40 0.00 0.00 0.00 0.00 0.00

Math GSM8K 7.52 7.78 0.00 0.00 0.00 0.00 0.00

Gen. MMLU 43.07 39.45 26.26 26.16 25.85 25.79 25.38
BBH 12.35 18.02 0.00 0.01 0.00 0.79 0.12

Avg. Performance Score(↓) 37.57 33.24 17.57 17.21 16.49 17.00 17.22
Average Distillation Ratio(↓) 63.67 56.32 29.77 29.15 27.93 28.81 29.17

Distillation Difficulty(↑) 2.07 7.96 9.25 9.96 10.08 10.13 10.22

Table 42: Evaluation Results of Phi-2 under Different Secured Quantity
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0.25% 0.5% 1% 3% 7% 15% 30% 50% 100%

Rsn.

PIQA 68.21 68.37 69.68 65.85 53.43 52.94 52.36 51.25 50.44
Hellaswag 49.05 49.18 49.30 30.72 26.27 26.74 27.02 26.10 25.05

Winogrande 63.83 64.91 61.20 58.04 51.09 51.38 50.25 50.22 49.12
ARC_easy 62.94 62.89 62.25 35.15 30.81 29.27 29.64 27.99 27.50

ARC_challenge 36.98 37.49 32.91 25.97 20.56 20.36 20.08 20.88 21.22

Read.

OpenBookQA 39.07 40.20 35.00 33.87 26.60 27.67 27.73 26.47 26.87
LAMBADA 24.71 24.99 25.36 0.11 0.59 0.78 1.15 0.06 0.00

BoolQ 59.43 59.35 63.49 41.01 46.98 51.59 46.46 44.02 46.28
SQuADv2_em 15.65 16.00 3.13 0.50 0.00 0.01 0.03 0.00 0.00
SQuADv2_f1 32.62 32.62 14.88 0.56 0.78 1.24 2.29 1.58 1.60

Knl. NaturalQuestions 2.72 2.64 0.32 0.03 0.04 0.03 0.05 0.03 0.01
TriviaQA 8.17 7.96 5.69 0.01 0.01 0.01 0.01 0.01 0.01

Code HumanEval 14.43 13.41 2.03 0.00 0.00 0.00 0.00 0.00 0.00
MBPP 17.20 18.67 6.47 0.00 0.00 0.00 0.00 0.00 0.00

Math GSM8K 4.88 4.90 0.25 0.00 0.00 0.00 0.00 0.00 0.00

Gen. MMLU 30.12 29.88 28.98 27.78 24.07 24.22 24.66 24.28 22.95
BBH 4.34 3.19 0.98 0.50 0.00 0.00 0.00 0.00 0.00

Avg. Performance Score(↓) 31.43 31.57 27.17 19.41 16.54 16.84 16.57 16.05 15.94
Average Distillation Ratio(↓) 66.54 66.83 57.52 41.11 35.02 35.64 35.08 33.98 33.75

Distillation Difficulty(↑) 6.18 6.15 2.76 9.28 10.08 11.19 10.54 10.23 11.26

Table 43: Evaluation Results of Phi-1.5 under Different Secured Proportion

20M 50M 100M 160M 200M 300M 600M

Rsn.

PIQA 69.80 65.85 53.43 52.52 52.94 53.06 53.81
Hellaswag 49.51 25.72 30.27 26.31 26.74 27.05 26.51

Winogrande 62.56 58.04 51.09 50.83 51.38 50.57 49.99
ARC_easy 62.41 30.15 30.81 29.14 29.27 29.62 29.67

ARC_challenge 32.51 25.97 20.56 19.97 20.36 20.48 20.79

Read.

