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Abstract

While document summarization with LLMs
has enhanced access to textual information,
concerns about the factual accuracy of these
summaries persist, especially in the medical
domain. Tracing source evidence from which
summaries are derived enables users to assess
their accuracy, thereby alleviating this concern.
In this paper, we introduce TRACSUM, a novel
benchmark for traceable, aspect-based sum-
marization, in which generated summaries are
paired with sentence-level citations, enabling
users to trace back to the original context. First,
we annotate 500 medical abstracts1 for seven
key medical aspects, yielding 3.5K summary-
citations pairs. We then propose a fine-grained
evaluation framework for this new task, de-
signed to assess the completeness and consis-
tency of generated content using four metrics.
Finally, we introduce a summarization pipeline,
TRACK-THEN-SUM, which serves as a base-
line method for comparison. In experiments,
we evaluate both this baseline and a set of
LLMs on TRACSUM, and conduct a human
evaluation to assess the evaluation results. The
findings demonstrate that TRACSUM can serve
as an effective benchmark for traceable, aspect-
based summarization tasks. We also observe
that explicitly performing sentence-level track-
ing prior to summarization enhances generation
accuracy, while incorporating the full context
further improves completeness. Source code
and dataset are available at https://github.
com/chubohao/TracSum.

1 Introduction

New findings observed in clinical trials are pub-
lished in journal articles, which describe their de-
sign and outcomes (Hariton and Locascio, 2018),
serving as a crucial foundation for evidence-based
medicine (EBM) (Sackett, 1997; Joseph et al.,
2024). Ideally, medical professionals would stay

1We focus on abstracts because they are always publicly
accessible and typically include the key medical aspects.

Figure 1: Schematic diagram of the TRACSUM
task, where aspect-based summaries are enriched with
sentence-level citations linking back to their correspond-
ing source sentences in the medical article.

current on all medical evidence from these articles
to support their decision-making, but this is imprac-
tical due to the volume and growth of the evidence
base (Marshall et al., 2021; Frihat and Fuhr, 2024).

Document summarization condenses the input
document into a concise and coherent text that
retains salient information (Narayan et al., 2018;
Zheng et al., 2020; Wang et al., 2022; Zhang et al.,
2023b). Recent advancements in document sum-
marization methods have shown promising results
in generating overall summaries (Rush et al., 2015;
Cheng and Lapata, 2016; See et al., 2017; Paulus
et al., 2018). However, when users refer to the
same article, their areas of focus can vary signif-
icantly (Zhong et al., 2021; Goyal et al., 2022;
Zhang et al., 2023b). Rather than an overall sum-
mary, they are often more interested in obtaining
summaries focused on specific aspects (Yang et al.,
2023; Takeshita et al., 2024; Guo and Vosoughi,
2024). Therefore, generating aspect-based sum-
maries to meet diverse user preferences is a natural
and important capability for modern summariza-
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tion systems (Xu et al., 2023; Kolagar and Zarcone,
2024; Takeshita et al., 2024).

Moreover, most current studies in this field
(Zhang et al., 2023a,b; Takeshita et al., 2024) focus
on unidirectional summarization with LLMs (i.e.,
article⇒ summary). Despite their potential, state-
of-the-art LLMs still struggle with factual inaccura-
cies (Mallen et al., 2023; Min et al., 2023), which
pose significant risks when healthcare profession-
als rely on these summaries for treatment decisions
(Burns et al., 2011; Xie et al., 2024). By providing
referenced source texts from which summaries are
derived (i.e., article⇐ summary), users can more
easily locate relevant context and verify the gen-
erated content, thereby mitigating such concerns
(Kambhamettu et al., 2024; Xie et al., 2024; Deng
et al., 2024). Therefore, traceable summarization
(i.e., article⇔ summary) becomes especially cru-
cial given that summarization systems can generate
hallucinated content (Dhuliawala et al., 2024).

To address these two concerns, we introduce
TRACSUM, a novel summarization task that gener-
ates structured summaries of clinical articles across
seven key medical aspects, as shown in Figure 1.
These structured summaries not only provide flexi-
bility to meet diverse informational needs but also
enable cross-study comparisons, supporting a more
comprehensive synthesis of evidence for clinical
decision-making. In addition, TRACSUM extends
the task by identifying the sentences cited by the
summary. In real-world scenarios, this sentence-
level traceable summarization enables users to lo-
cate the relevant context and verify the generation.
Overall, our key contributions are as follows:

Contribution 1: We propose TRACSUM, a novel
benchmark for generating structured summaries of
clinical articles across seven key aspects, enriched
with sentence-level citations for each summary. To
support this task, we construct a new dataset by
annotating 500 clinical abstracts, resulting in 3.5K
summary–citations pairs (§3).

Contribution 2: We introduce a fine-grained auto-
matic evaluation framework tailored for this task,
which assesses the completeness and consistency
of the system output by measuring the recall and
precision of both generated facts and their corre-
sponding sentence-level citations (§4).

Contribution 3: Inspired by Chain-of-thought
(CoT) reasoning (Wei et al., 2022), we propose
a summarization pipeline, TRACK-THEN-SUM,
which consists of a tracker T and a summarizer

S. The tracker T identifies source sentences rel-
evant to a specific aspect, and the summarizer S
condenses them into a short summary (§5).

Contribution 4: We evaluate a diverse set of
closed- and open-source LLMs on TRACSUM, and
conduct a human evaluation to assess the outputs
produced by our fine-grained evaluation method.
The findings demonstrate that TRACSUM can serve
as an effective benchmark for traceable, aspect-
based summarization in the medical domain (§6).

2 Related Work

2.1 Aspect-Based Summarization
Articles describing clinical trials often present in-
formation aligned with fixed core aspects, such
as PICO2 elements (Richardson et al., 1995; Schi-
avenato and Chu, 2021), which represent essential
components of medical evidence (Jin and Szolovits,
2018; Joseph et al., 2024). Generating structured
summaries for these elements offers flexibility
to address diverse informational needs and facili-
tates cross-study comparisons (Yang et al., 2023;
Takeshita et al., 2024), enabling a comprehensive
synthesis of evidence for clinical decision-making.
To support fine-grained summarization, this work
builds upon the PICO framework to generate struc-
tured summaries that cover seven medical aspects
commonly reported in clinical articles.

2.2 Traceable Summarization
Identifying the citations that summaries rely on can
help users verify their accuracy (Gao et al., 2023;
Xie et al., 2024), particularly in high-stakes do-
mains such as medicine. To support critical exami-
nation of summaries and their underlying sources,
Kambhamettu et al. (2024) introduced a simple in-
teraction primitive called “traceable text.” In the
domain of Question Answering (QA), Gao et al.
(2023) showed that enabling LLMs to generate text
with passage-level citations improves factual cor-
rectness and verifiability. Moreover, several stud-
ies on retrieval-augmented generation (RAG) ap-
proaches can support document- or paragraph-level
traceability (Wang et al., 2024b; Xu et al., 2024;
Wang et al., 2024a). Building on this prior work,
our research introduces sentence-level traceability
of summaries generated by summarization systems,
allowing users to directly inspect the source content
that supports each summarized aspect.

2PICO: Participants/Problem (P), Intervention (I), Com-
parison (C), and Outcome (O).
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3 TRACSUM Benchmark

3.1 Task Description
Given a clinical article and a specific medical as-
pect, TRACSUM requires summarization systems
to generate an aspect-based summary along with
the corresponding sentence-level citations from
which the summary is derived. Formally, let the
input article d = [c1, c2, ..., cn] be a sequence of
uniquely indexed sentences, and let a be a target
aspect selected from predefined aspects A (§3.2.1).
The systemM(C′, sum′ | d, a) is expected to gen-
erate an aspect-specific summary sum′ and a set of
cited sentences C′ = [c′1, c

′
2, ..., c

′
k], where c′i refers

to the index of a sentence in d that supports the
summary. If the article contains no information rel-
evant to the given aspect, the system should output
sum′ ← “Unknown” and C′ ← “Null”.

3.2 Dataset Collection
3.2.1 Medical Aspects
Building on the PICO framework (§2.1), we define
A as a set of seven medical aspects commonly
reported in clinical articles (as listed in Table 1).

