AnchorAttention: Difference-Aware Sparse Attention with Stripe
Granularity

Yu Zhang'*, Dong Guo®*, Fang Wu',
Guoliang Zhu*, Dian Ding?', Yiming Zhang?''f
'Xiamen University, 2Shanghai Jiao Tong University, 3Xi’an Jiaotong University, “‘GMICloud

Abstract

Large Language Models (LLMs) with extended
context lengths face significant computational
challenges during the pre-filling phase, primar-
ily due to the quadratic complexity of self-
attention. Existing methods typically employ
dynamic pattern matching and block-sparse
low-level implementations. However, their re-
liance on local information for pattern identi-
fication fails to capture global contexts, and
the coarse granularity of blocks leads to per-
sistent internal sparsity, resulting in subop-
timal accuracy and efficiency. To address
these limitations, we propose AnchorAtten-
tion, a difference-aware, dynamic sparse atten-
tion mechanism that efficiently identifies crit-
ical attention regions at a finer stripe granu-
larity while adapting to global contextual in-
formation, achieving superior speed and ac-
curacy. AnchorAttention comprises three key
components: (1) Pattern-based Anchor Com-
putation, leveraging the commonalities present
across all inputs to rapidly compute a set
of near-maximum scores as the anchor; (2)
Difference-aware Stripe Sparsity Identifi-
cation, performing difference-aware compar-
isons with the anchor to quickly obtain discrete
coordinates of significant regions in a stripe-
like sparsity pattern; (3) Fine-grained Sparse
Computation, replacing the traditional con-
tiguous KV block loading approach with si-
multaneous discrete KV position loading to
maximize sparsity rates while preserving full
hardware computational potential. With its
finer-grained sparsity strategy, AnchorAtten-
tion achieves higher sparsity rates at the same
recall level, significantly reducing computation
time. Compared to previous state-of-the-art
methods, at a text length of 128k, it achieves
a speedup of 1.44x while maintaining higher
recall rates.

*Equal contribution

fCorresponding author

Sequential

Sequential

a1 [T
53—

Parallel
Parallel

fekeaks - keakaks -

(a) Block sparse (b) Stripe sparse

Figure 1: (a) Block-sparse pattern, with yellow regions
indicating computed blocks; (b) Stripe-sparse pattern,
with red regions showing computed areas, enabling
higher sparsity by loading non-contiguous positions
across multiple blocks.

1 Introduction

Large Language Models (LLMs) have brought
transformative advancements to numerous domains
by enabling sophisticated natural language under-
standing and generation(Zhou et al., 2024; Kaddour
et al., 2023; Qin et al., 2024). However, as the sup-
ported context lengths continue to increase, the
inference cost — particularly in the prefill phase —
has become a major bottleneck. This is primarily
due to the quadratic computational complexity of
full-attention mechanisms with respect to sequence
length, which leads to significant efficiency issues
in long-sequence inference tasks.

To mitigate the computational overhead during
the prefill phase, FlashAttention (Dao et al., 2022)
leverages memory transfer disparities across hard-
ware hierarchies and incorporates the online Soft-
max algorithm (Milakov and Gimelshein, 2018),
thereby significantly reducing transmission costs at
the hardware level. Meanwhile, several studies (Li
et al., 2024; Zhang et al., 2023; Fu et al., 2024;
Yang et al., 2024) have revealed the inherent spar-
sity in attention mechanisms, demonstrating that
retaining only a small subset of key-value (KV)
pairs is sufficient to preserve model accuracy. How-

8537

Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing, pages 8537-8549
November 4-9, 2025 ©2025 Association for Computational Linguistics



I Flash Attention
B Flex_Prefill
= ours

ak 8 16k 32k 6dk 128k
Context Length

Figure 2: Acceleration of attention computation com-
pared to FlashAttention, where our method provides
significant speedup under a 128k context length.

ever, these methods still rely on computing full
attention scores to identify the retained KV subset
and therefore do not reduce the runtime cost during
the prefill phase. Recent efforts have attempted
to exploit sparsity to optimize prefill computation.
For example, Streamingl.LM (Xiao et al., 2024) in-
troduces a sparse pattern that retains only local and
initial positions during computation, significantly
accelerating attention, but often missing essential
information from intermediate content. Minfer-
ence (Jiang et al., 2024) proposes that attention pat-
terns follow multiple sparse modes and accelerate
computation by applying offline-searched sparse
configurations. However, its static design cannot
adapt to diverse input patterns and often fails to
select the optimal mode configuration. FlexPre-
fill (Lai et al., 2025) improves upon this by dynam-
ically selecting patterns online, yet its selection
heavily depends on local information, limiting its
generality. SpargeAttn (Zhang et al., 2025) and
X-Attention (Xu et al., 2025) attempt to identify
informative blocks using similarity-based or diago-
nal priors. However, these designs primarily target
general-purpose models and lack specialized mech-
anisms for language model characteristics, particu-
larly in exploiting architectural properties like the
attention sink(Xiao et al., 2024) phenomenon. On
the other hand, as shown in Fig. 1a, existing meth-
ods typically rely on coarse-grained block-level
KV selection in attention computation, which is
misaligned with the naturally fine-grained sparsity
observed in attention maps (see Fig. 3b), inevitably
leading to redundant attention computations.

To address these challenges, we propose An-
chorAttention, a difference-aware sparse attention
strategy with stripe granularity. AnchorAttention
introduces a sparsity mechanism centered around
the concept of an anchor, inspired by the common

structural patterns observed in attention distribu-
tions across all inputs. We observe that the maxi-
mum values after dot-product computations consis-
tently emerge at initial or local window positions.
We therefore extract the maximum score from these
regions and designate it as the anchor. The im-
portance of other positions is then determined by
directly comparing their values against the anchor,
effectively bypassing expensive sorting operations.
In contrast to traditional block-level sparsity meth-
ods (Zhang et al., 2025; Xu et al., 2025; Lai et al.,
2025; Jiang et al., 2024; Yang et al., 2025), Anchor-
Attention adopts a more flexible stripe-level spar-
sity strategy, reducing the identification granularity
from coarse blocks to finer-grained stripes and en-
abling higher sparsity rates. During sparse compu-
tation, we maintain the same computation flow as
FlashAttention(Dao et al., 2022), with the primary
modification being the replacement of the contigu-
ous KV loading scheme with a discrete KV load-
ing approach. Compared to block-sparsity-based
strategies, this enables us to enhance recognition
precision while preserving parallel computation
efficiency. AnchorAttention comprises the follow-
ing three steps:Pattern-based Anchor Computa-
tion: We observe that the distribution of the most
significant values remains fixed and stable across
various input transformations. We first compute
these values and designate the obtained approxi-
mate maximum value as the anchor. Difference-
aware Stripe Sparsity Identification: Compared
to block sparsity, we adopt a finer-grained stripe
sparsity approach. By performing dot-product com-
putations between the compressed query and the
full set of keys, we use direct comparisons with the
anchor’s difference to rapidly identify which keys
and values are significant, avoiding costly sorting
operations. Fine-grained Sparse Computation:
We transition from block sparsity’s continuous KV
loading to discrete KV loading. During compu-
tation, we maintain block-based computations to
maximize sparsity while preserving parallel com-
puting capabilities.

