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Abstract

Vision-Language Models (VLMs) are powerful
yet computationally intensive for widespread
practical deployments. To address such chal-
lenge without costly re-training, post-training
acceleration techniques like quantization and
token reduction are extensively explored. How-
ever, current acceleration evaluations primarily
target minimal overall performance degrada-
tion, overlooking a crucial question: does the
accelerated model still give the same answers to
the same questions as it did before acceleration?
This is vital for stability-centered industrial ap-
plications where consistently correct answers
for specific, known situations are paramount,
such as in AI-based disease diagnosis. We
systematically investigate this for accelerated
VLMs, testing four leading models (LLaVA-
1.5, LLaVA-Next, Qwen2-VL, Qwen2.5-VL)
with eight acceleration methods on ten multi-
modal benchmarks. Our findings are stark: de-
spite minimal aggregate performance drops, ac-
celerated models changed original answers up
to 20% of the time. Critically, up to 6.5% of
these changes converted correct answers to in-
correct. Input perturbations magnified these
inconsistencies, and the trend is confirmed by
case studies with the medical VLM LLaVA-
Med. This research reveals a significant over-
sight in VLM acceleration, stressing an urgent
need for instance-level stability checks to en-
sure trustworthy real-world deployment.

1 Introduction

Large Vision-Language Models (VLMs) are
demonstrating remarkable capabilities in under-
standing and generating content across visual and
textual modalities (Liu et al., 2024a,b; Bai et al.,
2025; Sun et al., 2024). Despite their impres-
sive performance, the substantial computational
demands of state-of-the-art VLMs critically limit
their practical deployment, particularly in resource-
constrained environments (Chen et al., 2024; Zhang
et al., 2025; Tang et al., 2024; Li et al., 2025a).
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Figure 1: Current VLM acceleration methods focus on
improving efficiency while minimizing overall perfor-
mance drop relative to the base model. However, this
focus may obscure a critical risk: accelerated models
can exhibit significant changes in instance-level pre-
dictions compared to their original counterparts. Such
instability poses serious concerns in sensitive domains
such as healthcare, where producing stable and reliable
outputs is essential.

To mitigate these challenges without the neces-
sity of costly re-training, post-training accelera-
tion techniques—such as quantization (Lin et al.,
2024; Frantar et al., 2022; Dettmers et al., 2022)
and token reduction (Chen et al., 2024; Yang et al.,
2024c; Xing et al., 2024; Sun et al., 2025a,b)—are
widely adopted. The primary objectives of these
techniques have been two-fold: achieving substan-
tial computational efficiency gains while ensuring
minimal degradation in aggregate performance met-
rics. Yet, this prevailing focus obscures other vital
impacts of acceleration, posing the question: Are
these two criteria truly sufficient to guarantee the
reliable deployment of accelerated VLMs in prac-
tice?

We contend that for many practical applica-
tions, particularly in critical domains like medicine
(Zhang et al., 2023; Li et al., 2023a), the answer
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is highly risky to be “No”. In such fields, system
development and validation often adhere to a “case-
driven” paradigm (Bodendorf, 2025; Liao and Xiao,
2023; Weidinger et al., 2025), where a fundamental
requirement is the AI system’s ability to consis-
tently and correctly resolve specific, known crucial
instances, even post-optimization or updates. Con-
sider a medical VLM adept at identifying a rare
disease from patient scans; it is paramount that
this specific diagnostic capability remains invariant
after an acceleration process aimed at enhancing
efficiency. However, as illustrated in Figure 1, this
crucial aspect of instance-level stability is largely
unaddressed within the evaluation of current ac-
celeration methodologies (Lin et al., 2024; Frantar
et al., 2022; Chen et al., 2024; Yang et al., 2024c),
potentially masking significant operational risks.

This paper confronts this oversight by system-
atically investigating the instance-level stability of
accelerated VLMs. Our central aim is to evaluate
whether and to what extent existing post-training
acceleration techniques, despite ostensibly preserv-
ing overall performance, can induce substantial
and often detrimental inconsistencies in models’
response to individual inputs. To rigorously quan-
tify this instability, we introduce two intuitive yet
powerful metrics: Divergence Ratio (DR) and Neg-
ative Divergence Ratio (NDR). DR measures the
frequency with which an accelerated model yields
a different prediction for the same input compared
to its original, unaccelerated counterpart. NDR
quantifies a more critical failure mode: the propor-
tion of instances where a correct prediction from
the original model becomes incorrect after accel-
eration. Low DR and NDR values signify that
an accelerated VLM maintains behavioral fidelity
and reliability. Conversely, high values—even
when accompanied by negligible shifts in aggregate
performance—would indicate that the accelerated
model’s behavior has become alarmingly unpre-
dictable relative to its original state.

To empirically validate our hypothesis, we un-
dertook an extensive study. We assessed eight dis-
tinct acceleration methods applied to four leading
open-source VLMs (LLaVA-1.5 (Liu et al., 2024a),
LLaVA-Next (Liu et al., 2024b), Qwen2-VL (Wang
et al., 2024), and Qwen2.5-VL (Bai et al., 2025))
across ten diverse multi-modal benchmarks. To
probe the resilience of instance-level stability under
practical conditions, we further evaluated model
performance on perturbed inputs (spanning both
visual and textual modalities) designed to mimic

real-world data variations. Underscoring the high
stakes involved, we conducted targeted case studies
on LLaVA-Med (Li et al., 2023a), a VLM tailored
for medical applications where predictive consis-
tency is non-negotiable. Our experiments reveal
several striking findings:

1. Despite acceleration methods inducing only
a negligible drop in overall performance (av-
erage of 0.8%), they precipitated surprisingly
high Divergence Ratios (DR) of up to 20%
and, more critically, Negative Divergence Ra-
tios (NDR) reaching up to 6.5%.

2. Input data perturbations, characteristic of real-
world scenarios, further exacerbated this di-
vergence.

3. Application of acceleration to the medical
VLM (LLaVA-Med) corroborated these high
DR and NDR values, highlighting the acute
potential risks in safety-critical domains.

To the best of our knowledge, this work represents
the first large-scale empirical investigation dedi-
cated to the instance-level stability of VLM accel-
eration techniques. Our research uncovers a signif-
icant, potentially hazardous, oversight in current
VLM acceleration practices, emphasizing an ur-
gent imperative for incorporating rigorous instance-
level stability checks to ensure these models are
genuinely faithful and trustworthy for real-world
deployment.

2 Related Work

2.1 Large Vision-Language Models
Large Vision-Language Models (VLMs) have ad-
vanced rapidly in integrating visual and textual
understanding. Early models like CLIP (Rad-
ford et al., 2021) employed contrastive learning
to align these modalities. Subsequent architec-
tures, such as BLIP-2 and Instruct-BLIP (Li et al.,
2023b; Dai et al., 2023), introduced Q-Former
to bridge pre-trained vision encoders with Large
Language Model (LLM) backbones. More recent
state-of-the-art models, including LLaVA-1.5 (Liu
et al., 2024a), LLaVA-NeXT (Liu et al., 2024b),
and the Qwen-VL series (Wang et al., 2024; Bai
et al., 2025), leverage powerful LLMs (e.g., Vi-
cuna, LLaMA, Qwen2 (Peng et al., 2023; Dubey
et al., 2024; Yang et al., 2024a)) and lightweight
vision-text connectors (typically linear layers) for
advanced multimodal reasoning. However, VLM
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vision encoders often generate a high volume of vi-
sual tokens (hundreds or thousands (Radford et al.,
2021)). The LLM backbone processing of these
numerous tokens incurs significant computational
costs, hindering the practical deployment of VLMs.