Symbol Aspect Description
A Aims Objective
I Intervention Treatment Method
O Outcomes Results of Predefined Variables
P Participants E.g., Diseases, Number
M Medicine E.g., Name, Dosage
D Duration Treatment Duration
S Side Effects Observed Adverse Events

Table 1: Definition of seven medical aspects.

3.2.2 Source Articles
We initially screened 741 medical abstracts from
PubMed3, of which 500 were ultimately included.
The screening criteria were as follows: (1) the study
focuses on melanoma; (2) the publication date is
within the past 10 years; (3) the article is written
in English; (4) the study is classified as either a
Clinical Trial or a Randomized Controlled Trial;
and (5) the article is published in a journal ranked in
Q1 or Q2 according to the Journal Citation Reports
(JCR) (Clarivate Analytics, 2024).

3.2.3 Initial Generation With Mistral Large
Manual dataset annotation is often costly and sus-
ceptible to stylistic inconsistencies. Consequently,
leveraging LLMs to generate supervised datasets
has gained popularity due to their strong zero-shot

3https://pubmed.ncbi.nlm.nih.gov/

performance (Chen et al., 2024; Asai et al., 2024).
In this work, we automatically constructed a draft
dataset by prompting Mistral Large (Mistral AI,
2025) to summarize 500 included abstracts, result-
ing in 3.5K summary–citations pairs, which were
subsequently evaluated by human experts using
three qualitative metrics (§3.2.4). The prompt struc-
ture comprises an abstract, a target aspect, and a
type-specific instruction, followed by two demon-
stration examples. If the abstract lacks relevant
information for the specified aspect, the model is
instructed to return “Unknown” without generating
any alternative response. An example of prompt
templates is illustrated in Table 15 in §G.

3.2.4 Annotation Process

We recruited six annotators, including three medi-
cal students and three NLP researchers, who were
compensated in accordance with minimum wage
standards in Germany. The annotation process was
carried out in two phases. In the first phase, annota-
tors independently evaluated all data instances. In
the second phase, data instances that received lower
evaluation scores were manually revised. The full
annotation guideline is described in §A.

Phase I: Evaluation. To ensure consistency in
writing style, each data instance was independently
evaluated by two independent annotators, one from
the medical domain and one from the NLP domain.
The annotators assessed each data instance using
three qualitative evaluation metrics (as shown in
Table 2) on a 5-point Likert scale, as detailed in
§A.4. Evaluating a single article typically takes
10–15 minutes, depending on its complexity.

Metric Description

Completeness Does the generated summary include all
facts for the given aspect?

Conciseness Does the generated summary include any
irrelevant or erroneous information?

Traceability Do the citations accurately and sufficiently
ground the generated summary?

Table 2: Qualitative evaluation metrics.

Phase II: Revision. Out of the 3.5K evaluated
data instances, we filtered out 741 (21%) that re-
quired further revision. The filtering criteria were
as follows: (1) the mean score for any of the three
evaluation metrics was below 3.5, or (2) the score
difference between annotators exceeded 2.0. An-
notators were then instructed to revise both the
summaries and their corresponding citations, as
illustrated in Figure 8 in §A.
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Figure 2: Human evaluation results (5-point scale) across three qualitative metrics for the seven medical aspects.
Completeness and Conciseness for summary evaluation, and Traceability for citation evaluation.

3.3 Quality Analysis

To analyze the dataset’s quality, we conducted a
statistical analysis of the human evaluation results.
Before filtering, the scores across all aspects and
metrics are generally above 4.0 (as shown in Fig-
ure 2), indicating high overall quality. Of the 741
(21%) filtered instances, 197 concern the O (Out-
comes), 174 the I (Intervention), and 171 the D
(Duration), suggesting that Mistral Large’s sum-
maries diverge most from human judgment on these
three aspects, possibly due to the relatively com-
plex information in the source texts. To assess inter-
annotator agreement (IAA), we report exact match
accuracy, within-one accuracy, and mean absolute
error, following prior work (Attali and Burstein,
2006; Zhang and Zhou, 2007). The statistical anal-
ysis revealed high agreement under the within-one
accuracy metric (84.9%), despite a lower exact
match accuracy (66.6%) and a mean absolute er-
ror of 0.56, indicating acceptable consistency with
only minor scoring discrepancies.

3.4 Characteristics of the Dataset

Among the 500 abstracts, the average length is
319.89 tokens, with abstract lengths ranging from
25 to 1,104 tokens. Each abstract contains an aver-
age of 10.42 sentences, spanning from 1 to 32. In
the dataset of 3.5K data instances, 2,862 are posi-
tive and 638 are negative4. The positive summaries
average 28.06 tokens in length, with a range from
3 to 77 tokens. On average, each positive summary
cites 1.78 sentences, with a range from 1 to 7. Ex-
ample data instances are presented in Table 14 (see
§F), and more characteristics are described in §B.

4 Automatic Evaluation Framework

Clinical texts have two essential characteristics:
(1) it must be entirely complete, with no omis-
sions and (2) it must be fully accurate, without
any errors (Gao et al., 2023; Xie et al., 2024). In
line with these considerations, we propose a fine-

4Negative samples correspond to cases where both the
summary and citation content are null.

grained evaluation framework for this new task by
extending the methodology of Xie et al. (2024)
and Gao et al. (2023), which evaluate complete-
ness (§4.1) and conciseness (§4.2) of generated
content through a suite of metrics, as illustrated
in Figure 3. Unlike their original definitions, our
approach incorporates citation recall and precision
to evaluate completeness and conciseness. Before
computing these metrics, we first check whether
the cited sentences entail the generated summary.

4.1 Completeness Evaluation

Building on characteristic (1) of clinical texts, we
evaluate completeness — the extent to which clini-
cally significant information is preserved in the sys-
tem output. Unlike previous work (Van Veen et al.,
2023), which assigns an overall score, our approach
emphasizes identifying which specific salient in-
formation is retained or omitted. As described in
§3.1, TRACSUM requires a summarization system
to produce both a summary and its associated ci-
tations. To evaluate completeness, we introduce
claim recall to assess summary content and citation
recall to assess citation coverage.

Claim Recall: Following DOCLENS (Xie et al.,
2024), we decompose each reference into a list of
atomic subclaims using a decomposition model,
where each subclaim represents a single factual
statement from the reference. Let sum denote
the reference, Lsum the set of reference subclaims,
and sum′ the system-generated summary. We em-
ploy a natural language inference (NLI) model
to evaluate whether each subclaim l ∈ Lsum is
entailed by sum′. Claim recall is computed as

1
|Lsum|

∑
l∈Lsum

I[sum′ ⇒ l], where I[sum′ ⇒ l]

is an indicator function that returns 1 if sum′ en-
tails l, and 0 otherwise.

Citation Recall: In contrast to previous ap-
proaches (Gao et al., 2023; Liu et al., 2023; Xie
et al., 2024), which consider citations valid if the
cited sentences collectively support the summary,
our method assesses whether each cited sentence
independently supports the output. Let C be the
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Figure 3: Overview of the automatic evaluation framework. Completeness is assessed using Claim Recall and
Citation Recall, while conciseness is measured by Claim Precision and Citation Precision. Decom. denotes the
claim decomposition model, and Eval. refers to the entailment evaluator.

set of citations in the reference and C′ the set in
the system output. A citation is considered re-
called if it satisfies the following two conditions:
(1) the cited sentence supports the generated sum-
mary (c → sum′); and (2) the citation is present
in the reference (c ∈ C). Citation recall is formally
defined as 1

|C|
∑

c∈C′ I[c ∈ C ∧ c→ sum′].

4.2 Conciseness Evaluation

In line with characteristic (2), an ideal system out-
put should avoid redundant or incorrect informa-
tion. We evaluate conciseness as the proportion
of generated content that is both factually accurate
and salient. To this end, we use two metrics: claim
precision, which assesses the informativeness and
factual accuracy of the summary, and citation pre-
cision, which captures citation redundancy.

Claim Precision: Analogous to claim recall, we
first decompose the generated summary into a list
of subclaims, then use an evaluator to compute
the proportion of these subclaims that are entailed
by the reference. Claim precision is defined as

1
|L′

sum|
∑

l∈L′
sum

I[sum⇒ l], where L′
y denotes

the set of subclaims extracted from the generated
summary sum′.