We evaluate AnchorAttention on Llama-3.1-
8B-Instruct (Touvron et al., 2023) and Qwen2.5-
7B-Instruct(Qwen et al., 2025) across various
context lengths. The benchmarks used include
RULER (Hsieh et al., 2024), Needle In A
Haystack (Kamradt, 2023), and Longbench (Bai
et al., 2024). All of our experiments are conducted
under context lengths up to 128k. Our goal is not

8538



to endlessly extend the context length while rely-
ing on simple-task performance as the evaluation
metric but rather to approximate full attention with
minimal computation. Therefore, we adopt recall
as the primary evaluation metric. Under this crite-
rion, our method surpasses the state-of-the-art Flex-
Prefill (Lai et al., 2025) in recall while achieving
a 1.44 x speedup. Compared to full KV FlashAt-
tention (Dao et al., 2022), our method achieves
a 4.6 x speedup, significantly reducing attention
computation time. The results demonstrate that
AnchorAttention delivers substantial acceleration
while preserving model accuracy. Under this crite-
rion, our method surpasses the state-of-the-art Flex-
Prefill (Lai et al., 2025) in recall while achieving
a 1.44x speedup. Compared to full KV FlashAt-
tention (Dao et al., 2022), our method achieves
a 4.6x speedup without sacrificing accuracy, as
shown in Fig. 2, significantly reducing attention
computation time. These results demonstrate that
AnchorAttention delivers substantial acceleration
while preserving model accuracy.

inputy

input,

stripe sparse

head;

head,

last q sparse

v

(a) Heatmaps of different in- (b) Stripe sparse and local in-
puts formation sparse

Figure 3: (a) Heatmaps vary significantly across differ-
ent inputs. (b) Stripe sparse appears in specific attention
maps, demonstrating that local information fails to cap-
ture the full attention distribution.

2 Analysis and Observation

2.1 Analysis

In this section, we primarily analyze the impact
of identification schemes and identification gran-
ularities on the final recall rate, elucidating how
different identification approaches and granulari-
ties affect the output.

2.1.1 Performance of Different Identification
Schemes in Sparsity Strategies

Previous work has widely adopted top-k(Xiao et al.,

2024; Li et al., 2024; Holmes et al., 2024; Tang

etal., 2024; Liu et al., 2024a) and top-cdf(Lai et al.,

2025) strategies to identify important positions in
sparsity strategies. In the top-k strategy, the value
of k is fixed. As shown in Figure 4a, this static
selection of &k can result in some heads having re-
call rates well below the target, prompting prior
methods to assign different k values for different
heads. However, such static k settings often per-
form poorly with dynamic inputs, as further de-
tailed in Appendix B. To address this limitation,
some methods employ the top-cdf strategy (see
Figure 4b), which ensures each head meets the de-
sired recall rate by computing cumulative attention
scores. However, both approaches rely on sort-
ing, incurring significant computational overhead.
In contrast, the difference-aware strategy (see Fig-
ure 4¢) begins with a known maximum value and
directly subtracts other values to obtain the dif-
ferences. If the difference exceeds a predefined
threshold, subsequent computations are skipped.
This method eliminates the need for sorting opera-
tions and achieves performance comparable to that
of top-cdf, while the maximum value, as discussed
in Section 2.2.2, can be obtained with minimal
computational overhead.

Method Recall Rate  Sparsity Rate
Block (Top-K=256) 88.5% 56.3%
Stripe (Top-K=16384) 91.2% 76.6%

Table 1: Comparison of block and stripe granularity
in sparsity strategies for LLaMA-3.1-8B-Instruct on
the 128k Ruler(Hsieh et al., 2024) dataset, where the
stripe granularity achieves higher recall at higher spar-
sity rates.

2.1.2 Performance of Different Identification
Granularities in Sparsity Strategies

In Section 2.1.1, we systematically analyze the im-
pact of various strategies on the final recall rate.
However, identifying these positions typically re-
quires computing full attention scores, which pro-
vides only limited acceleration for attention com-
putation itself. Many existing methods rely on
underlying block-sparse attention implementations
and adopt different block identification schemes.
Yet, as discussed in Section 2.2.1, not all elements
within a block are equally important; the heatmap
often exhibits stripe-shaped sparsity. To alleviate
the overly coarse block granularity, we simplify the
block size to retain only the column dimension and
set the row dimension to 1, which we term “stripe
granularity.”

8539



Recall Rate(92.3%)

Recall Rate(77.0%)

Recall Rate(89.88%)

[T
n
i . e S
12 16 20 24 28 0 4 8

Head

o 4 8
Head

(a) Top-K(4096)

12 16 20 24 28 o 4 8

(b) Top-CDF(0.95)

|

12 16 20 24 28
Head

(c) Difference-Aware(11)

Figure 4: Recall heatmaps of sparsity strategies using LLaMA-3.1-8B-Instruct on the 128k Ruler(Hsieh et al.,
2024) dataset, with average sparsity rates of 93.7% (a), 96.4% (b), and 94.1% (c), and corresponding recall rates of
92.3% (a), 77.0% (b), and 89.88% (c). Additional heatmap analyses for other inputs are provided in Appendix A,
where the numbers in parentheses indicate the parameter choices. These results demonstrate the limitations of the
top-k strategy across different inputs, while the difference-based comparison achieves performance consistent with
top-cdf. Recall is defined as the percentage of attention values that are numerically equal between the current sparse

attention and the full attention(Jiang et al., 2024).

Through a comparison between the stripe-
granularity strategy and traditional block-sparse
identification (block granularity (128,128) vs.
stripe granularity (128,1)), we evaluate the achiev-
able sparsity rates under equivalent recall thresh-
olds. As shown in Table 1, the stripe-granularity
approach attains higher sparsity rates at compara-
ble or higher recall targets. Moreover, from an
implementation perspective in Triton, the inner
loop with discrete KV loading only requires the
corresponding indices; on widely used hardware
such as the A100, the computational overhead is
nearly identical at the same sparsity level. These re-
sults provide an implementation-level, stripe-based
sparsification alternative to traditional block-sparse
methods.

2.2 Observation

In this section, we primarily discuss our observa-
tions of attention patterns, where sparsity exhibits
broad dynamism while simultaneously maintaining
consistent static properties.

2.2.1 Diversity of Sparse Attention Patterns

Sparse attention patterns are prevalent in large lan-
guage models, yet the sparsity distribution within a
single attention head varies significantly due to in-
put content(Lai et al., 2025). As shown in Figure 3a,
different inputs yield distinct sparsity patterns, in-
dicating that static pattern recognition cannot adapt
to dynamic inputs, necessitating more flexible
sparsity strategies. Additionally, Figure 3b shows
that critical information often appears at a finer

granularity, concentrating in only a few columns
and forming a striped pattern in the heatmap. This
phenomenon highlights that using block sparsity
as the minimum granularity fails to fully leverage
sparsity, underscoring the need for finer-grained
selection strategies.