2.2 Post-Training Acceleration Techniques for
Vision-Language Models

Post-training acceleration techniques are widely ap-
plied to reduce computational demands of VLMs
without costly retraining. Token Reduction meth-
ods aims to substantially remove the redundant
visual tokens for VLMs, thereby reducing the input
sequence length and lowering inference costs. Re-
cent methods implementing this approach during
inference include VisionZip (Yang et al., 2024c),
PyramidDrop (Xing et al., 2024), FastV (Chen
et al., 2024), SparseVLM (Zhang et al., 2024), and
HiRed (Arif et al., 2025). Quantization techniques
reduces model size and computational overhead by
utilizing lower-precision numerical formats (e.g.,
8-bit, 4-bit) for model weights and/or activations.
Post-Training Quantization (PTQ), which applies
this technique after model training, has become a
common practice, such as LLM.int8() (Dettmers
et al., 2022), GPTQ (Frantar et al., 2022), and
AWQ (Lin et al., 2024). Although these meth-
ods often report minimal degradation on standard
benchmarks, their impact on instance-level stabil-
ity remains largely unexplored. This work system-
atically investigates the instance-level prediction
stability of VLMs under both token reduction and
quantization, moving beyond standard benchmark
evaluations.

2.3 Evaluation for LM Acceleration

The typical approach to evaluating model accel-
eration techniques tends to emphasize negligible
loss in aggregate performance and improved com-
putational efficiency. However, there’s a growing
recognition that such criteria, while important, may
overlook other critical impacts. Recent investiga-
tions, for example, have shown that quantization
can diminish the reasoning capabilities of LLMs
(Li et al., 2025b), and that prompt compression can
affect their ability to retain information (Lajewska
et al., 2025). Similarly, Dutta et al. (2024) demon-
strates that accuracy alone is not enough for assess-
ing LLM quantization, leading to proposals like
the “flip” metric for instance-level changes. Wen
et al. (2025) argues that the fundamental designs
of token reduction methods for VLMs can cause

biased performance on different task types. More-
over, a specialized benchmark, LLMCBench, has
been introduced targeting the practical efficiency
of model compression techniques for real-world de-
ployment (Yang et al., 2024b). Distinct from these
explorations, our work concentrates on a crucial
aspect: the instance-level stability and reliability
of accelerated VLMs, ensuring they consistently
solve the problems they were initially capable of
solving.

3 Experimental Settings

3.1 Tasks and Datasets

We utilize a diverse suite of ten benchmark datasets
covering various Visual-Language understanding
capabilities. These include AI2D (Kembhavi et al.,
2016) for diagram understanding, GQA (Hudson
and Manning, 2019) for real-world compositional
reasoning, MMBench (Liu et al., 2024c) for di-
verse multi-modal abilities, MMMU (Yue et al.,
2024) for expert-level multi-discipline reasoning,
OK-VQA (Marino et al., 2019) requiring external
knowledge, POPE (Li et al., 2023c) for evaluating
object hallucination, ScienceVQA (Lu et al., 2022)
focusing on science diagrams, TextVQA (Singh
et al., 2019) requiring reading text within images,
VizWiz (Gurari et al., 2018) using images from
visually impaired users, and the widely-used large-
scale VQA benchmark VQAv2 (Goyal et al., 2017).
Finally, we use VQA-RAD (Lau et al., 2018) to
extend to medical domain tasks. Details of the
benchmarks are presented in Appendix A.

3.2 Base Models and Acceleration Techniques

We select four state-of-the-art open-source VLMs
as base models for our acceleration experiments.
LLaVA-1.5 (Liu et al., 2024a) is a widely recog-
nized VLM demonstrating strong general vision-
language capabilities. LLaVA-Next (Liu et al.,
2024b) extends LLaVA-1.5, improving perfor-
mance particularly for high-resolution inputs.
Qwen2-VL (Wang et al., 2024) and Qwen2.5-VL
(Bai et al., 2025) are recent released VLMs, which
are adept at handling various image resolutions and
video inputs. Additionally, we also use LLaVA-
Med (Li et al., 2023a), which is a specialised med-
ical domain VLM. We adopt the 7B model size
for all VLMs throughout our study, unless stated
otherwise.

We investigate two main categories of post-
training acceleration: token reduction and quan-
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tization. For token reduction, we evaluate five of
the latest and widely applied methods, including
VisionZip (Yang et al., 2024c), which selects in-
formative tokens and merges others; PyramidDrop
(Xing et al., 2024), which progressively drops to-
kens in deeper layers; SparseVLMs (Zhang et al.,
2024), which prunes tokens based on relevance
scores; FastV (Chen et al., 2024), dynamically
pruning based on attention scores during inference;
and HiRed (Arif et al., 2025), designed for high-
resolution inputs, allocating token budgets based
on attention. For all the token reduction meth-
ods, we choose the signature or best-performing
hyper-parameter settings as reported in the corre-
sponding papers, which are listed in Appendix B.
For Quantization, which reduces numerical preci-
sion, we apply: llm.int8() (Dettmers et al., 2022)
(W8A16), a mixed-precision quantisation scheme;
AWQ (Lin et al., 2024) (W4A16), an activation-
aware 4-bit weight quantization; and GPTQ (Fran-
tar et al., 2022) (W4A16), a layer-wise 4-bit weight
quantization method.

3.3 Evaluation Metrics

We report standard top-1 accuracy for all tasks ex-
cept for POPE, where F1 score is the standard met-
ric. We also calculate the Accuracy or F1 Drop for
all the acceleration methods compared with the cor-
responding baseline VLMs. To assess the instance-
level instability of accelerated models compared to
their original counterparts, we introduce two addi-
tional metrics: 1) Divergence Ratio (DR), defined
as the proportion of test samples where the accel-
erated model’s prediction differs from the original
model’s prediction, irrespective of correctness. 2)
Negative Divergence Ratio (NDR), which quan-
tifies harmful instability by measuring the propor-
tion of samples that were correctly predicted by
the original model but incorrectly predicted by the
accelerated model.

3.4 Input Perturbation

To better understand the instance-level stability
of accelerated VLMs under practical settings, we
adopt a comprehensive set of input perturbation
methods proposed by Chen et al. (2023) to sim-
ulate the real-world user scenarios. Specifically,
we use 96 visual perturbation methods (e.g. noise,
blur, weather effects) and 87 textual perturbation
methods (e.g., typos, paraphrasing, character sub-
stitutions), whose details are shown in Appendix A.
We apply these visual and textual perturbations sep-

arately to the inputs of the accelerated models and
assess their impact on performance and prediction
stability.

4 Experimental Results

This section presents our empirical findings on
the instance-level stability of accelerated Vision-
Language Models (VLMs). Our experiments are
structured in three stages:

1. We first evaluate Divergence Ratios (DR) and
Negative Divergence Ratios (NDR) for widely
used post-training acceleration methods (To-
ken Reduction and Quantization) on standard
benchmarks in section 4.1. This establishes
their fundamental impact on instance-level sta-
bility under laboratory conditions.

2. Next, we further assess the instance-level sta-
bility under more realistic conditions by ap-
plying input perturbations to large-scale Vi-
sual Question Answering (VQA) benchmarks
(VQAv2 (Goyal et al., 2017) and GQA (Hud-
son and Manning, 2019)), simulating typical
input noise encountered in practice as dis-
cussed in section 4.2.

