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Abstract

In long structured document retrieval, exist-
ing methods typically fine-tune pre-trained lan-
guage models (PLMs) using contrastive learn-
ing on datasets lacking explicit structural infor-
mation. This practice suffers from two criti-
cal issues: 1) current methods fail to leverage
structural features and element-level semantics
effectively, and 2) the lack of datasets contain-
ing structural metadata. To bridge these gaps,
we propose SEAL, a novel contrastive learn-
ing framework. It leverages structure-aware
learning to preserve semantic hierarchies and
masked element alignment for fine-grained se-
mantic discrimination. Furthermore, we re-
lease StructDocRetrieval, a long structured doc-
ument retrieval dataset with rich structural an-
notations. Extensive experiments on both re-
leased and industrial datasets across various
modern PLMs, along with online A/B testing,
demonstrate consistent performance improve-
ments, boosting NDCG@10 from 79.41% to
82.59% on BGE-M3. The resources are avail-
able at this URL.

1 Introduction

Document retrieval is a fundamental component
of knowledge-intensive systems, such as Retrieval-
Augmented Generation (RAG) (Zhao et al., 2024;
Gupta et al., 2024). Despite recent advances in
PLMs that extend sequence processing capacity
(e.g., from 512 to 8192 tokens), the precise iden-
tification of query-relevant content in long docu-
ments remains an open challenge (Devlin et al.,
2019; Chen et al., 2024). Existing methods typi-
cally employ contrastive learning trained on query
and raw textual content (Xiong et al., 2021b,a; Li
et al., 2021b, 2023a; Wang et al., 2021; Li et al.,
2022; Rao et al., 2022, 2023, 2025) or to opti-
mize PLM representations. Nevertheless, as illus-
trated in Figure 1, this paradigm exhibits two key
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limitations: (1) Structural blindness arising from
raw text processing that disrupts document hier-
archies and discards semantic markup indicators
like H1/H2 headings (Tan et al., 2025); and (2)
Insufficient element-level alignment capacity over
fragmented text segments, which fails to preserve
fine-grained semantic relationships. Furthermore,
the lack of structural metadata in current datasets
leaves long structured document retrieval scenarios
under-studied.

To address these limitations, we propose SEAL,
a novel contrastive learning framework that inte-
grates structural semantics through two key com-
ponents: (1) A structure-aware contrastive learn-
ing method leveraging HTML transformation and
structural tag inclusion/exclusion enables seman-
tic hierarchy induction; and (2) An element-level
alignment mechanism employing stochastic ele-
ment masking forces the model to achieve granular
semantic alignment. Our SEAL assigns signifi-
cantly higher relevance to important elements (e.g.,
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chapter titles or intentionally bolded query terms)
compared to mentions in body text. This contrasts
with structure-agnostic retrieval, which erroneously
assigns them equal weights.

Beyond the methodological challenges, the avail-
ability of suitable benchmark datasets is crucial.
Current retrieval datasets either focus on task-
specific retrieval (e.g., passage, product, code, rank-
ing) (Karpukhin et al., 2020a; Reddy et al., 2022;
Husain et al., 2019) or lack structured metadata
(Nguyen et al., 2016). Their short text lengths (typ-
ically <1,000 words) further render their usage. To
bridge this gap and provide a reproducible resource
for the community, we release StructDocRetrieval,
a dataset designed for long structured document
retrieval. StructDocRetrieval contains annotated
documents with explicit structural semantics and
an average length of more than 10,000 words.

We conduct extensive experiments to evaluate
SEAL against the state-of-the-art document re-
trieval methods on StructDocRetrieval and the in-
dustrial dataset, using different modern PLMs. We
also validate its practical effectiveness through on-
line A/B tests. The experimental results reveal
that SEAL achieves remarkable retrieval perfor-
mance in widely used evaluation metrics. For
instance, when implemented with the BGE-M3
model, SEAL elevates NDCG@10 from 73.96%
to 77.84%, outperforming existing methods. A se-
ries of ablation studies coupled with pattern visual-
ization further confirms that SEAL can effectively
capture and utilize document structural semantics.