Moreover, Figure 3b demonstrates that relying
solely on the local information from the last query
fails to reconstruct the full attention heatmap(Jiang
et al., 2024; Lai et al., 2025), as these stripes may
vanish at the end, highlighting that local informa-
tion lacks generalizability and requiring broader
positional data.

2.2.2 Commonality of Sparse Attention
Patterns

Although sparsity patterns vary significantly across
different models, certain consistent features remain
prominent. As shown in Figures 3a and 3b, the at-
tention scores at the local window positions and
the initial token position are consistently critical.
We further analyze these positions in Figure 5, ex-
amining the first token and a local window of 128
tokens under a 128k context length. The results
show that in the LLaMA (Touvron et al., 2023)
model, approximately 99% of the highest attention
scores are concentrated in these regions, whereas in
the Qwen (Qwen et al., 2025) model, the proportion
is around 90%. Although prior works (Xiao et al.,
2024; Jiang et al., 2024) have identified the impor-
tance of these positions and focused on preserving
them, their potential for guiding the construction of
broader sparsity structures remains underexplored.

8540



Distribution of Top Attention Score

LLaMA (Inputl)

LLaMA (Input2)

Qwen (Inputl) q

Qwen (Input2) q

0.0 0.2 0.4 0.6 0.8 1.0

Initial Local Other

Figure 5: The distribution of maximum attention scores
highlights the dominance of anchor positions.

In contrast, we propose to define these high-impact
positions as anchor, emphasizing their critical role
in attention computation and their utility in precom-
puting and approximating the sparsity distribution
of other positions.

3 Method

In this section, we present AnchorAttention, a
difference-aware and stripe sparse attention strat-
egy. AnchorAttention consists of three key com-
ponents: (1) Pattern-based Anchor Computation,
(2) Difference-aware Stripe Sparsity Identifica-
tion, and (3) Fine-Grained Sparse Computation.
We implement all three strategies as kernel oper-
ations, as described in (4) Kernel Optimization
and Algorithm.

3.1 Pattern-based Anchor Computation

As discussed in Section 2.2.2, attention scores con-
sistently exhibit prominent peaks in two specific
regions: the initial token positions and the local
window position. This structurally stable pattern
motivates us to explicitly compute the attention
scores at these positions and define the resulting
maximum value as the anchor.

The anchor computation is highly efficient, as
it requires only a small subset of the key. This
enables us to approximate the maximum attention
score at a very low computational cost, avoiding
the need to compute the full attention. The com-
puted anchor can then directly guide the selection
of sparse attention patterns.

Formally, the anchor is computed as follows:

L. T
x, = max (CQ[KM\}’;(‘V],dim = —1) (1)

where () is the query matrix, [Kjpi, Ky] is the con-
catenated key vectors, Kjpj; corresponds to the ini-
tial tokens, K, corresponds to the local window,
both selected as blocks for computation. The re-
sulting @, is the highest score observed within the
structurally important regions, which we define as
the anchor, as detailed in Algorithm 1.

3.2 Difference-aware Stripe Sparsity
Identification

Numerous prior studies (Zhang et al., 2023; Yang
et al., 2024; Li et al., 2024) have observed pro-
nounced column-wise correlations in attention
score distributions—that is, across multiple con-
secutive queries, only a small subset of keys con-
sistently receives high attention. However, prior
studies (Tang et al., 2024) and our analysis in Sec-
tion 2.2.1 indicate that such column-wise correla-
tions are not always stable or reliable, often exhibit-
ing vanishing—reappearing behaviors. Inspired by
this observation, our strategy shifts focus to global
information: for each query segment, we individ-
uvally identify its corresponding keys and values,
rather than relying on a subset of queries to de-
termine a single global key—value set (Jiang et al.,
2024; Lai et al., 2025).

As discussed in Section 2.1, to efficiently
identify these coordinates, we compress queries
through block-average compression and compute
their dot product with all keys. The result is
directly compared to the average anchor value,
avgpool(x, ), from Equation 1 through numerical
difference. By setting a hyperparameter ¢, we com-
pute only the discrete keys and values whose dif-
ference is below this threshold. This approach out-
performs static top-k strategies, achieving perfor-
mance consistent with dynamic top-cdf strategies
while avoiding costly sorting operations.

We define the sparsity mask as:

avgpool(Q)K ' < 0)

mask = [ <avgpool(zca) -
Vd

S ={(i,j) | mask(i, j) = 1} 2

where x, is the approximate highest attention score,
avgpool(ax,) is its pooled average, avgpool(Q) is
the pooled queries, 6 is the comparison threshold,
mask € {0,1}" ™ is the binary mask, S is the
set of coordinates to be activated, and I(-) is the
indicator function. The detailed implementation is
provided in Algorithm 2.

8541



Models Methods Single-Document QA Multi-Document QA Summarization Few-shot Learning Synthetic Code ‘ Ave.
NarrQA  Qasper MF-en | HotpotQA 2Wiki Musique | GovRep QMSum MNews | TREC Trivia SAMSum | PCount PR-en | Lcc  RP-P
Full-attn 31.44 25.07  29.40 16.89 17.00 11.79 34.22 23.25 26.69 | 72.50 91.65 43.74 595 9820 | 54.04 51.49 | 39.58
StreamingLLM 2127 2348  24.05 14.26 13.43 8.46 33.47 2228 2676 | 66.50 90.32 44.46 7.26 3824 | 5455 52.56 | 33.83
LLaMA  Vertical_Slash 20.87 2454 26.19 17.12 14.37 8.38 32.84 2233 2685 | 63.50 9138 44.12 098  98.61 | 5422 36.41 | 36.48
FlexPrefill 28.31 2379  28.78 19.24 16.22 10.58 33.60 2295 27.06 | 70.50 90.74 43.81 137 7750 | 5423 54.09 | 36.66
Ours 21.79 2382  28.86 16.29 16.84  11.74 34.50 2294 27.01 | 72.50 90.67 43.82 353 9692 54.72 49.65 | 38.23
Full-attn 11.53 13.99  31.83 10.88 10.02 7.12 3252 20.65 2258 | 71.50 89.47 46.68 392 9842 | 59.63 66.57 | 37.33
StreamingLLM ~ 11.70 13.68  31.39 11.34 9.77 5.94 32.63 19.85 22,52 | 72.00 89.02 45.76 418  73.83 | 59.22 65.28 | 35.51
Qwen Vertical_Slash 10.70 1340 31.59 11.30 9.87 8.06 32.70 20.65 2247 | 70.50 89.73 46.00 346 9425 | 60.21 66.36 | 36.51
FlexPrefill 8.73 1391 29.96 11.36 8.76 6.69 32.16 21.08 22.37 | 70.50 88.29 45.66 203  71.67 | 5894 60.68 | 34.90
Ours 14.57 14.23 3218 10.73 9.93 7.24 32.21 20.76 2246 | 72.50 89.05 45.69 399 9458 5928 6527 | 37.17

Table 2: Accuracy (%) of different attention mechanisms across models on LongBench, where the bold values
indicate the optimal configurations of sparse strategies. Our method shows only a marginal accuracy gap compared
to full attention, while consistently achieving the best performance among various sparse strategies.