OpenBookQA 35.53 33.87 26.60 26.93 27.67 28.20 26.87
LAMBADA 28.14 0.11 0.59 0.45 0.78 1.30 0.61

BoolQ 64.77 41.01 46.98 47.33 51.59 46.09 45.59
SQuADv2_em 4.67 0.50 0.00 0.00 0.01 0.01 0.00
SQuADv2_f1 22.47 0.56 0.78 1.02 1.24 2.31 2.01

Knl. NaturalQuestions 1.64 0.03 0.04 0.05 0.03 0.06 0.03
TriviaQA 5.93 0.01 0.01 0.01 0.01 0.02 0.01

Code HumanEval 7.73 0.00 0.00 0.00 0.00 0.00 0.00
MBPP 7.87 0.00 0.00 0.00 0.00 0.00 0.00

Math GSM8K 0.28 0.00 0.00 0.00 0.00 0.00 0.00

Gen. MMLU 31.11 27.78 24.07 23.41 24.22 24.54 24.68
BBH 3.38 0.50 0.00 0.00 0.00 0.00 0.00

Avg. Performance Score(↓) 28.84 19.89 16.54 16.35 16.84 16.67 16.50
Average Distillation Ratio(↓) 61.06 41.11 35.02 34.61 35.64 35.28 34.94

Distillation Difficulty(↑) 2.81 9.28 10.26 11.65 11.19 10.87 10.49

Table 44: Evaluation Results of Phi-1.5 under Different Secured Quantity
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Pretrain 0-2 3-5 6-8 9-11 12-14 15-17 18-20 21-23 24-26 27-29 30-32 33-35 *

Rsn.

PIQA 64.69 61.40 62.50 61.11 56.46 58.47 58.94 61.86 62.59 63.13 61.93 62.67 63.11 49.53
Hellaswag 36.68 34.03 34.27 33.69 31.79 32.24 32.78 33.27 33.68 33.25 33.94 33.63 33.07 25.77

Winogrande 52.09 51.62 52.96 51.57 50.83 52.83 51.06 51.52 51.85 52.06 52.04 51.99 50.94 49.85
ARC_easy 44.02 40.46 40.66 40.07 35.41 37.50 37.81 39.91 40.70 41.12 41.19 40.84 39.92 26.53

ARC_challenge 20.82 22.27 22.61 21.25 21.39 21.25 22.01 21.36 20.25 20.48 19.88 20.99 20.28 19.82

Read.

OpenBookQA 28.00 27.60 27.47 27.40 27.40 27.27 26.20 26.47 27.67 26.80 28.67 27.67 27.13 27.47
LAMBADA 40.47 30.62 32.97 28.62 21.65 23.87 28.23 29.07 29.83 29.81 31.72 31.43 18.08 0.00

BoolQ 57.74 50.87 48.51 50.58 51.60 52.83 53.42 54.37 53.30 51.42 59.79 53.14 60.42 37.83
SQuADv2_em 11.34 6.87 7.88 4.74 4.19 0.27 0.87 2.22 3.79 3.05 4.11 4.69 2.35 0.00
SQuADv2_f1 19.35 16.27 17.00 12.00 11.72 9.04 6.92 10.11 10.90 10.08 8.88 11.47 7.30 0.01

Knl. NaturalQuestions 1.08 1.05 0.83 0.83 0.78 0.55 0.69 0.41 1.00 0.85 0.71 0.52 0.75 0.04
TriviaQA 4.48 2.24 2.66 2.01 2.16 1.41 1.06 2.39 2.38 2.29 1.57 1.90 1.76 0.02

Code HumanEval 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
MBPP 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Math GSM8K 1.59 0.15 0.25 0.00 0.08 0.00 0.05 0.00 0.03 0.18 0.00 0.00 0.00 0.00

Gen. MMLU 26.05 25.52 26.02 25.20 25.60 25.05 25.73 23.97 25.57 26.04 25.13 25.17 25.73 22.95
BBH 16.97 6.87 12.58 5.51 5.11 2.55 5.98 2.74 11.15 13.98 14.25 13.02 12.57 0.00

Avg. Performance Score(↓) 25.02 22.23 22.89 21.44 20.36 20.30 20.69 21.16 22.04 22.03 22.58 22.30 21.38 15.28
Average Distillation Ratio(↓) - 88.83 91.49 85.71 81.38 81.13 82.69 84.55 88.08 88.05 90.23 89.13 85.43 61.08

Distillation Difficulty(↑) - 5.92 9.32 9.04 8.60 8.83 8.73 7.17 5.82 5.18 4.65 4.92 4.15 10.89

Table 45: Evaluation Results of OPT-350M under Different Secured Layers. “*” indicates the fully secured model.
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