Our contributions can be summarized as follows.

• We propose SEAL, a novel contrastive learn-
ing framework explicitly incorporating docu-
ment structural semantics through structure-
aware learning and fine-grained element-level
alignment, thereby enhancing structured data
representations in a unified embedding space.

• We release StructDocRetrieval, a dataset
specifically designed for long structured doc-
ument retrieval, which has over 10,000 words
in document length on average and contains
explicit structural information.

• Extensive experiments across multiple mod-
ern PLMs demonstrate SEAL’s consistent
superiority over the state-of-the-art methods
on both StructDocRetrieval and industrial
datasets. Online A/B testing further validates
the effectiveness of SEAL.

2 Related Work

In this section, we review related work, including
Pre-trained Language Models (PLMs), long docu-
ment retrieval methods, and related benchmarks.

2.1 Pre-trained Language Models

The field of document retrieval has undergone trans-
formative advancements driven by PLMs, particu-
larly through the enhanced capability of extended
context windows to effectively encode long docu-
ments. Seminal work by Karpukhin et al. (2020b)
introduced dense passage retrieval for open-domain
question answering, demonstrating the superior
capabilities of PLMs in retrieval tasks. Subse-
quent research validated the effectiveness of BERT-
based architectures (Warner et al., 2024), particu-
larly through PLM integration in multi-stage doc-
ument ranking (Gao and Callan, 2021). Further
innovations, such as ColBERT (Khattab and Za-
haria, 2020), advanced the field through contex-
tualized late interaction mechanisms over BERT,
enabling efficient passage retrieval. More re-
cently, M3-Embedding (Chen et al., 2024) has
emerged as a state-of-the-art approach, leveraging
self-knowledge distillation to optimize embedding
quality and establish itself as a foundational archi-
tecture in retrieval systems.

In contrast to the aforementioned encoder-only
embedding models, decoder-only embedding mod-
els based on large language models (LLMs), such
as gte-Qwen2-Instruct (Li et al., 2023b), MiniCPM-
Embedding (Hu et al., 2024), and NV-Embed (Lee
et al., 2025), introduce significantly higher latency
(several times) during vector representation genera-
tion, substantially prolonging retrieval time. How-
ever, the resulting performance improvement is
not commensurate with this considerable over-
head. Consequently, this work primarily employs
encoder-only pre-trained models.

2.2 Long Document Retrieval

While contemporary document retrieval methods
achieve remarkable performance in unstructured
textual domains, their architectural limitations be-
come apparent when handling structured data (e.g.,
technical specifications, legal instruments, and
scholarly articles). Works in query optimization
include ANCE (Xiong et al., 2021a) and DANCE
(Li et al., 2021b), which pioneer adaptive query
expansion via contrastive dual learning, and Dai et
al. (2024)’s entailment tuning for dense passage
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Figure 2: Framework of SEAL. We first construct the used dataset, including HTML transformation, tag processing,
and element masking. To guide PLMs to map both queries and structured documents in a unified embedding space,
we introduce Structure-Aware Learning (SAL) to incorporate document structural information and Element-Aware
Alignment (EAL) to enhance semantic representation.

retrieval such as open-domain question answer-
ing. Industrial-grade implementations like Face-
book’s EBR (Huang et al., 2020) achieve scalabil-
ity through hybrid embedding topologies, whereas
MGDSPR (Li et al., 2021a) retrieves the most rele-
vant products from a large corpus while retaining
personalized user features in e-commerce retrieval.
Longtriever (Yang et al., 2023) divides long doc-
uments into short chunks and then models local
semantics within the chunks and global context se-
mantics between the chunks to improve retrieval.
Sun et al. (2025) propose a hybrid retriever to ob-
tain keyword and contextual information to further
improve the quality of pseudo-documents. SANTA
(Li et al., 2023a) and CONAN (Li et al., 2025)
employ structure-aware pre-training protocols that
combine structured data alignment and masked en-
tity prediction for code retrieval and product re-
trieval. However, these advances still exhibit a gap
in addressing the retrieval requirements of long
structured documents: insufficient capture of hi-
erarchical structure and inability to perform fine-
grained semantic alignment.