Models  Methods 4k 8k 16k 32k 64k 128k | Avg
Full-attn 95.67 9375 93.03 8726 8437 78.13 | 88.70
LLaMA Streaming LLM  96.62 92.06 84.54 66.77 46.69 37.03 | 70.61
Vertical_Slash 95.81 92.82 9326 8896 85.09 58.18 | 85.69
FlexPrefill 9546 93.18 9353 90.02 84.73 75.03 | 88.66
Ours 9598 93.27 93.67 87.79 84.53 7491 | 88.36
Full-attn 9492 93.01 9231 86.54 66.76 2272 | 76.04
Streaming LLM ~ 93.74 9091 7439 57.81 2548 15.88 | 59.70
Qwen Vertical_Slash 9491 9216 92.17 85.59 60.10 24.78 | 74.95
FlexPrefill 93.04 90.69 90.16 80.37 4042 2543 | 70.01
Ours 9498 92.86 89.74 84.68 66.79 2571 | 75.79

Table 3: Accuracy (%) of different attention mechanisms across models on the RULER benchmark. At the 128k
context length, the Qwen model performs poorly, and our method does not achieve the highest end-to-end accuracy
across all tests; however, it still demonstrates strong competitiveness in terms of overall accuracy.

3.3 Fine-Grained Sparse Computation

In contrast to prior strategies that load contiguous
key-value blocks, our fine-grained sparse compu-
tation methodology selectively loads multiple dis-
crete key-value pairs based on discrete key-value
coordinates. Throughout the computational pro-
cess, we adhere to the sharding strategy of FlashAt-
tention, employing the same computation logic.
However, compared to block-sparse approaches,
our discrete key-value loading, as discussed in Sec-
tion 2.1.2, achieves a higher sparsity rate due to
lower granularity with negligible additional over-
head, thereby significantly enhancing the efficiency
of sparse computation.

To formalize the fine-grained sparse computa-
tion, we construct the reduced key and value sets
by discretely loading key-value pairs based on the
sparse coordinate set S from Equation 2. The index
set Z is defined as:

I={jl(J)eSs}, (3)

and the reduced key and value sets are constructed
as:
K' = load_discrete(K, S)

V' = load_discrete(V, S) €]

where load_discrete(M,S) = {M[j,:] | j € T}
denotes selecting the key or value rows from the
matrix M (e.g., K or V) corresponding to the in-
dices in Z. The sparse attention output is then
computed as:

Output = Attn(Q, K', V') 5)

where Attn(Q, K', V') denotes the attention com-
putation, with the granularity of key-value loading
modified from contiguous blocks (as in FlashAtten-
tion(Dao et al., 2022)) to discrete keys and values
based on the coordinates in S. The detailed imple-
mentation is provided in Algorithm 3.

3.4 Kernel Optimization and Algorithm

To further accelerate sparse attention computation,
we implement kernel-level optimizations across
all algorithms with two primary objectives: (1)
maximizing parallel computation capacity and (2)
avoiding additional memory overhead. To this
end, we introduce an extra hyperparameter, step,
which enables simultaneous identification of co-
ordinates corresponding to step query blocks. If
any of these blocks contain a key that satisfies the
condition defined in Equation 2, all step consecu-
tive blocks are marked as active for computation,

8542



thereby enabling unified processing and improved
parallelism. Meanwhile, to reduce redundant com-
putation, we temporarily cache the intermediate
results generated in Section 3.1 and reuse them in
Section 3.3. This design maximizes computational
efficiency while incurring only negligible memory
overhead compared to the original key—value cache.
The complete implementation is provided in Algo-
rithms 1, 2 and 3.

4 Experiment

4.1 Setup

Models Our evaluation is conducted on two ad-
vanced large language models (LLMs) that natively
support up to 128K context length in their pre-
trained form: (i) LLaMA-3.1-8B-Instruct (?), (ii)
Qwen2.5-7B-Instruct (Qwen et al., 2025).

Benchmark We evaluate models on three repre-
sentative long-context benchmarks, each designed
to test different aspects of long-context under-
standing and retrieval: (i) LongBench (Bai et al.,
2024), a multilingual, multi-task benchmark cov-
ering question answering, summarization, classi-
fication, and retrieval, with diverse input formats;
(ii) RULER (Hsieh et al., 2024), a synthetic bench-
mark that enables controlled variations in context
length and reasoning complexity, including tasks
such as multi-hop tracing and aggregation; (iii)
Needle-in-a-Haystack (Kamradt, 2023), a stress
test designed to evaluate accurate retrieval perfor-
mance in ultra-long contexts.

Baseline We evaluate four baselines for acceler-
ating prefill attention: (i) Full-attn, dense attention
implemented via FlashAttention (Dao et al., 2022);
(ii) Vertical_Slash (Jiang et al., 2024), which se-
lects a fixed set of important vertical and slash
positions; (iii) StreamingLLLLM (Xiao et al., 2024),
retaining only key tokens from initial and local win-
dow regions; (iv) FlexPrefill (Lai et al., 2025), a
dynamic method selecting attention blocks based
on top-cdf scoring, representing recent state-of-the-
art.

Implementation All experiments are conducted
on a single NVIDIA A100 GPU with 80GB mem-
ory, leveraging Triton (Tillet et al., 2019) for opti-
mized GPU computations. To ensure fair compari-
son, all methods adopt a uniform block size of 128.
Across all datasets, our method and FlexPrefill use
consistent hyperparameter settings: for ours, we
set § = 12 and step = 16; for FlexPrefill, we use
v = 0.95, 7 = 0.1, and min_budget = 1024. In

our parameter configuration, we choose § = 12,
under which the sparsified positions have almost no
impact on the final output. For LongBench, which
has relatively shorter average sequence lengths,
Streamingl.LLM uses a global window and a lo-
cal window of 1024, and Vertical_Slash sets both
vertical and slash window sizes to 1024. For other
datasets, StreamingLLLM adopts a global window
of 1024 and a local window of 8192, while Ver-
tical_Slash uses a vertical window of 1024 and a
slash window of 8192. In the latency-recall evalua-
tion, we uniformly choose to generate data using
the ruler and report the averaged results.

4.2 Result

Longbench To demonstrate the applicability of our
method to nearly all input scenarios, we selected
the LongBench benchmark for accuracy evaluation.
LongBench encompasses a variety of tasks that ex-
hibit input diversity, testing whether our method
maintains high accuracy across different inputs.
The accuracy results are presented in Table 2.