Citation Precision: To assess whether the output
includes unnecessary citations, we introduce cita-
tion precision. In line with citation recall, a citation
is deemed valid if it satisfies both previously de-
fined conditions (c ∈ C ∧ c → sum′). Citation
precision is then calculated as the proportion of
system-generated citations that fulfill these criteria.

Algorithm 1: TRACK-THEN-SUM Inference
Require: Tracker T , Summarizer S
Input: article d = {c1, c2, ..., cn} and aspect a ∈ A
Output: summary sum and its citations C′
1: C′ ← ∅;
2: foreach c ∈ {c1, c2, ..., cn}
3: T predict relevance given (a, c);
4: if relevance == Yes then append c to C′;
5: summary sum′ ← S(a, C′) or S(a, (C′ ⊕ f.));

Algorithm 1: TRACK-THEN-SUM inference process.

5 Baseline Method

In this section, we introduce our baseline method,
TRACK-THEN-SUM (TTS), which consists of a
tracker T and a summarizer S (available in two
variants), as illustrated in Figure 10 in §C. The
training procedure is detailed in §C.1.

5.1 Inference Overview

The TRACK-THEN-SUM generation pipeline con-
tains two phases: tracking and summarization. In
the first phase, T identifies the sentences most rel-
evant to the given aspect. In the second phase, S
generates a concise summary based on the selected
sentences. Finally, the summary and citations are
merged into the output, as shown in Algorithm 1.

5.2 Tracker T
Data Collection: We first applied sentence tok-
enization to each abstract in the training set. For
each sentence, we generated (c, a) pairs by com-
bining it with every predefined aspect a ∈ A. Each
pair was labeled with a binary variable y based on
the corresponding citations field: if the sentence
index appeared in the citations associated with as-
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pect a, we assigned y = 1; otherwise, y = 0. The
resulting training dataset is denoted as DT .

Training: Given the constructed dataset DT , we
initialized tracker T using a pre-trained language
model (LM) as the backbone. The model was sub-
sequently fine-tuned onDT using a standard binary
classification objective which maximizes the log-
likelihood of the observed labels:

max
T

E((c,a),y)∼DT log pT (y | (c, a))

5.3 Summarizer S
Data Collection: For each summary sum in the
training set, we extracted related sentences from the
abstract based on the citations field to form the set
C. Each C was paired with its associated aspect a,
and combined with the sum to form ((C, a), sum).
The resulting training dataset is denoted as DS .

Training: Similar to the training of T , we initial-
ized summarizer S using a pre-trained LM as the
backbone. We then fine-tuned summarizer S onDS
using a standard next-token prediction objective,
which maximizes the likelihood of generating the
target summary sum given the input (C, a) pair:

max
S

E((C,a),sum)∼DS log pS(sum | C, a)

To investigate the impact of incorporating full
context (denoted as f.), we trained a variant S that
generates a summary given the input (C ⊕ f., a).

6 Experiment

In this section, we aim to address the follow-
ing research questions: RQ1: How effective is
TRACSUM as a benchmark for evaluating LLMs
in aspect-based summarization with sentence-level
traceability? RQ2: To what extent does the pro-
posed evaluation method align with human judg-
ment, and what role does the evaluator play in
this process? RQ3: Which factors most signifi-
cantly impact the accuracy of traceable summariza-
tion? To address these questions, we begin by con-
ducting a preliminary evaluation of several LLMs,
including both proprietary models (e.g., GPT-4o
(Hurst et al., 2024)) and open-source models (e.g.,
LLaMA-3.1 (Grattafiori et al., 2024), Mistral (Jiang
et al., 2024), and Gemma-3 (Team et al., 2025)).

6.1 Experimental Setting
Data Preparation: The TRACSUM dataset was
randomly split into training and test sets with an

Figure 4: Distribution of test data across seven aspects.

8:2 ratio. We examined the distribution of samples
in the test set across the seven predefined aspects,
along with the proportion of positive and negative
instances for each, as shown in Figure 4. The re-
sults show that while nearly all abstracts contain
information related to Aims (A), Intervention (I),
and Outcomes (O), only 31% explicitly mention
the Duration (D) aspect. The baseline model was
fine-tuned on the training set, and both the baseline
and LLMs were evaluated on the test set.

Backbone Model Selection: The TRACK-THEN-
SUM (TTS) pipeline comprises two components
(Tracker T and Summarizer S) that can be ini-
tialized with any pre-trained LM. For consistency
and ease of deployment, we adopt Llama-3.1-8B
(Dubey et al., 2024) as the backbone for both com-
ponents, with the training details provided in §C.1.

LLMs and Prompt Setting: We selected several
widely used instruction-following LLMs for eval-
uation, as listed in Table 3. All models were eval-
uated using a two-shot prompting strategy, with
each prompt containing one positive and one nega-
tive example. To ensure consistency, each model
was prompted using its official input format with
identical content (see Table 15 in §G), and a fixed
temperature of 1.0 was used across all generations.
Larger models were accessed via their official APIs,
incurring additional usage costs (see §D).
Evaluation Setting: In the preliminary experiment,
we adopt Mistral Large (Mistral AI, 2024) as the
decomposition model E , which is used to break
down both the system-generated and reference sum-
maries into a set of atomic subclaims. For the en-
tailment evaluation, we utilize TRUE (Honovich
et al., 2022) as the evaluator ϕ. Let ϕ(p, h) denote
the output of the NLI model, where the value is 1
if the premise p entails the hypothesis h, and 0 oth-
erwise. The computation process of the evaluation
metrics is presented in Algorithm 2.

6.2 Preliminary Results

Comparison of LLMs: Table 3 shows the evalu-
ation results of various LLMs along with our pro-
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Algorithm 2: Computation Process of Evaluation Metrics
Require: decomposition model: E , NLI model: ϕ
Input: system output (sum′, C′), reference (sum, C)
Output: CLR, CIR, CLP, CIP
1: m← 0;
2: {l1, l2, ..., ln} ← E(sum);
3: foreach li ∈ {l1, l2, ..., ln}
4: if ϕ(sum′, li) == 1 then m++;
5: CLR← m/|{l1, l2, ..., ln}|
6: m← 0;
7: foreach c′i ∈ C′
8: foreach l′i ∈ {l′1, l′2, ..., l′n}
9: if ϕ(c′i, l

′
i) == 1 then m++; break;

10: CIR← m/|C|;CIP← m/|C′|;
11: {l′1, l′2, ..., l′n} ← E(sum′);
12: m← 0;
13: foreach l′i ∈ {l′1, l′2, ..., l′n}
14: if ϕ(sum, l′i) == 1 then m++;
15: CLP← m/|{l′1, l′2, ..., l′n}|;

Algorithm 2: Computation process of evaluation met-
rics. CLR: Claim Recall. CIR: Citation Recall. CLP:
Claim Precision. CIP: Citation Precision.

posed method (in two variants). We observe the
following: (1) Larger open-source models (e.g.,
LLaMA-3.1-70B, Mistral-8x7B) consistently out-
perform smaller ones across all metrics. (2) Propri-
etary models like GPT-4o and GPT-4o-mini also
perform well, with only small differences between
them. (3) Our proposed method, fine-tuned from
LLaMA-3.1-8B, shows clear improvements over
both the base model and other LLMs, particularly
on the two citation-based metrics CIR and CIP
(≥ 74.0%), demonstrating their strength in identi-
fying supporting source sentences.

Performance on Completeness and Conciseness:
As shown in Table 3, LLMs generally perform bet-
ter on completeness than on conciseness, suggest-
ing a tendency to generate content that exceeds the
scope of the reference data. This may be due to
full context visibility during generation, which can
cause the models to include content only loosely
related to the target aspects.

Does Full Context Help? In the TTS pipeline, we
extend the input to the summarizer S by including
not only the tracked sentences but also the full con-
text (i.e., the abstract). This modification allows the
TTS ⊕ f. variant to improve the claim recall CLR
(67.1% → 79.8%) of the generated summaries
without substantially compromising performance
on other metrics. With the tracker T output un-
changed, the observed gains may stem from the
full context offering useful explanations for abbre-
viations or domain-specific terminology, thereby
helping S better interpret the tracked sentences. A
detailed case analysis is provided in §E.1.