2.3 Related Benchmarks

Foundational benchmarks like MS MARCO
(Nguyen et al., 2016), TREC (Craswell et al., 2020),
and the multi-domain BEIR benchmark (Thakur
et al., 2021) have driven progress in supervised and
zero-shot retrieval paradigms. Some datasets focus
on specific tasks, such as product and code search
(Reddy et al., 2022; Husain et al., 2019). Long-
Bench (Bai et al., 2024a), LongBench-V2 (Bai
et al., 2024b), and RULER (Hsieh et al., 2024)
are designed to assess LLM long-context reason-
ing, but are limited by the absence of document-

grounded user queries and structural labels. Ad-
ditionally, LongBench-V2 uses the choice format.
Due to the above limitations, these works are in-
sufficient for evaluating modern retrieval models in
contemporary information retrieval systems.

3 Methodology

In this section, we first recall the preliminaries of
long document retrieval. Subsequently, as shown in
Figure 2, we introduce the framework of this work,
including dataset construction, such as document
pre-processing with tagging removal and element
masking of structured documents, and continuous
fine-tuning of PLMs with SEAL, which incorpo-
rates inherent structural features and fine-grained
element alignment.

Preliminary of Document Retrieval Given a
natural language query q and a structured docu-
ment corpus D = {di}ni=1, the retriever identi-
fies the top-k most relevant documents through a
ranked list {d1, d2, ..., dk} of the k most relevant
documents, ranked by relevance scores. Usually,
we encode queries and structured documents with
PLMs and map them into an embedding space for
the calculation of the relevance score.

Let ϕ(·) ∈ Rl and φ(·) ∈ Rl denote embedding
functions that map queries and documents into an
l-dimensional latent space, respectively. The rele-
vance score of a query-document pair (q, d) can be
formally expressed as Equation 1 below.

f(q, d) = sim(ϕ(q), φ(d)) (1)

where sim(·) is a measurement function such as
the inner product.
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Query: How to use Python in VS Code?

Relevant
Document

<title> [Nanny-level tutorial] VS Code in-
stallation and configuration of Python </ti-
tle> <h1> Configure Jupyter in VS Code
</h1> <h2> Install Jupyter extension </h2>
<p> Choose the version that suits your com-
puter and start downloading. </p> · · ·

Irrelevant
Document

<title> Data, algorithms, computing power,
and blockchain + AI </title> <h1>
Blockchain technology lays the foundation
for a decentralized Internet. </h1> <p>
Many investment firms have turned their
attention to the emerging field of machine
learning and artificial intelligence. </p> · · ·

Table 1: A data example of StructDocRetrieval.

3.1 Dataset Construction

Given HTML’s native hierarchical representation
capabilities surpassing plain text in modeling re-
trieved knowledge (Tan et al., 2025), our method
first converts structured documents into standard-
ized HTML representations, where each con-
stituent element preserves positional integrity via
encapsulation within semantic markup tags. Sub-
sequent pre-processing involves dual operations:
(1) Tag Processing creates variants through retain-
ing and removing tags, which facilitates the sub-
sequent learning of basic structural features; (2)
Element masking generates markup-depleted vari-
ants through stochastic tag elimination, enabling
fine-grained alignment.