3. Finally, we analyze an accelerated medical
VLM to demonstrate the potential down-
stream consequences and critical risks of
instance-level instability in a high-stakes do-
main in section 4.3.

4.1 Instance-Level Instability on Standard
Benchmarks

This section presents our quantitative findings on
the instance-level stability of various post-training
acceleration techniques applied to leading Vision-
Language Models (VLMs). The detailed results for
token reduction techniques are shown in Table 1
and those for quantization methods are summarized
in Table 2. Qualifying examples are demonstrated
in appendix H.

The Illusion of Stability: High Divergence De-
spite Low Aggregate Performance Drops. The
most striking revelation from our experiments is the
significant instance-level instability introduced by
many common acceleration methods, even when
these methods exhibit only minimal degradation
in overall aggregate performance. This creates an
illusion of stability if one only considers coarse-
grained metrics. Across multiple VLMs and bench-
marks, we consistently observed that accelerated
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Method Metric VQAv2 AI2D GQA ScienceQA
Img TextVQA OKVQA VizWiz MMBench MMMU POPE Average

LLaVA-1.5 
(Baseline) Acc/F1 (%) ↑ 76.64 55.25 61.92 69.46 46.09 53.44 54.05 64.09 36.22 85.85 60.30

Acc/F1 (%) ↑ 75.93 54.60 60.05 69.21 45.32 52.67 53.19 64.60 37.22 84.81 59.76
Acc/F1 Drop (%) ↓ 0.71 0.65 1.87 0.25 0.76 0.77 0.86 -0.52 -1.00 1.03 0.54

DR (%) ↓ 8.97 12.82 11.34 5.75 18.68 10.64 11.79 4.87 10.89 3.31 9.91
NDR (%) ↓ 2.29 4.21 4.72 2.33 2.56 3.23 3.17 1.82 2.33 2.04 2.87

Acc/F1 (%) ↑ 75.26 54.83 59.37 68.77 44.88 51.93 54.82 64.00 35.78 85.59 59.52
Acc/F1 Drop (%) ↓ 1.38 0.42 2.54 0.69 1.21 1.51 -0.77 0.09 0.44 0.26 0.78

DR (%) ↓ 12.10 14.86 13.97 6.64 23.74 12.33 15.72 6.56 11.78 4.49 12.22
NDR (%) ↓ 3.33 4.83 5.81 2.93 3.48 4.12 3.52 2.66 2.89 2.33 3.59

Acc/F1 (%) ↑ 74.93 55.73 59.13 68.57 44.66 52.72 54.06 63.66 36.67 85.26 59.54
Acc/F1 Drop (%) ↓ 1.71 -0.49 2.78 0.89 1.43 0.72 -0.01 0.43 -0.45 0.59 0.76

DR (%) ↓ 13.10 17.71 14.46 7.98 24.34 13.91 19.17 7.55 14.89 4.89 13.80
NDR (%) ↓ 3.64 5.54 6.15 3.42 3.76 4.02 4.79 3.16 3.44 2.74 4.07

Acc/F1 (%) ↑ 75.86 55.38 60.09 68.86 45.91 52.95 54.51 64.18 35.89 82.47 59.61
Acc/F1 Drop (%) ↓ 0.77 -0.13 1.83 0.59 0.18 0.49 -0.47 -0.09 0.33 3.38 0.69

DR (%) ↓ 7.88 6.80 10.85 2.88 13.40 5.87 8.71 3.47 4.89 5.22 7.00
NDR (%) ↓ 2.17 1.75 4.41 1.39 1.58 1.70 1.90 1.27 1.44 3.82 2.14

Acc/F1 (%) ↑ 76.51 53.50 61.23 67.97 48.58 53.39 53.54 62.97 35.60 84.06 59.74
Acc/F1 Drop (%) ↓ 0.12 1.75 0.69 1.49 -2.50 0.05 0.51 1.12 0.62 1.79 0.56

DR (%) ↓ 14.72 17.65 13.26 11.40 42.58 12.62 20.38 6.91 35.33 7.42 18.23
NDR (%) ↓ 3.50 6.35 4.47 5.06 7.40 3.23 5.16 3.28 10.00 4.43 5.29

LLaVA-Next 
(Baseline) Acc/F1 (%) ↑ 80.06 65.32 64.26 70.25 64.82 44.23 60.74 67.10 36.67 86.41 63.98

Acc/F1 (%) ↑ 79.46 64.31 63.38 69.16 64.18 46.07 61.16 66.84 36.56 86.60 63.77
Acc/F1 Drop (%) ↓ 0.60 1.00 0.88 1.09 0.64 -1.85 -0.42 0.26 0.11 -0.18 0.21

DR (%) ↓ 8.18 10.04 10.44 5.95 17.22 10.19 9.86 4.30 11.33 3.06 9.06
NDR (%) ↓ 1.97 3.79 3.96 2.78 3.40 1.78 2.36 1.71 2.00 1.41 2.52

Acc/F1 (%) ↑ 78.42 64.83 62.89 68.27 62.29 43.99 59.75 66.67 37.11 87.00 63.12
Acc/F1 Drop (%) ↓ 1.63 0.49 1.38 1.98 2.53 0.24 0.99 0.43 -0.44 -0.58 0.86

DR (%) ↓ 11.83 12.21 13.48 7.54 21.84 11.40 10.14 5.43 13.11 3.80 11.08
NDR (%) ↓ 3.28 4.34 5.20 3.57 5.00 3.37 3.36 1.89 2.11 1.63 3.38

Acc/F1 (%) ↑ 78.34 64.80 61.89 68.22 62.94 46.06 60.49 65.46 36.56 87.24 63.20
Acc/F1 Drop (%) ↓ 1.72 0.52 2.37 2.03 1.88 -1.84 0.25 1.63 0.11 -0.82 0.78

DR (%) ↓ 12.28 14.80 14.03 10.36 20.76 14.11 13.36 7.88 18.67 3.71 13.00
NDR (%) ↓ 3.44 5.02 6.01 4.96 4.56 2.95 3.43 3.47 3.78 1.53 3.91

Acc/F1 (%) ↑ 79.63 64.51 63.87 69.11 63.88 43.69 60.25 66.49 35.22 86.19 63.28
Acc/F1 Drop (%) ↓ 0.43 0.81 0.39 1.14 0.94 0.54 0.49 0.60 1.45 0.23 0.70

DR (%) ↓ 5.77 7.16 6.34 3.12 11.80 4.40 4.17 2.22 5.56 2.01 5.25
NDR (%) ↓ 1.44 2.78 2.31 1.69 2.48 1.55 1.30 0.97 1.44 1.06 1.70

Acc/F1 (%) ↑ 77.57 62.05 61.33 67.97 61.54 46.70 58.53 65.38 36.22 85.10 62.24
Acc/F1 Drop (%) ↓ 2.49 3.27 2.93 2.28 3.28 -2.47 2.20 1.72 0.45 1.31 1.75

DR (%) ↓ 15.40 21.96 17.47 11.85 25.78 23.07 20.44 10.90 25.00 5.20 17.71
NDR (%) ↓ 4.43 9.46 7.60 5.80 6.36 4.80 6.58 4.46 5.67 3.04 5.82

PyramidDrop
(CVPR 2025)

SparseVLM
(ICML 2025)

VisionZip
(CVPR 2025)

FastV
(ECCV 2024)

HiRED
(AAAI 2025)

PyramidDrop
(CVPR 2025)

SparseVLM
(ICML 2025)

FastV
(ECCV 2024)

HiRED
(AAAI 2025)

VisionZip
(CVPR 2025)

Table 1: Instance-Level Instability in Token Reduction Methods. For each acceleration method, we report:
Accuracy (Acc) for most benchmarks (F1 score for POPE (Li et al., 2023c)), Acc/F1 drop (performance degradation
vs. baseline), Divergence Ratio (DR), and Negative Divergence Ratio (NDR) to evaluate instance-level prediction
changes. Red values indicate the largest NDR per baseline model within each benchmark column. Across all
benchmarks and token reduction methods, results reveal high DR and NDR values despite negligible Acc/F1 drops,
signifying considerable instance-level prediction instability.

models altered their original predictions on iden-
tical inputs up to 20% of the time (DR), a con-
cerning level of divergence. More critically, our
findings indicate that up to 6.5% of these changes
converted previously correct answers into incor-
rect ones (NDR), directly undermining the model’s
reliability on specific, previously solved cases.