Completeness Conciseness F1 Score
Method CLR CIR CLP CIP F cl.

1 F ci.
1

Llama-3.1-8B 59.2 62.5 63.6 54.8 61.3 58.4
Llama-3.1-70B 74.7 77.9 71.3 67.7 72.9

:::
72.4

Mistral-7B 59.1 59.5 55.5 48.4 57.4 53.4
Mistral-8x7B 61.1 62.1 58.9 58.4 60.0 60.2
Gemma3-12B 62.8 66.0 58.3 55.3 60.5 60.2
Gemma3-27B 64.6 66.4 57.7 59.6 61.0 63.0
GPT-4o

:::
74.0 78.2 66.2 63.8

:::
69.9 70.3

GPT-4o-mini 67.8 76.0
:::
67.6

:::
68.4 67.7 72.0

TTS 67.1
:::
76.2 68.4 77.0 67.8 76.6

TTS ⊕ f. 79.8 74.6 67.2 75.0 73.0 74.8

Table 3: Preliminary evaluation results (%). Bold values
indicate the best performance in each metric, underlined
values indicate the second-best, and

:::::
wave

:::::::::
underlined

values indicate the third-best. ⊕ f. denotes the config-
uration where the full context is concatenated to the
input of the summarizer S. F cl.

1 and F ci.
1 represent the

F1 scores for claim and citation prediction, respectively.

6.3 Agreement with Human Evaluation
To address first sub-question of RQ2, we conducted
a human evaluation and measured the agreement be-
tween human judgments and the automatic evalua-
tion scores produced by the NLI model (TRUE) us-
ing Spearman’s correlation coefficient (ρ) (Kendall
and Gibbons, 1990) and Pearson’s correlation coef-
ficient (r) (Sheskin, 2003). We randomly sampled
ten abstracts from the test set, and the annotator
followed the procedure in Algorithm 2 to evaluate
outputs from our TTS ⊕ f., as shown in Table 4.
The results show an average Spearman’s ρ = 0.612
and Pearson’s r = 0.577, indicating a moderate
positive correlation between automatic evaluation
and human judgments. This suggests that our pro-
posed evaluation framework aligns reasonably well
with human assessments, while still leaving room
for improvement. A detailed comparison of the
final evaluation results is provided in §E.2.

Reference: Subclaims Citations→ 1, 5
1. The study included 533 patients.
2. The patients were treatment-naive.
3. The patients had unresectable stage III-IV melanoma.
TTS ⊕ f. Output: Subclaims Citations→ 1, 3, 5
1′. The study involved treatment-naive patients.
2′. The patients had unresectable stage III-IV melanoma.
3′. 533 patients received nivolumab plus ipilimumab.

NLI : reference→ s1′, s2′ ✓ ↛ s3′ ✗ CLR: 66.7%
Human: reference→ s1′, s2′, s3′ ✓ CLR: 100%
Reason: "533 patients" is found in the reference.

Table 4: A case comparing automatic and human evalu-
ation of claim recall (PMID: 37307514, Aspect: P).

6.4 Aspect-Wise Performance Analysis
To analyze the performance of the TTS ⊕ f. vari-
ant across the seven aspects, we grouped the data
by aspect and computed the four evaluation metrics
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Figure 5: Spearman (ρ) and Pearson (r) correlations between evaluators and human scores across four metrics.

Completeness Conciseness F1 Score
Aspect CLR CIR CLP CIP F cl.

1 F ci.
1

A
:::

86.3
:::
83.2 71.8 89.8 78.4 86.4

I 69.8 61.4 51.0 47.6 58.9 53.4
O 61.4 50.2 48.7 50.1 54.2 50.1
P 87.7 78.4 80.2 84.2 83.7 81.3
M 85.4 71.9

::::
75.1 73.3

:::
79.9 72.6

D 92.2 93.6 81.4 93.2 86.4 93.3
S 75.8 83.5 62.2

:::
86.8 68.3

:::
85.0

Avg. 79.8 74.6 67.2 75.0 73.0 74.8

Table 5: Aspect-wise performance of method TTS ⊕ f.

for each group, as shown in Table 5. We observed
substantial variation in the model’s performance
across different aspects. Notably, aspects O (Out-
comes) and I (Intervention) received lower scores
across all four evaluation metrics, likely because
the corresponding abstracts often contain a large
number of relevant sentences, making precise ex-
traction more challenging. In contrast, aspect D
(Duration) achieved relatively higher scores, pos-
sibly due to the fact that 69% of its test instances
are negative cases (i.e., both the summary and cita-
tion are null), which simplifies the task and makes
correct predictions easier for the model.

6.5 Ablation Studies

Comparison of Entailment Evaluators: To ad-
dress the second sub-question of RQ2, we exper-
iment with two additional instruction-following
LLMs as entailment evaluators: the proprietary
GPT-4o (Hurst et al., 2024) and the open-source
Mistral-Large (Mistral AI, 2025). Building on the
experimental setup described in §6.3, we replace
the TRUE model with each of these evaluators
to assess the outputs generated by the TTS ⊕ f.
variant. The experiment procedure and results
are described in §E.3. We then compute Spear-
man’s ρ and Pearson’s r to quantify their agree-
ment with human judgments in four metrics, as
presented in Figure 5. Our findings reveal that: (1)
both GPT-4o (ρ = 0.80; r = 0.77) and Mistral-
Large (ρ = 0.71; r = 0.70) show substantially
stronger alignment with human judgments com-
pared to TRUE (ρ = 0.61; r = 0.57); and (2)
GPT-4o achieves a higher correlation with human
judgments than Mistral-Large. We found that GPT-
4o is better at understanding abbreviations. For

instance, it correctly infers that the reference “50
participants were randomized: 23 to observation
and 27 to radiation therapy” entails the subclaim
“27 participants were assigned to the RT group”,
whereas Mistral and TRUE do not.

The Effect of Tracking Order: To address RQ3,
we design two variants by modifying the position
of the tracker T : (i) SUM-THEN-TRACK (STT)
places T after the summarizer S, where S first
generates an aspect-based summary, and T then re-
trieves source sentences relevant to that summary;
(ii) END-TO-END (ETE) removes the tracker en-
tirely and fine-tunes a single modelM to generate
both summary and citations. The experimental
procedures are detailed in §C. We evaluated STT
and ETE on the test set, with results shown in Ta-
ble 6. We observe that: (1) removing the tracker
results in a decline in citation-based performance,
highlighting the importance of explicit sentence
tracking; and (2) while STT improves claim recall,
it performs worse on other metrics, likely due to
its dependence on pre-generated summaries, which
may introduce noise or inaccuracies. These find-
ings emphasize the importance of incorporating
tracking early in the summarization process.

Completeness Conciseness F1 Score
Method CLR CIR CLP CIP F cl.

1 F ci.
1

TTS ⊕ f. 79.8 74.6 67.2 75.0 73.0 74.8
ETE 80.1 72.6 64.1 71.2 71.2 71.9
STT 81.2 62.2 58.1 66.4 67.7 64.1

Table 6: Comparison of the three tracking order variants.

7 Conclusion

Motivated by growing concerns over the factual
accuracy of system-generated summaries in the
medical domain, we present TRACSUM, a novel
benchmark for aspect-based summarization that in-
corporates sentence-level citations. This enables
users to trace source content and verify the factual
consistency of generated information. Experimen-
tal results, which show strong alignment with hu-
man judgments, demonstrate that TRACSUM can
serve as a reliable benchmark for assessing both
the completeness and conciseness of summaries
and their citations. Furthermore, we also observe
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that explicitly performing sentence-level tracking
prior to summarization enhances generation accu-
racy, while incorporating the full context further
improves summary completeness.