For industry data derived from real-world appli-
cations, we collect user-submitted queries through
production system logs and acquire corresponding
retrieved document lists via instrumentation in the
engineering pipeline, with all documents stored in
HTML format. For web-crawled documents, our
pipeline initiates with targeted article acquisition,
harvesting linked documents through breadth-first
search crawling. Following data collection, we im-
plement a preprocessing phase comprising removal
of non-structural tags (e.g., line breaks and irrele-
vant markup tags) through regular expression pat-
tern matching. The sanitized outputs subsequently
undergo LLM-powered query synthesis to generate
corresponding user queries. We designate this re-
source as StructDocRetrieval (MIT License). The
details of the data example are shown in Table 1.

Table 2 presents statistics of the industrial dataset
and StructDocRetrieval. Unlike typical short
datasets, documents in our datasets are significantly
longer, with an average of more than 7,000 words.

Split Query Doc. Avg. Words
Query Doc.

Industrial Dataset
Train 12,047 8,580 10.07 7,310

Evaluation 1,396 1,286 10.03 6,878

StructDocRetrieval
Train 23816 23816 12.82 10,849
Test 3404 3404 13.04 10,535

Evaluation 6804 6804 12.74 11,047

Table 2: Data statistics of experiment datasets. The
“Avg. Words” means the average number of words in
queries and documents.

In contrast, datasets like MS MARCO (Nguyen
et al., 2016) have a maximum of 1,670 words, with
most documents under 700 words. Furthermore,
documents in MS MARCO and other variants are
typically plain text, whereas StructDocRetrieval
utilizes HTML format.

3.2 Structure-Aware Learning
PLMs have demonstrated remarkable capabilities
in text representation learning via objectives like
masked language modeling on large text corpora.
However, their inherent lack of mechanisms to cap-
ture structural information hinders their ability to
effectively comprehend and represent structured
documents. This limitation consequently impacts
the efficacy of structured document retrieval. To
address this, we propose Structure-Aware Learn-
ing (SAL) to enhance PLMs with the capacity to
encode structural information.

SAL aims to enable the model with structural
awareness through a contrastive learning objective
that leverages structural variants of relevant docu-
ments. We utilize preprocessed HTML-structured
relevant documents as positive instances and irrele-
vant documents as negatives. To guide the model in
recognizing the underlying structure, even without
explicit tags, we derive plain text versions of these
documents by removing all structural tags. The
core idea is to train the model to distinguish query-
aligned text originating from structured relevant
documents from text originating from irrelevant
documents.

As defined in Equation 2, the contrastive loss
LSAL maximizes the similarity between the query
embedding q and the embedding of the relevant
document d+, while minimizing the similarity with
irrelevant documents d−.

LSAL = −log
ef(q,d

+)

ef(q,d+) +
∑

d−∈D− ef(q,d−)
(2)
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The contrastive formulation incorporates dual vari-
ants: intact documents preserving markup seman-
tics d+tag and its destructured counterpart d+untag
with removed tags. The negative samples D− =
{d−} adopt the same process. Both tagged and un-
tagged versions of d+ and d− are used in the same
loss computation. This design forces the model to
recognize that structural semantics and the textual
content of relevant documents should align with
the query in the same embedding space.

3.3 Element-Aware Alignment
Masking strategies, such as masked language mod-
eling (Li et al., 2020) and masked entity prediction
(Sciavolino et al., 2021; Li et al., 2023a), have
proven effective in learning robust text representa-
tions. Unlike these approaches focusing on token
or entity recovery, we introduce Element-Aware
Alignment (EAL) based on masking structural el-
ements within documents to foster fine-grained
structural understanding.

For structured documents, we define elements
as text spans annotated with tags (e.g., headings,
list items, paragraphs). To encourage the model to
learn fine-grained representations of these elements
and their contextual roles, we randomly mask the
structural tags of a proportion (e.g., 10%) of ele-
ments in a document. Formally, let a structured
document be represented as a sequence of elements
d = {(t1, tag1), (t2, tag2), · · · , (tn, tagn)}, where
ti is the text content and tagi is the structural tag.