Instance-Level Instability in Token Reduction
Methods. Our investigation into token reduction
techniques reveals substantial instance-level insta-
bility (Table 1). The HIRED method, for exam-
ple, when applied to LLaVA-1.5 and LLaVA-Next,
caused minimal average aggregate performance
drops (∼0.2-0.6%) but still led to high average

DRs of ∼18% and average NDRs approaching 6%.
Specific benchmarks under this method saw NDRs
reach up to 9-10% and DRs over 25%. Other token
reduction techniques like VisionZip and Sparse-
VLM similarly produced notable DR and NDR
values (e.g., average DRs often exceeding 12-13%)
despite their modest impact on overall accuracy
scores. Since the Qwen-VL model series (Wang
et al., 2024; Bai et al., 2025) already features in-
tegrated token compression modules, we do not
separately evaluate the impact of external token
reduction methods.

Instance-level Instability in Quantization Meth-
ods. The phenomenon of high instance-level in-
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Method Metric VQAv2 AI2D GQA ScienceQA
Img TextVQA OKVQA VizWiz MMBench MMMU POPE Average

LLaVA-1.5 
(Baseline) Acc/F1 (%) ↑ 76.64 55.25 61.92 69.46 46.09 53.44 54.05 64.09 36.22 85.85 60.30

Acc/F1 (%) ↑ 76.23 53.24 60.92 67.87 48.40 53.71 50.87 62.71 35.89 83.93 59.38
Acc/F1 Drop (%) ↓ 0.41 2.01 1.00 1.59 -2.31 -0.27 3.18 1.37 0.33 1.92 0.92

DR (%) ↓ 16.32 20.76 14.84 14.48 44.92 17.72 25.28 9.45 20.44 7.44 19.17
NDR (%) ↓ 3.93 7.42 5.17 6.49 7.84 4.10 8.15 4.02 5.33 4.49 5.69

Acc/F1 (%) ↑ 75.77 51.68 60.86 66.73 48.21 48.63 54.53 62.46 34.33 85.31 58.85
Acc/F1 Drop (%) ↓ 0.87 3.56 1.06 2.73 -2.12 4.81 -0.48 1.63 1.89 0.54 1.45

DR (%) ↓ 17.10 23.19 15.84 16.91 45.64 22.06 25.19 9.84 22.89 8.54 20.72
NDR (%) ↓ 4.34 9.13 5.49 7.54 8.06 8.68 6.34 4.16 7.11 4.68 6.55

Acc/F1 (%) ↑ 76.52 55.47 62.04 69.31 45.97 53.35 54.21 64.35 36.33 85.36 60.29
Acc/F1 Drop (%) ↓ 0.11 -0.23 -0.13 0.15 0.12 0.10 -0.16 -0.26 -0.11 0.49 0.01

DR (%) ↓ 2.89 6.35 2.88 3.87 7.46 5.35 5.14 3.00 9.44 0.69 4.71
NDR (%) ↓ 0.62 1.85 0.88 1.59 0.90 1.31 1.07 1.04 2.33 0.53 1.21

LLaVA-Next 
(Baseline) Acc/F1 (%) ↑ 80.06 65.32 64.26 70.25 64.82 44.23 60.74 67.10 36.67 86.41 63.98

Acc/F1 (%) ↑ 79.80 64.57 63.53 69.61 64.40 43.89 60.22 66.49 36.89 86.57 63.60
Acc/F1 Drop (%) ↓ 0.26 0.74 0.73 0.64 0.42 0.33 0.52 0.60 -0.22 -0.16 0.39

DR (%) ↓ 5.84 9.07 5.54 7.24 11.38 10.70 7.27 5.22 16.33 1.33 7.99
NDR (%) ↓ 1.25 3.56 2.21 3.12 2.00 2.91 2.08 2.08 3.11 0.59 2.29

Acc/F1 (%) ↑ 79.62 64.54 63.83 69.26 63.72 42.23 58.70 65.81 36.11 86.72 63.05
Acc/F1 Drop (%) ↓ 0.44 0.78 0.44 0.99 1.10 1.99 2.03 1.29 0.56 -0.30 0.93

DR (%) ↓ 11.82 6.95 6.38 21.33 15.26 1.51 8.78 13.86 9.45 6.92 10.22
NDR (%) ↓ 1.60 4.60 2.46 3.92 2.78 5.25 3.84 2.36 5.22 0.69 3.27

Acc/F1 (%) ↑ 79.83 65.25 64.13 70.10 64.29 42.49 60.18 67.18 35.44 85.99 63.49
Acc/F1 Drop (%) ↓ 0.23 0.06 0.14 0.15 0.53 1.73 0.55 -0.09 1.22 0.43 0.50

DR (%) ↓ 4.17 5.99 3.74 3.32 9.10 7.37 4.61 2.73 8.89 1.38 5.13
NDR (%) ↓ 0.94 2.10 1.28 1.34 1.98 3.09 1.55 0.99 2.00 0.84 1.61

Qwen2.5-VL
(Baseline) Acc/F1 (%) ↑ 82.56 82.51 60.41 76.20 82.84 42.10 70.21 83.85 50.67 86.17 71.75

Acc/F1 (%) ↑ 82.12 82.25 59.98 82.30 81.66 38.38 70.28 82.99 49.00 85.31 71.43
Acc/F1 Drop (%) ↓ 0.43 0.26 0.43 -6.10 1.18 3.72 -0.06 0.86 1.67 0.86 0.32

DR (%) ↓ 8.60 5.54 8.46 12.25 10.42 15.60 12.90 4.39 23.56 1.52 10.32
NDR (%) ↓ 1.61 2.36 2.48 2.03 1.72 6.58 2.43 1.46 5.22 1.10 2.70

Acc/F1 (%) ↑ 82.04 82.25 59.92 85.57 81.85 38.38 69.23 82.56 49.00 85.86 71.67
Acc/F1 Drop (%) ↓ 0.51 0.26 0.48 -9.37 0.99 3.72 0.98 1.29 1.67 0.31 0.08

DR (%) ↓ 8.81 5.54 34.58 14.28 10.22 13.67 12.57 4.48 22.22 1.30 12.77
NDR (%) ↓ 1.67 2.36 15.32 1.09 1.60 5.71 2.59 1.57 4.56 0.79 3.73

Acc/F1 (%) ↑ 82.54 82.64 60.26 79.57 82.65 41.66 70.31 83.42 49.89 85.96 71.89
Acc/F1 Drop (%) ↓ 0.02 -0.13 0.14 -3.37 0.19 0.44 -0.09 0.43 0.78 0.21 -0.14