Ruler To demonstrate the potential of our ap-
proach for large language models handling varying
context lengths, we conducted evaluations on mul-
tiple methods using the ruler benchmark. Table 3
shows that, as context length increases, our method
consistently maintains accuracy close to that of full
KV computations.

Needle-in-a-Haystack As shown in Figure 7,
we present the results of the Needle-in-a-Haystack
task across different context lengths and depth per-
centages. The results indicate that both our method
and FlexPrefill can dynamically adapt the sparsity
rate based on input variations, achieving perfor-
mance comparable to full attention. In contrast, the
static strategy Vertical_Slash shows a noticeable
accuracy drop as the context length increases.

Recall vs. Sparsity We adjust the hyperparame-
ters of different methods to obtain varying sparsity
rates and compare the recall performance of differ-
ent strategies under each sparsity level. As shown
in Figure 6a, our method achieves the highest spar-
sity rate under the same recall level.

Latency vs. Recall Prior work primarily differs
in search strategies, with distinctions arising from
the blocks requiring computation. Our method
abandons block-level sparsity strategies, instead
adopting a finer-grained computation strategy that
loads multiple discrete keys and values at once. As
illustrated in Figure 6b, at the same recall level, our

8543



Recall vs. Sparsity for Different Attention Mechanisms

Latency vs. Recall for Different Attention Mechanisms

Latency Dec Across Sequence Lengths

Recall (%)
Latency (ms)

100 095 090 085 075 070 065 060 70 7

0380
Sparsity

(a) Recall vs. Sparsity

8 85 32
Recall (%) Sequence Length

(b) Latency vs. Recall

% a 8k 16k

64k 128

(c) Latency vs. Length

Figure 6: Performance metrics for recall, sparsity, and efficiency across different methods. Figures (a), (b),
and (c) are generated from a random sample of the Ruler benchmark to illustrate the effectiveness of different
approaches. Figures (a) and (b) correspond to the 128k length. For sparsity and latency metrics, we report the
average computation time per head. The results show that our method significantly outperforms other sparse

strategies in terms of recall.

Figure 7: Comparison of attention patterns on Needle-
in-a-Haystack tasks (128K context), where our method
achieves results comparable to full attention and demon-
strates strong performance.

strategy significantly outperforms other methods in
terms of time efficiency.

Latency vs. Length Compared to prior strate-
gies, our approach considers the entire region dur-
ing search. This higher search overhead also brings
us more accurate recognition, which is reflected in
the recall curves and the computation time sec-
tion. As shown in Figure 6¢c, our method in-
curs additional recognition time in most cases, but
it achieves a higher important recognition ratio,
thereby optimizing overall time efficiency and re-
call.

4.3 Ablation Study

Anchor Importance In this section, we assess the
impact of introducing anchors when searching for
important tokens by comparing sparsity, recall, and
computation time under different values of 0. As
shown in Table 4. The original attention(With An-
chor) consistently achieves high recall rates while
maintaining impressively low sparsity, indicating

Anchor Attention 6  Sparsity (%) Recall (%) Time (ms)

10.0 97% 70.9 57

11.0 93% 76.8 6.4

. 12.0 89% 82.8 8.2
With Anchor 13.0 81% 88.0 10.9
14.0 72% 91.4 13.8

15.0 61% 947 193

10.0 83% 69.5 93

11.0 69% 83.7 14.6

. 12.0 52% 90.2 295
‘Without Anchor 13.0 7% 95.8 413
14.0 18% 96.2 497

15.0 3% 98.5 572

Table 4: Ablation study of Anchor Attention. Results
are averaged over all heads using a 128k context length.
The results demonstrate that the selection of anchors is
effective, as it allows dynamically setting the maximum
value to compare for each query. In contrast, static
linear schemes do not achieve better results, indicating
the effectiveness of dynamic anchor selection.

effective attention guidance. In contrast, the With-
out Anchor configuration, which sets the anchor as
a zero tensor in implementation, requires signifi-
cantly higher sparsity to reach comparable recall
levels. This suggests that fixed thresholding alone,
without anchor guidance, is less adept at capturing
the global attention distribution efficiently, result-
ing in a less optimal sparsity-recall balance.

5 Related Work

LLM Inference Acceleration Inference accelera-
tion techniques aim to reduce the latency and mem-
ory overhead of large language models (LLMs) dur-
ing text generation. At the system level, FlashAt-
tention (Dao et al., 2022) significantly improves at-
tention computation efficiency by optimizing mem-
ory access patterns, while RingAttention (Liu et al.,
2023) distributes attention workloads across multi-

8544



ple devices to achieve parallel acceleration. Page-
dAttention (Kwon et al., 2023) further enhances
overall inference performance through efficient KV
cache management. In terms of model compression
and storage optimization, quantization techniques
are widely employed to reduce model size and
memory bandwidth requirements, thereby acceler-
ating inference. Specifically for KV cache compres-
sion, research has progressed from early per-token
quantization methods such as Atom (Zhao et al.,
2024), to channel-wise quantization like KIVI (Liu
et al., 2024b), and more recently to non-uniform
quantization schemes such as KVQuant (Hooper
et al., 2024).

Sparse Attention The quadratic complexity of
attention has driven extensive research into sparse
attention strategies to improve the inference effi-
ciency of large language models (LLMs). Impor-
tantly, attention distributions in LLMs are inher-
ently sparse—many attention weights are close to
zero and can be safely pruned without significantly
affecting model performance (Child et al., 2019).
More recent methods, such as H20 (Zhang et al.,
2023) and SnapKV (Li et al., 2024) prune unim-
portant tokens by comparing cumulative attention
scores. Although partially effective, these meth-
ods offer limited acceleration benefits during the
prefill stage. StreamingLL.M (Xiao et al., 2024)
significantly improves efficiency by retaining only
initial and recent tokens, but often misses critical
information from intermediate regions. MInfer-
ence (Jiang et al., 2024) accelerates the prefill stage
by applying statically determined attention patterns,
but such static designs are often suboptimal for di-
verse and dynamic inputs. FlexPrefill (Lai et al.,
2025) improves adaptivity via runtime-driven dy-
namic pattern selection, yet relies heavily on local
information, limiting its ability to capture globally
important positions. Recently, research has shifted
toward building general-purpose sparse attention
frameworks rather than designing architectures tai-
lored specifically to LLM characteristics. For ex-
ample, SpargeAttn(Zhang et al., 2025) leverages
similarity-based filtering and quantization to accel-
erate attention, while X-Attention(Xu et al., 2025)
introduces an antidiagonal scoring mechanism to
efficiently prune irrelevant blocks. Furthermore,
most existing methods rely on block-level granu-
larity, where block size fundamentally constrains
the achievable sparsity ceiling. Therefore, there is
an urgent need for a lower-granularity sparse atten-

tion mechanism with a stronger emphasis on global
context, in order to mitigate the increasingly heavy
computational burden during the prefill stage as
context lengths continue to grow.