A masked document dmask is constructed by
removing tagi for a random subset of indices, while
keeping other elements intact:

dmask = {ϵmask
1 , ϵ2, ϵ

mask
3 , · · · , ϵn} (3)

where ϵmask
i denotes the i-th element with its struc-

tural tag removed, while ϵi = (ti, tagi) preserves
both the original text and its tag.

We form positive pairs using a query q and its
corresponding relevant document subjected to ele-
ment masking d+mask. Negative pairs consist of q
and masked irrelevant documents d−mask. The train-
ing objective is based on a contrastive loss defined
as follows:

LEAL = −log
ef(q,d

+
mask)

ef(q,d
+
mask) +

∑
d−∈D− ef(q,d

−
mask)

(4)
Minimizing LEAL trains the model to maintain
high similarity between the query and the represen-
tation of the masked relevant document, while push-

ing away masked irrelevant documents. This ob-
jective forces the model to leverage the unmasked
elements and the textual content within masked el-
ements to infer the document’s relevance, thereby
enhancing its ability to utilize fine-grained element-
level information.

4 Experiments

In this section, we evaluate SEAL across various
datasets using different PLMs. We further present
in-depth studies of SEAL, including ablation stud-
ies and embedding distributions visualization. Ad-
ditionally, we show the practical improvement of
SEAL in the industrial environment.

4.1 Setup
We describe the basic experiment setup used in our
work in this section.

Datasets and Models This study utilizes indus-
try data from real-world applications. User-clicked
documents serve as positive examples (target doc-
uments), while non-clicked documents are treated
as negative examples. All documents are stored in
HTML format. We select a set of modern embed-
ding models as baselines, including Multilingual-
E5-large (Wang et al., 2024), bge-large-zh (Xiao
et al., 2023), BGE-M3 (Chen et al., 2024), and
GTE-Qwen2-1.5B (Li et al., 2023b).

Evaluation Metrics We adopt three widely-used
metrics: HitRate, MRR, and NDCG. HitRate re-
flects immediate retrieval accuracy, MRR empha-
sizes the ability of the model to prioritize critical
items, and NDCG considers graded relevance and
positional sensitivity.

Baselines We compare SEAL with state-of-the-
art document retrieval methods: Chunk, MCLS
(Chen et al., 2024), and SANTA(Li et al., 2023a).

Chunk-based processing is a conventional solu-
tion in document retrieval. Long documents are
segmented into fixed-length chunks of 512 tokens,
each independently encoded via PLMs. Query-
document relevance is determined by computing
dot product similarities between the query embed-
ding and each chunk’s embedding, with the maxi-
mum value retained as the final score.

For MCLS, we insert a “[CLS]” token for every
fixed number of tokens (inserting a [CLS] token
for each 256 tokens in our experiments). The final
document embedding is computed by averaging
the last hidden states of all [CLS] tokens.
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Method HitRate@1 HitRate@3 HitRate@5 MRR@5 MRR@10 NDCG@5 NDCG@10

mE5-large 54.11 79.62 85.86 67.39 68.06 72.18 74.11

+ Chunk 56.85 82.94 88.79 70.12 71.45 74.78 77.42
+ MCLS 57.74 84.12 89.56 71.08 72.41 75.76 78.44
+ SANTA 55.79 81.76 88.02 69.01 70.49 73.79 76.50
+ SEAL 58.63 85.29 90.34 72.02 73.37 76.74 79.35

bge-large-zh 59.08 83.48 89.47 71.34 72.21 75.84 76.84

+ Chunk 61.97 86.11 91.67 74.12 75.25 78.44 78.93
+ MCLS 63.15 86.64 92.28 74.83 75.91 78.82 79.38
+ SANTA 60.80 85.59 91.07 73.41 74.59 78.08 78.48
+ SEAL 64.30 87.15 92.88 75.54 76.57 79.17 79.83

BGE-M3 61.03 85.24 91.69 73.35 73.96 77.97 79.41

+ Chunk 64.28 87.69 93.19 76.11 76.91 80.76 81.52
+ MCLS 65.27 87.98 93.48 76.74 77.37 81.14 82.05
+ SANTA 63.27 87.42 92.91 75.48 76.44 80.38 81.00
+ SEAL 66.26 88.25 93.77 77.38 77.84 81.52 82.59

Table 3: Retrieval effectiveness of different models on the industrial dataset.