DR (%) ↓ 3.72 2.40 3.36 6.59 4.60 5.31 6.16 2.13 12.00 0.60 4.69
NDR (%) ↓ 0.67 0.84 0.88 0.89 0.56 1.72 1.25 0.72 2.22 0.38 1.01

GPTQ
(W4A16)

LLM.Int8()

GPTQ
(W4A16)

LLM.Int8()

AWQ
(W4A16)

AWQ
(W4A16)

GPTQ
(W4A16)

LLM.Int8()

AWQ
(W4A16)

Table 2: Instance-Level Instability in Quantization Methods. This table presents Acc/F1, Acc/F1 Drop, DR,
and NDR for various quantization methods. Most methods exhibit high DR and NDR values, indicating significant
instance-level instability, similar to token reduction techniques. Only the LLM.int8() method (Dettmers et al., 2022)
is a notable exception, maintaining relatively low DR and NDR. Red values indicate the largest NDR per baseline
model within each benchmark column.

stability extends to quantisation methods as shown
in table 2. For instance, aggressive W4A16 quan-
tization methods like GPTQ and AWQ applied
to LLaVA-1.5 resulted in average aggregate per-
formance drops of only ∼0.9-1.5%, yet induced
high average Deviation Ratios (DR) of ∼19-21%
and average Negative Deviation Ratios (NDR) of
∼5.7-6.6%. Individual benchmarks exhibited even
more severe divergence, with DRs occasionally ex-
ceeding 40% and NDRs surpassing 8%. While
less aggressive techniques like LLM.int8() showed
markedly lower DR/NDR values (e.g., LLaVA-1.5
average DR 4.71%, NDR 1.21%), the trend for
commonly used aggressive quantization is a sig-

nificant and concerning level of instance-level pre-
diction change. Table 2 only includes the results
of Qwen2.5-VL (Bai et al., 2025) for the Qwen-
VL model series since it is the improved version
of Qwen2-VL. We show the results of Qwen2-VL
(Wang et al., 2024) separately in Appendix F.

In summary, these results underscore a critical,
largely overlooked deficiency in current VLM ac-
celeration practices. To better view the overall
distribution of relation between Acc/F1 Drop and
DR/NDR values, we visualize the data in Appendix
E. The substantial DR and NDR values with
minimal changes in aggregate metrics, provide
compelling evidence that accelerated models can
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No 
Pertb.

Vision
Pertb.

Text
Pertb.

No 
Pertb.

Vision
Pertb.

Text
Pertb.

DR (%) ↓ 10.85 12.59 8.78 7.88 9.94 8.98
NDR (%) ↓ 4.41 4.75 2.76 2.17 2.86 2.11
DR (%) ↓ 13.26 16.08 47.06 14.72 17.62 15.86

NDR (%) ↓ 4.47 4.97 4.95 3.50 4.34 3.41
DR (%) ↓ 11.34 12.12 11.30 8.97 10.17 10.80

NDR (%) ↓ 4.72 4.77 3.30 2.29 2.62 2.38
DR (%) ↓ 13.97 15.25 13.42 12.10 13.70 14.25

NDR (%) ↓ 5.81 5.77 3.85 3.33 3.65 3.34
DR (%) ↓ 14.46 14.84 14.61 13.10 14.84 16.03

NDR (%) ↓ 6.15 5.55 4.36 3.64 3.68 3.76

DR (%) ↓ 6.34 8.71 6.45 5.77 8.13 6.44
NDR (%) ↓ 2.31 3.23 1.63 1.44 2.39 1.46
DR (%) ↓ 17.47 55.84 27.28 15.40 33.38 36.77

NDR (%) ↓ 7.60 25.55 6.75 4.43 4.23 3.51
DR (%) ↓ 10.44 10.69 12.47 8.18 9.44 10.58

NDR (%) ↓ 3.96 3.60 3.14 1.97 2.09 2.23
DR (%) ↓ 13.48 14.43 16.22 11.83 14.28 14.92

NDR (%) ↓ 5.20 5.13 3.81 3.28 3.81 3.55
DR (%) ↓ 14.03 15.14 19.11 12.28 16.34 16.97

NDR (%) ↓ 6.01 5.84 4.32 3.44 4.24 4.12

Method Metric

GQA VQAv2

FastV

LLaVA-1.5 (Baseline)

HiRED

PyramidDrop

SparseVLM

VisionZip

FastV

LLaVA-Next (Baseline)

HiRED

PyramidDrop

SparseVLM

VisionZip

Table 3: Instance-level instability of token reduction
methods under input perturbation. This table reports
Divergence Ratio (DR) and Negative Divergence Ratio
(NDR) across three input states: “No Pertb.” (original
inputs), “Vision Pertb.” (e.g., image noise, blur), and
“Text Pertb.” (e.g., text misspellings, paraphrasing). Red
signifies higher DR/NDR under perturbation than with-
out; blue signifies lower. The table illustrates that most
methods suffer greater instance-level instability when
inputs are perturbed.

indeed become unreliable for specific instances
they previously handled correctly.

4.2 Instance-Level Instability Under Input
Perturbations

To further demonstrate the risk of instance-level
instability under practical settings, we conducted
experiments involving perturbations to both text
and vision inputs to VLMs, representing common
real-world inputs disturbances. The detailed results
are shown in Table 3 and Table 4. We only show
the DR and NDR values in the tables. Acc/F1 and
Acc/F1 Drop values are listed in appendix A. The
clear takeaway is that these perturbations gener-
ally exacerbate the Divergence Ratios (DR) and
Negative Divergence Ratios (NDR) already ob-
served in non-perturbed conditions. For instance,
applying vision perturbation to LLaVA-1.5 with
AWQ quantization on VQAv2 increased its DR
from 16.32% to 19.13% and its NDR from 3.93%
to 4.77%. Text perturbation on the same model
and benchmark also increased DR to 19.01% and
NDR, albeit slightly, to 4.00%. Similarly, for to-
ken reduction, LLaVA-1.5 with the HIRED method

No 
Pertb.

Vision
Pertb.

Text
Pertb.

No 
Pertb.

Vision
Pertb.

Text
Pertb.

DR (%) ↓ 14.84 17.20 14.89 16.32 19.13 19.01
NDR (%) ↓ 5.17 5.54 3.78 3.93 4.77 4.00
DR (%) ↓ 15.84 18.79 18.16 17.10 20.01 21.38

NDR (%) ↓ 5.49 6.03 4.66 4.34 5.07 4.85
DR (%) ↓ 2.88 2.98 4.05 2.89 3.11 4.78

NDR (%) ↓ 0.88 0.92 0.82 0.62 0.63 0.96

DR (%) ↓ 8.46 13.10 25.30 8.60 13.56 17.57
NDR (%) ↓ 2.48 3.33 3.12 1.61 2.76 3.28
DR (%) ↓ 34.58 14.37 24.85 8.81 15.05 19.09

NDR (%) ↓ 15.32 3.79 2.99 1.67 3.20 3.34
DR (%) ↓ 3.36 7.38 14.44 3.72 7.79 10.14

NDR (%) ↓ 0.88 1.89 1.43 0.67 1.64 1.59

LLaVA-1.5 (Baseline)

Method Metric
GQA VQAv2

AWQ

GPTQ

LLM.Int8()

GPTQ

LLM.Int8()

Qwen25-vl (Baseline)

AWQ

Table 4: Instance-level instability of quantisation meth-
ods under input perturbation. Most quantisation meth-
ods demonstrate increased instance-level instability un-
der input perturbations.

on GQA saw vision perturbation elevate DR from
13.26% to 16.08% and NDR from 4.47% to 4.97%;
text perturbation in this case markedly increased
DR to 47.06% and NDR to 4.95%. This observed
pattern of increased instability under noisy condi-
tions was generally consistent across different types
of acceleration methods, including both quantiza-
tion and token reduction. Consequently, the lev-
els of instance-level instability likely aggravate
when these accelerated models are deployed in
dynamic, real-world environments where input
data is rarely pristine.