Limitations

Our research marks a significant step toward eval-
uating sentence-level traceability in aspect-based
summarization. Nonetheless, it has certain lim-
itations. The dataset in TRACSUM was initially
generated by Mistral Large. While this approach
helped reduce time and cost, it may also introduce
model-specific biases. To address this concern, we
implemented two mitigation strategies: (i) we con-
ducted two rounds of human evaluation, followed
by manual revision of samples with low scores or
inconsistent annotations; and (ii) we excluded Mis-
tral Large from the list of evaluated models to avoid
unfair advantages or confirmation bias.
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A Annotation Guideline

A.1 Annotation Tool
We developed a custom interactive annotation tool
to support efficient and user-friendly dataset anno-
tation, which is accessible online. The backend was
implemented in the Go programming language5,

5https://go.dev/

chosen for its performance and simplicity. The
frontend was built using the Vue.js framework6,
which enabled a responsive and intuitive user inter-
face, and PostgreSQL7 served as the database.

A.2 Consent Statement

Users first register on the tool by providing their
email address and selecting their role (medical do-
main or NLP domain). Registration is subject to
approval by an administrator. During the session,
only non-personal cookies are collected, and users
can choose whether to accept them, as shown in Ta-
ble 7. Access to the annotation interface is granted
only after the user has provided explicit consent.

- I agree to the use of the collected data for research purposes.
- I agree to the use of functional cookies on this site.

Table 7: Consent Statement.

A.3 Task Assignment

Both evaluation and annotation tasks are randomly
assigned by administrators, as illustrated in Fig-
ure 6. Each data sample is assigned to two annota-
tors from different domains—one from the medical
domain and one from the NLP domain. Annotators
were instructed not to communicate with each other
to maintain data quality and ensure the authenticity
of their responses.

Figure 6: List of tasks in the annotation tool.

A.4 Evaluation Phase

n the evaluation phase, the evaluator is required to
assess two components of the system output based
on three aspects: Completeness (Comprehensive-
ness), Conciseness (Faithfulness), and Traceability.
Each aspect is rated using a 5-point Likert scale,
with detailed scoring guidelines provided in Table 8.
On the evaluation page, the left panel displays the
content of the article (specifically, the abstract sec-
tion), while the right panel presents summary cards
corresponding to seven medical aspects. When the

6https://vuejs.org/
7https://www.postgresql.org/
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user hovers over a summary card, the relevant sen-
tences in the abstract on the left are highlighted,
as illustrated in Figure 7. The highlight remains
visible until the user hovers over another summary
card, enabling easy traceability to the correspond-
ing source sentences in the article.

Figure 7: Evaluation page in the annotation tool.

A.5 Revision Phase

Out of the 3.5K evaluated data instances, 741 (21%)
were filtered for further revision. The filtering cri-
teria were as follows: (1) the mean score for any of
the three evaluation metrics was below 3.5, or (2)
the score difference between annotators exceeded
2.0. Annotators were then instructed to revise both
the summaries and their corresponding citations
based on the evaluation results. On the revision
page, as illustrated in Figure 8, the left panel dis-
played the document content, while the right panel
showed the summary along with evaluation results
from two annotators. Annotators revised the sum-
maries and updated the sentence indices according
to the evaluation feedback.

Figure 8: Revision page in the annotation tool.

B Characteristics of the Dataset

B.1 Source Article Length

Among the 500 abstracts, the average length per
abstract was 319.89 tokens, with the longest con-
taining 1,104 tokens and the shortest containing
only 25. The distribution of token counts across
abstracts is illustrated in Figure 9a. Additionally,

each abstract contained an average of 10.42 sen-
tences, with sentence counts ranging from 1 to 32.
The distribution of sentence counts is shown in
Figure 9b.

B.2 Aspect Coverage in Abstracts

All 500 documents contained information on at
least three aspects. Among them, 118 documents
covered all seven aspects, and 211 documents cov-
ered six aspects, as illustrated in Figure 9c.

B.3 Proportion of Positive and Negative Data

We analyzed the distribution of positive and nega-
tive data samples across seven aspects, as shown
in Figure 9d. All 500 abstracts included aspect
A (Research Aims), while 499 covered aspect I
(Research Methods or Intervention) and aspect O
(Research Results or Outcomes). In contrast, as-
pect D (Treatment Duration) was less common,
appearing in only 174 abstracts. Overall, the ratio
of positive to negative samples was 2862:638.

B.4 Length of Traceable Summaries

As shown in Table 9, all 2,862 positive summaries
had an average length of 28.06 tokens, with the
longest containing 77 tokens and the shortest just
3. On average, each summary cited 1.78 sentences,
with the number ranging from 1 to 7. Among all
aspects, summaries related to aspect S (Side Ef-
fects) had the highest average token count, while
those concerning aspect I (Research Methods or
Intervention) cited the most sentences.

C Generation Pipelines

In this section, we provide a detailed description of
the design and training of our three baseline meth-
ods: TRACK-THEN-SUM, SUM-THEN-TRACK,
and END-TO-END.

C.1 TRACK-THEN-SUM

As illustrated in Figure 10, the TRACK-THEN-SUM

generation pipeline consists of two phases: tracking
and summarization. In the first phase, the tracker
module T retrieves the sentences most relevant to
the given aspect using a default threshold of 0.5. In
the second phase, the summarizer module S gen-
erates a concise summary based on the selected
sentences. Finally, the summary and the cited sen-
tences are merged to form the final system output.
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Aspect Likert Score Score Description

Completeness

★★★★★ All key relevant information from the article is accurately captured.
★★★★✩ Most key relevant information from the article is present, with minor omissions.
★★★✩✩ Some key relevant information from the article is present, but some is missing.
★★✩✩✩ Most key relevant information from the article is missing.
★✩✩✩✩ All key relevant information from the article is missing.

Completeness

★★★★★ In the generated summary, all content is relevant to this aspect.
★★★★✩ In the generated summary, most content is relevant to this aspect.
★★★✩✩ In the generated summary, some content is relevant to this aspect.
★★✩✩✩ In the generated summary, most content is irrelevant to this aspect.
★✩✩✩✩ In the generated summary, all content is irrelevant to this aspect or contains errors.

Traceability

★★★★★ All relevant sentences have been accurately traced (highlighted).
★★★★✩ Most relevant sentences have been accurately traced (highlighted).
★★★✩✩ Some relevant sentences have been accurately traced, but some are missing or irrelevant.
★★✩✩✩ Most relevant sentences have not been accurately traced.
★✩✩✩✩ None of the relevant sentences have been accurately traced.

Table 8: Evaluation Criteria and Scoring Guidelines.

(a) Distribution of token counts
across abstracts.

(b) Distribution of sentence
counts across abstracts.

(c) Aspect coverage across
abstracts.

(d) Proportion of positive and
negative data.

Figure 9: Characteristics of the TRACSUMdataset.

C.2 Tracker T
We implement the sentence tracing task as a binary
classification of sentences within the abstract.
Data Collection: We applied sentence tokeniza-
tion to each abstract in the training set. For every
sentence, we created (c, a) pairs by combining it
with each predefined aspect a ∈ A. Each pair was
labeled with a binary variable y based on the cor-
responding citations field: if the sentence index
appeared in the citations associated with aspect
a, we assigned y = 1; otherwise, y = 0. In to-
tal, we obtained 35.5K sentence-aspect-label pairs,
forming the training dataset DT .

Training: Given the constructed dataset DT , we
initialized tracker T using a pre-trained language
model (LM) as the backbone. The model was sub-
sequently fine-tuned onDT using a standard binary
classification objective which maximizes the log-
likelihood of the observed labels:

max
T

E((c,a),y)∼DT log pT (y | (c, a))

We fine-tuned the tracker T using the QLoRA
technique, initializing from the 4-bit quantized
version of the LLaMA-3.1-8B-Instruct backbone8,
on DT . To enable binary classification, we ap-
pended a lightweight classification head that maps

8Model: meta-llama/Llama-3.1-8B

the model’s output to a single scalar representing
the predicted probability. Training was conducted
on six NVIDIA A6000 GPUs with a batch size of
32, gradient accumulation steps of 2, and a total of
5 epochs. We employed a learning rate of 1×10−5,
applied a weight decay of 0.01, set the random seed
to 3407 for reproducibility, and used 200 warmup
steps. The full training process took 17 hours and
2 minutes.

C.3 Summarizer S
Data Collection: For each summary sum in the
training set, we extracted related sentences from
the abstract based on the citations field to form
the set C. Each C was paired with its associated
aspect a, and combined with the sum to form
((C, a), sum). In total, we obtained 2.8K citations-
aspect-summary pairs, forming the training dataset
DS .