To adapt Masked Entity Prediction of SANTA
for the latest encoder-only models like BGE-M3,
we use the same tool to identify co-occurring terms
in the Query, Title, and Body as entities, apply
random masking, and utilize the model to predict
the masked entity tokens.

Implementations We begin with the fine-tuning
of contrastive learning of the base PLMs. All the
methods demonstrate performance improvements
over the fine-tuned PLMs. We use the Adam op-
timizer with a learning rate of 1e-5 and 2 train-
ing epochs. The maximum query length is 32,
and the maximum sequence length is 4096. We
sample 8 negative samples for each query and use
cross device negatives, the total batch size is 8. All
the implementations utilize PyTorch and FlagEm-
bedding1. The experiments are performed on 4
NVIDIA A800 GPUs.

4.2 Overall Performance

Retrieval effectiveness is evaluated on two distinct
datasets: a real industrial dataset and the Struct-
DocRetrieval web dataset, utilizing three different
base embedding models (mE5-large, bge-large-zh,
and BGE-M3). We summarize the performance
results across various standard metrics, including
Hitrate@k, MRR@k, and NDCG@k.

Table 3 presents comparative retrieval effective-
ness across real industrial structured documents,
where SEAL achieves the state-of-the-art perfor-
mance with HitRate@3 absolute gains of 5.67%
over fine-tuned baselines and 3.53% over existing

1https://github.com/FlagOpen/FlagEmbedding

Method HitRate@5 MRR@10 NDCG@10

mE5-large 92.89 83.02 86.24

+ Chunk 93.95 84.90 87.67
+ MCLS 94.16 85.39 88.38
+ SANTA 93.58 84.31 87.31
+ SEAL 94.72 86.53 89.31

bge-large-zh 94.59 85.95 88.68

+ Chunk 95.65 87.83 90.11
+ MCLS 95.86 88.32 90.82
+ SANTA 95.28 87.24 89.75
+ SEAL 96.42 89.46 91.75

BGE-M3 95.39 87.36 89.92

+ Chunk 96.45 89.24 91.35
+ MCLS 96.82 89.78 91.95
+ SANTA 95.98 88.45 90.83
+ SEAL 97.09 90.10 92.25

Table 4: The retrieval performance on StructDocRe-
trieval.

structural-aware methods. This performance ad-
vantage persists in web-crawled retrieval dataset
StructDocRetrieval (cf. Table 4), particularly in
high-recall metrics (i.e., HitRate@5: +1.70% avg.)
and precision-sensitive measures (i.e., NDCG@10:
+2.33% avg.). The consistent improvements across
both controlled industrial and diverse web environ-
ments validate that SEAL enables the advantages
of PLMs in representing long structured documents,
making PLMs sensitive to document structures and
better at representing structured data.

4.3 In-depth Analysis

In this subsection, we present an in-depth analysis,
including ablation studies to investigate the con-
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Method HitRate@5 MRR@10 NDCG@10

BGE-M3 91.69 73.96 79.41
w/ SAL 91.98 74.69 80.08
w/ EAL 92.12 75.83 80.85
w/ SEAL 93.77 77.84 82.59

Table 5: The performance of ablation models on indus-
trial structured document retrieval.

tributions of two fundamental components of our
method, an investigation of mask ratios in element-
aware alignment, a comparison of training strate-
gies, visualizations of the learned embedding dis-
tributions, and validation with an extended-context
model.

Ablation Study In this work, we employ
structure-aware learning (SAL) and element-aware
alignment (EAL) to conduct continuous training
on the BGE-M3 model, demonstrating their effec-
tiveness in guiding the model to better learn se-
mantic features from structured documents. Table
5 presents the retrieval performance of these two
fundamental components.