4.3 Instance-Level Prediction Instability in
the Medical Domain

In this section, we apply VisionZip (Yang et al.,
2024c), PyramidDrop (Xing et al., 2024), and
LLM.int8() (Dettmers et al., 2022) to LLaVA-Med
(Li et al., 2023a). We firstly verify the generalisa-
tion of these acceleration methods by evaluating
them on the biomedical multimodal conversation
test set introduced by Li et al. (2023a). We then
conduct a case study by measuring the DR and
NDR values on a medical VQA dataset VQA-RAD
(Lau et al., 2018), revealing similarly high DR and
NDR values as shown on general domain bench-
marks as discussed in Section 4.1.

Generalisation of Acceleration Methods to Med-
ical Domain. Table 5 summarizes the perfor-
mance of various acceleration methods compared
to the baseline model LLaVA-Med on the biomed-
ical multimodal conversation test set. Results in-
dicate that all examined acceleration methods (Vi-
sionZip, PyramidDrop and LLM.int8()) maintained
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Conversation Description Chest-Xray MRI Histology Gross CT
LLaVA-Med
(Baseline) 63.91 49.19 65.14 48.38 64.91 61.74 59.88 60.10
VisionZip 65.08 46.59 64.18 49.57 68.45 60.92 57.38 60.29
PyramidDrop 64.12 47.12 64.15 48.46 63.51 64.86 57.76 59.72
LLM.Int8() 63.96 50.20 64.47 47.82 64.75 64.07 60.65 60.39

DomainsMethod Question Types Overall

Table 5: Evaluation of VisionZip (Yang et al., 2024c), PyramidDrop (Xing et al., 2024), and LLM.int8() (Dettmers
et al., 2022) applied to LLaVA-Med (Li et al., 2023a) on its biomedical multimodal conversation test set. The results
confirm the negligible overall performance impact of extending these acceleration techniques to the medical domain.

Method
Open (Recall) (%) ↑ 30.29
Closed (Acc) (%) ↑ 59.35
Open (Recall) (%) ↑ 30.89
Closed (Acc) (%) ↑ 58.66

Recall/Acc Drop (%) ↓ 0.15
DR (%) ↓ 29.85

NDR (%) ↓ 5.12
Open (Recall) (%) ↑ 30.38
Closed (Acc) (%) ↑ 58.81

Recall/Acc Drop (%) ↓ 0.27
DR (%) ↓ 26.20

NDR (%) ↓ 4.54
Open (Recall) (%) ↑ 31.24
Closed (Acc) (%) ↑ 58.20

Recall/Acc Drop (%) ↓ 0.26
DR (%) ↓ 25.80

NDR (%) ↓ 4.80

LLaVA-Med
(Baseline)

VisionZip

PyramidDrop

LLM.Int8()

VQA-RAD

Table 6: Evaluation of VisionZip (Yang et al., 2024c),
PyramidDrop (Xing et al., 2024), and LLM.int8()
(Dettmers et al., 2022) on LLaVA-Med (Li et al., 2023a)
using the VQA-RAD (Lau et al., 2018) dataset (com-
prising open-ended and closed-ended questions). While
aggregate performance loss was minimal, all three ac-
celeration methods exhibited significant instance-level
deviations.

almost identical performance to the baseline across
diverse medical imaging modalities. This demon-
strates minimal overall performance impact from
generalising acceleration methods to medical con-
text.

High Risk Instance-Level Instability in Medical
Domain. Despite minimal overall performance
drop, significant instance-level deviations were ob-
served on the VQA-RAD benchmark as shown
in Table 6. Deviation Ratio (DR) values were no-
tably high, ranging between 25.80%-29.85% across
the evaluated methods, suggesting that acceler-
ated models frequently altered their predictions
compared to the baseline model. More critically,
Negative Deviation Ratios (NDR), representing
detrimental prediction changes, were considerably
higher in the medical domain (4.54%-5.12%) com-

pared to general domain benchmarks. This indi-
cates heightened instability risks when deploying
accelerated VLMs in high-stake medical applica-
tions, where unstable outputs such as misdiagnoses
could have severe consequences.

5 Conclusion

We presented a large-scale empirical study of
instance-level stability on model acceleration meth-
ods for Vision Language Models (VLMs). Across
four VLMs, eight post-training acceleration meth-
ods, and various multi-modal benchmarks, we
found substantial Divergence Ratios (DR; up to
20%) and non-trivial Negative Divergence Ratios
(NDR; up to 6.5%) despite negligible changes in
aggregate accuracy/F1. Instability increased under
realistic input perturbations and was corroborated
in a medical VLM, highlighting concrete risks for
safety-critical applications.

These findings show that instance-level instabil-
ity is a critical while largely overlooked issue of
accelerated VLMs. We therefore recommend: (i)
reporting DR and NDR alongside standard met-
rics; (ii) evaluating under documented perturba-
tion regimes; and (iii) incorporating targeted, case-
driven tests for critical instances prior to deploy-
ment. Going forward, we will extend evaluations to
real-world industrial datasets and workloads, longi-
tudinal settings with natural drift, and end-to-end
deployment studies to establish external validity
and to guide stability-aware acceleration strategies.

6 Limitations

This study is subject to several limitations that
qualify the interpretation and generalizability of
the results. First, the empirical analyses rely pre-
dominantly on synthetic data and curated academic
benchmarks evaluated under controlled laboratory
conditions. Although input-perturbation protocols
were employed to approximate real-world vari-
ability, such simulations are partial surrogates for
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the industrial practice. As a result, the evidence
concerning instance-level instability should be re-
garded as indicative rather than definitive for pro-
duction contexts. Second, our proposed evaluation
framework has not yet been evaluated on real-world
or industrial test cases; accordingly, claims of ex-
ternal and ecological validity remain provisional.
We therefore caution against direct extrapolation
of the reported quantitative estimates to domains
with domain-specific requirements. Future work
will prioritize rigorous assessments on representa-
tive industrial datasets and workloads, longitudi-
nal evaluations under naturally occurring drift, and
end-to-end deployment studies to substantiate and
refine these findings.
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A Benchmark Details

Benchmark Split Number of Samples
VQAv2 Validation 214354
AI2D Test 3088
GQA  Test-DeV 12578

MMBench English-Dev 4377
MMMU Validation 900
OKVQA Validation 5046

POPE Test 9000
ScienceQA Training 2017
TextVQA Validation 5000
VizWiz Validation 4319

VQA-RAD Train+Test 2248
253972Total Samples

Table 7: Summary of benchmark datasets, splits, and
their respective sample sizes.