Training: Similar to the training of T , we initial-
ized summarizer S using a pre-trained LM as the
backbone. We then fine-tuned summarizer S onDS
using a standard next-token prediction objective,
which maximizes the likelihood of generating the
target summary sum given the input (C, a) pair:

max
S

E((C,a),sum)∼DS log pS(sum | C, a)

The input instruction is shown in Table 16. We fine-
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Summary Citations
A I O P M D S A I O P M D S

Min 13 15 12 4 3 4 4 1 1 1 1 1 1 1
Max 56 73 77 69 77 75 75 5 7 6 5 6 5 4
Avg. 29.33 37.81 34.75 25.64 25.37 17.82 25.67 1.51 2.33 2.58 1.61 1.74 1.25 1.46

Table 9: Length of summaries (in tokens) and number of citations (in sentences) in positive samples.

Figure 10: TRACK-THEN-SUM summarization pipeline.

tuned Summarizer S using the Unsloth framework,
starting from the 4-bit version of the LLaMA-3.1-
8B-Instruct base model9, on DS . Training was per-
formed on two NVIDIA A6000 GPUs with a batch
size of 16, a gradient accumulation step size of 2,
and a total of 5 epochs. We used a learning rate of
1e-5, a weight decay of 0.01, a fixed random seed
of 3407, and 200 warmup steps. The entire training
process took 1 hour and 55 minutes. Additionally,
we adopted the train_on_responses_only strat-
egy to focus learning on relevant output segments.

C.4 TTS ⊕ f.

As mentioned in §5, our TRACK-THEN-SUM

method includes two variants, differing only in
their input. Specifically, the TTS ⊕ f. variant uses
both the set of cited sentences and the full context
(i.e., abstract) as input. The input instruction is
shown in Table 17. All other settings remain un-
changed, except for the batch size, which was set to
8. Under this configuration, training took 8 hours
and 36 minutes.

C.5 SUM-THEN-TRACK

C.5.1 Inference Overview

As illustrated in Figure 11, the SUM-THEN-TRACK

method consists of two phases: summarization and
tracking. In the first phase, the summarizer S gen-
erates an aspect-specific summary sum from an
abstract d based on a given aspect a. In the second
phase, the tracker T identifies the sentences most
relevant to this summary using a default similar-
ity threshold of 0.5. Finally, the summary and the
corresponding sentences are combined to form the
final output, as shown in Algorithm 3.

9Model: unsloth/Meta-Llama-3.1-8B-Instruct-bnb-4bit

Algorithm 3: SUM-THEN-TRACK Inference
Require: Tracker T , Summarizer S
Input: article d = {c1, c2, ..., cn} and aspect a ∈ A
Output: summary sum and its citations C′
1: sum← S(a, d);
2: C′ ← ∅;
3: foreach ci ∈ {c1, c2, ..., cn}
4: T predict relevance given (sum, ci);
5: if relevance == Yes then append c to C′;

Algorithm 3: SUM-THEN-TRACK inference process.

C.5.2 Summarizer S
Data Collection: We extracted abstract, aspect,
and summary fields from the training set, resulting
in 2.8K ((d, a), sum) pairs, denoted as DS .

Training: We then initialized summarizer S using
a pre-trained LM as the backbone. We then fine-
tuned summarizer S on DS using a standard next-
token prediction objective, which maximizes the
likelihood of generating the target summary sum
given the input (d, a) pair:

max
S

E((d,a),sum)∼DS log pS(sum | d, a)

The input instruction is shown in Table 18. We fine-
tuned Summarizer S using the Unsloth framework,
starting from the 4-bit version of the LLaMA-3.1-
8B-Instruct base model, on DS . Training was per-
formed on two NVIDIA A6000 GPUs with a batch
size of 8, a gradient accumulation step size of 2,
and a total of 5 epochs. We used a learning rate of
1e-5, a weight decay of 0.01, a fixed random seed
of 3407, and 200 warmup steps. The entire training
process took 7 hour and 32 minutes. Additionally,
we adopted the train_on_responses_only strat-
egy to focus learning on relevant output segments.

C.5.3 Tracker T
Data Collection: We first applied sentence tok-
enization to all abstracts in the training set. For
each abstract, every sentence c was paired with
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Figure 11: SUM-THEN-TRACK method pipeline.

each summary sum, forming (c, sum) pairs. Each
pair was then labeled with y based on the citations
field. This process resulted in 35.5k ((c, sum), y)
pairs, denoted as DT .

Training: Given the constructed dataset DT , we
initialized tracker T using a pre-trained language
model (LM) as the backbone. The model was sub-
sequently fine-tuned onDT using a standard binary
classification objective which maximizes the log-
likelihood of the observed labels:

max
T

E((c,sum),y)∼DT log pT (y | (c, sum))

We fine-tuned the tracker T using the QLoRA
technique, initializing from the 4-bit quantized
version of the LLaMA-3.1-8B-Instruct backbone,
on DT . To enable binary classification, we ap-
pended a lightweight classification head that maps
the model’s output to a single scalar representing
the predicted probability. Training was conducted
on six NVIDIA A6000 GPUs with a batch size of
32, gradient accumulation steps of 2, and a total of
5 epochs. We employed a learning rate of 1×10−5,
applied a weight decay of 0.01, set the random seed
to 3407 for reproducibility, and used 200 warmup
steps. The full training process took 22 hours and
12 minutes.

C.6 END-TO-END

The END-TO-END approach employs a single
modelM, to jointly perform summarization and
sentence tracking, as shown in Figure 12.

C.6.1 Inference Phase
Given a abstract d and an aspect a ∈ A,M gener-
ates a summary focused on a and C′ on which the
summary relies, as illustrated in Algorithm 4.

Figure 12: END-TO-END generation pipeline.

C.6.2 Training Phase

Data Collection. We extracted abstract, aspect,
summary, and citations fields from the training
set and then combined them into ((d, a), (sum,
C)) pairs. As a result, we obtained 2.8K training
instances, denoted by DM.

Training. We then initializedM with a pre-trained
LM and trained it on DM using a standard condi-
tional language modeling objective, maximizing
the likelihood:

max
M

E((d,a),(sum,C))∼DM log pM(sum, C | d, a)

The input instruction is shown in Table 19. We
fine-tunedM using the Unsloth framework, start-
ing from the 4-bit version of the LLaMA-3.1-8B-
Instruct base model, on DM. Training was per-
formed on two NVIDIA A6000 GPUs with a batch
size of 8, a gradient accumulation step size of 2,
and a total of 5 epochs. We used a learning rate of
1e-5, a weight decay of 0.01, a fixed random seed
of 3407, and 200 warmup steps. The entire training
process took 8 hours and 16 minutes. Additionally,
we adopted the train_on_responses_only strat-
egy to focus learning on relevant output segments.

D API Cost

D.1 Dataset Collection Costs

We initially generated our dataset with the free
credits provided by the Mistral-Large API, so the
cost for this part is $0.

D.2 Evaluation Costs

We incurred approximately $4.085 in API costs
to obtain results from eight different models on
the test set, as detailed in Table 10. The test set
comprises 700 data samples, each formatted into
prompts, resulting in approximately 100K input
tokens in total. The number of output tokens varies
across LLMs; standard text generation models typ-
ically produce around 50K output tokens.

859



Model API Src. Input Prices Output Prices Input Length Output Length Costs
Llama-3.1-8B-Inst. DeepInfra $0.03 $0.05 131K 8K $0.030
Llama-3.3-70B-Inst. DeepInfra $0.23 $0.40 131K 8K $0.250
Mistral-7B-Inst (V0.3). DeepInfra $0.029 $0.055 32K 8K $0.040
Mistral-8x7B-Inst. DeepInfra $0.24 $0.24 131K 4K $0.600
Gemma-3-12B-Inst. DeepInfra $0.05 $0.100 128K 8K $0.070
Gemma-3-27B-Inst. DeepInfra $0.10 $0.20 128K 8K $0.110
GPT-4o OpenAI $2.50 $10.0 128K 16K $2.838
GPT-4o-mini OpenAI $0.15 $0.60 128K 16K $0.147

SUM : $4.085

Table 10: Details on the use of different model APIs.