Compared to the baseline model, SAL and EAL
exhibit divergent performance in structured data
retrieval tasks. SAL shows no significant improve-
ment over the baseline, restricted by the depen-
dence on tag awareness alone to distinguish struc-
tured documents. In contrast, EAL achieves sub-
stantial enhancements in all the evaluation met-
rics. The superiority of EAL is due to its con-
trastive training paradigm between structural el-
ements (e.g., HTML tags) and unstructured text
components. This methodology effectively bridges
the modality gap between heterogeneous data types
through joint embedding space projection, thereby
facilitating cross-modal representation learning
with enhanced retrieval efficacy.

Overall, integrating augmented tasks through
SAL and EAL yields progressive performance
gains. These empirical results confirm that explicit
structural awareness enables models to better en-
code semantic hierarchies while generating opti-
mized textual representations tailored for complex
structured data environments.

Impact of Mask Ratios We further investigate
the impact of different element mask ratios in
the element-aware alignment on retrieval effec-
tiveness to determine the optimal configuration.
Five distinct mask ratios (1%, 5%, 10%, 30%,
and 50%) are evaluated using the BGE-M3 model

ratios (%) HitRate@5 MRR@10 NDCG@10

1 86.71 75.13 80.67
5 93.24 77.11 81.98

10 93.77 77.84 82.59
30 93.17 76.95 82.31
50 92.99 76.66 81.67

Table 6: The impact of element-aware alignment mask
ratios on BGE-M3.

Method HitRate@5 MRR@10 NDCG@10

BGE-M3 91.69 73.96 79.41
SAL− EAL 91.76 74.73 80.06
SAL1 − EAL2 93.27 76.98 81.96
EAL1 − SAL2 93.77 77.84 82.59

Table 7: The retrieval performance of different train-
ing strategies. The “SAL−EAL” means performing
structure-aware and element-aware learning simultane-
ously. “SAL1 − EAL2” indicates that structure-aware
learning is performed first, followed by element-aware
alignment, while “EAL1 − SAL2” is the opposite.

with performance metrics including HitRate@5,
NDCG@10, and MRR@10. The Experimental re-
sults are shown in Table 6. It can be observed that
(1) the 10% mask ratio achieves optimal perfor-
mance across all the metrics, and (2) performance
variations remain marginal across different ratios,
such as NDCG@10 differences constrained within
a 2% range, demonstrating the robustness of our
method to mask ratio selection. Based on these
findings, we adopt the 10% masking ratio as the
default configuration in the experimental section.

Impact of Training Strategy During continual
fine-tuning, our empirical analysis reveals that sim-
ply combining LEAL and LSAL as L = (LSAL +
LEAL) does not achieve the best performance.
Therefore, we make explorations for the impacts
of different optimization strategies. As shown in
Table 7, EAL1 − SAL2 achieves superior perfor-
mance. The superiority stems from: (1) Local Se-
mantics Foundation: EAL learns local semantic
sensitivity by randomly masking element tags (e.g.,
<h1>), providing a high-quality textual representa-
tion for subsequent structural understanding. (2)
Progressive Difficulty: EAL aligns local elements
with queries (simpler task), while SAL integrates
global structure with query intent (complex task).
The EAL → SAL sequence follows an easy-to-
hard trajectory, thereby preventing premature over-
fitting to structural noise.
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(a) BGE-M3 (b) BGE-M3 w/ SAL

(c) BGE-M3 w/ EAL (d) BGE-M3 w/ SEAL

Figure 3: Embedding visualization of original model
and SEAL using T-SNE.

Visualization To evaluate the quality of the
learned representations and validate the establish-
ment of a unified embedding space for queries
and structured documents, we visualize the latent
representations of queries and their correspond-
ing documentation texts in Figure 3. An ablation
study is also presented to isolate the contributions
of Structure-Aware Learning and Element-Aware
Alignment.