To comprehensively evaluate our methods, we
utilize a diverse array of ten established bench-
marks, as detailed in Table 7. This selection spans
various visual and multimodal understanding tasks,
including Visual Question Answering (VQAv2,
GQA, AI2D, OKVQA, TextVQA, ScienceQA,
VizWiz), multimodal reasoning (MMMU), and gen-
eral multimodal capabilities (MMBench, POPE).
The evaluation is conducted on standard splits such
as validation, test, or development sets, encom-
passing a significant total of 251,679 samples. No-
tably, VQAv2 contributes the largest portion with
214,354 validation samples, ensuring a robust as-
sessment across different challenge domains and
scales. For evaluation in the medical domain, we
utilize the VQA-RAD benchmark, employing both
its training and test sets. This dataset comprises
1299 closed-ended (yes/no) questions, for which
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we assess exact-match accuracy, and 949 open-
ended questions, evaluated using recall, defined
as the ratio of ground truth tokens present in the
prediction.

Text Perturbation Methods Severity
OCR 5
Punct 1
Typos 5

Keyboard 5
Spelling Error 5

char random insert 5
char random replace 5
char random swap 5
char random delete 5

Passive 1
Tense 1

Formal 1
Casual 1
Active 1

Double Neg 1
InsertAdv 1
AppendIrr 1

Random Insert 5
Drop NN 1

Drop Rand NN 1
DropVB 1

Drop VB & NN 1
Only NN 1
Only VB 1

Only NN & VB 1
Drop Rand VB 1

Drop First 1
Drop Last 1

Drop First and Last 1
Shuffle Order 1

Random Delete 5
SwapSyn Word Embd 5

SwapSyn WordNet 5
Back Trans 1

Random Swap 5

35 methods
87 levels of 
severity

Table 8: Summary of text perturbation methods intro-
duced by Chen et al. (2023).

B Hyper-Parameter Settings

For all the token reduction methods, we choose
the signature or best-performing hyper-parameter
settings as reported in the corresponding pa-
pers.Specifically, for VisionZip (Yang et al., 2024c),
the number of retained tokens was set to 192. For
PyramidDrop (Xing et al., 2024), we use pruning
layers at indices [8, 16, 24] and corresponding
pruning ratios of [0.5, 0.25, 0.125]. For Sparse-
VLM(Zhang et al., 2024), the number of retained
tokens is set to 192. For FastV(Chen et al., 2024),
we utilize settings of K=3 and R=0.5. Finally,
HiRed(Arif et al., 2025) was configured with a
token budget of 20%. These settings were consis-
tently applied across relevant experiments.

Image Perturbation Methods Severity
Impulse 5

Gaussian 5
Shot 5

Speckle 5
Zoom 5

Defocus 5
Motion 5

Frosted Glass 5
Gaussian Blur 5

JPEG 5
Contrast 5
Elastic 5

Saturate 5
Spatter 5
Pixelate 5
Snow 5
Frost 5
Fog 5

Brightness 5
Blank 1

20 methods 96 levels of 
severity

Table 9: Summary of image perturbation methods in-
troduced by Chen et al. (2023).

C Input Perturbation Details

To evaluate robustness, we utilize a comprehensive
suite of input perturbation techniques proposed by
Chen et al. (2023). The specifics of these perturba-
tions are detailed for text in Table 8 and for images
in Table 9. Accounting for various severity lev-
els, these amount to 87 distinct configurations for
text inputs and 96 for image inputs. We randomly
apply these varied perturbations to the text and
image inputs of the VQAv2 (Goyal et al., 2017)
and GQA(Hudson and Manning, 2019) datasets.
Importantly, to ensure a fair and consistent compar-
ison across experiments, the exact same perturbed
inputs are used for all tested acceleration methods.

D Acceleration Methods Divergence
Direction

We further investigate the "divergence direction"
of acceleration methods by examining the ex-
tent to which they are affected by the same in-
stances. A high degree of overlap in these instances
suggests that different methods diverge in a pre-
dictable, controllable manner. This shared diver-
gence would simplify the development of univer-
sal solutions to mitigate instability. Conversely,
minimal overlap—indicating highly separated di-
vergences—would imply more unpredictable be-
havior, posing greater uncertainty for the practi-
cal deployment of these methods. To explore this,
we analyzed results from LLaVA-1.5 (Liu et al.,
2024a), measuring the overlap of affected instances
across various acceleration techniques. The find-
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(a) Token reduction distributions.
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Figure 2: Distribution of Acc/F1 drop vs. DR/NDR for (a) token reduction and (b) quantisation.

Method Metric VQAv2 AI2D GQA ScienceQA
Img TextVQA OKVQA VizWiz MMBench MMMU POPE Average

Qwen2-VL
(Baseline) Acc/F1 (%) ↑ 78.69 70.14 59.83 59.00 79.34 44.02 66.05 71.22 40.67 86.00 64.03

Acc/F1 (%) ↑ 77.48 69.17 58.64 68.62 78.02 23.45 60.74 67.61 40.11 86.81 61.46
Acc/F1 Drop (%) ↓ 1.21 0.97 1.19 -9.62 1.33 20.57 5.31 3.61 0.56 -0.81 2.57

DR (%) ↓ 13.05 13.05 13.67 26.97 14.46 44.61 27.23 17.81 35.78 1.92 21.72
NDR (%) ↓ 3.13547 5.505 4.524 4.1646009 3.12 25.06936 10.257 3.5574036 9.44444 0.656 7.36637

Acc/F1 (%) ↑ 77.58 68.85 58.71 55.23 78.34 35.88 65.06 65.38 37.33 85.96 61.19
Acc/F1 Drop (%) ↓ 1.11 1.30 1.13 3.77 1.01 8.14 0.99 5.84 3.33 0.04 2.84

DR (%) ↓ 12.15 12.82 12.56 30.09 13.82 33.04 27.11 14.85 33.44 1.56 19.92
NDR (%) ↓ 2.9386 5.44 4.269 12.493803 2.9 11.95006 5.0938 5.4285054 11.1111 0.767 6.60597

AWQ
(W4A16)

GPTQ
(W4A16)

Table 10: Instance-Level Instability of quantisation methods (Lin et al., 2024; Frantar et al., 2022) in Qwen2-VL
model (Wang et al., 2024).

Figure 3: Overlap ratios of negatively diverged in-
stances among acceleration methods for LLaVA-1.5
(Liu et al., 2024a).

ings are presented in Figure 3, which demonstrates
that most pairings exhibit more "highly separated"
divergences.

E Data Visualisation

To better view the distribution of Acc/F1 Loss to-
gether with DR and NDR values, we plot a scatter
diagram for Token Reduction Methods and Quanti-
sation Methods, respectively. As shown in figure 2,
it reveals a consistent trend across various models
and methods. In both diagrams, the "Acc/F1 Drop
(%)" remains notably low, generally appearing un-
der 5% and often close to or below 2%. In stark
contrast, the "DR (%)" and "NDR (%)" values are
substantially higher, frequently ranging between
10% and 30%. This significant disparity under-
scores that while the accuracy or F1 score experi-
ences minimal degradation, the other metrics, DR
and NDR, show much more pronounced changes.

F Qwen2-VL Results

We conduct experimetns on Qwen2-VL (Wang
et al., 2024) 3B model with AWQ(Lin et al., 2024)
and GPTQ(Frantar et al., 2022) quantisation meth-
ods, detailed in table 10. It reveals varied per-
formance impacts across different benchmarks.
On average, AWQ quantization leads to a 2.57%
drop in Acc/F1 score, an outcome notably influ-
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enced by an unexpected 9.62% performance in-
crease on the ScienceQA Img benchmark, along-
side a significant 20.57% performance decrease on
OKVQA. GPTQ quantization results in a slightly
higher average Acc/F1 drop of 2.84%, with its
most pronounced performance reductions observed
on OKVQA (8.14% drop) and MMBench (5.84%
drop). While the average changes in Acc/F1 scores
are relatively contained, both quantization tech-
niques generally cause substantial increases in DR
(%) and NDR (%) values across the evaluated
benchmarks.