6 Conclusion

In this work, we propose AnchorAttention, a
difference-aware, dynamic sparse attention mecha-
nism designed to address the computational chal-
lenges faced by Large Language Models (LLMs)
during the prefill phase under long-context settings.
The method efficiently identifies critical attention
regions at a finer stripe-level granularity.

To further improve speed, we implement all op-
erators at the kernel level. By combining pattern-
based anchor computation, difference-aware stripe
sparsity identification, and fine-grained sparse com-
putation, AnchorAttention achieves higher spar-
sity and superior computational efficiency com-
pared to existing methods. At a sequence length of
128k, it achieves a 1.44x speedup while maintain-
ing a higher recall rate.

7 ACKNOWLEDGMENTS

Sponsored by Tencent Basic Platform Technology
Rhino-Bird Focused Research Program.

Limitations

Our evaluation is limited to the LLaMA-3.1-8B-
instruct and Qwen2.5-7B-instruct models, and we
have not yet validated the generality of AnchorAt-
tention across a broader range of architectures and
model scales; future work will extend our analy-
sis to additional models. Additionally, we do not
account for the importance of slash and row-wise
patterns, as our design prioritizes maximizing par-
allelism while ensuring high recall rates. Further-
more, this work focuses exclusively on the prefill
phase of attention computation and does not ana-
lyze the impact or adaptivity of our method during
the decode phase; subsequent studies will inves-
tigate performance and sparsity behavior during
generation.

Ethics Statement

We believe this work raises no ethical concerns. At-
tention is a key component in Transformers, widely
used in Large Language Models (LLLMs). There-
fore, accelerating the execution of attention is bene-
ficial for developing LLM applications that address
diverse societal challenges.

8545



References

Yushi Bai, Xin Lv, Jiajie Zhang, Hongchang Lyu,
Jiankai Tang, Zhidian Huang, Zhengxiao Du, Xiao
Liu, Aohan Zeng, Lei Hou, Yuxiao Dong, Jie Tang,
and Juanzi Li. 2024. Longbench: A bilingual, multi-
task benchmark for long context understanding.

Rewon Child, Scott Gray, Alec Radford, and Ilya
Sutskever. 2019. Generating long sequences with
sparse transformers.

Tri Dao, Daniel Y. Fu, Stefano Ermon, Atri Rudra,
and Christopher Ré. 2022. Flashattention: Fast and
memory-efficient exact attention with io-awareness.

Yu Fu, Zefan Cai, Abedelkadir Asi, Wayne Xiong, Yue
Dong, and Wen Xiao. 2024. Not all heads matter: A
head-level kv cache compression method with inte-
grated retrieval and reasoning.

Connor Holmes, Masahiro Tanaka, Michael Wyatt, Am-
mar Ahmad Awan, Jeff Rasley, Samyam Rajbhan-
dari, Reza Yazdani Aminabadi, Heyang Qin, Arash
Bakhtiari, Lev Kurilenko, and Yuxiong He. 2024.
Deepspeed-fastgen: High-throughput text generation
for llms via mii and deepspeed-inference.

Coleman Hooper, Sehoon Kim, Hiva Mohammadzadeh,
Michael W. Mahoney, Yakun Sophia Shao, Kurt
Keutzer, and Amir Gholami. 2024. Kvquant: To-
wards 10 million context length 1lm inference with
kv cache quantization.

Cheng-Ping Hsieh, Simeng Sun, Samuel Kriman, Shan-
tanu Acharya, Dima Rekesh, Fei Jia, Yang Zhang,
and Boris Ginsburg. 2024. Ruler: What’s the real
context size of your long-context language models?

Huigiang Jiang, Yucheng Li, Chengruidong Zhang,
Qianhui Wu, Xufang Luo, Surin Ahn, Zhenhua Han,
Amir H. Abdi, Dongsheng Li, Chin-Yew Lin, Yuqing
Yang, and Lili Qiu. 2024. Minference 1.0: Acceler-
ating pre-filling for long-context llms via dynamic
sparse attention.

Jean Kaddour, Joshua Harris, Maximilian Mozes, Her-
bie Bradley, Roberta Raileanu, and Robert McHardy.
2023. Challenges and applications of large language
models.

Greg Kamradt. 2023. Llmtest needle in a haystack
- pressure testing llms. https://github.com/
gkamradt/LLMTest_NeedleInAHaystack. Ac-
cessed: [Insert Date].

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying
Sheng, Lianmin Zheng, Cody Hao Yu, Joseph E.
Gonzalez, Hao Zhang, and Ion Stoica. 2023. Effi-
cient memory management for large language model
serving with pagedattention.

Xunhao Lai, Jiangiao Lu, Yao Luo, Yiyuan Ma, and
Xun Zhou. 2025. Flexprefill: A context-aware sparse
attention mechanism for efficient long-sequence in-
ference.

Yuhong Li, Yingbing Huang, Bowen Yang, Bharat
Venkitesh, Acyr Locatelli, Hanchen Ye, Tianle Cai,
Patrick Lewis, and Deming Chen. 2024. SnapKV:
LLM knows what you are looking for before gener-
ation. In The Thirty-eighth Annual Conference on
Neural Information Processing Systems.

Di Liu, Meng Chen, Baotong Lu, Huiqiang Jiang, Zhen-
hua Han, Qianxi Zhang, Qi Chen, Chengruidong
Zhang, Bailu Ding, Kai Zhang, Chen Chen, Fan Yang,
Yuqing Yang, and Lili Qiu. 2024a. Retrievalattention:
Accelerating long-context llm inference via vector
retrieval.

Hao Liu, Matei Zaharia, and Pieter Abbeel. 2023.
Ring attention with blockwise transformers for near-
infinite context.

Zirui Liu, Jiayi Yuan, Hongye Jin, Shaochen Zhong,
Zhaozhuo Xu, Vladimir Braverman, Beidi Chen,
and Xia Hu. 2024b. Kivi: A tuning-free asymmet-
ric 2bit quantization for kv cache. arXiv preprint
arXiv:2402.02750.

Maxim Milakov and Natalia Gimelshein. 2018. Online
normalizer calculation for softmax.

Libo Qin, Qiguang Chen, Xiachong Feng, Yang Wu,
Yongheng Zhang, Yinghui Li, Min Li, Wanxiang
Che, and Philip S. Yu. 2024. Large language models
meet nlp: A survey.

Qwen, :, An Yang, Baosong Yang, Beichen Zhang,
Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan Li,
Dayiheng Liu, Fei Huang, Haoran Wei, Huan Lin,
Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin Yang,
Jiaxi Yang, Jingren Zhou, Junyang Lin, Kai Dang,
Keming Lu, Keqin Bao, Kexin Yang, Le Yu, Mei Li,
Mingfeng Xue, Pei Zhang, Qin Zhu, Rui Men, Runji
Lin, Tianhao Li, Tianyi Tang, Tingyu Xia, Xingzhang
Ren, Xuancheng Ren, Yang Fan, Yang Su, Yichang
Zhang, Yu Wan, Yuqiong Liu, Zeyu Cui, Zhenru
Zhang, and Zihan Qiu. 2025. Qwen2.5 technical
report.