Algorithm 4: END-TO-END Inference
Require: ModelM
Input: article d = {c1, c2, ..., cn} and aspect a ∈ A
Output: summary sum and its citations C′
1: C′ ← ∅;
2: (sum, C′)←M(a, d);

Algorithm 4: END-TO-END inference process.

E Experiment Analysis

E.1 Full Context ⊕ C vs. C only

In this section, we present an example to illustrate
how incorporating full context impacts summary
generation and, in turn, affects claim recall. When
the cited sentences (i.e., the tracker T output) re-
main fixed, providing the full document as addi-
tional input enables the summarizer S to better
resolve abbreviations and domain-specific termi-
nology, thereby enhancing claim recall. As shown
in Table 11, TTS⊕f resolves the abbreviation “RT”
as “radiation therapy”, which leads the NLI model
(TRUE) to determine that the subclaim is entailed
by the reference text during entailment evaluation.
This results in an increase in the overall claim recall
score from 2/4 to 3/4.

However, providing additional context beyond
the cited sentences may cause the summarizer S to
incorporate irrelevant or unsupported information
(i.e., content not present in the cited sentences),
which could reduce claim precision or citation-
based metrics. Nonetheless, our evaluation results
do not show a noticeable drop in other metrics.
This may be attributed to the instruction explicitly
directing the summarizer S to generate summaries
strictly based on the cited sentences, with the addi-
tional context serving only as reference.

E.2 Agreement with Human Evaluation

To evaluate the relationship between the system
outputs and task-level evaluation scores, we em-
ploy both Spearman’s correlation coefficient (ρ)
(Kendall and Gibbons, 1990) and Pearson’s cor-
relation coefficient (r) (Sheskin, 2003). Pearson’s
r measures the strength of a linear relationship

Reference: Summary Citations→ 0, 1, 7
1′. A total of 50 participants were involved in the study.
2′. Participants with cutaneous neurotropic melanoma of
the head and neck.
3′. 23 participants were assigned to the observation group.
4′. 27 participants were assigned to the radiation therapy
group.
Citation 0: BACKGROUND: Cutaneous neurotropic melanoma (NM)
of the head and neck (H&N) is prone to local relapse, possibly due to
difficulties widely excising the tumor. Citation 1: This trial assessed
radiation therapy (RT) to the primary site after local excision. Citation 7:
During 2009-2020, 50 participants were randomized: 23 to observation and
27 to RT.

TTS Output: Subclaims Citations→ 7
1′. A total of 50 participants were randomized in the study.
2′. 23 participants were assigned to the observation group.
3′. 27 participants were assigned to the RT group.
(TRUE) Claim Recall: 2/4. 1′: ✓, 2′: ✓, 3′: ✗

TTS ⊕ f. Output: Subclaims Citations→ 7
1′. A total of 50 participants were randomized in the study.
2′. 23 participants were assigned to the observation group.
3′. 27 participants were assigned to the radiation therapy
(RT) group.
(TRUE) Claim Recall: 3/4. 1′: ✓, 2′: ✓, 3′: ✓

Table 11: An example of summaries generated by TTS
and TTS ⊕f , along with their claim recall comparison
(PMID: 38851639, Aspect: Patients).

between two continuous variables, which is appro-
priate when assuming interval-scaled outputs and
normally distributed scores (Benesty et al., 2009).
In contrast, Spearman’s ρ captures monotonic re-
lationships based on rank order, making it more
robust to non-linear patterns and outliers (Hauke
and Kossowski, 2011). Using both metrics provides
a comprehensive view of how well the automatic
system outputs align with human-centric evalua-
tion criteria, accounting for both linear trends and
ordinal consistency.

Specifically, we randomly sampled ten abstracts
from the test set, and asked the annotator to follow
the procedure in Algorithm 2 to assess outputs from
the best-performing method (TTS ⊕ f.) using four
evaluation metrics. As indicated in Table 12, hu-
man evaluations score higher than the TRUE model
on most metrics, achieving an F1 score of 74.3 for
claims and 76.2 for citations quality. For each
of the four evaluation metrics, we computed the
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Completeness Conciseness F1 Score

Evaluator CLR CIR CLP CIP F cl.
1 F ci.

1

Human 81.1↑ 74.3↑ 68.6↑ 78.1↓ 74.3↑ 76.2↓
TRUE 78.2 73.4 65.7 79.5 71.4 76.3

Table 12: Comparison of evaluation results between
human annotator and the TRUE model on 10 sampled
abstracts.

Figure 13: Spearman’s correlation coefficient (ρ) and
Pearson’s correlation coefficient (r) between TRUE and
human evaluation scores across four evaluation metrics.

Spearman correlation coefficient (ρ) and Pearson
correlation coefficient (r) between the automatic
evaluation results and human judgments. As shown
in Figure 13, the Spearman correlation coefficient
between human and automatic evaluation results is
ρ = 0.612, and the Pearson correlation coefficient
is r = 0.577. The agreement is relatively lower for
claim-related metrics, whereas citation-related met-
rics demonstrate stronger consistency with human
judgments.

E.3 Comparison of Entailment Evaluators
We experiment with two additional instruction-
following LLMs as entailment evaluators: the pro-
prietary GPT-4o (Hurst et al., 2024) and the open-
source Mistral-Large (Mistral AI, 2025). Build-
ing on the experimental setup described in §6.3,
we replace the TRUE model with each of these
evaluators to assess the outputs generated by the
TTS ⊕ f. variant. The evaluation results are pre-
sented in Table 13. Among the models, GPT-4o
produces scores that most closely align with human
judgments, followed by Mistral.

Completeness Conciseness F1 Score
Evaluator CLR CIR CLP CIP F cl.

1 F ci.
1

Human 81.1 74.3 68.6 78.1 74.3 76.2
TRUE 78.2 73.4 65.7 79.5 71.4 76.3

GPT-4o 80.2 77.1 67.0 76.2 73.0 76.7
Mistral 75.6 76.8 70.1 74.5 72.8 75.6

Table 13: Comparison of evaluation results between
human annotator and three entailment evaluators on 10
sampled abstracts.
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F Data Samples of TRACSUM Dataset

PMID abstract aspect summary citations ...

31638282

The multinational phase 3 CheckMate
238 trial compared adjuvant therapy
with nivolumab versus ipilimumab
among patients with resected stage III
or IV melanoma (N = 906)...

d Unknown. [] ...

33294860

In this study, we incorporate anal-
yses of genome-wide sequence and
structural alterations with pre- and on-
therapy transcriptomic and T cell reper-
toire features in immunotherapy-naive
melanoma patients treated with ...

a

The study aims to predict response
to immune checkpoint blockade by
integrating genomic, transcriptomic,
and immune repertoire data.

[ 4 ] ...

34650833

Combination immunotherapy with
sequential administration may en-
hance metastatic melanoma (MM) pa-
tients with long-term disease control.
High Dose Aldesleukin/Recombinant
Interleukin-2 (HD rIL-2) and ipili-
mumab (IPI) offer...

m

The study used High Dose
Aldesleukin/Recombinant
Interleukin-2 (HD rIL-2) at
600,000 IU/kg and ipilimumab (IPI)
at 3 mg/kg.

[ 1, 3 ] ...

37479483

BACKGROUND: Continuous combi-
nation of MAPK pathway inhibition
(MAPKi) and anti-programmed death-
(ligand) 1 (PD-(L)1) showed high re-
sponse rates, but only limited im-
provement in progression-free survival
(PFS) at the cost of a high frequency...

p

The study involved 33 patients with
treatment-naïve BRAFV600E/K-
mutant advanced melanoma, with
32 randomized into four cohorts.

[ 3, 8 ] ...

33593880

PURPOSE: Triple-negative breast can-
cer (TNBC) is an aggressive disease
with limited therapeutic options. An-
tibodies targeting programmed cell
death protein 1 (PD-1)/PD-1 ligand 1
(PD-L1) have entered the therapeutic
landscape in TNBC, but only a minor-
ity of patients benefit. A way to reli-
ably enhance immunogenicity, T-cell
infiltration, and predict responsiveness
is critically needed. PATIENTS AND
METHODS: Using mouse models of
TNBC...

i

This study used mouse models of
TNBC to evaluate immune activa-
tion and tumor targeting of intra-
tumoral IL12 plasmid followed by
electroporation (Tavo), conducted a
single-arm prospective clinical trial
of Tavo monotherapy in patients
with treatment-refractory advanced
TNBC, and expanded findings using
publicly available breast cancer and
melanoma datasets.