No 
Pertb.

Vision
Pertb.

Text
Pertb.

No 
Pertb.

Vision
Pertb.

Text
Pertb.

Acc/F1 (%) ↑ 60.089 54.285 40.396 75.862 65.851 59.048
Acc/F1 Drop (%) ↓ 0.018 0.018 0.010 0.008 0.011 0.005

Acc/F1 (%) ↑ 61.226 55.478 61.226 76.515 66.529 59.506
Acc/F1 Drop (%) ↓ 0.007 0.006 -0.198 0.001 0.004 0.001

Acc/F1 (%) ↑ 60.049 54.412 40.197 75.927 66.238 59.037
Acc/F1 Drop (%) ↓ 0.019 0.017 0.012 0.007 0.007 0.005

Acc/F1 (%) ↑ 59.374 53.967 39.959 75.259 65.695 58.548
Acc/F1 Drop (%) ↓ 0.025 0.021 0.015 0.014 0.013 0.010

Acc/F1 (%) ↑ 59.135 54.158 39.649 74.926 65.867 58.372
Acc/F1 Drop (%) ↓ 0.028 0.019 0.018 0.017 0.011 0.012

Acc/F1 (%) ↑ 63.873 55.470 41.398 79.632 66.836 62.249
Acc/F1 Drop (%) ↓ 0.004 0.010 0.002 0.004 0.011 0.004

Acc/F1 (%) ↑ 61.329 39.831 39.831 77.571 77.571 77.571
Acc/F1 Drop (%) ↓ 0.029 0.166 0.018 0.025 -0.097 -0.150

Acc/F1 (%) ↑ 63.381 55.987 40.968 79.460 67.702 62.181
Acc/F1 Drop (%) ↓ 0.009 0.005 0.007 0.006 0.002 0.004

Acc/F1 (%) ↑ 62.888 55.359 41.024 78.424 66.455 61.245
Acc/F1 Drop (%) ↓ 0.014 0.011 0.006 0.016 0.014 0.014

Acc/F1 (%) ↑ 61.894 54.556 40.579 78.340 66.296 61.099
Acc/F1 Drop (%) ↓ 0.024 0.019 0.011 0.017 0.016 0.015VisionZip

LLaVA-Next (Baseline)

FastV

HiRED

PyramidDrop

SparseVLM

FastV

HiRED

PyramidDrop

SparseVLM

VisionZip

Method Metric

GQA VQAv2

LLaVA-1.5 (Baseline)

Table 11: Performance and performance drop of token
reduction methods under input perturbation.

GQA VQAv2
No 

Pertb.
Vision
Pertb.

Text
Pertb.

No 
Pertb.

Vision
Pertb.

Text
Pertb.

LLaVA-1.5 (Baseline)
Acc/F1 (%) ↑ 60.916 0.551 0.408 76.231 0.663 0.594

Acc/F1 Drop (%) ↓ 1.002 0.010 0.006 0.405 0.007 0.002
Acc/F1 (%) ↑ 60.860 0.553 0.403 75.770 0.661 0.588

Acc/F1 Drop (%) ↓ 1.057 0.008 0.011 0.866 0.008 0.008
Acc/F1 (%) ↑ 62.045 0.561 0.414 76.522 0.669 0.594

Acc/F1 Drop (%) ↓ -0.127 0.000 0.000 0.114 0.001 0.002
Qwen25-vl (Baseline)

Acc/F1 (%) ↑ 59.978 0.505 0.367 82.121 0.662 0.632
Acc/F1 Drop (%) ↓ 0.429 0.006 0.004 0.435 0.005 0.001

Acc/F1 (%) ↑ 59.922 0.500 0.365 82.045 0.656 0.624
Acc/F1 Drop (%) ↓ 0.485 0.012 0.006 0.511 0.011 0.010

Acc/F1 (%) ↑ 60.264 0.506 0.370 82.540 0.665 0.635
Acc/F1 Drop (%) ↓ 0.143 0.005 0.001 0.015 0.002 -0.001

AWQ

GPTQ

LLM.Int8()

Method Metric

LLM.Int8()

AWQ

GPTQ

Table 12: Performance and performance drop of quan-
tisation methods under input perturbation.

G Input Perturbation Impacts on Acc/F1
and Acc/F1 Drop

Table 11 and table 12 detail the performance
of various acceleration techniques—quantization
(AWQ, GPTQ, LLM.Int8()) and token reduction
(FastV, HIRED, PyramidDrop, SparseVLM, Vi-
sionZip)—on models like LLaVA-1.5, LLaVA-
Next, and Qwen2.5-vl, across GQA and VQAv2

datasets under no, vision, and text perturbations.
A consistent trend across both sets of methods is
the remarkably low impact on Acc/F1 scores; the
Acc/F1 Drop (%) is generally minimal, often well
below 1% and frequently in the hundredths of a
percent, irrespective of the specific acceleration
technique or perturbation type applied.

H Qualifying Examples

In this section, we present qualifying examples:
specific test instances showing how applying ac-
celeration methods to a Vision Language Model
(VLM) can cause prediction divergence.

User
What movie is this?

LLaVA-1.5
ABBA

VisionZip
mamma mia

Hired
rocky horror

rent
GPTQ

rent
AWQ

What is on the counter?
User

LLaVA-1.5

VisionZip

Hired

GPTQ

AWQ

plate

fries

fries

tray

fries

FastV
sandwich

Figure 4: Acceleration Instances Divergence qualifying
examples for LLaVA-1.5 (Liu et al., 2024a).

User
What is inside of the 
blender?

LLaVA-Next

garlic
VisionZip

nuts

FastV
food

pasta
SparsevVLM

shrimp
GPTQ

How many people are 
in line for this van?

User

LLaVA-Next

VisionZip

Hired

GPTQ

AWQ

3

4

10

1

1

FastV
5

Figure 5: Acceleration Instances Divergence qualifying
examples for LLaVA-Next (Liu et al., 2024b).
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User
What is the 
reflection of?

Qwen-2.5-VL

ceiling

cave

light

cave
LLM.int8()

GPTQ

What is holding the 
bear up?

User

AWQ

Qwen-2.5-VL

nail

claw

magnet

magnet
LLM.int8()

GPTQ

AWQ

Figure 6: Acceleration Instances Divergence qualifying
examples for Qwen2.5-VL (Bai et al., 2025).

User
Why is the pancreas abnormal?

The pancreas appears to be abnormal due to its 
enlargement.

The pancreas appears to be enlarged.

The pancreas appears to be abnormal in the image.

The pancreas appears to be abnormal in the image.
LLM.int8()

PyramidDrop

VisionZip

LLaVA-Med

Figure 7: Acceleration Instances Divergence qualifying
examples for LLaVA-Med (Li et al., 2023a).

User
Is there a pelvic 
fracture?

No

Yes

LLM.int8()

PyramidDrop

VisionZip

LLaVA-Med

Yes

Yes

User
Is the surrounding 
phlegmon normal?

No

No

LLM.int8()

PyramidDrop

VisionZip

LLaVA-Med

No

Yes

Figure 8: Acceleration Instances Divergence qualifying
examples for LLaVA-Med (Li et al., 2023a).
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