Comparative analysis between Figure 3 (a) and
3 (b) reveals that the effect of incorporating SAL.
This integration reduces the divergence between
query and documentation embeddings, demonstrat-
ing enhanced capture of structural context. Figure
3 (c) illustrates that EAL significantly improves
query-document alignment. This improvement is
evidenced by increased semantic proximity and
tighter cluster fusion between queries and docu-
ments in the latent space. This suggests that our
fine-grained masked element alignment mechanism
enhances the model’s capacity to capture more spe-
cific semantic distinctions for the refined embed-
ding space.

Finally, comparison of Figures 3 (a) and 3 (d)
indicates that SEAL exhibits superior embedding
homogeneity compared to the base model through
its dual mechanisms of structure-aware learning
and fine-grained element alignment. These visual-
izations demonstrate that SEAL effectively learns
a more unified and well-structured representation
learning for structured document retrieval.

Extended-context model The experimental va-
lidity is strengthened through robustness testing
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Figure 4: Online PV CTR and UV CTR over a two-
Week period.

Method HitRate@5 MRR@10 NDCG@10

mE5-large 92.17 74.32 79.86

+ Chunk 93.25 77.18 81.68
+ MCLS 94.00 77.51 82.18
+ SEAL 94.72 78.17 83.56

Table 8: The retrieval performance of GTE-Qwen2-1.5B
on StructDocRetrieval.

with extended-context models. We introduce GTE-
Qwen2-1.5B (32k-token context window) as an ex-
tended baseline, demonstrating that: (1) observed
performance improvements are consistent with our
previous results; (2) model efficacy exhibits pro-
gressive scalability across varying context window
specifications.

4.4 Online A/B Testing

SEAL has been deployed in the practical platform
for long-document retrieval services with hundreds
of thousands of daily active users. We compare
the performance of SEAL and a baseline method
that performs raw-text contrastive learning over a
14-day period, evaluated using both PV CTR (Page
View Click-Through Rate, clicks of ads divided by
impressions of ads views) and UV CTR (Unique
Visitor Click-Through Rate, clicks of unique vis-
itors divided by impressions of unique visitors).
The former is used to evaluate how often a page is
clicked when it is browsed, and the latter reflects
the attractiveness of the page to users.

As shown in Figure 4, compared to the pre-
viously deployed model, our approach demon-
strates performance improvements in online A/B
testing. The experiment, which accounted for ap-
proximately 30% of search traffic, was conducted
over a two-week period. SEAL achieves an aver-
age improvement of 1.6% and 1.2% in PV CTR
and UV CTR without introducing additional over-
head, and higher PV and UV CTR on 12 out of
14 days. The superior performance of SEAL in
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both metrics demonstrates its effective optimiza-
tion of both page-level attractiveness and user-level
engagement, ultimately enhancing the user experi-
ence in practical applications.

5 Conclusion

In this work, we propose SEAL, a novel contrastive
framework that integrates structural awareness and
fine-grained semantic alignment to enhance PLMs
for long structured document retrieval. To foster re-
search in this field, we release StructDocRetrieval,
a dataset of long documents enriched with struc-
tural information, establishing an evaluation sce-
nario close to real-world applications. Extensive
experiments demonstrate SEAL achieves state-of-
the-art performance in long structured document
retrieval across various PLMs and datasets. Our in-
depth analysis further reveals that SEAL induces
a unified embedding space that effectively aligns
queries and relevant documents.

Limitations

Although SEAL exhibits strong performance in
long structured document retrieval, its reliance on
alignment signals between structured and unstruc-
tured data raises open questions about its general
superiority over baseline models in all downstream
tasks, such as code retrieval. Additionally, our
current empirical validation focuses primarily on
the Chinese-language community, though we are
actively constructing an English-language corpus
to assess generalization capabilities. Finally, our
approach preserves the potential of exploiting the
document structure during pre-training.
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