Jiaming Tang, Yilong Zhao, Kan Zhu, Guangxuan Xiao,
Baris Kasikei, and Song Han. 2024. Quest: Query-
aware sparsity for efficient long-context llm infer-
ence.

Philippe Tillet, H. T. Kung, and David Cox. 2019. Tri-
ton: an intermediate language and compiler for tiled
neural network computations. In Proceedings of the
3rd ACM SIGPLAN International Workshop on Ma-
chine Learning and Programming Languages, MAPL
2019, page 10-19, New York, NY, USA. Association
for Computing Machinery.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Roziere, Naman Goyal, Eric Hambro, Faisal
Azhar, Aurelien Rodriguez, Armand Joulin, Edouard
Grave, and Guillaume Lample. 2023. Llama: Open
and efficient foundation language models.

8546


http://arxiv.org/abs/2308.14508
http://arxiv.org/abs/2308.14508
http://arxiv.org/abs/1904.10509
http://arxiv.org/abs/1904.10509
http://arxiv.org/abs/2205.14135
http://arxiv.org/abs/2205.14135
http://arxiv.org/abs/2410.19258
http://arxiv.org/abs/2410.19258
http://arxiv.org/abs/2410.19258
http://arxiv.org/abs/2401.08671
http://arxiv.org/abs/2401.08671
http://arxiv.org/abs/2401.18079
http://arxiv.org/abs/2401.18079
http://arxiv.org/abs/2401.18079
http://arxiv.org/abs/2404.06654
http://arxiv.org/abs/2404.06654
http://arxiv.org/abs/2407.02490
http://arxiv.org/abs/2407.02490
http://arxiv.org/abs/2407.02490
http://arxiv.org/abs/2307.10169
http://arxiv.org/abs/2307.10169
https://github.com/gkamradt/LLMTest_NeedleInAHaystack
https://github.com/gkamradt/LLMTest_NeedleInAHaystack
http://arxiv.org/abs/2309.06180
http://arxiv.org/abs/2309.06180
http://arxiv.org/abs/2309.06180
http://arxiv.org/abs/2502.20766
http://arxiv.org/abs/2502.20766
http://arxiv.org/abs/2502.20766
https://openreview.net/forum?id=poE54GOq2l
https://openreview.net/forum?id=poE54GOq2l
https://openreview.net/forum?id=poE54GOq2l
http://arxiv.org/abs/2409.10516
http://arxiv.org/abs/2409.10516
http://arxiv.org/abs/2409.10516
http://arxiv.org/abs/2310.01889
http://arxiv.org/abs/2310.01889
http://arxiv.org/abs/1805.02867
http://arxiv.org/abs/1805.02867
http://arxiv.org/abs/2405.12819
http://arxiv.org/abs/2405.12819
http://arxiv.org/abs/2412.15115
http://arxiv.org/abs/2412.15115
http://arxiv.org/abs/2406.10774
http://arxiv.org/abs/2406.10774
http://arxiv.org/abs/2406.10774
https://doi.org/10.1145/3315508.3329973
https://doi.org/10.1145/3315508.3329973
https://doi.org/10.1145/3315508.3329973
http://arxiv.org/abs/2302.13971
http://arxiv.org/abs/2302.13971

Guangxuan Xiao, Yuandong Tian, Beidi Chen, Song
Han, and Mike Lewis. 2024. Efficient streaming
language models with attention sinks.

Ruyi Xu, Guangxuan Xiao, Haofeng Huang, Junxian
Guo, and Song Han. 2025. Xattention: Block sparse
attention with antidiagonal scoring.

Dongjie Yang, XiaoDong Han, Yan Gao, Yao Hu, Shilin
Zhang, and Hai Zhao. 2024. Pyramidinfer: Pyra-
mid kv cache compression for high-throughput llm
inference.

Shang Yang, Junxian Guo, Haotian Tang, Qinghao Hu,
Guangxuan Xiao, Jiaming Tang, Yujun Lin, Zhijian
Liu, Yao Lu, and Song Han. 2025. Lserve: Effi-
cient long-sequence llm serving with unified sparse
attention.

Jintao Zhang, Chendong Xiang, Haofeng Huang, Jia
Wei, Haocheng Xi, Jun Zhu, and Jianfei Chen. 2025.
Spargeattn: Accurate sparse attention accelerating
any model inference.

Zhenyu Zhang, Ying Sheng, Tianyi Zhou, Tianlong
Chen, Lianmin Zheng, Ruisi Cai, Zhao Song, Yuan-
dong Tian, Christopher Re, Clark Barrett, Zhangyang
Wang, and Beidi Chen. 2023. H20: Heavy-hitter ora-
cle for efficient generative inference of large language
models. In Thirty-seventh Conference on Neural In-
formation Processing Systems.

Yilong Zhao, Chien-Yu Lin, Kan Zhu, Zihao Ye, Lequn
Chen, Size Zheng, Luis Ceze, Arvind Krishnamurthy,
Tiangi Chen, and Baris Kasikci. 2024. Atom: Low-
bit quantization for efficient and accurate llm serving.

Shuang Zhou, Zidu Xu, Mian Zhang, Chunpu Xu,
Yawen Guo, Zaifu Zhan, Sirui Ding, Jiashuo Wang,
Kaishuai Xu, Yi Fang, Liqiao Xia, Jeremy Yeung,
Daochen Zha, Genevieve B. Melton, Mingquan Lin,
and Rui Zhang. 2024. Large language models for
disease diagnosis: A scoping review.

A Sparsity Heatmap Comparison

Figure 4 presents the per-layer, per-head recall dis-
tributions on the LLaMA-3.1-8B-instruct model
using the 128k ruler datasets. In Figure 8, we fur-
ther visualize the sparsity levels achieved under this
target recall for different identification strategies.
The results indicate that our proposed Difference-
Aware strategy achieves sparsity patterns compa-
rable to those of top-cdf while maintaining similar
recall performance.

B Dynamic Sparsity Heatmap

To demonstrate the dynamic nature of the heatmap,
we selected a distinct dataset with the same length
of 128k. The recall rates under different sparsity
strategies are shown in Figure 9, with the corre-
sponding sparsity rates depicted in Figure 10. It

is evident that, as the input changes, both the top-
cdf and difference-aware methods can effectively
capture variations in sparsity rates.

C Algorithm

We provide the complete pseudocode of our pro-
posed sparse attention inference pipeline, consist-
ing of three key stages:

Algorithm 1: Anchor Computation. This al-
gorithm performs efficient block-wise attention to
obtain an approximate estimation of the attention
result, which is used later for sparsity identification.
The query matrix @ is divided into blocks @); and
interacts only with a small number of key-value
blocks (e.g., the initial block and a local window).
The accumulated attention values Acc;, normaliza-
tion terms L;, and maximum logits M; are com-
puted and cached. These intermediate results are
reused in the final sparse attention step to avoid
redundant computation.