[ 3, 4, 5 ] ...

38870745

BACKGROUND: Treatment op-
tions for immunotherapy-refractory
melanoma are an unmet need. The
MASTERKEY-115 phase II, open-
label, multicenter trial evaluated
talimogene ...

s

Treatment-related adverse events
(TRAEs), including grade ≥3
TRAEs, serious AEs, and fatal AEs,
occurred in 76.1%, 12.7%, 33.8%,
and 14.1% of patients, respectively.

[ 11 ] ...

33127652

PURPOSE: Increased β-adrenergic
receptor (β-AR) signaling has been
shown to promote the creation of an
immunosuppressive tumor microenvi-
ronment (TME) ...

o

The combination of propranolol
with pembrolizumab in treatment-
naïve metastatic melanoma is safe
and shows very promising activity
with an objective response rate of
78%.

[ 12,14 ] ...

Table 14: Seven traceable aspect-based summary samples from TRACSUM dataset.
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G Instructions And Demonstration

G.1 LLM Prompt Template

Instructions
Given a document consisting of a set of sentences with a marker attached to the head of each sentence. Based on the
demonstrations, please summarize the

::::::
research

::::::::
questions

::
or

:::
aims of this study in one sentence and output the sentence markers

involved. If there is no relevant information in the document, answer "Unknown".
Document
‘[ "0: The EORTC-STBSG coordinated two large trials of adjuvant chemotherapy (CT) in localized high-grade soft tissue
sarcoma (STS).", "1: Both studies failed to demonstrate any benefit on overall survival (OS).", "2: The aim of the analysis of
these two trials was to identify subgroups of patients who may benefit from adjuvant CT." "3: Individual patient data from two
EORTC trials comparing doxorubicin-based CT to observation only in completely resected STS (large resection, R0/marginal
resection, R1) were pooled.", ... ]’
Summary: .
Citations: .
Demonstrations
Document
‘[ "0: Giant cell tumor of bone (GCTB) is an aggressive primary osteolytic tumor.", "1: GCTB often involves the epiphysis,
usually causing substantial pain and functional disability.", "2: Denosumab, a fully human monoclonal antibody against
receptor activator of nuclear factor KB ligand (RANKL), is an effective treatment option for patients with advanced GCTB.",
"3: This analysis of data from an ongoing, open-label study describes denosumab’s effects on pain and analgesic use in patients
with GCTB. " "4: Patients with unresectable disease (e.g. sacral or spinal GCTB, or multiple lesions including pulmonary
metastases) were enrolled into Cohort 1 (N = 170), and patients with resectable disease whose planned surgery was associated
with severe morbidity (e.g. joint resection, limb amputation, or hemipelvectomy) were enrolled into Cohort 2 (N = 101).", ... ]’
Summary: The study aims to evaluate the effects of denosumab on pain and analgesic use in patients with giant cell tumor of
bone (GCTB).
Citations: [3]

Document
‘[ "0: Common adverse events associated with nivolumab included fatigue, pruritus, and nausea.", "1: Drug-related adverse
events of grade 3 or 4 occurred in 11.7% of the patients treated with nivolumab and 17.6% of those treated with dacarbazine."
"2: Nivolumab was associated with significant improvements in overall survival and progression-free survival, as compared
with dacarbazine, among previously untreated patients who had metastatic melanoma without a BRAF mutation.", "3: (Funded
by Bristol-Myers Squibb; CheckMate 066 ClinicalTrials.gov number, NCT01721772.)." ]’
Summary: Unknown.
Citations: Null.

Table 15: Instructions and demonstrations for generating summaries on aspect A (research aims). The
::
text denotes

placeholders to be replaced with aspect-specific descriptions.

G.2 Instruction for summarizer S in TRACK-THEN-SUM

Instructions
Summarize the

::::::
research

::::
aims

::
or

:::::::
questions of the study in one clear sentence that includes all key details from the input sentences

without omitting important information.

Sentences
‘[ "The EORTC-STBSG coordinated two large trials of adjuvant chemotherapy (CT) in localized high-grade soft tissue sarcoma
(STS).", "Both studies failed to demonstrate any benefit on overall survival (OS).", "The aim of the analysis of these two trials
was to identify subgroups of patients who may benefit from adjuvant CT." "Individual patient data from two EORTC trials
comparing doxorubicin-based CT to observation only in completely resected STS (large resection, R0/marginal resection, R1)
were pooled." ]’

Summary:

Table 16: Instruction used to generate summaries for aspect A (research aims) in the summarization component of
TRACK-THEN-SUM. The

:::
text denotes placeholders to be replaced with aspect-specific descriptions.
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G.3 Instruction for summarizer S (⊕ full context) in TRACK-THEN-SUM

Instructions
Summarize the

::::::
research

::::
aims

::
or

:::::::
questions of the study in one clear sentence that includes all key details from the input sentences

without omitting important information. The summary must be based solely on the provided sentences. The full text is for
reference only and must not be used to introduce any new information not present in the sentences.

Sentences
‘[ "The aim of the analysis of these two trials was to identify subgroups of patients who may benefit from adjuvant CT."
"Individual patient data from two EORTC trials comparing doxorubicin-based CT to observation only in completely resected
STS (large resection, R0/marginal resection, R1) were pooled." ]’

Full Context
‘[ "The EORTC-STBSG coordinated two large trials of adjuvant chemotherapy (CT) in localized high-grade soft tissue sarcoma
(STS).", "Both studies failed to demonstrate any benefit on overall survival (OS).", "The aim of the analysis of these two trials
was to identify subgroups of patients who may benefit from adjuvant CT." "Individual patient data from two EORTC trials
comparing doxorubicin-based CT to observation only in completely resected STS (large resection, R0/marginal resection, R1)
were pooled.", ... ]’

Summary:

Table 17: Instruction used to generate summaries for aspect A (research aims) in the summarization component of
TRACK-THEN-SUM (⊕ f.). The

:::
text denotes placeholders to be replaced with aspect-specific descriptions.

G.4 Instruction for summarizer S in SUM-THEN-TRACK

Instructions
Summarize the

::::::
research

::::
aims

::
or

:::::::
questions of the study in one clear sentence based on the given article.

Article
‘[ "The EORTC-STBSG coordinated two large trials of adjuvant chemotherapy (CT) in localized high-grade soft tissue sarcoma
(STS).", "Both studies failed to demonstrate any benefit on overall survival (OS).", "The aim of the analysis of these two trials
was to identify subgroups of patients who may benefit from adjuvant CT." "Individual patient data from two EORTC trials
comparing doxorubicin-based CT to observation only in completely resected STS (large resection, R0/marginal resection, R1)
were pooled.", ... ]’

Summary:

Table 18: Instruction used to generate summaries for aspect A (research aims) in the summarization component of
SUM-THEN-TRACK. The

:::
text denotes placeholders to be replaced with aspect-specific descriptions.

G.5 Instruction for modelM in END-TO-END

Instructions
Given an article, summarize the

::::::
research

::::
aims

::
or

:::::::
questions of the study in one clear sentence and output the index of the cited

sentences.

Sentences
‘[ "0: The EORTC-STBSG coordinated two large trials of adjuvant chemotherapy (CT) in localized high-grade soft tissue
sarcoma (STS).", "1: Both studies failed to demonstrate any benefit on overall survival (OS).", "2: The aim of the analysis of
these two trials was to identify subgroups of patients who may benefit from adjuvant CT." "3: Individual patient data from two
EORTC trials comparing doxorubicin-based CT to observation only in completely resected STS (large resection, R0/marginal
resection, R1) were pooled.", ... ]’

Summary:
Citations:

Table 19: Instruction used to generate summaries for aspect A (research aims) in the END-TO-END. The
:::
text

denotes placeholders to be replaced with aspect-specific descriptions.
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