Algorithm 2: Stripe Sparsity Identification.
Based on the averaged queries and approximated
attention output from the previous step, this al-
gorithm identifies informative positions through a
lightweight thresholding mechanism. By compar-
ing the approximated anchor score x, with new
attention estimates, it selects positions with scores
close to the anchor. This enables the construc-
tion of stripe-wise sparse indices F_idx without
computing full attention maps, greatly improving
efficiency.

Algorithm 3: Sparse Attention Computation.
This stage computes the final attention output using
only the key/value blocks selected via sparse index-
ing. For each query block @);, the algorithm loads
its corresponding anchor values (M;, L;, Acc;) and
incrementally accumulates the attention using the
sparse key-value entries. This computation avoids
redundant processing and yields high sparsity while
maintaining high recall and accuracy.

8547


http://arxiv.org/abs/2309.17453
http://arxiv.org/abs/2309.17453
http://arxiv.org/abs/2503.16428
http://arxiv.org/abs/2503.16428
http://arxiv.org/abs/2405.12532
http://arxiv.org/abs/2405.12532
http://arxiv.org/abs/2405.12532
http://arxiv.org/abs/2502.14866
http://arxiv.org/abs/2502.14866
http://arxiv.org/abs/2502.14866
http://arxiv.org/abs/2502.18137
http://arxiv.org/abs/2502.18137
https://openreview.net/forum?id=RkRrPp7GKO
https://openreview.net/forum?id=RkRrPp7GKO
https://openreview.net/forum?id=RkRrPp7GKO
http://arxiv.org/abs/2310.19102
http://arxiv.org/abs/2310.19102
http://arxiv.org/abs/2409.00097
http://arxiv.org/abs/2409.00097

Sparsity Rate(93.7%) 10 Sparsity Rate(96.4%) 10 Sparsity Rate(94.1%) 10
w w L =] w

[ [ = [ L}
4 4 4 u
0.8 0.8 0.8
8 8 L 8 | |
12 0.6 12 0.6 12 0.6
% 16 %‘ 16 %‘ 16
0.4 0.4 0.4
20 20 20
24 24 2
0.2 0.2 0.2
28 28 28
[ 4 8 12 16 20 24 28 00 [ 4 8 12 16 20 24 28 00 [ 4 8 12 16 20 24 28 00
Head Head Head
(a) Top-K (4096) (b) Top-CDF (0.95) (c) Difference-Aware (11)

Figure 8: Sparsity heatmaps under different sparsity strategies. The recall heatmap corresponds to Figure 4.

Recall Rate(78.4%) 10 Recall Rate(71.3%) 10 Recall Rate(82.8%) 10
0
4
08 08 - 08
8
"= u
0.6 0.6 12 0.6
%15 - 3
] u =
04 04 S0 ™ am -.: 04
||
N
02 02 02
’ '-': -.-.-'.-'i’
- .—
0.0 0.0 P s 0.0
Head Head
(a) Top-K (4096) (b) Top-CDF (0.95) (c) Difference-Aware (11)

Figure 9: Recall heatmaps under different sparsity identification strategies.

Sparsity Rate(93.7%) 10 Sparsity Rate(92.7%) 10 Sparsity Rate(91.4%) 10
0 o w L 0 E —n o = B
4 4 4
08 08 08
8 8 " 8 [ ] "
12 06 12 06 2 ] L] oo
% 16 % 16 ™ % 16 -
0.4 0.4 0.4
20 20 20
2 24 2
02 02 02
28 28 28
n
0 4 8 12 16 20 24 28 0o 0 4 8 12 1 20 24 28 0o 0 4 8 12 16 20 24 28 0o
Head Head Head
(a) Top-K (4096) (b) Top-CDF (0.95) (c) Difference-Aware (11)

Figure 10: Sparsity heatmaps for different sparsity strategies.

8548



Algorithm 1 Anchor Computation

Require: Q, K,V € RY*? (FP16), block sizes by, by, step size step
1: Divide @ into T3, = N/bg blocks {Q;}; K, V into T, = N /by, blocks {K;},{V;}
2: for i = 1to T}, do

3: Load Q;, K1, Vi into shared memory

4:  Compute initial attention: gk < Q; - K1

5:  m < max(gk,dim = —1)

6:  p<exp(gk—m), 1+ > (p,dim=—1),acc+p- Vi
7:  Determine local window range:

8: Jstart <— max(2, [ (¢ — 1)/step] - step - (bg/bkv))

9: jend — 7 (bq/bkv)

10:  for j = jsart tO Jena do

11: Load K}, Vj into shared memory

12: Compute gk < Q; - Kj, m’ + max(m, max(gk))
13: p < exp(gk —m'), a + exp(m —m’)

14: l1l-a+>(p),acc+acc-a+p-V;
15: Update m <+ m’
16:  end for
17: Write M; < m, L; < [, Acc; <+ acc
18: end for

19: return M, L, Acc

Algorithm 2 Stripe Sparsity Identification

Requ1re Q, K € RY*4 (FP16), anchor score Acc, block sizes bg, biw, threshold 0, step size step
: Compute averaged query Qmean <— avgpool(Q, bq)
: Compute anchor average x, <+ avgpool(Acc, b )
Divide Qmean into T, = N/(bg - step) blocks {Qg"}
Divide K into T,, = N/bg, blocks { K}
fori =1t 7, do

Initialize f. < 0, fiax < 0

Jend 4= (i — 1) - step - (bg/biv)

for j = 2 t0 jena do

Load K

10: Compute gk + Q7" - K;
11: mask < (zq — gk) < 6
12: Append matching indices to figx, count to f.
13:  end for ]
14: Write Fu(jx) — fidx, Fc(z) — fe
15: end for
16: return Fig, F.

e A S

Algorithm 3 Sparse Attention Computation (Reusing Anchor and Stripe Outputs)

Require: Query Q, Key K, Value V € RY*? (FP16), precomputed M, L, Acc (from Alg. 1), and sparse indices Fiy, F.
(from Alg. 2); block sizes by, by ; step size step

1: Divide Q into T3, = N/bg blocks {Q; }

2: Divide M, L, Accinto {M;}, {L:}, {Acc:}

3: Divide F., Fi4 into {Fc(k)} {Flgf)} where k = | (i — 1) /step|
4: for ¢ = 1to Ty, do

5: Load Q;, and corresponding M;, L;, Acc;

6: Initialize m < M;, |l < L;, acc < Acc;

7. Letk < [(¢ —1)/step]

8. #Simultaneously load multiple discrete coordinate chunks from F”(,V)
9:  for each index chunk f in Flg’;) do
10: Load sparse key/value K; = K[f}],V; = VIfi]
11: Compute gk = QZ - Kj, m’ = max(m max(qk:))
12: p = exp(gk —m'), a = exp(m — m/)
13: l=1l-a+>(p),acc=acc-a+p-V,
14: Update m = m’
15:  end for
16: Write output O; = acc/l
17: end for

18: return Final attention output O

8549



